矩阵求秩方法
矩阵的秩及其求法-求秩的技巧
第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。
矩阵的秩求法
4 3 9 12
1 1 7 8
4 1 11 12
上页 下页
返回
1 0 0 0
6 4 12 16
4 3 9 12
1 1 7 8
4 1 11 12
1 r3 3r2 0 ~ 0 r4 4r2 0
6 4 0 0
4 3 0 0
1 1 4 4
4 1 8 8
上页 下页
返回
1 0 0 0 1 r4 3r3 0 ~ 0 0
6 4 0 0 6 4 0 0
4 3 0 0 4 3 0 0
1 1 4 4 1 1 4 0
2 0 0 1 3 0 3 2 24 0, 4
因此R(B)= 3 。
上页 下页 返回
从本例可知,由矩阵A 的秩的定义求秩,关键在 于找 A 中不等于 0 的子式的最高阶数。 一般当行数与列数都较高时,按定义求秩是很麻 烦的。 对于行阶梯形矩阵,显然它的秩就等于非零行的 行数。 因此自然想到用初等变换把矩阵化为行阶梯形矩 阵,但两个等价的矩阵的秩是否相等呢?
上页 下页 下页 返回 上页
求矩阵的秩的步骤
矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。
在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。
矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。
2.初等变换不改变矩阵的秩。
3.矩阵Rab<=min{Ra,Rb}乘积的秩。
4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。
5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。
6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。
矩阵求秩的方法
矩阵求秩的方法
求矩阵的秩的几种方法:
1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。
此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。
通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。
此类情况一般也是可以确定原矩阵秩的。
4、对矩阵分解,此处区别与上面对矩阵分块。
例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。
通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5、对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。
此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
扩展资料:
矩阵的秩是线性代数中的一个概念。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。
通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。
类似地,行秩是A的线性无关的横行的极大数目。
通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
求矩阵的秩的三种方法
求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。
矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。
在实际应用中,求解矩阵的秩是非常常见的问题。
本文将介绍矩阵的三种求解秩的方法。
方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。
对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。
我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。
具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。
2. 统计矩阵中非零行的个数,即为矩阵的秩。
对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。
矩阵的秩等于它的列空间的维度。
我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。
具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。
3. 求解列空间的维度,即为矩阵A的秩。
阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。
可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。
矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。
总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。
对于一般的矩阵,三种方法的求解结果并不一定相同。
但无论采用哪种方法,都能够有效地求解矩阵的秩。
还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。
矩阵的秩及其求法求秩的技巧
第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R( A ) = n .反之,如 R ( A ) = n ,则因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R(B )。
解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k n k m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。
求矩阵的秩的步骤
求矩阵的秩的步骤在学习矩阵的秩之前,首先我们要先了解矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列( k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。
先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。
将二者相乘,便是矩阵A的k阶子式计算公式。
现在我们就可以定义矩阵的秩:设在m×n矩阵A中有不为零的r阶子式D,且所有r+1阶子式(如果存在的话)均为零,那么D称为矩阵A的最高阶非零子式,阶数r称为矩阵A的秩,记作R(A)。
特别地规定了零矩阵的秩等于0。
举个例子,我们先假定一个3阶矩阵。
由定义可得S不可能再有大于三阶的子阵,那么我们知道S的三阶子阵只有一个|S|,若计算出|S|≠0,那么S的秩就为3,记做R(S)=3;若是|S|=0,那就同理再看S的9个二阶子阵……当然,越高阶的矩阵的秩会越难计算,下面的视频来讲解行阶梯形矩阵在求解高阶矩阵的秩中的妙用。
学习矩阵的秩并归纳出矩阵秩的一些最基本的四个性质,具体证明过程详见课本,其中最主要的是第三条性质,它证明了两个等价矩阵的秩是相等的,因此将矩阵通过初等变换化为行阶梯形矩阵能大大简化矩阵秩的运算。
矩阵的子式定义:在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式。
矩阵的秩定义:设矩阵A中有一个不等于零的r阶子式D,且所有r +1阶子式(如果存在的话)全等于零,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。
规定零矩阵的秩为零。
矩阵的秩基本性质:①若A为m×n矩阵,则0≤R(A)≤min(m, n)②R(AT)=R(A)③若A~B,则R(A)=R(B)④若P、Q可逆,则R(PAQ)=R(A)矩阵的秩常用性质:max{R(A), R(B)}≤R(A, B)≤R(A)+R(B) 特别地,当B = b 为非零列向量时,有R(A)≤R(A, b)≤R(A)+1⑥R(A+B)≤R(A)+R(B) .⑦R(AB)≤min{R(A), R(B)} .⑧若Am×nBn×l = O,则R(A)+R(B)≤n。
矩阵的秩与其行(列)空间维度
矩阵的秩与其行(列)空间维度引言矩阵是线性代数中重要的概念之一,广泛应用于各个领域。
在矩阵理论中,矩阵的秩和其行(列)空间维度是关键概念。
本文将介绍矩阵的秩和行(列)空间维度的概念、计算方法以及它们之间的关系。
矩阵的秩矩阵的秩是指矩阵中非零行(列)向量的极大无关组的向量个数,用r(A)表示。
秩的概念与矩阵的线性无关性密切相关,它衡量了矩阵中线性无关向量的个数,从而反映了矩阵的重要特性。
计算方法计算矩阵的秩有多种方法,其中一种常用的方法是使用高斯消元法。
1.将矩阵转换为行简化阶梯形矩阵。
2.计算行简化阶梯形矩阵中非零行的个数,即为矩阵的秩。
秩的性质矩阵的秩具有以下性质:1.r(A) ≤ min(m, n):矩阵的秩不超过矩阵的行数和列数的较小值。
2.r(A) = r(A^T):矩阵的秩与其转置矩阵的秩相等。
行空间与列空间行空间给定一个m×n的矩阵A,它的行空间是由矩阵A的各行向量线性组合而成的向量空间。
行空间的维度等于矩阵A的秩,记作dim(row(A)) = r(A)。
列空间给定一个m×n的矩阵A,它的列空间是由矩阵A的各列向量线性组合而成的向量空间。
列空间的维度等于矩阵A的秩,记作dim(col(A)) = r(A)。
行空间与列空间的关系矩阵的行空间和列空间在性质上是等价的,它们都是描述矩阵中向量的线性组合的空间。
矩阵的秩既是行空间的维度,也是列空间的维度。
矩阵的行阶梯形与列阶梯形行阶梯形对于一个矩阵A,经过一系列行初等变换可以将矩阵A转化为行阶梯形矩阵。
行阶梯形矩阵的特点是,从左上到右下的对角线元素依次为1,其上(下)方的元素都为0。
行阶梯形矩阵的非零行的个数即为矩阵的秩。
列阶梯形对于一个矩阵A,经过一系列列初等变换可以将矩阵A转化为列阶梯形矩阵。
列阶梯形矩阵的特点是,从左上到右下的对角线元素依次为1,其左(右)边的元素都为0。
列阶梯形矩阵的非零列的个数即为矩阵的秩。
行阶梯形与列阶梯形之间的关系矩阵的行阶梯形和列阶梯形之间存在一个重要的关系:一个m×n的矩阵A的秩等于其行阶梯形矩阵和列阶梯形矩阵的非零行(列)的个数。
求矩阵的秩有下列基本方法(1)用初等变换.即用矩阵的初等行(.
10 01 00
0 11
1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0
解2.
1 11
1 1 1
1 1 1
1 1 1
0 0 0
1 0 0
0 1 0
0
0 1
~
0 0 0
0 0 2
2 2 2
2 2 0
1 0 1
1 0 0
0 1 0
0 11
1
~
0 0 0
11 2 0 02 00
1 2 2 4
0 1 2 1
0000~1000
0 1 0 0
0 1 0 0
00 00
例 6.讨论值的范围,确定矩阵的秩.
1
112
1 10
1
6
152
2
3
1 2
11 4 10 7 17 24
14 33
例 7. 用初等变换求下列矩阵的逆矩阵
1 1 1 1. 2 1 0
1 1 0
解1.
1 1 1 1
2.
三求解线性方程组1210对方程组的增广矩阵进行行的初等变换使其成为行最简矩由此可知小于末知量的个数故有一个自由末知量设自自由末知量为可得方程组的通解是任意常数时把系数矩阵化为行最简矩阵为从而得方程组的通解为为任意常数时把系数矩阵化为行最简矩阵为从而得到方程组的通解为为任意常数此时方程组有非零解可仿照解法一求出它初等行变换初等列变换初等行变换或者四解矩阵方程的初等变换法
所以,方程组 (AT A)x O与方程组 Ax O有
相同的解,故 RAT A RA
三、求解线性方程组
当方程的个数与未知数的个数不相同时,一 般用初等行变换求方程的解.
矩阵的秩公式
矩阵的秩公式
矩阵的秩公式是一种数学工具,用于确定矩阵的秩。
秩是描述矩阵中非零行的最大数量的参数。
对于一个m×n的矩阵,使用高斯消元法可以将矩阵化为行最简形式。
在行最简形式矩阵中,所有非零行都位于零行之上,并且每个非零行的首个非零元素都为1。
根据矩阵的行最简形式,我们可以确定矩阵的秩。
矩阵的秩等于行最简形式中的非零行数量。
这个数量即为矩阵的秩。
对于一个m×n的矩阵,其秩可以表示为r(A),其中A为矩阵。
矩阵A的秩满足以下条件:
1. 如果m ≤ n,则r(A) ≤ m;
2. 如果m > n,则r(A) ≤ n;
3. 如果矩阵A的元素全为0,则r(A) = 0。
此外,我们可以使用矩阵的性质来进一步求解秩。
例如,可以使用行变换来简化矩阵,以便更轻松地计算秩。
矩阵的秩在线性代数和各个领域都有广泛应用,包括图论、线性方程组求解和最小二乘法等。
总结而言,矩阵的秩公式是一个用于确定矩阵秩的数学工具。
它可以通过高斯消元法和矩阵的行最简形式来计算。
秩在多个领域有广泛应用,是解决各种问题的重要参数。
求矩阵的秩最简单方法例题
求矩阵的秩最简单方法例题求矩阵的秩那可太重要啦!步骤嘛,先把矩阵化简,可以用行变换或者列变换。
哇塞,就像给矩阵来个大变身一样。
注意可别瞎变,得有规律地来。
那求矩阵秩安全不?嘿,这有啥不安全的,只要方法对,稳稳当当的。
应用场景可多啦!解方程组啥的都能用得上。
优势那也是杠杠的,能快速帮咱解决难题。
举个实际例子哈,上次做一道难题,用求矩阵秩的方法,一下子就搞定啦!就像找到了一把神奇的钥匙,打开了难题的大门。
求矩阵秩的方法超棒,大家赶紧用起来呀!。
矩阵的秩及其求法-求秩的技巧
第五节 【2 】:矩阵的秩及其求法一.矩阵秩的概念 1. k 阶子式界说1 设 在A 中任取k 行k 列交叉处元素按原相对地位构成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式 矩阵A 的第一.三行,第二.四列订交处的元素所构成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k阶子式. 2. 矩阵的秩界说2 设 有r 阶子式不为0,任何r +1阶子式(假如消失的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ). 划定: 零矩阵的秩为 0 .留意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是独一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 假如An ×n , 且 则 R ( A ) =n .反之,如 R ( A ) = n ,则 是以,方阵 A 可逆的充分必要前提是 R ( A ) = n . 二.矩阵秩的求法 1.子式判别法(界说).例1 设 为阶梯形矩阵,求R (B ). ()nm ij a A ⨯={}),m in 1(n m k k≤≤⎪⎪⎪⎭⎫⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D nm ⨯k n k m c c ()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎫⎛4321因为 消失一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数.例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 假如 求a .解或例3则 2.用初等变换法求矩阵的秩定理2矩阵初等变换不转变矩阵的秩. 即则注: 只转变子行列式的符号.是A 中对应子式的k 倍. 是行列式运算的性质.求矩阵A 的秩办法:1)应用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩.例4求解⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫⎪⎪= ⎪⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R aa a A 111111=0)1)(2(2=-+=a a 1=∴a 2-=a ⎪⎪⎪⎪⎪⎭⎫⎝⎛=K K K K A 111111111111()3=A R =K 3-()311111113(1)(3)111111K A K K K KK=+=-+BA →)()(B R A R =j i rr ↔.1i rk .2j i krr +.3⎪⎪⎪⎭⎫ ⎝⎛-----=211163124201A ().A R −−→−-122r r A ⎪⎪⎪⎭⎫ ⎝⎛----211021104201⎪⎪⎪⎭⎫⎝⎛--→000021104201R(A ) = 2例5三.满秩矩阵界说3A 为n 阶方阵时,称 A 是满秩阵,(非奇怪矩阵) 称 A 是降秩阵,(奇怪矩阵) 可见: 对于满秩方阵A 施行初等行变换可以化为单位阵E ,又依据初等阵的感化:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则消失初等方阵 使得对于满秩矩阵A,它的行最简形是n 阶单位阵 E .例如A 为满秩方阵.关于矩阵的秩的一些主要结论:定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 假如 A B = 0 则μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫ ⎝⎛--=A R A ⎪⎪⎪⎭⎫ ⎝⎛--=6352132111μλA ⎪⎪⎪⎭⎫ ⎝⎛----+-→458044302111μλ⎪⎪⎪⎭⎫ ⎝⎛----+-→015044302111μλλ,2)(=A R 1,5==∴μλ01,05=-=-∴μλ(),n A R =(),n A R <()0≠⇔=A nA R .,,,21s P P P EA P P P P s s =-121, ()EA nA R ~= ()nE A n A R ~⇔=⎪⎪⎪⎭⎫ ⎝⎛=213212321A ⎪⎪⎪⎭⎫ ⎝⎛----→320430321⎪⎪⎪⎭⎫ ⎝⎛→320110001E=⎪⎪⎪⎭⎫⎝⎛→100010001()3=∴A R ≤≤≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+性质3 假如 R (A )= n, 假如A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证实R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n 而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥nnm ⨯).()()(B R A R B A R +≤±。
求矩阵的秩有下列基本方法(1)用初等变换.即用矩阵的初等行(.
(2) XA B
~
A 初等列变换
B
E BA1
X
BA1
或者
初等行变换
~ ( AT BT)
( E (AT )1BT )
X T (AT )1BT X BA1
例 3.设
A
103
0 1 1
104 , 且AX
A
2 X , 求矩阵X .
解:AX A 2X (A - 2E)X A
X
(A - 2E)1 A
1 1 1 1 1 0 1 0
A~
1
1 3
2 1 2
1 1 3
2 11
~
0
0 0
1 0 0
0 0 0
0
0 1
从而得方程组的通解为
x1 1
x
x2 x3 x4
k
0 1 0
(k为任意常数)
当a 2 时,把系数矩阵A化为行最简矩阵为
A~
1
1
1 3
1 2 1 2
1 1 2 3
1 2
1 a 3
2 a1
~
0 0 0
1 2 5
0 a 1
0
1 a23
1 1 1 1
~
0
0 0
1 0 0
0 a 1
0
1
a
0
2
当a 1 or a 2 时,R( A) 4,此时方程组
有非零解,可仿照解法一求出它的通解。
四、解矩阵方程的初等变换法
(1) AX B
初等行变换
~ (A B)
(E A1B) X A1B
1 1 1 1 1 1 1 1
解一:A
1 1
高中数学矩阵的秩怎么求
【导语】矩阵的秩是线性代数中的⼀个概念。
在线性代数中,⼀个矩阵A的列秩是A的线性独⽴的纵列的极⼤数,通常表⽰为r(A),rk(A)或rankA。
在线性代数中,⼀个矩阵A的列秩是A的线性独⽴的纵列的极⼤数⽬。
类似地,⾏秩是A的线性⽆关的横⾏的极⼤数⽬。
即如果把矩阵看成⼀个个⾏向量或者列向量,秩就是这些⾏向量或者列向量的秩,也就是极⼤⽆关组中所含向量的个数。
下⾯是分享的⾼中数学矩阵的秩求解⽅法。
欢迎阅读参考!⾼中数学矩阵的秩怎么求 ⼀、矩阵的秩求解⽅法 矩阵的秩计算公式:A=(aij)m×n 矩阵的秩是线性代数中的⼀个概念。
在线性代数中,⼀个矩阵A的列秩是A的线性独⽴的纵列的极⼤数,通常表⽰为r(A),rk(A)或rankA。
在线性代数中,⼀个矩阵A的列秩是A的线性独⽴的纵列的极⼤数⽬。
类似地,⾏秩是A的线性⽆关的横⾏的极⼤数⽬。
即如果把矩阵看成⼀个个⾏向量或者列向量,秩就是这些⾏向量或者列向量的秩,也就是极⼤⽆关组中所含向量的个数。
⼆、矩阵的秩的本质是什么? ⼀句话总结:矩阵是⼀种操作。
对谁的操作呢?是对向量的操作。
学习线性代数前,我们⼀直在实数的范畴考虑问题,学习线性代数后,就应该以向量(也就是⼀组数)作为考虑问题的基本单元。
考虑⼆维向量的集合。
可以直观地看到,⼆维平⾯中点的集合就等同于⼆维向量的集合。
矩阵A乘以向量b,可以得到另⼀个向量c。
若向量b,c均是⼆维,矩阵A就可以看做⼀个对⼆维向量的操作。
矩阵不满秩有两种情况(讨论⾏不满秩): ⼀,某⼀⾏或者列为零。
⼆,某两⾏或者多⾏线性相关。
1:讨论某⾏为零 这时可以发现,如果向量b两个元素全都不是零,⽽矩阵A没有0⾏,则向量c两个元素⼀定都不是0。
如果矩阵A仅有⼀个⾮零⾏,则向量c必有⼀个元素为零,另⼀个⾮零。
如果矩阵A没有⾮零⾏,则向量c为零向量。
这时候,你可以理解为,⼀个有零⾏的矩阵,会对⼀个向量构成⼀种"降维"的操作。
矩阵的秩及其求法
第五节:矩阵的秩及其求法一、矩阵秩的概念 1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
()n m ij a A ⨯={}),min 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯kn k m cc ()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果 求 a .解或 例3则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。
2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。
4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。
可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。
5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。
6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。
7. 特征值法:矩阵的秩等于其特征值不为零的个数。
8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。