高中数学立体几何平面向量统计案例知识点梳理
高一平面向量的知识点归纳总结
高一平面向量的知识点归纳总结平面向量是高中数学中一个重要的概念,也是数学建模中常用的工具。
在高一阶段,学生首次接触平面向量,并需要掌握其相关的计算方法和性质。
本文将对高一平面向量的知识点进行归纳总结,以帮助学生更好地理解和掌握这一概念。
一、平面向量的定义与表示方法平面向量是有大小和方向的量,可以用有向线段表示,用一个点与另一个点之间的坐标差表示。
一般用字母加箭头表示,如AB→表示从点A指向点B的向量。
二、平面向量的运算1. 平面向量的相加减:向量的相加是指将一个向量的终点与另一个向量的起点相连,并以此线段为新向量的长度和方向。
向量的相减可以转换为向量的相加:A - B = A + (-B)。
2. 向量的数量乘法:向量的数量乘法是指将向量的长度与一个实数相乘,得到一个新的向量,其方向与原向量相同(若实数为正)或相反(若实数为负)。
3. 向量的数量积:向量的数量积等于向量的长度乘积与两向量夹角的余弦值的乘积。
数量积具有交换律和分配律。
三、平面向量的基本性质1. 平移性质:可以将一个向量平移至另一个点,其大小和方向不变。
2. 平面向量的共线性:如果两个向量的方向相同或相反,那么它们是共线的;如果两个向量的方向互相垂直,那么它们是互相垂直的;如果两个向量不共线且不垂直,那么它们是不共线也不垂直的。
3. 向量共点性质:三个向量共点的充分必要条件是其中一个向量等于另外两个向量的和。
四、平面向量的几何应用平面向量在几何中具有广泛的应用。
其中,平面向量的模表示向量的长度,平面向量的方向角表示向量与坐标轴的夹角,平面向量的端点坐标可以确定向量在平面直角坐标系中的位置。
通过对平面向量的几何运算,可以解决平面上的定位、距离和角度等问题。
五、平面向量的坐标表示在平面直角坐标系中,一个向量可以用其横坐标和纵坐标来表示。
具体地说,如果向量的起点在原点O(0, 0),终点在A(x₁, y₁),那么这个向量可以用[x₁, y₁]来表示。
高中立体几何知识点总结
高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。
四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。
线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。
已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。
两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。
要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。
空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。
扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。
规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结2三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
高一数学平面向量归纳总结
高一数学平面向量归纳总结一、向量的概念及基本性质向量是有大小和方向的量,用箭头表示。
向量的大小可以用模表示,方向可以用角度或方位角表示。
向量的相等与相反,向量的加法和数量乘法满足交换律、结合律、分配律。
二、向量的表示方法1. 终点坐标表示法:向量的起点在坐标原点O处,终点在坐标平面上的某个点P(x,y)处,向量记作OP。
2. 坐标表示法:向量的起点在坐标原点O处,终点在坐标平面上的某个点P(x₁,y₁)处,向量记作(x₁,y₁)。
3. 位置矢量表示法:在平面直角坐标系中,向量的起点是原点O,终点为某一点P,则OP向量可以表示为以O为原点,以P为终点的位置矢量。
三、向量的运算1. 向量的加法:向量加法满足三角形法则和平行四边形法则。
2. 向量的数量乘法:向量与实数相乘,改变向量的长度但不改变方向。
3. 向量的减法:向量减法等于加上减向量的负向量,即A-B=A+(-B)。
4. 内积运算:内积(点积)的运算结果是一个实数,满足交换律、分配率,且与夹角θ的余弦有关。
5. 外积运算:外积(叉积)的运算结果是一个向量,其大小等于以两个向量为两条邻边的平行四边形的面积,方向垂直于这个平行四边形的平面。
四、平面向量的坐标表示平面向量的坐标表示与直角坐标系中的坐标表示是一致的,即用向量的横、纵坐标表示向量的分量。
五、向量共线与共面1. 向量共线:若向量A与向量B的数量积为0,则两个向量共线。
2. 向量共面:若向量A、B、C的数积为0,则A、B、C三个向量共面。
六、向量的数量积应用1. 向量夹角的性质:夹角余弦公式可以用于求解向量夹角。
2. 向量投影的概念:设A为非零向量,B为任意向量,点的B在A 上的投影记为Prj(A,B)。
3. 向量投影的计算:设A为非零向量,B为任意向量,则Prj(A,B) = (A·B)/|A|。
4. 向量垂直与平行的判定:若向量A与向量B的数量积为0,则两个向量垂直;若向量A与向量B共线且方向相同或相反,则两个向量平行。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高考平面向量知识点总结
高考平面向量知识点总结高考平面向量的知识点总结如下:1. 平面向量的定义:平面上的向量是有大小和方向的有向线段,可以用有向线段的终点与起点之间的位移来表示。
2. 平面向量的表示:平面向量可以用坐标表示,形如AB→=(x2-x1, y2-y1)。
3. 平面向量的基本运算:a) 向量的加法:将两个向量的相应分量相加,得到一个新的向量。
b) 向量的减法:将两个向量的相应分量相减,得到一个新的向量。
c) 向量的数乘:将向量的每一个分量都乘以一个标量,得到一个新的向量。
d) 向量的数量积:将两个向量的相应分量相乘,再将这些乘积相加,得到一个标量。
e) 向量的模长:向量的模长等于对应坐标差的平方和的平方根。
4. 平面向量的运算规律:a) 加法的交换律:A+B=B+Ab) 加法的结合律:(A+B)+C = A+(B+C)c) 数乘的结合律:k(A+B) = kA+kBd) 数乘的分配律:(k+l)A = kA + lA5. 平面向量共线与平行:若向量a与向量b线性相关,则称向量a 与向量b共线;若向量a与向量b既共线又同向或反向,则称向量a与向量b平行。
6. 平面向量的数量积与夹角关系:a) 两个向量共线时,它们的数量积等于它们的模长的乘积。
b) 两个向量平行时,它们的数量积等于它们的模长的乘积乘以它们的夹角余弦值。
7. 平面向量的坐标表示与几何应用:a) 两个向量的坐标之间的关系:可以根据向量与坐标之间的关系,求解所有给出的向量的坐标。
b) 利用向量的坐标表示进行运算:可以通过向量的坐标表示来进行向量的加法、减法、数量积等运算。
c) 利用向量的几何应用:可以用向量的几何性质解决平面几何问题,如求线段的垂直平分线等。
这些是高考平面向量的基本知识点,掌握了这些知识点可以帮助理解和解决与平面向量相关的问题。
高中数学知识点总结
高中数学知识点总结高考数学知识点总结1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
高考数学知识点总结2三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
高考数学知识点总结3六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。
常用直线向上方向与 X 轴正向的夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
高中数学《平面向量》知识点总结
高中数学《平面向量》知识点总结平面向量是高中数学中的重要内容之一、它是描述平面上的有向线段的数学工具,广泛应用于几何、物理和工程等领域。
以下是对平面向量知识点的总结。
1.平面向量的定义和表示法:平面向量是具有大小和方向的有向线段。
可以用有序数对(x,y)表示向量,也可以用字母加上箭头表示向量,如向量a用小写字母a加上箭头表示。
2.平面向量的运算:(1)向量的加法:向量的加法满足“三角形法则”,即两个向量相加等于以它们为相邻边的平行四边形的对角线;(2)向量的数乘:向量的数乘是指将一个向量与一个实数相乘,结果仍然是一个向量,其大小等于原向量大小乘以实数,方向与原向量相同(如果实数为正)或相反(如果实数为负);(3)数乘的性质:数乘满足交换律、结合律和分配律;(4)向量的减法:向量减法即向量加上其负向量;(5)零向量:大小为0的向量,任何向量与零向量相加等于原向量本身,与零向量的数乘等于零向量本身;(6)向量的线性组合:若有一组向量,每个向量乘以相应的实数再相加得到的向量称为向量的线性组合;(7)内积:内积是一种向量间的一种运算,定义为两个向量的大小之积乘以夹角的余弦值,用点乘符号表示,即向量a与向量b的内积为a·b;(8)内积的性质:内积满足交换律、结合律、分配律和数乘结合律,同时与向量的长度、夹角以及方向都有关系;(9)垂直:若两个非零向量的内积为0,则它们互相垂直。
3.平面向量的坐标表示:平面上的向量可以用坐标表示。
设平面上一个点的坐标为A(x1,y1),则以原点O为起点的向量可以表示为向量a(x1,y1),其中x1和y1分别是向量在x轴和y轴上的投影长度。
4.平面向量的模和方向角:(1) 模:向量的模是指向量的长度,用,a,表示,计算公式为:,a,=sqrt(x^2 + y^2),其中x和y分别表示向量在x轴和y轴上的投影长度;(2) 方向角:向量的方向角是指向量与x轴正半轴之间的夹角,一般用θ表示,计算公式为:θ=tan^(-1)(y/x),其中x和y分别表示向量在x轴和y轴上的投影长度。
高中数学知识点梳理平面向量与立体几何
高中数学知识点梳理平面向量与立体几何高中数学知识点梳理平面向量与立体几何导语:在高中数学课程中,平面向量与立体几何是两个重要的知识点。
平面向量是研究平面上的向量运算和几何性质的数学工具,而立体几何则探讨了三维空间中的图形性质与计算方法。
本文将对这两个知识点进行梳理,以加深读者对高中数学的理解与应用。
一、平面向量的基本概念与运算1. 向量的定义与表示方法向量是具有大小和方向的量,可以用有向线段表示。
常用表示方法有点表示法和分量表示法。
2. 向量的加法与减法向量的加法和减法运算是根据平行四边形法则进行计算的,即将两个向量的起点放在一起,然后以它们的终点为对角线构成的平行四边形的对角线作为所求向量的方向和大小。
3. 向量的数量积与夹角向量的数量积又称为点积,是用来计算向量之间的夹角以及判断向量是否垂直的重要工具。
数量积的运算规律包括交换律、分配律和数量积与夹角的余弦关系。
二、平面向量的应用1. 向量的坐标表示通过向量的坐标表示,可以将几何问题转化为代数问题,简化解题过程。
2. 向量的共线与共面利用向量的共线与共面性质,可以判断图形的相关性质和运算结果。
三、立体几何的基本概念与性质1. 点、线、面与体立体几何中,点是没有维度的对象,线是由点构成的一维对象,面是由线构成的二维对象,而体则是由面构成的三维对象。
2. 平行与垂直关系在立体几何中,平行和垂直是两个非常重要的概念,可以通过向量的数量积进行分析和判断。
3. 空间图形的体积与表面积立体几何中,体积是指立体图形所占据的三维空间的大小,而表面积则是指立体图形表面所占据的二维空间的大小。
不同立体图形的体积和表面积计算公式也不相同,需要根据具体情况进行推导和计算。
四、立体几何的应用1. 空间坐标系与几何方程通过建立空间坐标系,可以将立体几何问题转化为代数方程的求解过程,获得几何图形的特定坐标点或方程式。
2. 空间立体的投影通过空间图形的投影,可以将三维的图形投影到二维平面上进行分析和计算,以便于几何性质的研究。
高中数学有关平面向量知识点总结概括
高中数学有关平面向量知识点总结概括向量a在向量b方向上的投影,记作a·b,亦即b在a方向上的投影。
零向量与任意向量的点积恒等于零。
点积a·b的几何意义在于,它等同于向量a的模长|a|与向量b在a方向上的投影长度|b|cosθ的乘积。
两个向量的点积等于它们各自对应分量乘积之和。
高中数学知识点概述如下:1.几何体的结构特征:(1)棱柱定义为具有两个平行面,其余各面均为四边形,且相邻四边形的公共边互相平行的几何体。
根据底面多边形的边数,棱柱可分为三棱柱、四棱柱、五棱柱等。
棱柱的表示方法包括使用顶点字母或对角线端点字母。
其几何特征包括两底面为对应边平行的全等多边形,侧面和对角面均为平行四边形,侧棱平行且等长,以及平行于底面的截面与底面全等。
(2)棱锥定义为一个底面为多边形,其余各面均为以公共顶点为顶点的三角形所围成的几何体。
棱锥的分类依据底面多边形的边数,如三棱锥、四棱锥、五棱锥等。
棱锥的表示方法为使用顶点字母。
其几何特征包括侧面和对角面均为三角形,平行于底面的截面与底面相似,相似比等于顶点到截面距离与高的比的平方。
(3)棱台定义为用一个平行于棱锥底面的平面截棱锥后,截面与底面之间的部分。
棱台的分类依据底面多边形的边数,如三棱台、四棱台、五棱台等。
棱台的表示方法为使用顶点字母。
其几何特征包括上下底面为相似的平行多边形,侧面为梯形,侧棱交于原棱锥的顶点。
(4)圆柱定义为以矩形一边所在的直线为轴旋转,其余三边旋转形成的曲面所围成的几何体。
圆柱的几何特征包括底面为全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图为矩形。
(5)圆锥定义为以直角三角形一条直角边为旋转轴,旋转一周形成的曲面所围成的几何体。
圆锥的几何特征包括底面为圆,母线交于圆锥顶点,侧面展开图为扇形。
(6)圆台定义为用一个平行于圆锥底面的平面截圆锥后,截面与底面之间的部分。
圆台的几何特征包括上下底面为两个圆,侧面母线交于原圆锥顶点,侧面展开图为弓形。
高中向量几何知识点总结
高中向量几何知识点总结一、向量的基本概念1. 向量的概念和表示方法2. 向量的相等与平行3. 向量的加法和数量乘法4. 向量的数量积和向量积二、平面向量1. 平面向量的坐标表示2. 平面向量的定位和平移3. 平面向量的数量积4. 平面向量的向量积三、空间向量1. 空间向量的坐标表示2. 空间向量的定位和平移3. 空间向量的数量积4. 空间向量的向量积四、向量的运算1. 向量的加法和减法2. 向量的数量乘法3. 向量的夹角和方向余弦4. 向量的数量积和向量积的性质五、平面向量的应用1. 向量的线性运算2. 向量的共线和共面性质3. 向量的垂直和平行性质六、空间向量的应用1. 向量的混合积2. 向量的共面性质3. 向量的垂直和平行性质4. 向量的夹角和体积七、直线和平面1. 平面向量的表示2. 直线和平面的位置关系3. 直线的方向向量和法向量4. 平面的法向量和点法式方程八、空间中的几何关系1. 三角形的中线、角平分线和垂直平分线2. 四边形的对角线、中线和角平分线3. 三棱锥和四棱锥的体积和高4. 空间中的距离和角度九、空间向量的深入应用1. 向量的夹角和垂直性质2. 向量的数量积和向量积的应用3. 向量方程和参数方程4. 向量的坐标和向量的位置十、高中向量几何的综合应用1. 向量的运动学应用2. 向量的静力学应用3. 向量的动力学应用以上就是高中向量几何的知识点总结,通过学习这些知识,我们可以更好地理解和掌握数学中向量的概念、性质和应用,从而提高数学解题的能力。
希望同学们能够认真学习,勤于练习,掌握好这些知识,为今后的学习和发展打下坚实的数学基础。
高中数学中的平面向量知识点总结
高中数学中的平面向量知识点总结在高中数学学习的过程中,平面向量是一个重要的内容,它在几何与代数中都有广泛的应用。
本文将对高中数学中的平面向量知识点进行总结。
一、平面向量的定义与表示平面向量是有大小和方向的量,它可以由箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
通常用大写字母表示向量,例如向量A。
二、平面向量的运算1. 平面向量的加法:将两个向量的对应部分相加,得到一个新的向量。
2. 平面向量的数乘:将一个向量的大小与一个标量相乘,得到一个新的向量。
3. 平面向量的减法:将两个向量相加其中一个的相反向量,得到一个新的向量。
三、平面向量的数量表示平面向量还可以用坐标表示。
设向量A的起点坐标为(x1, y1),终点坐标为(x2, y2),则向量A可以表示为A = (x2 - x1, y2 - y1)。
四、平面向量的数量运算1. 平面向量的加法:将对应坐标相加得到新的坐标表示的向量。
2. 平面向量的数乘:将向量的每一个坐标与标量相乘得到新的坐标表示的向量。
3. 平面向量的减法:将对应坐标相减得到新的坐标表示的向量。
五、平面向量的性质1. 平面向量共线性:如果两个向量的方向相同或者相反,那么它们是共线向量。
2. 平面向量垂直性:如果两个向量的乘积等于0,那么它们是垂直向量。
3. 平面向量的模长:向量的模长即向量的大小,可以用勾股定理计算,模长公式为|A| = √(x^2 + y^2)。
六、平面向量的应用1. 平面向量的平移:设向量A的起点为点P,终点为点Q,平移向量v的起点为点P,终点为点R,则点Q和点R在同一条平行线上。
2. 平面向量的共线与面积:三个向量共线时,它们的向量积为0;三角形面积可以由两个向量的向量积的模长的一半来计算。
3. 平面向量的位矢:位矢是以参考点为起点,以某个点为终点的向量。
综上所述,高中数学中的平面向量是一个重要的知识点,掌握了平面向量的定义、表示、运算、性质和应用,有助于解决几何和代数中的各种问题。
平面向量与几何应用知识点总结
平面向量与几何应用知识点总结一、平面向量的定义与基本性质平面向量可以用有向线段表示,具有大小和方向两个特征。
向量的相等与几何位置无关,只与大小和方向相同有关。
平移、伸缩和旋转都不改变向量相等的性质。
二、平面向量的表示方式1. 数学表示法:用字母加上一个箭头(→)表示向量,如AB→表示从点A到点B的向量。
2. 列向量表示法:用一个有序数对表示向量,该数对的第一个数是向量在水平方向上的分量,第二个数是向量在垂直方向上的分量。
三、向量的运算法则1. 向量的加法:向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
2. 向量的减法:向量的减法可看作加法的逆运算,即A - B = A + (-B),其中- B表示B的相反向量。
3. 向量的数乘:向量的数乘就是将向量的每个分量乘以一个常数,如kA表示向量A的每个分量都乘以k。
4. 平面向量的数量积:向量的数量积(内积)是向量的一个重要运算,数量积是一个标量。
它的计算公式为A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模,θ表示A和B之间的夹角。
四、向量的线性运算1. 在平面内,若A、B和C为三个向量,m和n为实数,则m(A +B) = mA + mB,(m + n)A = mA + nA,(mn)A = m(nA)。
2. 若向量A与向量B共线,且m为实数,则m(A + B) = mA + mB。
五、平面向量的几何应用1. 向量共线及坐标计算:两个向量共线的充要条件是它们的分量成比例,即A = k × B,其中k为常数。
2. 向量的模计算:向量的模定义为向量的大小,计算公式为|A| =√(x² + y²),其中x和y分别为向量A的水平和垂直分量。
3. 向量的投影:向量A在向量B上的投影定义为A在B方向上的分量,计算公式为A在B上的投影= |A|cosθ。
高中数学:关于平面向量的考点整理
高中数学:关于平面向量的考点整理1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。
向量和数量是数学中讨论的两种量的形式,数量是实数。
2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。
3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。
模也叫作绝对值、大小、长度,这几个说法是一个意思。
(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。
(3)相反向量:方向相反、大小相等的向量叫做相反向量。
一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。
(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。
因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。
两个非零向量平行时,必定方向相同或相反。
规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。
(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。
规定零向量和任意向量都垂直,但不能说夹角90度。
(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。
规定零向量和任意向量都平行且垂直。
(7)单位向量:长度为1的向量叫做单位向量。
一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。
(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。
(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。
平面向量与立体几何知识点总结
平面向量与立体几何知识点总结平面向量部分1. 平面向量的定义平面向量是具有大小和方向的箭头,可以用字母加上一个向量符号表示,如AB→。
其中,A为向量的起点,B为向量的终点。
2. 平面向量的表示方法平面向量可以用坐标表示,例如AB→ = (x, y),其中x和y分别表示该向量在x轴和y轴上的分量。
3. 平面向量的基本运算- 平面向量的相等:两个向量的起点和终点相同,则这两个向量相等。
- 平面向量的加法:将两个向量的对应分量相加得到新的向量。
- 平面向量的数乘:将向量的每个分量与一个标量相乘得到新的向量。
4. 平面向量的性质- 平行向量的性质:如果两个向量的方向相同或相反,它们是平行向量。
- 零向量的性质:零向量与任何向量相加都得到该向量本身,且零向量与任何标量相乘都得到零向量。
- 相反向量的性质:如果两个向量的大小相等,但方向相反,它们是相反向量。
立体几何部分1. 空间直线的表示方法空间直线可以用参数方程表示,例如:x = x0 + aty = y0 + btz = z0 + ct其中,x、y、z分别表示直线上的一点坐标,(x0, y0, z0)是直线上的一点,a、b、c分别表示直线的方向比率。
2. 空间直线的关系- 平行关系:两条直线的方向向量平行或自身相等,则它们是平行的。
- 垂直关系:两条直线的方向向量的内积为零,则它们是垂直的。
- 相交关系:两条直线有且只有一个公共点,则它们相交。
3. 空间平面的表示方法空间平面可以用一般方程表示,例如:Ax + By + Cz + D = 0其中,A、B、C分别表示平面法向量的分量,(x, y, z)是平面上的一点坐标。
4. 空间平面与直线的关系- 平行关系:平面的法向量与直线的方向向量平行或自身相等,则它们是平行的。
- 垂直关系:平面的法向量与直线的方向向量的内积为零,则它们是垂直的。
- 相交关系:平面与直线有且只有一个公共点,则它们相交。
5. 空间图形的投影- 点的投影:点在平面上的投影是点在垂直于平面的直线上的投影点。
高三数学复习知识点总结归纳
高三数学复习知识点总结归纳高三数学复习知识点总结第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高中数学知识点总结(最全版)
数学知识点总结引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,()()()U U U A B A B =()()()UU U A B A B =||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函yxo数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=.(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xf xfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学立体几何平面向量统计案例知识点梳理
立体几何初步1、 柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
平面向量知识点梳理高三
平面向量知识点梳理高三平面向量是高中数学中的一个重要概念,它在几何、代数和物理等领域都有广泛的应用。
作为高三学生,我们需要对平面向量的相关知识点进行归纳和总结,以便更好地理解和掌握这一内容。
本文将对高三平面向量的知识点进行梳理,并以合适的格式进行阐述。
一、平面向量的定义和表示方法平面向量可以用有序数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
假设有两个点A(x1, y1)和B(x2, y2),则向量AB的坐标表示为(x2-x1, y2-y1)。
当然,平面向量也可以用向量的模长和方向角来表示,其中模长表示向量的长度,方向角表示向量与x轴正方向之间的夹角。
二、平面向量的运算1. 向量的加法向量的加法遵循平行四边形法则,即将两个向量首尾相接形成一个平行四边形,那么这两个向量的和就是平行四边形的对角线向量。
2. 向量的数乘向量的数乘指的是将向量的每个分量都乘以一个实数,得到一个新的向量。
数乘可以改变向量的长度和方向,当实数为0时,结果向量为零向量。
3. 向量的减法向量的减法可以理解为将减数取相反数后与被减数相加,即A-B=A+(-B)。
4. 向量的数量积数量积是两个向量的乘积,结果是一个实数。
数量积的计算公式为:A·B = |A||B|cosθ,其中A、B表示向量的模长,θ表示两个向量的夹角。
5. 向量的向量积向量积是两个向量的叉乘,结果是一个向量。
向量积的计算公式为:A×B = |A||B|sinθn,其中A、B表示向量的模长,θ表示两个向量的夹角,n表示法向量。
三、平面向量的基本性质和定理1. 平行向量的性质如果两个向量的方向相同或相反,那么它们是平行向量;如果两个向量的模长成比例,那么它们是共线向量。
2. 平面向量的共线定理如果三个向量共线,那么这三个向量的行列式为0。
3. 平面向量的垂直定理如果两个非零向量的数量积为0,那么这两个向量是垂直的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何初步1、 柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A A B C D E -或用对角线的端点字母,如五棱柱'AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧'21ch S =正棱锥侧面积rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 , 2V Sh r h π==圆柱, 13V Sh =锥 , h r V 231π=圆锥'1()3V S S h =++台'2211()()33V S S h r rR R h π=++=++圆台(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面5、空间点、直线、平面的位置关系 (1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。
③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉ 点与直线的关系:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ; 直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α。
(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理1:A ∈LB ∈L => L α A ∈αB ∈α(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
LA·α公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。
符号语言:,P A B A B l P l ∈⇒=∈ 公理3的作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
(5)公理4:平行于同一条直线的两条直线互相平行符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
(6)空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④ 异面直线所成角:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理 (2)在异面直线所成角定义中,空间一点O 是任取的,而和点O 的位置无关。
②求异面直线所成角步骤:A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B 、证明C ·B·A · α P· αLβ =>a ∥c作出的角即为所求角 C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示: a⊂α a∩α=A a∥α(9)平面与平面之间的位置关系:平行——没有公共点;α∥β相交——有一条公共直线。
α∩β=b6、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
简记为:线线平行⇒线面平行符号表示:a αb β => a∥αa∥b线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行符号表示:a∥αa β =>a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。
(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),符号表示:a βb βa∩b = P =>β∥αa∥αb∥α(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。
(面面平行→线线平行)符号表示:α∥βα∩γ= a =>a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
Lpα③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b == ,则a +b =AB BC +=AC(1)a a a=+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a=(x,y)。