高一数学圆与圆的位置关系

合集下载

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系
4.2.2圆与圆 的位置关系
主讲教师:
复习引入
1. 两圆的位置关系有哪几种?
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
设两圆的圆心距为d,两圆半径
分别为R、r.
当d>R+r时,两圆 ,
当d=R+r时,两圆 ,
例3.已知两圆C1: x2+y2-4x+2y=0和 圆C2: x2+y2-2y-4=0的交点为A、B, (1) 求AB的长; (2) 求过A、B两点且圆心在直线
l: 2x+4y-1=0上的圆的方程.
小 结:
判断两圆的位置关系的方法: (1) 由两圆的方程组成的方程组有几组
实数解确定. (2) 依据连心线的长与两圆半径长的和公切线方程.Fra bibliotek课后作业
1. 阅读教材P.129到P.130; 2. 《习案》二十八.
; /c/89/ 美国服务器 ;
集了,隐世君主他在不咋大的白の大婚上见过.那几个仙风道骨の老者,基德说是两大秘境の主人,九品下の实力! 除了基德所说还有三个不问神界事情の秘境内の老东西,和号称神界战力第一の星辰君主,其余の九品都到齐了! 众人落座,莫尚煌是个急幸运子,第一些开口 了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越 来越大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!&#

高一数学复习考点知识讲解课件16---圆与圆的位置关系

高一数学复习考点知识讲解课件16---圆与圆的位置关系

高一数学复习考点知识讲解课件§2.3圆与圆的位置关系考点知识1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.导语日食是一种天文现象,在民间称此现象为天狗食日.日食只在月球与太阳呈现合的状态时发生.日食分为日偏食、日全食、日环食、全环食.我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的?前面我们运用直线的方程、圆的方程研究了直线与圆的位置关系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系.一、圆与圆的位置关系的判断知识梳理1.代数法:设两圆的一般方程为C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),联立方程得⎩⎨⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交 外切或内切 外离或内含2.几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系图示d 与r 1,r 2的关系外离d >r 1+r 2外切d =r 1+r 2相交|r 1-r 2|<d <r 1+r 2内切d =|r 1-r 2|内含d <|r 1-r 2|注意点:(1)利用代数法判断两圆位置关系时,当方程无解或有一解时,无法判断两圆的位置关系.(2)在判断两圆的位置关系时,优先使用几何法.例1当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、外离?解将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2=50-k(k<50),从而C1C2=(-2-1)2+(3-7)2=5.当1+50-k=5,即k=34时,两圆外切.当|50-k-1|=5,即50-k=6,即k=14时,两圆内切.当|50-k-1|<5<1+50-k,即14<k<34时,两圆相交.当|50-k+1|<5,即34<k<50时,两圆外离.反思感悟判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤(1)化成圆的标准方程,写出圆心和半径.(2)计算两圆圆心的距离d.(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.跟踪训练1已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0.(1)当m为何值时,圆C1与圆C2外切?(2)当圆C1与圆C2内含时,求m的取值范围?解对于圆C1与圆C2的方程,经配方后,有C1:(x-m)2+(y+2)2=9.C2:(x+1)2+(y-m)2=4.∴两圆的圆心C1(m,-2),C2(-1,m),半径r1=3,r2=2,且C1C2=(m+1)2+(m+2)2.(1)若圆C1与圆C2相外切,则C1C2=r1+r2,即(m+1)2+(m+2)2=5,解得m=-5或m=2.(2)若圆C1与圆C2内含,则0≤C1C2<|r2-r1|=1,即(m+1)2+(m+2)2<1,解得-2<m<-1.二、两圆相切问题问题1圆与圆相切包含哪几种情况?提示内切和外切两种情况.问题2两圆相切可用什么方法求解?提示(1)几何法.利用圆心距d与两半径R,r之间的关系求得,d=R+r为外切,d=|R -r|为内切.(2)代数法.将两圆联立消去x或y得到关于y或x的一元二次方程,利用Δ=0求解.知识梳理处理两圆相切问题的两个步骤(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).例2求半径为4,与圆(x-2)2+(y-1)2=9相切,且和直线y=0相切的圆的方程.解设所求圆的方程为(x-a)2+(y-b)2=16,由圆与直线y=0相切、半径为4,得圆心C的坐标为C1(a,4)或C2(a,-4).已知圆(x-2)2+(y-1)2=9的圆心A的坐标为(2,1),半径为3.由两圆相切,得CA=4+3=7或CA=4-3=1.①当圆心为C1(a,4)时,(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a =2±210,故所求圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16.②当圆心为C 2(a ,-4)时,(a -2)2+(-4-1)2=72或(a -2)2+(-4-1)2=12(无解),解得a =2±2 6. 故所求圆的方程为(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.综上所述,所求圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16或(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.反思感悟通过直线与圆,圆与圆的位置关系,建立数学模型,利用方程思想,解决求圆的方程问题.跟踪训练2求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程.解已知圆的方程可化为(x -1)2+y 2=1, 则圆心为C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意,可得⎩⎪⎨⎪⎧(a -1)2+b 2=r +1,b +3a -3×⎝ ⎛⎭⎪⎫-33=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧a =4,b =0,r =2或⎩⎪⎨⎪⎧a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.三、两圆相交问题问题3两圆相交时,如何求出公共弦所在的直线方程? 提示将两个方程化成一般式,然后作差即可求得. 问题4两圆公共弦长如何求得?提示将公共弦所在直线的方程与其中一个圆方程联立,利用勾股定理AB =2r 2-d 2求得.例3已知圆C 1:x 2+y 2+6x -4=0和圆C 2:x 2+y 2+6y -28=0. (1)求两圆公共弦所在直线的方程及弦长;(2)求经过两圆交点且圆心在直线x -y -4=0上的圆的方程. 解(1)设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+6x -4=0,①x 2+y 2+6y -28=0②的解.①-②,得x -y +4=0.∵A ,B 两点的坐标都满足此方程,∴x -y +4=0即为两圆公共弦所在直线的方程.又圆C 1的圆心(-3,0),r =13, ∴C 1到直线AB 的距离d =|-3+4|2=22,∴AB =2r 2-d 2=213-12=52,即两圆的公共弦长为5 2.(2)方法一解方程组⎩⎪⎨⎪⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0,得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则(a +1)2+(a -4-3)2=(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72,半径为892.故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0.方法二设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1), 其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0, 解得λ=-7.故所求圆的方程为x 2+y 2-x +7y -32=0.反思感悟(1)求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线的方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.(2)求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.(3)已知圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则过两圆交点的圆的方程可设为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1).跟踪训练3圆心在直线x -y -4=0上,且经过圆x 2+y 2-4x -6=0与圆x 2+y 2-4y -6=0的交点的圆的方程为________________. 答案(x -3)2+(y +1)2=16(或x 2+y 2-6x +2y -6=0)解析方法一由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3,所以圆x 2+y 2-4x -6=0与圆x 2+y 2-4y -6=0的交点分别为A (-1,-1),B (3,3),连接AB ,则线段AB 的垂直平分线的方程为y -1=-(x -1). 由⎩⎪⎨⎪⎧ y -1=-(x -1),x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =-1, 所以所求圆的圆心坐标为(3,-1),半径为(3-3)2+(3+1)2=4,所以所求圆的方程为(x -3)2+(y +1)2=16. 方法二同方法一求得A (-1,-1),B (3,3), 设所求圆的方程为(x -a )2+(y -b )2=r 2,由⎩⎪⎨⎪⎧a -b -4=0,(-1-a )2+(-1-b )2=r 2,(3-a )2+(3-b )2=r 2,解得⎩⎪⎨⎪⎧a =3,b =-1,r 2=16,所以所求圆的方程为(x -3)2+(y +1)2=16.方法三设所求圆的方程为x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0,其中λ≠-1,化简可得x 2+y 2-41+λx -4λ1+λy -6=0,圆心坐标为⎝⎛⎭⎪⎫21+λ,2λ1+λ. 又圆心⎝ ⎛⎭⎪⎫21+λ,2λ1+λ在直线x -y -4=0上, 所以21+λ-2λ1+λ-4=0,解得λ=-13, 所以所求圆的方程为x 2+y 2-6x +2y -6=0.1.知识清单:(1)两圆的位置关系.(2)两圆的公共弦.(3)圆系方程.2.方法归纳:几何法、代数法.3.常见误区:将两圆内切和外切相混.1.圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是() A.外离B.外切C.相交D.内含答案C解析将圆的一般方程化为标准方程得C1:(x+1)2+(y+4)2=25,C2:(x-2)2+(y-2)2=9,∴C1(-1,-4),C2(2,2),r1=5,r2=3.从而C1C2=32+62=35,∴r1-r2<C1C2<r1+r2.因此两圆的位置关系为相交.故选C.2.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=0答案C解析AB的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A,B,D.故选C.3.已知点P在圆O:x2+y2=1上运动,点Q在圆C:(x-3)2+y2=1上运动,则PQ 的最小值为________.答案1解析O(0,0),C(3,0),两圆半径均为1,∵OC=32+02=3,∴PQ的最小值为3-1-1=1.4.已知圆C1:(x-1)2+(y-2)2=4,圆C2:x2+y2=1,则过圆C1与圆C2的两个交点且过原点O的圆的方程为______________.答案x2+y2-x-2y=0解析设所求圆的方程为x2+y2-2x-4y+1+λ(x2+y2-1)=0(λ≠-1),把原点代入可得1-λ=0,所以λ=1,即可得过圆C1与圆C2的两个交点且过原点O的圆的方程为x2+y2-x-2y=0.课时对点练1.圆x2+y2=2与圆x2+y2+2x-2y=0的位置关系是()A.相交B.内切C.外切D.外离答案A解析由题意得,圆x2+y2=2的圆心O1(0,0),圆x2+y2+2x-2y=0的圆心O2(-1,1),圆心距d=O1O2=1+1=2,两个圆的半径均为2,故|r1-r2|<d<r1+r2,所以两个圆相交.故选A.2.(多选)若圆C1:(x-1)2+y2=1与圆C2:x2+y2-8x+8y+m=0相切,则m等于() A.16B.7C.-4D.9答案AC解析圆C1的圆心为(1,0),半径为1;圆C2化为(x-4)2+(y+4)2=32-m,表示以(4,-4)为圆心,半径等于32-m的圆.由题意,两个圆相内切时,两圆的圆心距等于半径之差的绝对值,可得5=|32-m-1|,解得m=-4.两个圆相外切,两圆的圆心距等于半径之和,可得5=32-m+1,解得m=16,综上,m的值为-4或16.3.已知直线3x+4y+4=0与圆M:x2+y2-2ax=0(a>0)相切,则圆M和圆N:(x-1)2+(y-1)2=1的位置关系是()A.外离B.外切C.相交D.内切答案C解析圆M的标准方程为(x-a)2+y2=a2(a>0),则圆心为(a,0),半径R=a,因为直线3x +4y+4=0与圆M:x2+y2-2ax=0(a>0)相切,所以|3a+4|32+42=a,解得a=2,则圆M的圆心为(2,0),半径R=2,圆N的圆心为N(1,1),半径r=1,则MN=(2-1)2+1=2,因为R+r=3,R-r=1,所以R-r<MN<R+r,即两个圆相交.4.已知圆C1:(x+1)2+(y+1)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,则AB的最大值为()A.41+4B.41-4C.13+4D.13-4答案A解析圆C1的圆心为(-1,-1),半径为1,圆C2的圆心为(3,4),半径为3,则圆心距为d=(-1-3)2+(-1-4)2=41>1+3,所以两圆外离,所以圆C1和圆C2上的两点AB 的最大值为d+r1+r2=41+4.5.圆C1:(x-1)2+y2=4与圆C2:(x+1)2+(y-3)2=9的相交弦所在的直线为l,则直线l被圆O:x2+y2=4截得的弦长为()A.13B.4C.43913 D.83913答案D解析由圆C1与圆C2的方程相减得l:2x-3y+2=0.圆心O(0,0)到l的距离d=21313,圆O的半径R=2,所以截得的弦长为2R2-d2=24-413=83913.6.(多选)下列圆中与圆C:x2+y2+2x-4y+1=0相切的是()A.(x+2)2+(y+2)2=9B.(x-2)2+(y+2)2=9C.(x-2)2+(y-2)2=25D.(x-2)2+(y+2)2=49答案BCD解析由圆C:x2+y2+2x-4y+1=0,可知圆心C的坐标为(-1,2),半径r=2. A项,圆心C1(-2,-2),半径r1=3.∵C1C=17∈(r1-r,r1+r),∴两圆相交;B项,圆心C2(2,-2),半径r2=3,∵C2C=5=r+r2,∴两圆外切,满足条件;C 项,圆心C 3(2,2),半径r 3=5,∵C 3C =3=r 3-r ,∴两圆内切;D 项,圆心C 4(2,-2),半径r 4=7,∵C 4C =5=r 4-r ,∴两圆内切.7.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________________________.答案x 2+y 2-34x -34y -114=0 解析由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0.8.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.答案x 2+y 2-3x +y -1=0解析设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎪⎫21+λ,λ-11+λ代入直线l :2x +4y -1=0的方程, 可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.9.已知圆O 1:x 2+y 2-82x -82y +48=0,圆O 2过点A (0,-4),若圆O 2与圆O 1相切于点B (22,22),求圆O 2的方程.解圆O 1的方程变为(x -42)2+(y -42)2=16,所以圆心O 1(42,42),因为圆O 2与圆O 1相切于点B (22,22),所以圆O 2的圆心在直线y =x 上,不妨设为(a ,a ),因为圆O 2过点A (0,-4),所以圆O 2与圆O 1外切,因为圆O 2过B (22,22),所以a 2+(a +4)2=2(a -22)2,所以a =0,所以圆O 2的方程为x 2+y 2=16.10.已知两圆C 1:x 2+y 2=4,C 2:(x -1)2+(y -2)2=r 2(r >0),直线l :x +2y =0.(1)当圆C 1与圆C 2相交且公共弦长为4时,求r 的值;(2)当r =1时,求经过圆C 1与圆C 2的交点且和直线l 相切的圆的方程.解(1)由圆C 1:x 2+y 2=4,知圆心C 1(0,0),半径r 1=2,又由圆C 2:(x -1)2+(y -2)2=r 2(r >0),可得x 2+y 2-2x -4y +5-r 2=0,两式相减可得公共弦所在的直线方程为2x +4y -9+r 2=0.因为圆C 1与圆C 2相交且公共弦长为4,所以此时相交弦过圆心C 1(0,0),即r 2=9(r >0),解得r =3.(2)设过圆C 1与圆C 2的圆系方程为(x -1)2+(y -2)2-1+λ(x 2+y 2-4)=0(λ≠-1),即(1+λ)x 2+(1+λ)·y 2-2x -4y +4(1-λ)=0,所以⎝ ⎛⎭⎪⎫x -1λ+12+⎝ ⎛⎭⎪⎫y -2λ+12=4λ2+1(λ+1)2,由圆心到直线x +2y =0的距离等于圆的半径,可得⎪⎪⎪⎪⎪⎪1λ+1+4λ+15=4λ2+1|λ+1|,解得λ=1,故所求圆的方程为x 2+y 2-x -2y =0.11.过点P (2,3)向圆C :x 2+y 2=1上作两条切线P A ,PB ,则弦AB 所在的直线方程为()A .2x -3y -1=0B .2x +3y -1=0C .3x +2y -1=0D .3x -2y -1=0答案B解析因为PC 垂直平分AB ,故弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的公共弦,而以PC 为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134.根据两圆的公共弦的求法,可得弦AB 所在的直线方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0,整理可得2x +3y -1=0.12.(多选)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为x -y =0B .线段AB 中垂线的方程为x +y -1=0C .公共弦AB 的长为22D .P 为圆O 1上一动点,则P 到直线AB 距离的最大值为22+1答案ABD解析对于A ,由圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2+2x -4y =0的交点为A ,B , 两式作差可得4x -4y =0,即公共弦AB 所在直线的方程为x -y =0,故A 正确;对于B ,圆O 1:x 2+y 2-2x =0的圆心为(1,0),又k AB =1,则线段AB 中垂线的斜率为-1,即线段AB 中垂线的方程为y -0=-1×(x -1),整理可得x +y -1=0,故B 正确;对于C ,圆O 1:x 2+y 2-2x =0,圆心O 1(1,0)到直线x -y =0的距离d =|1-0|12+(-1)2=22,半径r =1,所以AB =21-⎝ ⎛⎭⎪⎫222=2,故C 不正确; 对于D ,P 为圆O 1上一动点,圆心O 1(1,0)到直线x -y =0的距离为d =22,半径r =1,即P 到直线AB 距离的最大值为22+1,故D 正确.13.已知两圆C 1、C 2和x 轴正半轴、y 轴正半轴及直线x +y =2都相切,则两圆圆心的距离C 1C 2=________.答案4解析因为两圆C 1,C 2和x 轴正半轴、y 轴正半轴及直线x +y =2都相切,所以两圆圆心都在直线y =x 上,设C 1(a ,a ),则圆C 1的方程为(x -a )2+(y -a )2=a 2,设C 2(b ,b ),则圆C 2的方程为(x -b )2+(y -b )2=b 2,因为两圆均与直线x +y -2=0相切,所以|a +a -2|2=a ⇒(a -2)2=2⇒a =2±2, 令a =2-2,则b =2+2,所以两圆圆心的距离C 1C 2=(b -a )2+(b -a )2=4.14.在平面直角坐标系xOy 中,已知圆C 1 : x 2+y 2=8与圆C 2 : x 2+y 2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为________________.答案{}8,8-25,8+25解析由题意知,直线AB 为2x +y +8-a =0, 当∠P AB =90°或∠PBA =90°时,设C 1到AB 的距离为d ,因为△ABP 为等腰直角三角形,所以d =12AB ,即d =8-d 2,所以d =2,所以|8-a |22+12=d =2,解得a =8±25;当∠APB =90°时,AB 经过圆心C 1,则8-a =0,即a =8.15.若点M ,N 在圆C 1:x 2+y 2=1上运动,且MN =3,点P (x 0,y 0)是圆C 2:x 2+y 2-6x -8y +24=0上一点,则|PM→+PN →|的取值范围为________.答案[7,13]解析设圆C 1的半径为r =1,因为点M ,N 在圆C 1:x 2+y 2=1上运动,且MN =3,所以圆心C 1到线段MN 中点的距离为r 2-MN 24=12,故线段MN 的中点H 在圆C 3:x 2+y 2=14上,而|PM →+PN →|=2|PH →|,圆C 2:(x -3)2+(y -4)2=1.故C 2C 3-12-1≤PH ≤C 2C 3+12+1,即72≤PH ≤132,故|PM→+PN →|=2|PH →|∈[7,13]. 16.已知圆C :x 2+y 2-6x -8y +21=0.(1)若直线l 1过定点A (1,1),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x -y +2=0上,且与圆C 外切,求圆D 的方程. 解(1)圆C :x 2+y 2-6x -8y +21=0化为标准方程为(x -3)2+(y -4)2=4, 所以圆C 的圆心为(3,4),半径为2.①若直线l 1的斜率不存在,即直线为x =1,符合题意. ②若直线l 1的斜率存在,设直线l 1的方程为y -1=k (x -1). 即kx -y -k +1=0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,所以|3k-4-k+1|k2+1=2,即|2k-3|k2+1=2,解得k=512,所以直线方程为5x-12y+7=0.综上,所求l1的方程为x=1或5x-12y+7=0.(2)依题意,设D(a,a+2).又已知圆C的圆心为(3,4),半径为2,由两圆外切,可知CD=5,∴(a-3)2+(a+2-4)2=5,解得a=-1或a=6.∴D(-1,1)或D(6,8),∴所求圆D的方程为(x+1)2+(y-1)2=9或(x-6)2+(y-8)2=9.。

高一数学圆与圆方程知识点

高一数学圆与圆方程知识点

高一数学圆与圆方程知识点圆是初中数学学习中的一个重要的几何图形,而高一数学进一步深入了解和学习圆的性质和方程。

下面将介绍高一数学圆与圆方程的相关知识点。

一、圆的相关概念1. 圆的定义圆是平面上一点到另一点距离等于定值的所有点的集合。

2. 圆的元素圆心:圆心是圆上所有点到公共定值的点,通常用字母O表示。

半径:半径是圆心到圆上任意一点的距离,通常用字母r表示。

直径:直径是通过圆心的两个点之间的距离,等于半径的2倍。

二、圆的方程1. 标准方程圆的标准方程是(x-a)²+(y-b)²=r²,其中(a, b)是圆心坐标,r是半径长度。

例如:(x-2)²+(y+3)²=9 表示圆心坐标为(2, -3),半径长度为3的圆。

2. 一般方程圆的一般方程是x²+y²+Ax+By+C=0,其中A,B,C是实数且A²+B²≠0。

要将一般方程转化为标准方程,可以使用配方完成平方的方式。

三、切线和法线1. 切线切线是与圆只有一个交点,并且与圆相切于该点的直线。

切线的斜率等于与圆心连线的斜率的负倒数。

2. 法线法线是与切线垂直的直线,与圆相交于切点。

法线的斜率等于切线的斜率的负倒数。

四、圆与圆的位置关系1. 相交两个圆相交的情况下,有两个交点。

如果两个圆的半径相等,那么交点重合,两个圆是重合的。

如果两个圆的半径不等,那么交点不重合,两个圆是相交的。

2. 相切两个圆外切的情况下,外切点重合,两个圆是相切的。

如果两个圆的半径相等,那么两个圆是内切的。

如果两个圆的半径不等,那么两个圆是外切的。

3. 相离两个圆没有交集,并且没有公共点的情况下,两个圆是相离的。

高一数学圆与圆方程的知识点如上所述,通过了解和掌握这些知识,可以更好地理解和应用圆的性质和方程。

希望本文对你学习圆与圆方程有所帮助。

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析1.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.【答案】A【解析】圆关于轴对称圆的圆心坐标,半径不变,圆的圆心坐标半径的最小值为连接圆与圆圆心,再减去两圆的半径因此的最小值【考点】圆与圆的位置关系.2.若圆与圆()的公共弦长为,则_____.【答案】1【解析】因为圆与圆()的公共弦所在的直线方程为:;又因为两圆的公共弦长为,所以有.【考点】圆与圆的位置关系.3.圆和圆的位置关系为.【答案】内切【解析】通过利用两点间的距离公式计算,寻找其与两圆的半径和,差的关系,判断可知,所以内切.【考点】两圆位置关系的判断.4.经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.【答案】【解析】设经过两圆交点的圆的方程为,整理为,再整理:.圆心坐标为,代入直线方程,解得:,代入得圆的方程:.【考点】经过两圆交点的圆的方程5.圆与圆的位置关系为()A.两圆相交B.两圆相外切C.两圆相内切D.两圆相离【答案】A【解析】∵,,∴两圆的圆心距,所以两圆相交,故选A.【考点】圆与圆的位置关系.6.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.3B.2C.0D.-1【答案】A【解析】由圆的知识可知公共弦的垂直平分线过两圆的圆心,中点为代入直线得,【考点】圆与圆的位置关系点评:两圆相交时,两圆心的连心线是公共弦的垂直平分线7.圆: 与圆: 的位置关系是A.外离B.相交C.内切D.外切【答案】D【解析】∵的圆心为(-2,2)半径为1圆的圆心为(2,5)半径为4,∴,∴两圆外切,故选D【考点】本题考查了两圆的位置关系点评:通过两圆心的距离与半径和(差)的比较即可得到两圆的位置关系8.已知圆与圆相交,则圆与圆的公共弦所在的直线的方程为()A.B.C.D.【答案】B【解析】∵,,∴两圆的公共弦所在直线方程为x+2y-1=0,【考点】本题考查了圆与圆的位置关系点评:两圆相减即可得到两圆公共弦所在的直线方程9.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为()A.x+y+3=0B.2x-y-5=0.C.3x-y-9=0.D.4x-3y+7=0【答案】C【解析】解:因为两圆的圆心为(2,3)(3,0),则由两点式可知连心线的方程为3x-y-9=0.选C10.(本题满分14分)已知圆,圆,动点到圆,上点的距离的最小值相等.(1)求点的轨迹方程;(2)点的轨迹上是否存在点,使得点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.【答案】(1)点的轨迹方程是.(2)点的轨迹上不存在满足条件的点.【解析】本试题主要是考查了动点的轨迹方程的求解,以及满足动点到定点的距离差为定值的点是否存在的探索性问题的运用。

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系

思考4:若两圆
C1:x2+y2+D1x+E1y+F1=0和 C2:x2+y2+D2x+E2y+F2=0相切, 则方程
(D1-D2)x+(E1-E2)y+F1-F2=0表示的 直线是什么?若两圆相离呢?
理论迁移
例1 已知圆C1:x2+y2+2x+8y- 8=0,圆C2:x2+y2-4x-4y-2=0, 判断圆C1与圆C2的位置关系. 若相 交,求两圆的公共弦所在的直线方 程.
知识探究(一):圆与圆的位置关系 思考1:两个大小不等的圆,其位置关 系有内含、内切、相交、外切、外离 等五种,在平面几何中,这些位置关 系是如何判定的?dd Nhomakorabead
d
d
思考2:已知两圆 C1:x2+y2+D1x+E1y+F1=0和 C2:x2+y2+D2x+E2y+F2=0,用上述方法 判断两个圆位置关系的操作步骤如 何?
x2+y2-6x-4=0
例2 已知一个圆的圆心为M(2,1), 且与圆C:x2+y2-3x=0相交于A、B两 点,若圆心M到直线AB的距离为 ,求 圆M的方程.
A
DC
M
B
x2+y2-4x-2y-1=0
作业:
P132习题4.2A组:4,6,9,10,11.
1.将两圆的方程化为标准方程;
2.求两圆的圆心坐标和半径R、r; 3.求两圆的圆心距d;
4.比较d与R-r,R+r的大小关系:
若d<|R-r|,则两圆内含; 若d=|R-r|,则两圆内切; 若|R-r|<d<R+r,则两圆相交; 若d=R+r,则两圆外切; 若d>R+r,则两圆外离. 思考3:能否根据两个圆的公共点个 数判断两圆的位置关系?

高中数学选修一2.5.2 圆与圆的位置关系

高中数学选修一2.5.2 圆与圆的位置关系

2.5.2 圆与圆的位置关系基础过关练题组一圆与圆的位置关系的判断及其应用1.圆x2+y2=2与圆x2+y2+2x-2y=0的位置关系是( )A.相交B.内切C.外切D.相离2.设圆C1:(x-5)2+(y-3)2=9,圆C2:x2+y2-4x+2y-9=0,则它们公切线的条数是( )A.1B.2C.3D.43.已知点M在圆C1:(x+3)2+(y-1)2=4上,点N在圆C2:(x-1)2+(y+2)2=4上,则|MN|的最大值是( )A.5B.7C.9D.114.若圆x2+y2-2x+F=0和圆x2+y2+2x+Ey-4=0的公共弦所在的直线方程是x-y+1=0,则( )A.E=-4,F=8B.E=4,F=-8C.E=-4,F=-8D.E=4,F=85.已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.6.已知圆O1的方程为x2+(y+1)2=4,圆O2的圆心为O2(2,1).(1)若圆O1与圆O2外切,求圆O2的方程;(2)若圆O1与圆O2相交于A,B两点,且|AB|=2√2,求圆O2的方程.题组二 圆与圆的位置关系的综合运用7.集合M={(x,y)|x 2+y 2≤4},N={(x,y)|(x-1)2+(y-1)2≤r 2,r>0},且M ∩N=N,则r 的取值范围是( ) A.(0,√2-1) B.(0,1] C.(0,2-√2]D.(0,2]8.已知点A(-2,0),B(2,0),若圆(x-3)2+y 2=r 2(r>0)上存在点P(不同于点A,B),使得PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,则r 的取值范围是( ) A.(1,5)B.[1,5]C.(1,3]D.[3,5)9.已知两圆相交于A(1,3),B(m,-1)两点,两圆的圆心均在直线x-y+c=0上,则m+2c 的值为( )A.-1B.1C.3D.010.已知圆C 1:(x+a)2+(y-2)2=1与圆C 2:(x-b)2+(y-2)2=4相外切,a,b 为正实数,则ab 的最大值为 ( ) A.2√3B.94C.32D.√6211.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆圆心的距离|C 1C 2|等于( )A.4B.4√2C.8D.8√212.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.13.已知圆O:x2+y2=1,点P(3,4),以OP为直径的圆C与圆O交于A、B两点.(1)PA与OA、PB与OB具有怎样的位置关系?(2)由(1)还可以得到什么结论?你能否将这一结论推广.能力提升练题组一圆与圆的位置关系1.()若圆C:x2+y2=r2(r>0)与圆E:(x-3)2+(y-4)2=16有公共点,则r的取值范围是( )A.(3,6)B.[1,7]C.[1,9]D.[4,8]2.()若圆(x-a)2+(y-a)2=4上总存在两点到原点的距离为1,则实数a的取值范围是( )A.(-√22,0)∪(0,√22)B.(-2√2,-√2)∪(√2,2√2)C.(-3√22,-√22)∪(√22,3√22)D.(-∞,-3√22)∪(√2,+∞)3.(2019河南鹤壁高一期末,)已知点M(-2,0),N(2,0),若圆x2+y2-6x+9-r2=0(r>0)上存在点P(不同于M,N),使得PM⊥PN,则实数r的取值范围是(易错)A.(1,5)B.[1,5]C.(1,3)D.[1,3]4.(2020安徽六安一中高一期末,)已知圆C1:x2+y2=1,圆C2:(x-4)2+y2=25,则两圆公切线的方程为.5.(2020山西太原第五中学高二上期中,)已知圆C1:(x-1)2+(y+5)2=50,圆C2:(x+1)2+(y+1)2=10.(1)证明圆C1与圆C2相交;(2)若圆C3经过圆C1与圆C2的交点以及坐标原点,求圆C3的方程.深度解析题组二圆与圆的位置关系的综合运用6.()已知M,N分别是圆C1:x2+y2-4x-4y+7=0,C2:x2+y2-2x=0上的两个动点,P为直线x+y+1=0上的一个动点,则|PM|+|PN|的最小值为( )A.√2B.√3C.2D.37.(2019福建三明高一期中,)已知点P(t,t-1),t∈R,点E是圆C1:x2+y2=14上的动点,点F是圆C2:(x-3)2+(y+1)2=94上的动点,则|PF|-|PE|的最大值为( )A.2B.52C.3D.48.(2019浙江嘉兴一中期中,)我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC为半径作圆E,交AD的延长线于F;③以D为圆心,以DF为半径作圆D;④以A为圆心,以AD为半径作圆A交圆D 于G,则△ADG为黄金三角形.根据上述作法,可以求出cos 36°=(易错)A.√5-14B.√5+14C.√5+√34D.√5-√349.()在平面直角坐标系Oxy中,点A(0,-3),若圆C:(x-a)2+(y-a+2)2=1上存在一点M,满足|MA|=2|MO|,则实数a的取值范围是.10.(2019广东深圳耀华实验中学高二期中,)已知圆C1:x2+y2+4ax+4a2-4=0和圆C2:x2+y2-2by+b2-1=0只有一条公切线,若a,b∈R且ab≠0,则1a2+1b2的最小值为.11.()在平面直角坐标系Oxy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.答案全解全析基础过关练1.A由题意得,圆x2+y2=2的圆心O1(0,0),圆x2+y2+2x-2y=0的圆心O2(-1,1),圆心距d=|O1O2|=√1+1=√2,两个圆的半径均为√2,故|r1-r2|<d<r1+r2,所以两个圆相交.故选A.2.B 圆C 1:(x-5)2+(y-3)2=9,圆心为(5,3),半径为3;圆C 2:x 2+y 2-4x+2y-9=0,圆心为(2,-1),半径为√14,两圆的圆心距为√(5-2)2+(3+1)2=5,∵√14-3<5<√14+3,∴两个圆相交,∴两个圆的公切线有2条.故选B.3.C 由题意知圆C 1的圆心为(-3,1),半径r 1=2;圆C 2的圆心为(1,-2),半径r 2=2.所以两圆的圆心距d=√[1-(-3)]2+[(-2)-1]2=5>r 1+r 2=4,所以两圆外离,从而|MN|的最大值为5+2+2=9.故选C.4.C {x 2+y 2-2x +F =0,①x 2+y 2+2x +Ey -4=0,② ②-①可得4x+Ey-F-4=0,即x+E4y-F+44=0,由两圆的公共弦所在的直线方程为x-y+1=0, 得{E4=-1,-F+44=1,解得{E =-4,F =-8.5.解析 (1)证明:圆C 1的方程可化为(x-2)2+(y+1)2=5,圆C 2的方程可化为x 2+(y-1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为√5,∵|C 1C 2|=√(0-2)2+(1+1)2=2√2∈(0,2√5),∴两圆相交. (2)将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x+2y)-(x 2+y 2-2y-4)=0,即x-y-1=0.6.解析 (1)设圆O 1、圆O 2的半径长分别为r 1、r 2,且易知r 1=2. 因为两圆相外切,所以|O 1O 2|=r 1+r 2.所以r 2=|O 1O 2|-r 1=√(2-0)2+(1+1)2-2=2(√2-1).所以圆O 2的方程是(x-2)2+(y-1)2=12-8√2.(2)由题意,设圆O 2的方程为(x-2)2+(y-1)2=r 32(r 3>0),圆O 1,O 2的方程相减,得弦AB 所在直线的方程为4x+4y+r 32-8=0.所以圆心O 1(0,-1)到直线AB 的距离为32√22=√4-(2√22)2=√2,解得r 32=4或r 32=20.所以圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.7.C 由M ∩N=N 知N ⊆M,所以圆x 2+y 2=4与圆(x-1)2+(y-1)2=r 2(r>0)内切或内含,且4>r 2.所以2-r ≥√2,又r>0,所以0<r ≤2-√2.8.B ∵PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,∴点P 在以AB 为直径的圆x 2+y 2=4上.∵圆(x-3)2+y 2=r 2(r>0)上存在点P(不同于点A,B),使得PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,∴圆(x-3)2+y 2=r 2(r>0)与圆x 2+y 2=4有公共点,∴|r-2|≤3≤r+2,解得1≤r ≤5,故选B.9.B 由题意知,直线x-y+c=0为线段AB 的垂直平分线,且AB 的中点(1+m 2,1)在直线x-y+c=0上,∴1+m 2-1+c=0,∴m+2c=1.10.B 由题意得,圆C 1:(x+a)2+(y-2)2=1的圆心为C 1(-a,2),半径r 1=1. 圆C 2:(x-b)2+(y-2)2=4的圆心为C 2(b,2),半径r 2=2. ∵圆C 1:(x+a)2+(y-2)2=1与圆C 2:(x-b)2+(y-2)2=4相外切, ∴|C 1C 2|=r 1+r 2,即a+b=3,由基本不等式,得ab ≤(a+b 2)2=94,当且仅当a=b 时取等号.故选B.11.C ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个实数根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=√(a-b)2+(a-b)2=√32×2=8.12.解析两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为√11和√61-m.(1)当两圆外切时,√(5-1)2+(6-3)2=√11+√61-m,解得m=25+10√11.(2)当两圆内切时,因定圆的半径√11小于两圆圆心间距离5,故只有√61-m-√11=5,解得m=25-10√11.(3)两圆的公共弦所在直线的方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0,∴公共弦长为2√(√11)2-(√22)2=2√7.13.解析(1)如图,点A在圆C上,OP为圆C的直径,所以OA⊥PA,同理可得OB⊥PB.(2)由(1)还可以得到:PA是圆O的切线,PB也是圆O的切线.这一结论可以推广为:圆O 外一点P,以OP 为直径的圆与圆O 交于A 、B 两点,则PA 、PB 是圆O 的切线.能力提升练1.C 两圆心间的距离|CE|=√32+42=5, 依题意得,|r-4|≤5≤r+4, 解得1≤r ≤9.因此,r 的取值范围是[1,9].故选C.2.C 根据题意知,圆(x-a)2+(y-a)2=4与圆x 2+y 2=1相交,两圆圆心的距离d=√a 2+a 2=√2|a|,所以2-1<√2|a|<2+1,即√22<|a|<3√22,所以-3√22<a<-√22或√22<a<3√22.故选C.3.A 由PM ⊥PN 得,P 点在以MN 为直径的圆上(不同于M,N),以MN 为直径的圆的方程为x 2+y 2=4,由x 2+y 2-6x+9-r 2=0得(x-3)2+y 2=r 2(r>0). 所以两圆的圆心间的距离d=3,依题意得,|r-2|<3<r+2,解得1<r<5.易错警示 由PM ⊥PN 知,P 点在以MN 为直径的圆上(不同于M,N),由P,M,N 不共线知,点P 的轨迹是以MN 为直径的圆(不含M,N 两点),从而由两圆有公共点得|r-2|<3<r+2. 4.答案 x+1=0解析 圆C 1:x 2+y 2=1,圆心为(0,0),半径为1; 圆C 2:(x-4)2+y 2=25,圆心为(4,0),半径为5.易知两圆内切,切点为(-1,0),又两圆圆心都在x 轴上, 所以两圆公切线的方程为x=-1,即x+1=0.5.解析 (1)证明:依题意得,C 1(1,-5),r 1=√50=5√2,C 2(-1,-1),r 2=√10, 因此,5√2-√10<|C 1C 2|=√4+16=2√5<√10+5√2,∴C 1与C 2相交. (2)设圆C 1与圆C 2的交点分别为A(x 1,y 1),B(x 2,y 2).联立{(x -1)2+(y +5)2=50①,(x +1)2+(y +1)2=10②,②-①得x-2y+4=0,即x=2y-4, 代入①式得,(2y-5)2+(y+5)2=50,解得{y 1=0,x 1=-4,{y 2=2,x 2=0, ∴圆C 3过A(-4,0),B(0,2),原点O(0,0).易得△ABO 为直角三角形,∴r=12AB=√5,圆心为AB 的中点(-2,1),∴圆C 3的方程为(x+2)2+(y-1)2=5.解题模板 求过两圆交点的圆的方程有两种方法:一是利用圆系方程,先设后求,待定系数;二是求出交点坐标,再结合其他条件求解.本题给出第三点是坐标原点,利用求交点坐标,根据三点的特殊关系求解即可. 6.D C 1的方程可化为(x-2)2+(y-2)2=1, C 2的方程可化为(x-1)2+y 2=1.设圆C 2关于直线x+y+1=0对称的圆为C'2,其圆心C'2(a,b).依题意得{a+12+b2+1=0,b -0a -1=1⇒{a =-1,b =-2,因此,圆C'2:(x+1)2+(y+2)2=1. 如图所示.∵|C 1C'2|=√(-1-2)2+(-2-2)2=5, ∴(|PM|+|PN|)min =|C 1C'2|-2=3, 故选D.7.D 易得点P(t,t-1)在直线x-y-1=0上,设圆C 1关于直线x-y-1=0对称的圆为圆C'1,则C'1:(x-1)2+(y+1)2=14,由几何知识知,当F 、E'、P 共线时,|PF|-|PE|=|PF|-|PE'|=|E'F|=|C'1C 2|+12+32=4,故选D.8.B 以A 为原点,直线AD 为x 轴,直线AB 为y 轴建立平面直角坐标系, 设|AD|=2,则|CE|=√5=|EF|,又|ED|=1,∴|DF|=√5-1. 圆A 的方程为x 2+y 2=4,①圆D 的方程为(x-2)2+y 2=(√5-1)2,② 设G(x 0,y 0), 由①②得x 0=√5+12,∵|AG|=|AD|=2, ∴cos 36°=x 0|AG|=√5+14,故选B.易错警示 本题的实质是计算,而不是证明,题中已经给出“黄金三角形”的作法,在此基础上我们只需计算,即利用两圆的方程求出交点G 的坐标,进而可以得到结论.如果解题过程中不能正确理解题意,试图证明结论将造成极大的麻烦. 9.答案 [0,3]解析 设满足|MA|=2|MO|的点的坐标为M(x,y), 由题意得,√x 2+(y +3)2=2√x 2+y 2, 整理可得,x 2+(y-1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y-1)2=4与圆C:(x-a)2+(y-a+2)2=1有交点, 据此可得关于实数a 的不等式组{√a 2+(a -3)2≥1,√a 2+(a -3)2≤3,解得0≤a ≤3,所以实数a 的取值范围是[0,3]. 10.答案 9解析 由题意知两圆内切,根据两圆分别为C 1:x 2+y 2+4ax+4a 2-4=0和圆C 2:x 2+y 2-2by+b 2-1=0,得圆心分别为(-2a,0)和(0,b),半径分别为2和1,故有√4a 2+b 2=1,所以4a 2+b 2=1,所以1a 2+1b 2=(1a 2+1b 2)(4a 2+b 2)=5+b 2a 2+4a 2b 2≥5+2√b 2a2·4a 2b 2=9,当且仅当b 2a2=4a 2b2时,等号成立,所以1a2+1b2的最小值为9.11.解析 (1)由{y =2x -4,y =x -1得圆心C(3,2),∵圆C 的半径为1,∴圆C 的方程为(x-3)2+(y-2)2=1,过点A 作圆C 的切线,显然切线的斜率一定存在,设所求圆C 的切线方程为y=kx+3,即kx-y+3=0,∴√2=1,∴|3k+1|=√k 2+1,∴2k(4k+3)=0,∴k=0或k=-34,∴所求圆C 的切线方程为y=3或y=-34x+3.(2)∵圆C 的圆心在直线l:y=2x-4上, ∴设圆心C(a,2a-4),则圆C 的方程为(x-a)2+[y-(2a-4)]2=1.又∵|MA|=2|MO|,∴设M(x,y), 则√x 2+(y -3)2=2√x 2+y 2, 整理得x 2+(y+1)2=4,设为圆D,∴点M 既在圆C 上又在圆D 上,即圆C 和圆D 有交点,∴2-1≤√a 2+[(2a -4)-(-1)]2≤2+1,解得0≤a ≤125,所以a 的取值范围为[0,125].。

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系

例3、已知圆C1 : x2+y2+2x+8y-8=0和 圆C2 :x2+y2-4x-4y-2=0,试判断圆C1与圆C2 的位置关系.
而5 10 3 5 5 10 即 | r1 r2 | 3 5 | r1 r2 |
所以圆C1与圆C2相交,它们有两个公共点A,B.
例3、已知圆C1 : x2+y2+2x+8y-8=0和 圆C2 :x2+y2-4x-4y-2=0,试判断圆C1与圆C2 的位置关系.
C2 : ( x 2) 2 ( y 2) 2 ( 10) 2
C1的圆心(1,4),半径为r1 5 C2的圆心(2,2),半径为r2 10
连心线长为 (1 2) (4 2) 3 5
2 2
| r1 r2 | 5 10
| r1 r2 | 5 10
( x a) 2 ( y b) 2 r12 设方程组 2 2 2 ( x c) ( y d ) r2 的解的个数为 n
△<0
△=0 △>0
n=0
两个圆相离
n=1
n=2两个圆相切两个相交例3、已知圆C1 : x2+y2+2x+8y-8=0和 圆C2 :x2+y2-4x-4y-2=0,试判断圆C1与圆C2 的位置关系. 把圆C1和圆C2的方程化为标准方程: 解法一: 2 2 2 C1 : ( x 1) ( y 4) 5
x 2x 3 0
2
(4)
则 (2) 4 1 (3) 16 0
2
所以,方程(4)有两个不相等的实数根x1,x2, 把x1,x2分别代入方程(3),得到y1,y2. 因此圆C1与圆C2有两个不同的公共点 A(x1,y1),B(x2,y2).

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系

λ=-7
பைடு நூலகம்
1.已知C1:x2+y2=9,C2: (x-2)2+y2=r2,若C1与C2内切, 求r的值 2.已知C1:x2+y2=9,C2: (x-5)2+y2=r2,若C1与C2内切, 求r的值
/ 玻璃瓶生产厂家
有负担//是马上休假吗?/吖德问/封噢点咯点头/又道:/我会料办法の///谢谢//吖德轻轻握咯壹下封噢の手臂/努力勾起壹各笑容//那我先去跟老师说壹声//说完/就走咯出去/封噢拿起手机打咯各电话:/别管用啥啊方法/那次壹定要找到寄那张 照片の人/听到没什么//他壹定别会放过陷害吖德の人/吖德找到李湘/十分抱歉地说道:/对别起/老师/接下来の工作可能需要您壹各人完成咯//李湘壹脸别可思议地看着吖德:/怎么咯?//是那样の/家里突然有急事所以要休假壹段时间/总经理 已经批准咯//吖德别料对方担心/便胡诌咯壹各理由//那……我晓得咯/您就放心吧//虽然自己是吖德の老师/但李湘晓得/人家家里の事他也别方便过问//那就谢谢老师咯//吖德跟李湘告别后就壹各人回咯租房/坐在空空荡荡の家中/吖德有些茫然 /那各时候/她非常料念跟许文坷在壹起の日子/也许是他们两各都把对方看成咯自己の亲人/所以他们在壹起の时候都是很和谐の/吖德拿出手机/看着通讯录上许文坷の名字/犹豫咯许久/终于是忍别住打咯过去//洛洛?/手机另壹边传来吖德熟悉 の声音/有些沙哑/吖德酝酿咯壹下情绪/说:/文坷/好久没见/您过得怎么样?/许文坷没料到吖德会打电话给他/他以为吖德搬出去之后/就别会主动找他咯/是出咯啥啊事吗?/怎么咯/是出啥啊事咯吗?/许文坷焦急地问//没什么//吖德尽量让自 己の语气平静些//就是有点料您咯///您现在别是应该在上班吗?/吖德随便说:/啊/身体有点别舒服/请咯各假///怎么咯?哪里别舒服?要别要我去看您?/吖德急忙

高一数学(文)圆和圆的位置关系、空间直角坐标系苏教版知识精讲

高一数学(文)圆和圆的位置关系、空间直角坐标系苏教版知识精讲

高一数学(文)圆和圆的位置关系、空间直角坐标系苏教版【本讲教育信息】一. 教学内容:圆和圆的位置关系、空间直角坐标系二. 教学目标:1、理解并掌握圆与圆的五种位置关系,并能用圆心距和半径之间的大小关系来判断圆与圆的位置关系。

2、了解空间直角坐标系的定义、建立方程、会用空间直角坐标系刻画点的位置。

3、掌握空间两点间的距离公式及空间两点间中点坐标公式。

三. 知识要点:(一)圆和圆的位置关系1、外离2、外切3、内切4、相交5、内含判断方法:第一步 计算两圆的半径12,r r ;第二步 计算两圆的圆心距d ;第三步 根据d 与12,r r 之间的关系,判断两圆的位置关系。

12d r r >+⇔圆和圆外离 12d r r =+⇔圆和圆外切1212r r d r r -<<+⇔圆和圆相交 12d r r =-⇔圆和圆内切 12d r r <-⇔圆和圆内含二、空间点的直角坐标系 1、空间直角坐标系的定义过定点O ,作三条互相垂直的数轴,它们都以O 为原点且一般具有相同的长度单位.这三条轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴);统称坐标轴。

通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z 轴,当右手的四指从正向x 轴以90角度转向正向y 轴时,大拇指的指向就是z 轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O 叫做坐标原点。

(如下图所示)说明:(1)三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。

过x 轴与y 轴,y 轴与z 轴及z 轴与x 轴的平面分别称为: xOy 面,yOz 面,zOx 面。

(2)三个坐标平面将空间分成八个卦限。

空间直角坐标系共有八个卦限2、空间点和坐标设点M 为空间一已知点。

我们过点M 作三个平面分别垂直于x 轴、y 轴、z 轴,它们与x 轴、y 轴、z 轴的交点依次为P 、Q 、R ,这三点在x 轴、y 轴、z 轴的坐标依次为x 、y 、z 。

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系

5分钟飞艇做假吗
[单选]下列哪个命令可进行网格渲染:()A.FacedB.WireC.2-sidedD.FaceMap [单选,A2型题,A1/A2型题]大体标本的收集,正确的方法是()。A.主要通过动物实验的模型收集标本B.根据教学需要,集中精力在短时间内搞突击收集C.大体标本均来源于尸检D.大体标本均来源于活检E.大体标本的收集是一项长期连续性工作,主要靠在尸检和活检时发现并收集 [填空题]历史数据采集可以对()和()两种格式进行存储。 [单选,A2型题,A1/A2型题]根据面神经损伤的程度,可出现不同类型病理生理改变的有()。A.2种B.3种C.4种D.5种E.6种 [单选,A1型题]下列哪种症状、体征和检查可确诊为后尿道完全断裂()A.会阴部血肿B.下腹及骨盆部皮下瘀斑C.骨盆挤压痛D.插导尿管不能进入膀胱E.尿道造影,见造影剂外溢于后尿道周围未进入膀胱 [单选]()不属于系统安全的技术。A.防火墙B.加密狗CA认证D.防病毒 [单选]总价合同是指()。A.合同当事人在约定以施工图、已标价工程量清单或者预算书及有关条件进行合同价格计算、调整和确认的建设工程施工合同,在约定范围内可做作调整B.合同当事人在约定以施工图、已标价工程量清单或者预算书及有关条件进行合同价格计算、调整和确认的建设工程 [单选,A2型题,A1/A2型题]与未热适应者相比,热适应者出现的生理变化不包括下列中的()。A.汗量增加B.汗液中无机盐含量减少C.体温较低D.心率较高E.肌肉工作能力较强 [单选,A2型题,A1/A2型题]慢性粒细胞白血病化疗首选()A.羟基脲B.白消安C.靛玉红D.MTXE.CTX [单选]发热恶寒,汗出,口渴,心烦,头痛如劈,舌红苔黄,脉滑数,属于:().A.卫分证B.卫气同病C.气分证D.卫营同病 [单选,A2型题,A1/A2型题]缺铁性贫血患者给予补充铁剂治疗时,血红蛋白正常后,仍需继续补充铁剂()A.1~3个月B.3~6个月C.6~9个月D.9~12个月E.一年以上 [单选]以下不属于体检医师对风险考察的方式的是()A.安排体检B.审核体检报告书C.调阅病历D.审查业务员报告书 [单选]氧化铝是()。A、酸性氧化物B、碱性氧化物C、两性氧化物D、盐类化合物 [单选,A1型题]艾森克认为人格的维度有()。A.情绪性维度、气质性维度和稳定性维度B.情绪性维度、内外向维度和精神质维度C.气质性维度、内外向维度和稳定性维度D.理智性维度、情绪性维度和意志性维度E.理智性维度、内外向维度和精神质维度 [填空题]正常生产中,压力的通用单位是()。 [单选]对于有抗冻、抗渗或其他特殊要求的小于或等于C25混凝土用砂,其泥块含量不应大于()。A.1.0%B.2.0%C.3.0% [单选]皮肌炎典型的皮疹为()A.面、颈、前胸上部弥漫性红斑B.各关节周围红斑C.面部蝶形红斑D.背部盘形红斑E.全身各部位皮疹 [单选]嘌呤环中的N7来于()A、天冬氨酸B、谷氨酰胺C、甲酸盐D、甘氨酸 [单选]井场设备基础是安装钻井设备的地方,目的是保证机器设备的稳固,保证设备在运转过程中(),减少机器设备的振动。A.移动下沉B.移动、不下沉C.不移动、不下沉D.高效率 [单选,A2型题,A1/A2型题]患者头胀且痛,胸闷,口不渴,身重而痛,发热体倦,小便清长,舌苔白滑,脉濡缓。其证候是()A.伤暑B.冒湿C.伤湿D.中暑E.以上均非 [单选]当设计温度≤()℃时,为低温容器。A.-20B.-10C.0D.10 [单选]乳腺检查的正确顺序是()A.内上、外上、外下、内下、中央、腋窝及锁骨区B.外上、外下、内上、内下、中央、腋窝及锁骨区C.中央、内下、内上、外上、中央、腋窝及锁骨区E.中央、腋窝及锁骨区、外上、内上、外下、外上 [单选]物业服务企业在社区组织重大活动时。应及时知会(),相互协调,避免发生意外事件。A.本区域政府部门B.本辖区民政主管部门C.本区域物业管理主管部门D.辖区公安派出所和社区居委会 [单选]通过产品和过程的可测量的特性观察到数据的变化和差异,()有助于对这类变异或有差异的数据进行测量、描述、分析、解释和建立模型等分析,可理解变异的性质程度和寻找原因提供帮助,从而有助于解决甚至防止变化引起的问题,并促进持续改进。A.统计技术B.质量管理体系C.过程 [单选,A4型题,A3/A4型题]患儿女,5岁。1岁半时无明显诱因开始出现异常,表现为不跟其他小朋友玩,不会用语言表达要求,之前会讲一些简单的句子,现在连爸爸妈妈都不会叫,不看人,跟人没有目光交流,4岁时出现反复绞手的行为,绞手的动作很复杂,正常成人难以学习,走路时两腿跨得 [问答题,简答题]种子生产许可证上要载明哪些项目? [问答题,简答题]按照相关规定,核电厂应该设置哪几道安全屏障? [单选]不是血管性痴呆和老年痴呆的鉴别要点的是()。A.病程是否呈波动性B.人格是否保持良好C.痴呆的严重程度D.早期是否保持自知力E.是否有高血压史 [问答题,案例分析题]余先生,30岁。腰部皮下3cm×2cm大小脓肿。要求:请为患者(医学模拟人或模具)行脓肿切开术。 [单选]对绿脓杆菌感染严重,坏死组织多的烧伤创面宜采用()A.包扎疗法B.暴露疗法C.植皮D.热敷E.湿敷 [单选]特别适用于输送腐蚀性、易燃易爆、剧毒、有放射性及极为贵重的液体,也适用于输送高压、高温、低温及高熔点液体的离心泵是()。A.屏蔽泵B.离心式油泵C.离心式耐腐蚀泵D.离心式杂质泵 [单选]港口与航道工程施工总承包特级资质企业的企业注册资本金为()以上。A.1亿元B.5亿元C.3亿元D.4亿元 [问答题,案例分析题]背景材料:某道路改建工程A合同段,道路正东西走向,全长973.5m,车行道宽度15m,两边人行道各3m与道路中心线平行且向北,需新建DN800mm雨水管道973m。新建路面结构为150mm厚砾石砂垫层,350mm厚二灰混合料基层,80mm厚中粒式沥青混凝土,40mm厚SMA改性沥青混 [问答题,简答题]谈一下对“净化:宣泄与补偿的情感代谢”的认识. [单选]在利润表上,利润总额减去()后,得出净利润。A.管理费用B.增值税C.营业外支出D.所得税费用 [多选]精神康复的主要任务有()A.训练心理社会功能B.改善生活环境条件C.实施支持性心理治疗D.开展家庭和社会干预E.改善患者的生活自理能力 [单选]关于WHO推荐的葡萄糖耐量试验,正确的是()A.口服葡萄糖100克B.糖耐量减低即可诊断糖尿病C.口服糖耐量试验前3日,每日碳水化合物摄入量应少于250克D.空腹血糖小于7mmol/L,不必做此检查E.同步查尿糖,可大致判断肾糖阈 [问答题,简答题]我国GMP第一次以法规颁布的时间是? [单选]盘亏固定资产时,按固定资产的账面原价冲减()。A.专业基金B.固定基金C.事业基金D.结余基金 [单选]身热,微恶风,汗少,肢体酸重或疼痛,头昏重胀痛,咳嗽痰粘,鼻流浊涕,心烦口渴,或口中黏腻,渴不多饮,胸闷脘痞,泛恶,腹胀,大便或溏,小便短赤,舌苔薄黄而腻,脉数,当属何证()A.风寒入里B.暑湿表证C.风寒夹湿证D.脾虚湿盛E.痰热阻肺

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

圆与圆的位置关系示X教案整体设计教学分析教材通过例题介绍了利用方程判断两圆的位置关系.让学生进一步感受坐标方法在研究几何问题中的作用.值得注意的是针对学生的实际情况来学习坐标法讨论两圆的位置关系,对于基础较差的学生,建议不学习,对于基础较好的学生可以作为课后阅读教材,否那么本节课的教学目标完不成.三维目标1.掌握圆与圆的位置关系的判定,培养学生分析问题和解决问题的能力.2.了解用坐标方法讨论两圆位置关系,体会坐标方法在研究几何问题中的作用,提高应用能力.重点难点教学重点:利用方程判定两圆位置关系.教学难点:用坐标方法讨论两圆位置关系.课时安排1课时教学过程导入新课设计1.前面我们学习了利用方程判断点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何利用方程判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.设计 2.我们知道,日食和月食都是一种自然现象,如果把月球、地球、太阳都抽象成圆,那么这两种自然现象就展现了两圆的位置关系,如何利用方程来描述这一现象呢?教师点出课.推进新课新知探究提出问题初中学过的平面几何中,圆与圆的位置关系有几种?画图表示,并指出判断方法.讨论结果:应用示例思路1例1判断以下两个圆的位置关系:(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0.解:(1)两圆的方程可分别变形为(x-1)2+y2=22,(x-2)2+(y+1)2=(2)2.由此可知圆心C1的坐标为(1,0),半径r1=2;圆心C2的坐标为(2,-1),半径r2= 2.设两圆的圆心距为d,那么:d=|C1C2|=2-12+-12= 2.r1+r2=2+2,r1-r2=2- 2.所以r1-r2<d<r2+r2.因此这两个圆相交.(2)两圆的方程分别变形为:x2+(y-1)2=12,(x-3)2+y2=32.由此可知圆心C1的坐标为(0,1),半径r1=1;圆心C2的坐标为(3,0),半径r2=3,那么两圆的圆心距d=32+12=2,所以d=r2-r1.因此这两个圆内切.点评:判断两个圆的位置关系.几何法:即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为d,那么判别圆与圆的位置关系的依据有以下几点:①当d>R+r时,圆C1与圆C2外离;②当d=R+r时,圆C1与圆C2外切;③当|R-r|<d<R+r时,圆C1与圆C2相交;④当d=|R-r|时,圆C1与圆C2内切;⑤当d<|R-r|时,圆C1与圆C2内含.变式训练1.在平面直角坐标系中分别作出圆心为C1(0,0),C2(1,1),半径分别为1,2的两圆,并判断两圆的位置关系.解:作出两圆,如下图.两圆半径分别记作r1和r2,那么r1=1,r2=2,圆心距d=|C1C2|=0-12+0-12=2,于是,1=|r1-r2|<d<r1+r2=3,所以两圆相交.2.判断圆C1:x2+y2+2x-6y-26=0与圆C2:x2+y2-4x+2y+4=0的位置关系,并画出图形.解:由得圆C1:(x+1)2+(y-3)2=36,其圆心C1(-1,3),半径r1=6;圆C2:(x-2)2+(y+1)2=1,其圆心C2(2,-1),半径r2=1.于是|C1C2|=2+12+-1-32=5.又|r1-r2|=5,即|C1C2|=|r1-r2|,所以两圆内切.如下图.3.x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切解析:圆O 1:x 2+y 2-2x =0(x -1)2+y 2=1, 故圆心为(1,0),半径为1.圆O 2:x 2+y 2-4y =0x 2+(y -2)2=4, 故圆心为(0,2),半径为2.那么圆心距d =1-02+0-22= 5. 而2-1<5<1+2,即两圆相交. 答案:B例2试用坐标方法讨论两圆位置关系.(此题针对学生实际选用)解:如下图所示,以O 1为坐标原点,使x 轴通过O 1,O 2,且O 2在x 轴的正半轴上,建立直角坐标系xOy.这样,可设⊙O 2的圆心的坐标为(d,0).这时两圆的圆心距等于d ,两圆的方程分别为 x 2+y 2=r 21 ①(x -d)2+y 2=r 22. ②将①②两式联立,研究此方程组的解. ①-②,整理可得x =r 21-r 22+d22d .将x 值代入①,得 y 2=r 21-r 21-r 22+d224d2=2dr 1+r 21-r 22+d 22dr 1-r 21+r 22-d 24d2=[r 1+d2-r 22][r 22-r 1-d2]4d2=r 1+r 2+d r 1-r 2+dr 1+r 2-dr 2-r 1+d4d2=[r 1+r 22-d 2][d 2-r 1-r 22]4d2.由此可见,如果 |r 1-r 2|<d<r 1+r 2那么等式右边两个因式都为正数,于是方程组有解,且有两解.这时相应的两圆相交于两点(如下图).如果:r 1+r 2=d 或|r 1-r 2|=d ,那么等式右边分子的因式中至少有一个为0,那么方程组有唯一解,这时两圆相切(外切或内切)(上图(2)(3)).如果:r 1+r 2<d 或|r 1-r 2|>d ,那么方程组无解,这时两圆不相交(相离或内含)(上图(4)(5)).思路2例3圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.分析:因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),那么A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧ x 2+y 2+2x -6y +1=0,x 2+y 2-4x +2y -11=0,①②①-②,得3x -4y +6=0. 因为A 、B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r =3.又点C 1到直线的距离为d =|-1×3-4×3+6|32+-42=95. 所以AB =2r 2-d 2=232-952=245,即两圆的公共弦长为245. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.此题中求两圆公共弦所在直线方程可以作为结论记住.变式训练判断以下两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x +2)2+(y -2)2=1与(x -2)2+(y -5)2=16,(2)x 2+y 2+6x -7=0与x 2+y 2+6y -27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d =[2--2]2+5-22=5. 因为d =r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x +3)2+y 2=16,x 2+(y +3)2=36. 故两圆的半径分别为r 1=4和r 2=6, 两圆的圆心距d =0-32+-3-02=3 2.因为|r 1-r 2|<d<r 1+r 2,所以两圆相交. 两圆方程相减得公共弦的方程: 6x -6y +20=0,即3x -3y +10=0.例4求过点A(0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.分析:如下图.所求圆经过原点和A(0,6),且圆心应在圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x +5)2+(y +5)2=50,那么圆心为C(-5,-5),半径为5 2.所以经过此圆心和原点的直线方程为x -y =0.设所求圆的方程为(x -a)2+(y -b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a ,b)在直线x -y =0上,那么有⎩⎪⎨⎪⎧0-a 2+0-b 2=r 2,0-a 2+6-b 2=r 2,a -b =0,解得⎩⎨⎧a=3,b =3,r =3 2.于是所求圆的方程是(x -3)2+(y -3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.变式训练求经过点A(4,-1),且与圆C :(x +1)2+(y -3)2=5相外切于点B(1,2)的圆的方程.解:如下图,设所求的圆C′的方程为(x -a)2+(y -b)2=R 2.因为C′既在弦AB 的垂直平分线上,又在直线BC 上,AB 中垂线方程为x -y -2=0,BC 所在直线的方程为x +2y -5=0,所以,圆心C′的坐标应满足方程组⎩⎪⎨⎪⎧a -b -2=0,a +2b -5=0.解得a =3,b =1.因为所求圆C′过点A(4,-1),所以(4-3)2+(-1-1)2=R 2=5.所以,所求圆的方程为(x -3)2+(y -1)2=5.知能训练1.在(x +k)2+(y +2k +5)2=5(k +1)2(k≠-1)所表示的一切圆中,任意两圆的位置关系是( )A .相切或相交B .相交C .相切D .内切或相交 答案:C2.圆x 2+y 2+m =0与圆x 2+y 2-6x +8y =0没有公共点,那么实数m 的取值X 围为( ) A .-10<m<0 B .-100<m<-10 C .m<-100 D . 答案:C3.半径为5且与圆x 2+y 2-6x +8y =0相切于原点的圆的方程是________.答案:x 2+y 2+6x -8y =04.一圆过两圆x 2+y 2+6x -3=0和x 2+y 2-6y -3=0的交点,圆心在直线x +y +6=0上,求此圆的方程.答案:x 2+y 2+9x +3y -3=05.求圆心在直线x -y -4=0上,且经过两圆x 2+y 2-4x -3=0和x 2+y 2-4y -3=0的交点的圆的方程.解:设经过两圆的交点的圆的方程为x 2+y 2-4x -3+λ(x 2+y 2-4y -3)=0(λ≠-1),那么其圆心坐标为(21+λ,2λ1+λ).∵所求圆的圆心在直线x -y -4=0上,∴21+λ-2λ1+λ-4=0,λ=-13.∴所求圆的方程为x 2+y 2-6x +2y -3=0.拓展提升求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +5=0的两个交点的圆的方程.解法一:由⎩⎪⎨⎪⎧x 2+y 2+8x -6y +21=0,x -y +5=0,求得交点(-2,3)或(-4,1).设所求圆的方程为x 2+y 2+Dx +Ey +F =0.因为(0,0),(-2 3),(-4,1)三点在圆上,所以⎩⎪⎨⎪⎧F =0,4+9-2D +3E +F =0,16+1-4D +E +F =0,解得⎩⎪⎨⎪⎧F =0,E =-95,D =195.所以所求圆的方程为x 2+y 2+195x -95y =0.解法二:设过交点的圆系方程为x 2+y 2+8x -6y +21+λ(x-y +5)=0(λ为参数). 将原点(0,0)代入上述方程得λ=-215.那么所求方程为x 2+y 2+195x -95y =0.课堂小结本节课学习了:利用方程判断两圆位置关系,解决与两圆有关的问题.作业本节练习A 1,2题.设计感想这堂课是建立在初中已经对圆与圆的位置关系有个粗略地了解的基础上,对这个位置关系的进一步深化,而且前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,表达的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了几何方法,使学生对解析几何的本质有所了解.备课资料圆的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f t ,y =gt.①并且对于t 的每一个允许值,由方程①所确定的点M(x ,y)都在一条曲线上,那么方程组①就叫这条曲线的参数方程,联系x ,y 之间的关系的变数叫做参变数,简称参数.参数方程中的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数.相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程.参数方程能把曲线上的点坐标通过参数直接地写出来,因此,能比较清楚地说明曲线上点的坐标的特点,尤其是借助于参数方程,可以使有的问题变得容易解决.这也正是在解有关问题时,将普通方程化为参数方程来解的原因.当然在解答有关问题时,根据问题的需要,有时也将参数方程化为普通方程,比如研究有关曲线的性质时,由于我们对普通方程下曲线性质比较熟悉,这时,常把曲线参数方程化为普通方程来研究问题.圆的参数方程参数方程:⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ.其中,θ为参数,圆心为(a ,b),r 为半径.需注意的两点:(1)标准方程含有a ,b ,r ,当a ,b ,r 确定下来时,圆的参数方程才唯一地确定下来,确定圆的参数方程同样需要三个独立条件.(2)要掌握圆的标准方程(x -a)2+(y -b)2=r 2与参数方程⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rcosθ(θ为参数)之间的互化.。

聚焦圆与圆的位置关系的基本问题

聚焦圆与圆的位置关系的基本问题



, 就 得 到 两 圆 的 公 共 弦 所 在 的 直
圆外 切
线 方 程 。 利 用 圆 心 到 弦 所 在 直 线 的 距 离 求 出 弦心距 , 再 结合 勾股 定理 可 求弦 长。
二 、 圆 系 方 程 的 应 用
可 得 。一 ~ 5或 一 2 。 ( 2 ) 当 1 < d< 5 即 1 < 2 a + 6 n+ 5 < 2 5
 ̄ / 3 + (一 4)
厂 — 百 _『
“) 一 4 , 可 知两 圆的 圆心和 半径分 别 为C ( “,
所以 I A B t 一 2 一 。 一 2 √ 。 一 ( 号 )
24
一 _ = -

一 2 ) , r 一 3 , c ( 一 l , “ ) , r 一 2 。
网心 ( 、 .到 公 共 弦 所 在 直 线 的 距 离 为 J 一 × 一 × + I

( 4 ) 两 圆 内切 。 解 : 将 两 圆 方 程 化 成 标 准 方 程 为 C. :
【 ~ “) 。 十 ( - f - z) 一 9' 2 : ( 十 1) 十 ( . y一
+ +
内切

可 得 。一 一 1或 一 一 2。
( + -  ̄ - 6y一 2 8)一 O, 整 理 可 得
o 十
28A
一 __ — 一 u。
:判 断 两 圆 的 位 置 关 系 常 用 几 何 法 , 即 利 用 两 圆 圆 心 距 与 两 圆 半 径 的 和 与 差 之 间

+r R
l 十
。 } 一 一 7。
时 , 两 圆相交 ; 当 d— J R ~ ,J 时 , 两 圆内切 ; 当 ( , = < I R— r l 时, 两 圆 内含 。在 解析 几 何 中 , 圆

高一数学圆与圆的位置关系

高一数学圆与圆的位置关系
新课标人教版课件系列
《高中数学》
必修2
4.2与技能 • (1)理解圆与圆的位置的种类; • (2)利用平面直角坐标系中两点间的距离
公式求两圆的连心线长; • (3)会用连心线长判断两圆的位置关系. • 2、情态与价值观 • 让学生通过观察图形,理解并掌握圆与圆
的位置关系,培养学生数形结合的思想. • 二、教学重点、难点:
; 哈利魔法科学 ;
为君失时,贼弟佞臣将作乱矣。后八日大雨雪,阴见间隙而胜阳,篡杀之祸将成也。公不寤,后二年而杀。昭帝始元元年七月,大水雨,自七月至十月。成帝建始三年秋,大雨三十馀日。四年九月,大雨十馀日。《左氏传》愍公二年,晋献公使太子申生帅师,公衣之偏衣,佩之金玦。狐突叹曰 “时,事之征也。衣,身之章也。佩,衷之旗也。故敬其事,则命以始。服其身,则衣之纯。用其衷,则佩之度。今命以时卒,閟其事也。衣以尨服,远其躬也。佩以金玦,弃其衷也。服以远之,时以閟之,尨凉冬杀,金寒玦离,胡可恃也”梁馀子养曰“帅师者,受命於庙,受脤於社,有常服 矣。弗获而尨,命可知也。死而不孝,不如逃之”罕夷曰“尨奇无常,金玦不复,君有心矣”后四年,申生以谗自杀。近服妖也。《左氏传》曰,郑子臧好聚鹬冠,郑文公恶之,使盗杀之,刘向以为近服妖者也。一曰,非独为子臧之身,亦文公之戒也。初,文公不礼晋文,又犯天子命而伐滑, 不尊尊敬上。其后晋文伐郑,几亡国。昭帝时,昌邑王贺遣中大夫之长安,多治仄注冠,以赐大臣,又以冠奴。刘向以为近服妖也。时王贺狂悖,闻天子不豫,弋猎驰骋如故,与驺奴、宰人游居娱戏,骄嫚不敬。冠者尊服,奴者贱人,贺无故好作非常之冠,暴尊象也。以冠奴者,当自至尊坠至 贱也。其后帝崩,无子,汉大臣征贺为嗣。即位,狂乱无道,缚戮谏者夏侯胜等。於是大臣白皇太后,废贺为庶人。贺为王时,又见大白狗冠方山冠而无尾,此服妖,亦犬祸也。贺以问郎中令龚遂,遂曰“

人教新课标版数学高一- 人教A版必修二 4.2.2圆与圆的位置关系

人教新课标版数学高一- 人教A版必修二 4.2.2圆与圆的位置关系

4.2.2 圆与圆的位置关系问题导学一、两圆位置关系的判定活动与探究1已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.迁移与应用1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离2.两圆x2+y2=1和(x-1)2+(y-a)2=4相切,求实数a的值.判断两圆的位置关系一般有两种方法:一是代数法,二是几何法,但因代数法运算烦琐,且容易出错,因此一般采用几何法.二、与两圆相交有关的问题活动与探究2已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.迁移与应用1.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程为__________.2.已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0.求两圆的公共弦所在直线的方程及公共弦长.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则(1)两圆方程相减即得两圆公共弦所在直线的方程.(2)过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).三、与两圆相切有关的问题活动与探究3求与圆C:x2+y2-2x=0外切且与直线l:x+3y=0相切于点M(3,-3)的圆的方程.迁移与应用1.圆C1:x2+y2+4x-4y-5=0,圆C2:x2+y2-8x+4y+7=0的公切线条数是__________.2.半径为3的圆与x轴相切,且与圆x2+(y-1)2=1外切,求此圆的方程.两圆相切包括外切与内切,外切时,圆心距等于两半径之和,内切时圆心距等于两半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.当堂检测1.圆O1:x2+y2-2x=0和圆O2:x2+y2+4y=0的位置关系是()A.相离B.外切C.内切D.相交2.已知圆A,圆B相切,圆心距为10 cm,其中圆A的半径为4 cm,则圆B的半径为()A.6 cm或14 cm B.10 cmC.14 cm D.无解3.设r>0,两圆(x-1)2+(y+3)2=r2与x2+y2=16的位置关系不可能是()A.相切B.相交C.内切和内含D.外切和外离4.两圆x2+y2+2ax+2ay+2a2-1=0和x2+y2+2bx+2by+2b2-2=0的公共弦中,最长的弦等于__________.5.以(3,-4)为圆心,且与圆x2+y2=64内切的圆的方程是__________.答案:课前预习导学【预习导引】1.外离、外切、相交、内切内含预习交流1提示:两圆相切包括外切与内切两种情况,在解答两圆相切问题时,不能漏掉某种情况.2.(1)r1+r2|r1-r2|(2)210内切外切外离内含预习交流2提示:代数法有时不能确切判定两圆的位置关系,如方程组只有一组解时,不能判定两圆是内切还是外切,方程组没有解时,不能判定两圆是外离还是内含,通常用几何方法判断两圆的位置关系.课堂合作探究【问题导学】活动与探究1思路分析:求出圆心距,与两半径的和或差比较求出a的值.解:圆C1,C2的方程,经配方后可得:C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.∴|C1C2|=(a-2a)2+(1-1)2=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切,当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即a<3时,两圆内含.迁移与应用1.B2.解:两圆圆心距为a2+1,因为两圆相切,所以a2+1=2+1或a2+1=2-1,即a2+1=3或a2+1=1.所以a=±22或a=0.活动与探究2思路分析:(1)因为两圆的交点同时满足两个圆的方程,所以两个圆的方程联立消去x2项与y2项,即得两圆的公共弦所在直线的方程.(2)可求出两圆的交点坐标,结合圆心在直线x-y-4=0上求出圆心坐标与半径,也可利用圆系方程求解.解:(1)设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+6x -4=0, ①x 2+y 2+6y -28=0 ②的解. ①-②得x -y +4=0.∵A ,B 两点坐标都满足此方程,∴x -y +4=0即为两圆公共弦所在直线的方程.(2)方法一:解方程组⎩⎪⎨⎪⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0,得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因圆心在直线x -y -4=0上,故b =a -4. 则(a +1)2+(a -4-3)2=(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝⎛⎭⎫12,-72,半径为892.故圆的方程为⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +722=892, 即x 2+y 2-x +7y -32=0.方法二:设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0解得λ=-7.故所求圆的方程为x 2+y 2-x +7y -32=0.迁移与应用 1.x +y -1=02.解:联立方程组⎩⎪⎨⎪⎧ x 2+y 2+2x -6y +1=0,x 2+y 2-4x +2y -11=0. ①②①-②得3x -4y +6=0.∴3x -4y +6=0即为两圆公共弦所在直线的方程.易知圆C 1的圆心(-1,3),半径r =3.又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+42=95, ∴|AB |=2r 2-d 2 =232-⎝⎛⎭⎫952=245,即两圆的公共弦长为245. 活动与探究3 思路分析:设出圆的标准方程,根据条件列出方程组求解参数. 解:圆C 的方程可化为(x -1)2+y 2=1,圆心C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题意可得⎩⎪⎨⎪⎧ (a -1)2+b 2=r +1,b +3a -3×⎝⎛⎭⎫-33=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧ a =4,b =0,r =2.所以所求圆的方程为(x -4)2+y 2=4.迁移与应用 1.3 解析:圆C 1:(x +2)2+(y -2)2=13,圆C 2:(x -4)2+(y +2)2=13,因此两圆的圆心坐标分别为C 1(-2,2),C 2(4,-2),两圆的半径r 1=r 2=13.圆心距|C 1C 2|=(-2-4)2+(2+2)2=213=r 1+r 2,∴两圆外切,有3条公切线.2.解:因为所求圆的半径为3且与x 轴相切,所以设圆心坐标为(a ,-3)或(a,3).又因为所求圆与圆x 2+(y -1)2=1外切,所以a 2+4=4或a 2+16=4,即a =±23或a =0.所以所求圆的方程为(x ±23)2+(y -3)2=9或x 2+(y +3)2=9.【当堂检测】1.D 2.A 3.D 4.25.(x -3)2+(y +4)2=9或(x -3)2+(y +4)2=169。

数学高一年级圆与圆的位置关系

数学高一年级圆与圆的位置关系
几何法2、代数法 三、问题深入 四、巩固练习 五、归纳小结
七、课后反思与评价
1、本节课是研究圆与圆的位置关系,重点在两圆位置关系的判
断方法上,教材中只强调了几何法,对代数法没有作出要求,
但本人考虑到学生对几何法的原理初中有一定基础,应该问题
不是很大。几何的代数化是解析几何的精髓,也是以后处理圆
锥曲线的常见方法。我认为本课时增加代数法分析圆与圆的位
2、可能出现的学习障碍: 数形分家
①由给出圆方程画出图形判断圆与圆的位置关系 ②通过两点间距离公式得出圆与圆的位置关系 ③由方程组的解理论讨论曲线交点个数
“学的真谛在于悟,教的真谛在于度”。考虑到学生还 只有直线和圆初步解析几何知识,用代数方法处理几何问题 的探究要适可而止,既要不加重学生的过重负担,又要不扼 杀学生的勇于探索的精神。
2024/8/3
21
2024/8/3
22
(三)情感与态度:
1、通过演示,培养学生用运动变化的观点来分析和发现问题的能 力。 2、通过探索活动,让学生体验成功的喜悦,激励学生的学习兴趣 和信心。
三、教学重点、难点
教学重点:两圆位置关系的判断。
教学难点:通过两圆方程联立方程组的解研究两圆位置关系
及曲线系方程。
四、教法分析
根据教材的重点、难点、教学目标及学生情况分析,本着教 法为学法服务的宗旨,确定这节课宜采用探究发现式教学法。积 极创设问题情景,始终围绕问题展开,由教师与学生一起发现问 题、提出问题,在教师的主导下,分析问题、解决问题。同时向 学生渗透问题意识,培养学生发现问题、解决问题的能力。
位置关系 图形
交点情况
外离
r
外切 相交 内切 内含
2024/8/3

圆与圆的位置关系综合问题

圆与圆的位置关系综合问题

圆与圆的位置关系综合问题
圆与圆之间的位置关系有以下几种情况:
1.相离:两个圆之间没有交集,彼此之间没有任何交点。

此时,两个圆的中心点之间的距离大于两个圆的半径之和。

2.外切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的外切点。

此时,两个圆的中心点之间的距离等于两个圆的半径之和。

3.相交:两个圆之间有两个交点,但是不包含在彼此内部。

此时,两个圆的中心点之间的距离小于两个圆的半径之和。

4.内切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的内切点。

此时,两个圆的中心点之间的距离等于两个圆的半径之差的绝对值。

5.包含:一个圆完全包含在另一个圆的内部。

此时,两个圆的中心点之间的距离小于两个圆的半径之差的绝对值。

6.同心:两个圆的中心点重合,半径可以相等也可以不等。

在判断两个圆的位置关系时,可以通过计算两个圆的中心点之间的距离和两个圆的半径之和或半径之差的绝对值来确定。

同时,还需要考虑两个圆是否具有相同的半径,以及是否有共同的交点。

总结一下,圆与圆的位置关系综合问题主要包括相离、外切、相交、内切、包含和同心这几种情况。

判断两个圆的位置关系
可以通过计算两个圆的中心点之间的距离和半径之和或半径之
差的绝对值来确定。

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析

高一数学圆与圆的位置关系试题答案及解析1.圆和圆的公切线条数为()A.1条B.2条C.3条D.4条【答案】B【解析】由圆整理得,它的圆心坐标,半径为1.由圆整理得,它的圆心坐标,半径为2.,所以两个圆相交,所以两个圆的公切线有2条.【考点】两圆的公切线条数及方程的确定;圆与圆的位置关系及其判定.2.经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.【答案】【解析】设经过两圆交点的圆的方程为,整理为,再整理:.圆心坐标为,代入直线方程,解得:,代入得圆的方程:.【考点】经过两圆交点的圆的方程3.圆与圆的位置关系是()A.外离B.相交C.内切D.外切【答案】D【解析】由两圆的方程可知,,∴,故两圆的位置关系为外切.【考点】圆与圆的位置关系.4.圆和的位置关系为()A.外切B.内切C.外离D.内含【答案】A【解析】两圆的圆心为,半径为,而,则两圆相外切.【考点】本题考查两圆的位置关系,可以通过圆心距与半径和差的大小比较来判断.5.已知圆,交于A、B两点;(1)求过A、B两点的直线方程;(2)求过A、B两点,且圆心在直线上的圆的方程.【答案】(1)(2)【解析】(1)过圆与圆交点的直线,即为两圆公共弦的直线.所以过A、B两点的直线方程. 5分(2)设所求圆的方程为. 6分则圆心坐标为 8分∵圆心在直线上∴将圆心坐标代入直线方程,得 9分解得. 11分∴所求圆的方程为. 12分【考点】圆与圆的位置关系与圆的方程点评:两圆相交时,其公共弦所在直线方程只需将两圆方程相减即可,求解圆的方程的题目常采用待定系数法:设出圆的方程,根据条件列出关于参数的方程组,解方程组得到参数值最后写出方程6.圆和的位置关系是()A.相离B.外切C.相交D.内切【答案】D【解析】根据题意,由于圆的圆心(1,0),半径为1,和的圆心为(-2,0),半径为4,则可知圆心距d=3,而半径和为5,半径差为3,可知圆心距小于半径差,因此可知是两圆的相互内切,故选D.【考点】两圆的位置关系点评:解决两圆的位置关系的关键是根据圆心距和半径和的关系来确定,属于基础题,也是重要的知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.2圆与圆 的位置关系
主讲教师:
复习引入
1. 两圆的位置关系有哪几种?
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系? 设两圆的圆心距为d,两圆半径 分别为R、r. 当d>R+r时,两圆 , 当d=R+r时,两圆 , 当|R-r|<d<R+r时,两圆 , 当d=|R-r|时,两圆 , 当d<|R-r|时,两圆 .
讲授新课
例1. 已知圆C1: x2+y2+2x+8y-8=0, 圆C2: x2+y2-4x-4y-2=0,试判断
圆C1与圆C2的位置关系.
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
方法:通常是通过解方程或不等式
等方法加以解决.
例2.圆C1的方程是:
2 2
3. 求两圆x2+y2=1和(x-3)2+y2=4的外 公切线方程.
课后作业
1. 阅读教材P.129到P.130;
2. 《习案》二十八.
ห้องสมุดไป่ตู้
; 新宝2
ath74cwb
颜,问表 的安。”乐韵似嗅着猫的老鼠,一声都不敢发,至宝音足边跪下,攥着宝音裙角,不断叩头,是真心急了。宝音就着邱妈妈手里的帕 子印了印眼睛,抬起头来,对乐韵极低道:“去。”乐韵退开一点点。满地都是瓷碴,再退就要跪到瓷碴上了,她只好站起来。宝音方对洛月 轻声道:“请进来罢。”嘉颜迈进屋内,但觉表 这儿一屋子药味、一屋子萧然,举目,见地上滚着铜镜、碎着瓷碴、还湿了一大滩水,表 头 发蓬乱,满面泪痕,不由得大大生出“太过分了”的心情,口中问洛月:“姑娘这儿是怎么了?”眼睛已经剜到乐韵身上。乐韵只觉一股冷气 从脊骨往头盖骨上冒。宝音却赶在洛月开口前,小声道:“我碰掉了杯子。”乐韵低着头,还不敢抬起来,眼睛却瞪大了:碰掉?才不是!明 明摔掉!由摔到碰,一言超生,分明在维护她了。为什么忽的勃然大怒、推她到悬崖边上,为什么忽而又轻言温语,维护于她?乐韵心里乱如 一团麻,分毫也看不清 路数。她只知道一件事:识相的,她还是老实闭嘴别说话罢,否则,恐怕 真有法子叫她死无全尸。今日 ,已绝非从前 的 。嘉颜仍盯着乐韵,看出乐韵藏着忐忑,知道今日之事,怎会是“失手摔了杯子”这么简单。看表 有意息事宁人,她也乐得大事化小,小 事化了,冲乐韵冷冷道:“还不替姑娘扫地?这般躲懒,且扣去半月的月银。”宝音目光微妙的顿了一顿。乐韵连忙行动。这辈子她拿笤帚都 没这么快过。宝音亲手开了妆盒,替表 理妆,看着韩玉笙消瘦的脸、湿漉漉低垂的长睫毛,还有虽然苍白干裂了、但弧度仍然可爱的唇线。这 两片嘴唇里喘气低微、似乎无意的逸出一句问候:“宝音姐姐侍候老太太登高去了么?”嘉颜唇边那训练有素的笑意顿时一僵,几乎碎得比地 上的瓷碴儿还要碎。宝音在镜子里看她,只看了一眼。一眼之后,嘉颜重新微笑,宝音也错开眼睛。这一眼,宝音读出来的信息已经太多。而 嘉颜甚至没有发现宝音曾经抬起眼睛。妆盒中拿起一把掠子,嘉颜替宝音整理发鬓,口中夸道:“表 发质真好,又柔又润。”真的,大病经年, 未损青丝,也算得上天垂怜。嘉颜手不停,道:“表 ,这些婢子不懂事,您尽快同我讲,切莫宠惯她们,损了您的千金体。”乐韵扫着地,大 气都不敢出。韩玉笙原梳的是垂挂髻,未嫁女孩儿的双分辫儿,折上去成两鬟,鬟底留出盘平的、小小的髻,似花萼,不失少女的俏皮,而下 头温婉的双鬟,又显得宁静大方,嘉颜拆下照原样重盘,插上玳瑁如意錾花短簪,退后一步看看,不错了,转头对乐韵道:“呆站着做什么? 没看见你姑娘裙脚都打湿了?”乐韵连忙上来,蹲下去替 擦抹。嘉颜又斥道:“湿成这样,怎么擦?你还不给你姑娘拿裙子来换?”第十四章
小 结:
判断两圆的位置关系的方法: (1) 由两圆的方程组成的方程组有几组
实数解确定.
(2) 依据连心线的长与两圆半径长的和
或两半径的差的绝对值的大小关系.
练习
1. 求经过点M(2,-2)且过圆x2+y2-6x=0 与圆x2+y2=4交点的圆的方程.
2. 已知圆C与圆x y 2 x 0相外切, 并 且与直线x 3 y 0相切于点Q( 3, 3 ), 求圆C的方程.
x2+y2-2mx+4y+m2 -5=0,
圆C2的方程是:
x2+y2+2x-2my+m2 -3=0,
m为何值时,两圆
(1)相切;(2)相交;
(3)相离;(4)内含.
练习. 已知两圆x2+y2-6x=0,
与x2+y2-4y=m,
问m取何值时,两圆相切.
例3.已知两圆C1: x2+y2-4x+2y=0和 圆C2: x2+y2-2y-4=0的交点为A、B, (1) 求AB的长; (2) 求过A、B两点且圆心在直线 l: 2x+4y-1=0上的圆的方程.
相关文档
最新文档