新课标I数学(文)卷文档版(有答案)-2014年普通高等学校招生统一考试
【VIP专享】2014年高考文科数学(新课标全国卷I)试题(含答案)(word版)
A.①②③
B. 1 AD 2
B. ①③④
C. (1,3)
C. sin 0 3
C.
2
C.
2
5
B. | f (x) | g(x) 是奇函数
D. | f (x)g(x) | 是奇函数
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
2014年普通高等学校招生全国统一考试课标I文科卷
2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α(3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A. AD B.AD 21 C. BC 21D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203 B.72 C.165 D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞- 第II 卷二、填空题:本大题共4小题,每小题5分 (13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
大纲版数学(文)卷文档版(有答案)-2014年普通高等学校招生统一考试
2014年普通高等学校统一考试(大纲)文科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合M={1,2,4,6,8},N={2,3,5,6,7},则MN 中元素的个数为( )A. 2B. 3C. 5D. 7 【答案】B(2)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B. 35 C. -35 D. -45【答案】D(3)不等式组(2)01x x x +>⎧⎨<⎩的解集为( )A. {21}x x -<<-B. {10}x x -<<C. {01}x x <<D. {1}x x > 【答案】C(4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 6 C. 13 D. 3【答案】B(5)函数y =ln 1)(x >-1)的反函数是( )A. 3(1)(1)x y e x =->-B. 3(1)(1)x y e x =->-C. 3(1)()x y e x R =-∈D. 3(1)()x y e x R =-∈. 【答案】D(6)已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2 【答案】B(7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A. 60种B. 70种C. 75种D. 150种 【答案】C(8)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A. 31B. 32C. 63D. 64【答案】C(9)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2,过F 2的直线l 交C 与A 、B 两点,若△AF 1B的周长为C 的方程为( )A. 22132x y +=B. 2213x y += C. 221128x y += D. 221124x y += 【答案】A(10)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )A.814πB. 16πC. 9πD. 274π【答案】A(11)双曲线C:22221(0,0)x y a b a b-=>>的离心率为2C 的焦距等于( )A. 2B. C.4D.【答案】C(12)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 【答案】D二、填空题:本大题共4个小题,每个小题5分。
2014年普通高等学校招生全国统一考试新课标I卷(数学文)-推荐下载
n 2 时: M 2 2 8 , a 3 ,b 8 ; n 3 时: M 3 3 15 , a 8 ,b 15 ;
n 4 时:输出 M 15 . 选 D. 8
33 2 3
10.已知抛物线 C: y2 x 的焦点为 F , A , 是 C 上一点, AF 5 ,则 (
1 2
2
D. cos 2 0
2
,选 B
2
第 1 页 共 12 页
【解析】:由双曲线的离心率可得 a2 3 2 ,解得 a 1 ,选 D. a
(5)设函数 f (x), g(x) 的定义域为 R ,且 f (x) 是奇函数, g(x) 是偶函数,则下列结论中正确的是
最小正周期为
6
,即③正确;
y
tan(2x
4
EB FC EC BC
4
第 2 页 共 12 页
)
的最
8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱
ay
(B)3
5 4
x0
,解之得
的最小值为
(D)5 或-3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
2014年全国高考文科数学试题及答案-新课标A
2014年普通高等学校招生全国统一考试数学(文科)(课标I )一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. B.21 C. 21D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203 B.72 C.165 D.158(10) 已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3 C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()1 13,1,,1,xe xf xx x-⎧<⎪=⎨⎪≥⎩则使得()2f x≤成立的x的取值范围是________.(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角60MAN∠=︒,C点的仰角45CAB∠=︒以及75MAC∠=︒;从C点测得60MCA∠=︒.已知山高100BC m=,则山高MN=________m.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知{}n a是递增的等差数列,2a,4a是方程2560x x-+=的根。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅰ)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)(2014•新课标Ⅰ)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)(2014•新课标Ⅰ)设z=+i,则|z|=()A.B.C.D.24.(5分)(2014•新课标Ⅰ)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)(2014•新课标Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g (x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)(2014•新课标Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)(2014•新课标Ⅰ)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+),④y =tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)(2014•新课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)(2014•新课标Ⅰ)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)(2014•新课标Ⅰ)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)(2014•新课标Ⅰ)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)(2014•新课标Ⅰ)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)(2014•新课标Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)(2014•新课标Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)(2014•新课标Ⅰ)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)(2014•新课标Ⅰ)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2014•新课标Ⅰ)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)(2014•新课标Ⅰ)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)(2014•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C 的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)(2014•新课标Ⅰ)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l 与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)(2014•新课标Ⅰ)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014全国新课标1卷数学文科(题目加解析)word版
2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分.(1)已知集合{}13M x x =-<<, {}21N x x =-<<,则M N = ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21 B. 22 C. 23D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. ADB. 12ADC. 12BCD. BC(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8 11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3(C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年普通高等学校招生全国统一考试(新课标II)文科数学 word版
2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}- (2)131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i -- (3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥 11A B DC -的体积为(A )3 (B )32(C )1 (D(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB = (A(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取 值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(16) 数列}{n a 满足2,1181=-=+a a a n n ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设1,AP AD ==三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .(21)(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
2014年全国高考文科数学试题及答案-新课标1
2014年普通高等学校招生全国统一考试数学(文科)(课标I )一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. B.21 C. 21D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158(10) 已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3 C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,xe xf xx x-⎧<⎪=⎨⎪≥⎩则使得()2f x≤成立的x的取值范围是________.(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角60MAN∠=︒,C点的仰角45CAB∠=︒以及75MAC∠=︒;从C点测得60MCA∠=︒.已知山高100BC m=,则山高MN=________m.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知{}n a是递增的等差数列,2a,4a是方程2560x x-+=的根。
(完整word)2014全国新课标1数学试题及答案解析,推荐文档
(完整word)2014全国新课标1数学试题及答案解析,推荐文档2014年普通高等学校招生全国统一考试全国课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--…,{|22}B x x =-2.32(1)(1)i i +=-(). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是().A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为().A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率().A .18B .38C .58D .786如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为().7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =().A .203 B . 72 C . 165 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则(). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥??-≤?的解集记为D .有下面四个命题:1p :(,),22x y D x y ?∈+≥-, 2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤, 4p :(,),21x y D x y ?∈+≤-.其中真命题是().A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =u u u r u u u r,则||QF =().A .72 B . 3 C .52D .211.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为().A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为().A .62B .6C .42D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知集合M={x|−1<x<3},N={x|−2<x<1},则M∩N=()A.(−2, 1)B.(−1, 1)C.(1, 3)D.(−2, 3)2. 若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>03. 设z=11+i+i,则|z|=()A.1 2B.√22C.√32D.24. 已知双曲线x2a2−y23=1(a>0)的离心率为2,则实数a=()A.2B.√62C.√52D.15. 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)⋅g(x)是偶函数B.|f(x)|⋅g(x)是奇函数C.f(x)⋅|g(x)|是奇函数D.|f(x)⋅g(x)|是奇函数6. 设D,E,F分别为△ABC的三边BC,CA,AB的中点,则EB→+FC→=()A.AD→B.12AD→C.BC→D.12BC→7. 在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+π6),④y=tan(2x−π4)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8. 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9. 执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.203B.165C.158D.7210. 已知抛物线C:y2=x的焦点为F,点A(x0, y0)是C上一点,|AF|=54x0,则x0=()A.1B.2C.4D.811. 设x,y满足约束条件{x+y≥a,x−y≤−1,且z=x+ay的最小值为7,则a=( )A.−5B.3C.−5或3D.5或−312. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1, +∞)B.(2, +∞)C.(−∞, −1)D.(−∞, −2)二、填空题:本大题共4小题,每小题5分13. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14. 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________(填城市字母即可).15. 设函数f(x)={e x−1,x<1x13,x≥1,则使得f(x)≤2成立的x的取值范围是________.16. 如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠AMN=60∘,C 点的仰角∠CAB=45∘以及∠MAC=75∘;从C点测得∠MCA=60∘,已知山高BC=1000m,则山高MN=________ m.三、解答题:解答应写出文字说明.证明过程或演算步骤17. 已知{a n}是递增的等差数列,a2,a4是方程x2−5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{a n2n}的前n项和.18. 从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19. 如图,三棱柱ABC −A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60∘,BC =1,求三棱柱ABC −A 1B 1C 1的高.20. 已知点P(2, 2),圆C:x 2+y 2−8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积.21. 设函数f(x)=alnx +1−a 2x 2−bx(a ≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f(x 0)<aa−1,求a 的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年新课标II高考文科数学试题及答案(Word版)
2014年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2-(2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b满足a·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13,D 为(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长BC 中点,则三棱锥11DC B A -的体积为 (A )3 (B )32 (C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S= (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )⎡⎢⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅰ)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)(2014•新课标Ⅰ)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)(2014•新课标Ⅰ)设z=+i,则|z|=()A.B.C.D.24.(5分)(2014•新课标Ⅰ)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)(2014•新课标Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g (x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)(2014•新课标Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)(2014•新课标Ⅰ)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+),④y =tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)(2014•新课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)(2014•新课标Ⅰ)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)(2014•新课标Ⅰ)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)(2014•新课标Ⅰ)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)(2014•新课标Ⅰ)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)(2014•新课标Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)(2014•新课标Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)(2014•新课标Ⅰ)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)(2014•新课标Ⅰ)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2014•新课标Ⅰ)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)(2014•新课标Ⅰ)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)(2014•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C 的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)(2014•新课标Ⅰ)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l 与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)(2014•新课标Ⅰ)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
【高考试题】2014年高考文科数学试题 (新课标Ⅰ卷) ★答案
【高考试题】2014年高考文科数学试题 (新课标Ⅰ卷) ★答案2014年普通高等学校招生全国统一考试数学文科(新课标Ⅰ卷)一、 选择题:本大题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={x|-1<x<3},N ={x|-2<x<1},则M ∩N 等于( )A. (-2,1)B. (-1,1)C. (1,3)D. (-2,3) 2. 若tan α>0,则( ) A. sin α>0 B. cos α>0 C. sin 2α>0 D. cos 2α>03. 设复数z =11+i +i(i 为虚数单位),则|z|等于( )A. 12B. 22C. 32D. 2 4. 已知双曲线x 2a 2-y 23=1(a>0)的离心率为2,则 a 等于( )A. 2B.62 C. 52D. 1 5. 设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A. f(x)g(x)是偶函数B. |f(x)|g(x)是奇函数C. f(x)|g(x)|是奇函数D. |f(x)g(x)|是奇函数6. 设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A. AD → B. 12AD → C. BC →D. 12BC →7. 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A. ①②③B. ①③④C. ②④D. ①③8. 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱(第8题)9. 执行如图所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M 等于( ) A. 203 B. 72 C. 165 D. 158(第9题)10. 已知抛物线C :y 2=x 的焦点为F ,A(x 0,y 0)是C 上一点,AF =54x 0,则x 0等于( )A. 1B. 2C. 4D. 811. 设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则实数a 等于( )A. -5B. 3C. -5或3D. 5或-312. 已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A. (2,+∞)B. (1,+∞)C. (-∞,-2)D. (-∞,-1)二、 填空题:本大题共4小题,每小题5分.13. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14. 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.15. 设函数f(x)=⎩⎪⎨⎪⎧e x -1,x<1,x 13,x ≥1,则使得f(x)≤2成立的x 的取值范围是________.16. 如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从点A 测得点M 的仰角∠MAN =60°,点C 的仰角∠CAB =45°以及∠MAC =75°,从点C 测得∠MCA =60°.已知山高BC =100m ,则山高MN =________m.(第16题)三、 解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1) 求数列{a n }的通项公式;(2) 求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.18. (本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(第18题)(2) 估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3) 根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19. (本小题满分12分)如图,在三棱柱ABC-A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C.(1) 求证:B 1C ⊥AB ;(2) 若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC-A 1B 1C 1的高.(第19题)20. (本小题满分12分)已知点P(2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1) 求M 的轨迹方程;(2) 当OP =OM 时,求l 的方程及△POM 的面积.21. (本小题满分12分)设函数f(x)=aln x +1-a 2x 2-bx(a ≠1),曲线y =f(x)在点(1,f(1))处的切线斜率为0.(1) 求b ;(2) 若存在x 0≥1,使得f(x 0)<aa -1,求实数a 的取值范围. 请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分. 22. (本小题满分10分)选修41:几何证明选讲如图,四边形ABCD 是圆O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE.(1) 求证:∠D =∠E ;(2) 设AD 不是圆O 的直径,AD 的中点为M ,且MB =MC ,求证:△ADE 为等边三角形.(第22题)23. (本小题满分10分)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1) 写出曲线C 的参数方程与直线l 的普通方程;(2) 过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.24. (本小题满分10分)选修45:不等式选讲若a>0,b>0,且1a +1b=ab.(1) 求a 3+b 3的最小值;(2) 是否存在a ,b ,使得2a +3b =6?并说明理由.2014年普通高等学校招生全国统一考试 数学文科(新课标Ⅰ卷)1. B 【解析】借助数轴可得M ∩N =(-1,1),故选B.2. C 【解析】由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 2α=2sin αcos α>0,故选C.3. B 【解析】11+i +i =1-i (1+i )·(1-i )+i =1-i 2+i =12+12i ,则|z|=⎝⎛⎭⎫122+⎝⎛⎭⎫122=22,故选B. 4. D 【解析】因为双曲线的方程为x 2a 2-y 23=1,所以e 2=a 2+3a2=4,因此a 2=1,a =1,故选D.5. C 【解析】因为f(x)为奇函数,g(x)为偶函数,故f(x)g(x)为奇函数,|f(x)|g(x)为偶函数,f(x)|g(x)|为奇函数,|f(x)g(x)|为偶函数,故选C.6. A 【解析】EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A.7. A 【解析】①y =cos|2x|的最小正周期为π;②y =|cos x|的最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π;④y =tan(2x -π4)的最小正周期为π2,故选A.8. B 【解析】由题意知,该几何体的三视图为一个三角形和两个四边形,经分析可知该几何体为三棱柱,故选B.9. D 【解析】第一次循环:M =32,a =2,b =32,n =2;第二次循环:M =83,a =32,b=83,n =3;第三次循环:M =158,a =83,b =158,n =4,则输出M =158,故选D. 10. A 【解析】由题意知抛物线的准线方程为x =-14.因为AF =54x 0,根据抛物线的定义可得x 0+14=AF =54x 0,解得x 0=1,故选A.11. B 【解析】当a ≥1时,联立方程组⎩⎨⎧x +y =a ,x -y =-1,解得⎩⎨⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或a =-5(舍去).当a <1时,不符合条件,故选B.12. C 【解析】由题意知f′(x)=3ax 2-6x =3x(ax -2),当a =0时,不满足题意.当a ≠0时,令f′(x)=0,解得x =0或x =2a.当a>0时,f(x)在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在⎝⎛⎭⎫0,2a。
2014年全国卷新课标I卷
2014年全国卷新课标I 卷数学(文科)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一个选项是符合题目要求的. 1.已知集合{}13M x x =-<<, {}21N x x =-<<,则MN =( )A.)1,2(-B. )1,1(-C. )3,1(D. )3,2(- 2. 若0tan >α,则A.0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 3. 设i iz ++=11,则=||z A.21B. 22C. 23D. 24. 已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 5. 设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 6. 设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A.AD B.12AD C. 12BC D. BC 7. 在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8. 如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A.203 B.165 C.72 D.15810. 已知抛物线C :x y =2的焦点为F ,()00,A x y 是C 上一点,054AF x =,则0x =( ) A. 1 B. 2 C. 4 D. 8 11. 设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A.-5B.3C.-5或3D.5或-312. 已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 14. 甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15. 设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.16. 如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,学科网则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.21 C. 21D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,学科网则输出的M =( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,学科网则a =(A )-5 (B )3 (C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分 (13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. (14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
(I )求{}n a 的通项公式; (II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. (18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数(I )在答题卡上作出这些数据的频率分布直方图:(II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (III )根据以上抽样调查数据,能否认为该企业生产的这种产品学科网符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19(本题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1zxxk 的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.20.(本小题满分12分)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积21(12分)设函数()()21ln 12a f x a x x bx a -=+-≠,zxxk 曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.(22)(本小题满分10分)选修4-1,几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(I )证明:D E ∠=∠;(II )设AD 不是O 的直径,AD 的中点为M ,zxxk 且MB MC =,学科网证明:ABC ∆为等边三角形.(23)(本小题满分10分)选修4-4:坐标系与参数方程已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=ty t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,学科网求PA 的最大值与最小值.(24)(本小题满分10分)选修4-5;不等式选讲 若,0,0>>b a 且ab ba =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由.文科数学试题答案一、选择题(1)B (2)A (3)B (4)D (5)A (6)C (7)C (8)B (9)D (10)C (11)B (12)A 二、填空题(13)23 (14)A (15)(,8]-∞ (16)150三、解答题 (17)解:(I )方程2560x x -+=的两根为2,3,由题意得242, 3.a a == 设数列{}n a 的公差为d ,则422,a a d -=故1,2d =从而13,2a = 所以{}n a 的通项公式为112n a n =+ ……6分 (II )设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为,n s 由(I )知12,22n n n a n ++=则 2313412...,2222n n n n n s +++=++++341213412 (22222)n n n n n s ++++=++++ 两式相减得31213112(...)24222n n n n s +++=+++- 123112(1).4422n n n -++=+--所以142.2n n n s ++=- ……12分(18)解: (I )(II )质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为22222(20)0.060.26+0.38+100.22200.08s =-⨯+⨯⨯+⨯(-10)=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.……10分 (III )质量指标值不低于95的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定. ……12分(19)解:(I ) 连接1BC ,则O 为1B C 与1BC 的交点.因为侧面11BB C C 为菱形,所以11.B C BC ⊥又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ⊥平面ABO. 由于AB ⊂平面ABO ,故1.B C AB ⊥ ……6分(II ) 作OD BC ⊥,垂足为D ,连接AD.作OH AD ⊥,垂足为H. 由于BC AO ⊥,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥.又OH AD ⊥,所以OH ⊥平面ABC.因为160CBB ∠=︒,所以1CBB ∆为等边三角形,又BC=1,可得OD =.由于1AC AB ⊥ ,所以111.22OA B C ==由OH AD OD OA ⋅=⋅,且AD =OH =又O 为1B C 的中点,所以点1B 到平面 A BC 的距离为7故三棱柱111ABC A B C -的距离为7.(20)解:(I )圆C 的方程可化为22(4)16x y +-=,所以圆心为(0,4)C ,半径为4, 设(,)M x y ,则(,4)CM x y =-,(2,2)MP x y =--,由题设知0CM MP ∙=,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=.由于点P 在圆C 的内部,所以M 的轨迹方程是22(1)(3)2x y -+-=. ……6分(II )由(1)可知M 的轨迹是以点(1,3)N .由于||||OP OM =,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON PM ⊥. 因为ON 的斜率为3,所以l 的斜率为13-,故l 的方程为1833y x =-+.又||||OP OM ==,O 到l ,||5PM =,所以POM ∆的面积为165.……12分 (21)解: (I )'()(1)af x a x b x=+--, 由题设知'(1)0f =,解得1b =. ……4分 (II )()f x 的定义域为(0,)+∞,由(1)知,21()ln 2a f x a x x x -=+-, '1()(1)1()(1)1a a a f x a x x x x x a-=+--=--- (ⅰ)若12a ≤,则11aa≤-,故当(1,)x ∈+∞时,'()0f x >,()f x 在(1,)+∞单调递增, 所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1a f a <-,即1121a aa --<-,解得11a <<. (ii )若112a <<,则11a a >-,故当(1,)1ax a∈-时,'()0f x <;当(,)1a x a ∈+∞-时,'()0f x >,()f x 在(1,)1a a -单调递减,在(,)1a a+∞-单调递增. 所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--,而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意. (iii )若1a >,则11(1)1221a a af a ---=-=<-.综上,a 的取值范围是(11)(1,)+∞.……12分(22)解:(I )由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠, 由已知得CBE E ∠=∠,故.D E ∠=∠……5分(II )设BC 的中点为N ,连接MN ,则由MB=MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是O 的直径,M 为AD 的中点,故OM AD ⊥,即.M N A D ⊥ 所以AD BC ,故.A CBA ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(I )知,D E ∠=∠,所以ADE ∆为等边三角形.……10分(23)解:(I ) 曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,,(θ为参数)直线l 的普通方程为260.x y +-= ……5分 (II ) 曲线C 上任意一点(2cos ,3sin )p θθ到l 的距离为3sin 6.d θθ=+-则)6sin 30d PA a θ==+-︒,其中a 为锐角,且4tan .3α=当sin()1θα+=-时,PA当sin()1θα+=时,PA ……10分 (24)解:(I 11a b =+≥,得2ab ≥,且当a b ==时等号成立.故33a b +≥≥a b =时等号成立.所以33a b +的最小值为 ……5分(II )由(I )知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=. ……10分。