关于矩阵秩的证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于矩阵秩的证明
-----09数应鄢丽萍
中文摘要
在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。
所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。
关键词:初等变换向量组的秩极大线性无关组
约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2)
r(kA)=⎩
⎨⎧=≠0 00
)(k k A r
(3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0
(5) r ⎪⎪⎭⎫
⎝⎛B O O A =r(A)+r(B)≤r ⎪⎪⎭
⎫ ⎝⎛B O C A (6) r(A-B)≤r(A)+r(B)
矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。
定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得
⎪⎪⎭⎫ ⎝⎛B O O A →⎪⎪⎭⎫ ⎝⎛B A O A →⎪⎪⎭⎫ ⎝⎛+B B A O A
即⎪⎪⎭⎫
⎝⎛E E O E ⎪⎪⎭⎫ ⎝⎛B O O A ⎪⎪⎭⎫ ⎝⎛E E O E =⎪⎪⎭
⎫
⎝⎛+B B A O A 由性质5可得
r ⎪⎪⎭⎫ ⎝⎛B O O A =r ⎪⎪⎭
⎫ ⎝⎛+B B A O A
则有r(A)+r(B)≥r(A+B)
定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m
阶矩阵,则有r(A)+r(B)-n ≤r(AB)
证:由初等变换可得
⎪⎪⎭⎫ ⎝⎛O A B E n →⎪
⎪⎭⎫ ⎝⎛-AB O B E n →⎪⎪⎭⎫ ⎝⎛-AB O O E n 即⎪
⎪⎭⎫
⎝⎛-s n E A O E ⎪⎪⎭
⎫
⎝⎛O A B E n ⎪
⎪⎭⎫ ⎝
⎛-m n E O B E =⎪⎪⎭⎫ ⎝⎛-AB O O E n 则r ⎪⎪⎭⎫
⎝⎛O A B E n =r ⎪⎪⎭
⎫
⎝⎛-AB O O E n 即r(A)+r(B)-n ≤r(AB)
推论(Frobenius 公式) 设A 为m ×n 阶矩阵,B 为n ×s 阶矩
阵,C 为s ×t 阶矩阵,则
r(AB)+r(BC)-r(B)≤r(ABC)
证:设r(B)=r,存在n 阶可逆矩阵P ,s 阶可逆矩阵Q ,
使 B=P ⎪⎪⎭⎫
⎝⎛O O O E r Q=P ⎪⎪⎭
⎫
⎝⎛O E r ()O E r Q 令M=P ⎪⎪⎭
⎫
⎝⎛O E r ,N=()O E r Q 则有B=MN
根据定理2 r(AMNC)≥r(AM)+r(NC)-r(MN) ≥r(AMN)+r(MNC)-r(MN) 即r(AB)+r(BC)-r(B)≤r(ABC)
定理3 设A 为n ×n 矩阵,若A 2=E ,那么有
r(A+E)+r(A-E)=n 证:根据题意有(A+E )(A-E )=O 令A+E=A 1,A-E=A 2,有A 1A 2=O 由定理2可知 r(A 1)+r(A 2)≤n
即r(A+E)+r(A-E)≤n 又根据性质6有
r(A+E)+r(A-E)≥r[(A+E)-(A-E)]=r(2E)=n
故r(A+E)+r(A-E)=n
推论 设A 为n ×n 矩阵且A 2=A ,那么有 r(A)+r(A-E)=n 证:事实上,有
⎪⎪⎭⎫ ⎝⎛-E A O O A
→⎪⎪⎭⎫ ⎝⎛-E A A O A →⎪⎪⎭⎫ ⎝⎛-E A E O A →⎪⎪⎭⎫ ⎝⎛--E A E A A O 2→ ⎪⎪⎭⎫ ⎝
⎛-O E A A O 2=⎪⎪⎭⎫
⎝⎛O E O O 则有r ⎪⎪⎭⎫
⎝⎛-E A O O
A =r ⎪
⎪⎭
⎫
⎝⎛O E O O 故有r(A)+r(A-E)=r(E)=n
定理4 设A 是s ×n 实矩阵,有
r(E n -A T A)-r(E s -AA T )=n-s
证:要证r(E n -A T A)-r(E s -AA T )=n-s
即只要证r(E n -A T A)+s=r(E s -AA T )+n 由初等变换有
⎪⎪⎭⎫ ⎝⎛s T n E A A E →⎪
⎪⎭
⎫ ⎝⎛-T s T n AA E O A E →⎪⎪
⎭⎫
⎝⎛-T s n AA E O O E 即⎪⎪⎭⎫ ⎝⎛-s n E A O E ⎪
⎪⎭⎫
⎝⎛s T n E A A E ⎪⎪⎭⎫ ⎝⎛-s n E O A E =⎪⎪⎭
⎫ ⎝⎛-T s n AA E O O
E 故有
r ⎪
⎪⎭
⎫ ⎝⎛s T n E A A E =r ⎪⎪⎭⎫
⎝⎛-T s n AA E O O E =n+r(E s -AA T ) 同理可证
r ⎪⎪⎭⎫
⎝
⎛s T n E A A E =s+r(E n -A T A) 综上有 n+r(E s -AA T )=s+r(E n -A T A)
定理5 设A,C 均为m ×n 矩阵,B,D 均为n ×s 矩阵,则有 r(AB-CD)≤r(A-C)+r(B-D)