函数图象应用(讲义及答案).

合集下载

第2讲 一次函数的图像及性质(讲义)解析版

第2讲 一次函数的图像及性质(讲义)解析版
(2)由图像可得: x ³ 6 . 【总结】本题考察了一次函数与一元一次不等式的关系. 例 9.已知一次函数解析式是 y = 1 x - 3 .
2
(1)当 x 取何值时, y = 2 ? (2)当 x 取何值时, y > 2 ? (3)当 x 取何值时, y < 2 ? (4)当 x 取何值时, 0 < y < 2 ?
2 (4)令 0 < 1 x - 3 < 2 ,解得: 6 < x < 10 .
2 【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解. 例 10.已知函数 f (x) = -3x + 1 .
(1)当 x 取何值时, f (x) = -2 ? (2)当 x 取何值时, 4 > f (x) > -2 ? (3)在平面直角坐标系中,在直线 f (x) = -3x + 1 上且位于 x 轴下方所有点,它们的横 坐标的取值范围是什么?
A. x < 0
B. x > 0
C. x < 2
D. x > 2 .
【答案】A
【分析】根据题意在函数图像中寻找 y > 3 时函数图像所在的位置,发现此时函数图像对
应的 x 范围是小于零,从而得出答案
【详解】解:∵由函数图象可知,当 x<0 时函数图象在 3 的上方,
∴当 y>3 时,x<0.
故选:A.
【总结】本题考察了一次函数与一元一次不等式的关系. 例 8.已知 y = kx + b(k ¹ 0) 的函数图像如图所示:
(1)求在这个函数图像上且位于 x 轴上方所有点的横坐标的取值范围; (2)求不等式 kx + b £ 0 的解集.

指数函数与对数函数(讲义及答案)

指数函数与对数函数(讲义及答案)

指数函数与对数函数(讲义) 知识点睛1.指数函数及对数函数的图象和性质:指数函数xy a=对数函数log ay x=图象定义域R(0,+∞)值域(0,+∞)R性质过定点(0,1)过定点(1,0)01a<<时,在R上是减函数;1a>时,在R上是增函数;01a<<时,在(0,+∞)上是减函数;1a>时,在(0,+∞)上是增函数2.利用指数函数、对数函数比大小(1)同底指数函数,利用单调性比较大小;(2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法;(3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论;(4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合.3.换底公式及常用变形:logloglogcacbba=(a>0,且a≠1;c>0,且c≠1;b>0)1loglogabba=(a>0,且a≠1;b>0,且b≠1)log logmnaanb bm=(a>0,且a≠1;b>0,且b≠1)logaba b=(a>0,且a≠1;b>0)精讲精练1.若a ,b ,c ∈R +,则3a =4b =6c ,则()A .ba c 111+=B .b ac 122+=C .b a c 221+=D .b a c 212+=2.计算:(1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________;(2)设0()ln 0x e x g x x x ⎧=⎨>⎩≤(),()则1(())2g g =_____________;(3)若2(3)6()log 6f x x f x x x +<⎧=⎨⎩≥()(),则)1(-f 的值为________.3.(1)函数22()log (1)f x x x =+-是_______函数(奇或偶);(2)设函数()1xx a e f x ae-=+(a 为常数)在定义域上是奇函数,则a =__________.4.下列大小关系正确的是()A .3log 34.044.03<<B .4.03434.03log <<C .4.04333log 4.0<<D .34.044.033log <<5.设a =3log 2,b =ln2,c =125-,则()A .a <b <c B .b <c <aC .c <a <bD .c <b <a6.已知定义在R 上的函数()21x m f x -=-(m 为实数)为偶函数,记0.52(log 3)(log 5)(2)a f b f c f m ===,,,则a ,b ,c 的大小关系为()A .a <b <c B .a <c <b C .c <a <b D .c <b <a7.(1)已知函数22()lg (1)(1)1f x a x a x ⎡⎤=-+++⎣⎦.若()f x 的定义域为R ,则实数a 的取值范围是__________;(2)若函数26()3log 2a x x f x x x -+⎧=⎨+>⎩≤()()(0a >,且1a ≠)的值域是[4)+∞,,则实数a 的取值范围是__________;(3)函数20.5()log (3)f x x ax a =-+的值域为R ,则实数a 的取值范围是__________.8.已知函数221()log [(1)]4f x ax a x =+-+.(1)若定义域为R ,则实数a 的取值范围是__________;(2)若值域为R ,则实数a 的取值范围是__________.9.已知函数30()20x x a x f x a x --<⎧=⎨-⎩≥()()(0a >且1a ≠)是R 上的减函数,则a 的取值范围是()A .2(0]3,B .1(0]3,C .(01),D .(02],10.若函数5(3)41()log 1aa x a x f x x x --⎧=⎨>⎩≤()()是R 上的增函数,则实数a 的取值范围是()A .3[3)5,B .3[1)5,C .1(3)5,D .1(1)5,11.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->-,则a 的取值范围是___________.12.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足212(log )(log )2(1)f a f a f +≤,则a 的取值范围是___________.13.已知定义在R 上的函数2()ln(1)||f x x x =++,若(21)(1)f x f x ->+,则x 的取值范围是___________.14.已知函数2()||f x x x =-,若3(log (1))(2)f m f +<,则实数m的取值范围是____________________.15.已知函数()ln()10x x f x a b a b =->>>().(1)求函数f (x )的定义域I ;(2)判断函数f (x )在定义域I 上的单调性,并说明理由;(3)当a ,b 满足什么关系时,()f x 在[1)+∞,上恒取正值.16.已知函数1()11x x a f x a a -=>+().(1)判断f (x )奇偶性;(2)求函数f (x )的值域;(3)证明f (x )是区间()-∞+∞,上的增函数.【参考答案】1.B2.(1)13;(2)13;(3)3.3.(1)奇;(2)1±4.C5.C6.C7.(1)5(1]()3-∞-+∞ ,,;(2)(1,2];(3)(0][12)-∞+∞ ,,8.(1)3535()22-+,;(2)3535[0][)22-++∞ ,,9.B10.A 11.13()22,12.1[2]2,13.(0)(2)-∞+∞ ,,14.8(8)9-,15.(1)(0)+∞,;(2)单调递增;(3)1a b ->16.(1)奇函数;(2)(-1,1);(3)略.。

高中数学讲义:函数的图像

高中数学讲义:函数的图像

函数的图像一、基础知识1、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。

在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线特点:两点确定一条直线信息点:与坐标轴的交点(2)二次函数:()2y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。

函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确特点:对称性信息点:对称轴,极值点,坐标轴交点(3)反比例函数:1y x=,其定义域为()(),00,-¥+¥U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线特点:奇函数(图像关于原点中心对称),渐近线信息点:渐近线注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。

渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x ®+¥,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。

(2)水平渐近线的判定:需要对函数值进行估计:若x ®+¥(或-¥)时,()f x ®常数C ,则称直线y C =为函数()f x 的水平渐近线例如:2x y = 当x ®+¥时,y ®+¥,故在x 轴正方向不存在渐近线 当x ®-¥时,0y ®,故在x 轴负方向存在渐近线0y =(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a ®时,()f x ®+¥(或-¥),那么称x a =为()f x 的竖直渐近线例如:2log y x =在0x =处无定义,当0x ®时,()f x ®-¥,所以0x =为2log y x =的一条渐近线。

一次函数的表达式、图象、性质(讲义及答案).

一次函数的表达式、图象、性质(讲义及答案).
4. 已知函数 y=(m-2)x2n+1-m+n,当 m______,n=______时,它是 一次函数;当 m=______,n=______时,它是正比例函数.
5. 若 y (k 3)xk28 5 是一次函数,则 k=_______.
6. 一次函数 y=kx+b 中,若 k<0,b>0,则它的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
18. 如图,在同一直角坐标系中,一次函数 y=k1x,y=k2x,y=k3x, y=k4x 的图象分别为 l1,l2,l3,l4,将 k1,k2,k3,k4 从大到小 排列并用“>”连接为___________.
19. 直线 y=-x 与 y=-x+5 的位置关系是_______,直线 y=-x 可以 看作是由直线 y=-x+5__________________.
致是( )
A.
B.
C.
D.
12. 一次函数 y=kx-k 的图象可能是( )
A.
B.
C.
D.
13. 下列一次函数: ①y=5x-6;②y=-0.3x+3;③ y 5x 3 ;④ y ( 5 6)x . 其中 y 的值随 x 值的增大而减小的是_____.(填序号)
14. 若一次函数 y=kx+b 的函数值 y 随 x 的增大而减小,且图象与
3
9. 已知一次函数 y=kx+b 的图象经过第一、二、三象限,则 b 的
值可以是( )
A.-2
B.-1
C.0
D.2
10. 直线 y=kx+b 经过第一、三、四象限,则直线 y=bx-k 只能是
图中的( )

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

第4讲函数y=A sin(ωx+φ)的图象及应用1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤1.概念辨析(1)将函数y =3sin2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( ) (2)利用图象变换作图时,“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)将函数y =2sin x 的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得函数y=2sin x2的图象.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4 C .2,1π,π8D .2,12π,-π8答案 A解析 函数y =2sin ⎝⎛⎭⎪⎫2x +π4的振幅是2,周期T =2π2=π,频率f =1T =1π,初相是π4,故选A.(2)用五点法作函数y =sin ⎝⎛⎭⎪⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、__________、________、________.答案 ⎝⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1⎝ ⎛⎭⎪⎫7π6,0⎝ ⎛⎭⎪⎫5π3,-1⎝ ⎛⎭⎪⎫13π6,0解析 列表:五个点依次是⎝ ⎛⎭⎪⎫π6,0、⎝ ⎛⎭⎪⎫2π3,1、⎝ ⎛⎭⎪⎫7π6,0、⎝ ⎛⎭⎪⎫5π3,-1、⎝ ⎛⎭⎪⎫13π6,0.(3)将函数f (x )=-12cos2x 的图象向右平移π6个单位长度后,再将图象上各点的纵坐标伸长到原来的2倍,得到函数y =g (x )的图象,则g ⎝⎛⎭⎪⎫3π4=________.答案32解析 函数f (x )=-12cos2x 的图象向右平移π6个单位长度后得函数y =-12cos2⎝ ⎛⎭⎪⎫x -π6=-12cos ⎝ ⎛⎭⎪⎫2x -π3,再将图象上各点的纵坐标伸长到原来的2倍,得到函数g (x )=-cos ⎝ ⎛⎭⎪⎫2x -π3,所以g ⎝ ⎛⎭⎪⎫3π4=-cos ⎝ ⎛⎭⎪⎫3π2-π3=sin π3=32.(4)(2018·长春模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.答案 f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 解析 由图象可知A =2,T 4=7π12-π3=π4,所以2πω=π,ω=2,所以f (x )=2sin(2x+φ),又f ⎝⎛⎭⎪⎫7π12=-2,所以2×7π12+φ=2k π+3π2,k ∈Z ,φ=2k π+π3,k ∈Z ,又|φ|<π,所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.题型 一 函数y =A sin(ωx +φ)的图象及变换1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2答案 D解析 由C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π6+π2=cos ( 2x +π6 )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12. 根据三角函数图象变换的规律,可得D 正确.2.(2018·蚌埠一模)已知ω>0,顺次连接函数y =sin ωx 与y =cos ωx 的任意三个相邻的交点都构成一个等边三角形,则ω=( )A .π B.6π2 C.4π3D.3π 答案 B解析 当正弦值等于余弦值时,函数值为±22,故等边三角形的高为2,由此得到边长为2×33×2=263,边长即为函数的周期,故2πω=263,ω=6π2.3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上单调递增,求ω的最大值.解 函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π2ω,π2ω上单调递增,所以⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,所以⎩⎪⎨⎪⎧-π2ω≤-π3,π2ω≥π4.解得0<ω≤32,所以ω的最大值为32.4.已知函数y =cos ⎝ ⎛⎭⎪⎫2x -π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在区间[0,π]内的图象;(3)说明y =cos ⎝⎛⎭⎪⎫2x -π3的图象可由y =cos x 的图象经过怎样的变换而得到.解 (1)函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的振幅为1,周期T =2π2=π,初相是-π3. (2)列表:描点,连线.(3)解法一:把y =cos x 的图象上所有的点向右平移π3个单位长度,得到y =cos ⎝ ⎛⎭⎪⎫x -π3的图象;再把y =cos ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =cos ⎝⎛⎭⎪⎫2x -π3的图象.解法二:将y =cos x 的图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到y =cos2x 的图象;再将y =cos2x 的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=cos ⎝ ⎛⎭⎪⎫2x -π3的图象.作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用的两种方法(1)五点法作图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.1.要想得到函数y =sin2x +1的图象,只需将函数y =cos2x 的图象( ) A.向左平移π4个单位长度,再向上平移1个单位长度B.向右平移π4个单位长度,再向上平移1个单位长度C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度答案 B解析 先将函数y =cos2x 的图象向右平移π4个单位长度,得到y =sin2x 的图象,再向上平移1个单位长度,即得y =sin2x +1的图象,故选B.2.(2018·青岛模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移π12个单位得到函数g (x )的图象,在g (x )图象的所有对称轴中,离原点最近的对称轴方程为( )A.x =-π24B .x =π4C.x =5π24D .x =π12答案 A解析 当函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变时,此时函数解析式可表示为f 1(x )=2sin ⎝ ⎛⎭⎪⎫4x +π3,再将所得图象向左平移π12个单位得到函数g (x )的图象,则g (x )可以表示为g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π12+π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3.则函数g (x )的图象的对称轴可表示为4x +2π3=π2+k π,k ∈Z ,即x =-π24+k π4,k∈Z .则g (x )的图象离原点最近的对称轴,即g (x )的图象离y 轴最近的对称轴为x =-π24.题型 二 由图象确定y =A sin(ωx +φ)的解析式1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2 B. 2 C .-22 D .-24答案 D解析 依题意得f ′(x )=Aωcos(ωx +φ),结合函数y =f ′(x )的图象,则T =2πω=4⎝⎛⎭⎪⎫3π8-π8=π,ω=2.又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝ ⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,即φ=π4,所以f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π4,f ⎝ ⎛⎭⎪⎫π2=12sin ⎝⎛⎭⎪⎫π+π4=-12×22=-24. 2.设f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),其图象上最高点M 的坐标是(2,2),曲线上的点P 由点M 运动到相邻的最低点N 时,在点Q (6,0)处越过x 轴.(1)求A ,ω,φ的值;(2)函数f (x )的图象能否通过平移变换得到一个奇函数的图象?若能,写出变换方法;若不能,说明理由.解 (1)由题意知A =2,T =(6-2)×4=16,所以ω=2πT =π8.又因为Q (6,0)是零值点,且|φ|<π,所以π8×6+φ=π,所以φ=π4,经验证,符合题意.所以A =2,ω=π8,φ=π4.(2)f (x )的图象经过平移变换能得到一个奇函数的图象.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4,当f (x )的图象向右平移2个单位长度后,所得图象的函数解析式为g (x )=2sin π8x ,是奇函数.确定y =A sin(ωx +φ)+b (A >0,ω>0)中参数的方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:1.(2018·四川绵阳诊断)如图是函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象,则f (3x 0)=( )A.12 B .-12C.32D .-32答案 D解析 ∵f (x )=cos(πx +φ)的图象过点⎝ ⎛⎭⎪⎫0,32, ∴32=cos φ,结合0<φ<π2,可得φ=π6.∴由图象可得cos ⎝⎛⎭⎪⎫πx 0+π6=32,πx 0+π6=2π-π6,解得x 0=53. ∴f (3x 0)=f (5)=cos ⎝⎛⎭⎪⎫5π+π6=-32.2.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π24等于________.答案3解析 观察图象可知T 2=3π8-π8,所以π2ω=π4,ω=2,所以f (x )=A tan(2x +φ).又因为函数图象过点⎝⎛⎭⎪⎫3π8,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×3π8+φ,所以3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ).又因为|φ|<π2,所以φ=π4.又图象过点(0,1),所以A =1.综上知,f (x )=tan ⎝⎛⎭⎪⎫2x +π4,故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫2×π24+π4= 3.题型 三 三角函数图象性质的应用角度1 三角函数模型的应用1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5 B .6 C .8 D .10答案 C解析 由图象可知,y min =2,因为y min =-3+k ,所以-3+k =2,解得k =5,所以这段时间水深的最大值是y max =3+k =3+5=8.角度2 函数零点(方程根)问题2.已知关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0在区间⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,则实数a的取值范围是________.答案 [2,3)解析 2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0化为sin ⎝ ⎛⎭⎪⎫x +π6=a -12,令t =x +π6,由x ∈⎣⎢⎡⎦⎥⎤0,2π3得,t =x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6,画出函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12,当12≤a -12<1,即2≤a <3时,函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12有两个公共点,原方程有两个根.角度3 三角函数图象性质的综合3.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图,则( )A .函数f (x )的对称轴方程为x =4k π+π4(k ∈Z )B.函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤8k π+π4,8k π+5π4(k ∈Z )C.函数f (x )的递增区间为[8k +1,8k +5](k ∈Z )D.f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z )答案 D解析 由题图知,A =2,函数f (x )的最小正周期T =4×(3-1)=8,故ω=2π8=π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ,因为点(1,2)在图象上,所以2sin ⎝ ⎛⎭⎪⎫π4+φ=2,因为|φ|<π2,所以φ=π4,即f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4,由π4x +π4=k π+π2(k ∈Z )得x =4k +1,即函数f (x )的对称轴方程为x =4k +1(k ∈Z ),所以A 项错误;由2k π+π2≤π4x +π4≤2k π+3π2(k ∈Z )得8k +1≤x ≤8k +5,即函数f (x )的单调减区间为[8k +1,8k +5](k ∈Z ),所以B ,C两项错误;由2sin ⎝ ⎛⎭⎪⎫π4x +π4≥1,得sin ⎝ ⎛⎭⎪⎫π4x +π4≥12,所以2k π+π6≤π4x +π4≤2k π+5π6(k ∈Z ),解得8k -13≤x ≤8k +73(k ∈Z ),即不等式f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z ),故选D.(1)三角函数模型在实际应用中体现的两个方面①已知三角函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;②把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.(2)三角函数的零点、不等式问题的求解思路①把函数表达式转化为正弦型函数形式y =A sin(ωx +φ)+B (A >0,ω>0); ②画出一个周期上的函数图象;③利用图象解决有关三角函数的方程、不等式问题.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想解题.1.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A.在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B.在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 C.在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数D.在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 A解析 函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象如图所示,由图象可知函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数.故选A.2.一个大风车的半径为8 m,12 min 旋转一周,它的最低点P 0离地面2 m ,风车翼片的一个端点P 从P 0开始按逆时针方向旋转,则点P 离地面距离h (m)与时间t (min)之间的函数关系式是( )A .h (t )=-8sin π6t +10B.h (t )=-cos π6t +10C.h (t )=-8sin π6t +8D.h (t )=-8cos π6t +10答案 D解析 设h (t )=A cos ωt +B ,因为12 min 旋转一周, 所以2πω=12,所以ω=π6,由于最大值与最小值分别为18,2.所以⎩⎪⎨⎪⎧-A +B =18,A +B =2,解得A =-8,B =10.所以h (t )=-8cos π6t +10.3.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)满足f (0)=f ⎝ ⎛⎭⎪⎫π3,且函数在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,则f (x )的最小正周期为( )A.π2 B .π C.3π2D .2π 答案 B解析 依题意,函数f (x )图象的一条对称轴为x =0+π32=π6,又因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,所以π6-0≤T 4≤π2-π6,所以2π3≤T ≤4π3.根据选项可得,f (x )的最小正周期为π.。

2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)

2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)

14.已知函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图象如图所示.
(1)求函数 f(x)的解析式; (2)将函数 y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再 把所得的函数图象向左平移π6个单位长度,得到函数 y=g(x)的图象,求函数 g(x) 在区间0,π8上的最小值.
________.(结果用区间表示)
(2)已知函数 f(x)=2sin ωx 在区间-3π,π4上的最小值为-2,则 ω 的取值范围是
________.
基础巩固题组
一、选择题
(建议用时:40 分钟)
1. (2016·全国Ⅱ卷)函数 y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin2x-π6 B.y=2sin2x-π3 C.y=2sinx+π6
3sin
ωx 2 cos
ωx 2

2cos2
ω2x-1(ω>0)的最小正周期为
π,当
x∈0,2π时,方程 f(x)=m 恰有两个不同的实数解 x1,x2,则 f(x1+x2)=(
)
A.2
B.1
C.-1
D.-2
13.(2019·广东省际名校联考)将函数 f(x)=1-2 3·cos2x-(sin x-cos x)2 的图象向 左平移π3个单位,得到函数 y=g(x)的图象,若 x∈-2π,π2,则函数 g(x)的单调递 增区间是________.
图象的对称轴方程是________.
考点三 y=Asin(ωx+φ)图象与性质的应用 角度 1 三角函数模型的应用 【例 3-1】 如图,某大风车的半径为 2 米,每 12 秒旋转一周,它的最低点 O 离 地面 1 米,点 O 在地面上的射影为 A.风车圆周上一点 M 从最低点 O 开始,逆时 针方向旋转 40 秒后到达 P 点,则点 P 到地面的距离是________米.

函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用讲义

函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用讲义

函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用讲义课前双击巩固1.y=Asin(ωx+φ)的有关概念振幅周期频率相位初相y=Asin(ωx+φ)(A>0,ω>0), x∈[0,+∞)AT= f=1T=2.用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点,如下表所示:xωx+φy=Asin(ωx+φ)0 A 0 -A 03.函数y=sin x的图像经变换得到y=Asin(ωx+φ)的图像的步骤图3-19-1题组一常识题1.[教材改编]函数y=sin x的图像上所有点的横坐标不变,纵坐标伸长为原来的2倍得到的图像对应的函数解析式是.2.[教材改编]某函数的图像向右平移π2个单位长度后得到的图像对应的函数解析式是y=sin(x+π4),则原函数的解析式是.3.[教材改编] 若函数f (x )=sin ωx (0<ω<2)在区间0, π3上单调递增,在区间π3,π2上单调递减,则ω= .4.[教材改编] 已知简谐运动f (x )=2sin π3x+φ(|φ|<π2)的图像经过点(0,1),则该简谐运动的初相φ为 . 题组二 常错题◆索引:图像平移多少单位长度容易搞错;不能正确理解三角函数图像对称性的特征;三角函数的单调区间把握不准导致出错;确定不了函数解析式中φ的值.5.为得到函数y=cos (2x +π3)的图像,只需将函数y=sin 2x 的图像向 平移 个单位长度.6.设ω>0,若函数f (x )=sin ωx2cos ωx2在区间[-π3,π3]上单调递增,则ω的取值范围是 .7.若f (x )=2sin (ωx+φ)+m 对任意实数t 都有f (π8+t)=f (π8-t),且f (π8)=-3,则实数m= .8.已知函数f (x )=sin (ωx+φ)ω>0,|φ|<π2的部分图像如图3-19-2所示,则φ= .图3-19-2 课堂考点探究探究点一 函数y=Asin (ωx+φ)的图像变换1 (1)将函数y=2sin 2x+π6的图像向右平移14个周期后,所得图像对应的函数为 ( )A.y=2sin2x+π4 B.y=2sin2x+π3C.y=2sin2x-π4 D.y=2sin2x-π3(2)函数y=cos 2x的图像可以由函数y=sin 2x的图像经过平移而得到,这一平移过程可以是( )A.向左平移π2个单位长度B.向右平移π2个单位长度C.向左平移π4个单位长度D.向右平移π4个单位长度[总结反思]由y=sin x的图像变换到y=Asin(ωx+φ)的图像,两种变换中平移的量的区别:先平移再伸缩,平移的量是|φ|个单位长度;而先伸缩再平移,平移的量是|φ|ω(ω>0)个单位长度.特别提醒:平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.式题(1)把函数y=sin x的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图像向右平移π6个单位长度,所得图像的函数解析式为( )A.y=sin(2x-π3) B.y=sin(2x-π6)C.y=sin(x2-π3) D.y=sin(x2-π6)(2)为了得到函数y=sin 3x+cos 3x的图像,可以将函数y=√2cos 3x的图像( )A.向右平移π12个单位长度B.向右平移π4个单位长度个单位长度C.向左平移π12个单位长度D.向左平移π4探究点二函数y=Asin(ωx+φ)的图像与解析式2 (1)已知函数y=Asin(ωx+φ)(A>0,ω>0,-π<φ<0)的部分图像如图3-19-3所示,则φ=.图3-19-3的部分图像如图3-19-4所示,其中A(2,3)(点A (2)已知函数f(x)=Msin(ωx+φ)M>0,|φ|<π2为图像的一个最高点),B-5,0,则函数f(x)=.2图3-19-4[总结反思]利用图像求函数y=Asin(ωx+φ)(A>0,ω>0)的解析式主要从以下三个方面考虑:(1)根据最大值或最小值求出A的值.(2)根据周期求出ω的值.(3)根据函数图像上的某一特殊点求出φ的值.,1式题已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图3-19-5所示,且Aπ2,B(π,-1),则φ值为.图3-19-5探究点三 函数y=Asin (ωx+φ)的图像与性质3 (1)已知函数f (x )=sin (ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,将函数f (x )的图像向左平移π3个单位长度后所得图像过点P (0,1),则函数f (x )=sin (ωx+φ) ( ) A.在区间[-π6,π3]上单调递减 B.在区间[-π6,π3]上单调递增 C.在区间[-π3,π6]上单调递减 D.在区间[-π3,π6]上单调递增(2) 函数y=cos (ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图像如图3-19-6所示,A ,B 分别为最高点与最低点,且|AB|=2√2,则该函数图像的一条对称轴为 ( )图3-19-6A.x=π2B.x=-π2C.x=2D.x=1[总结反思] 求y=Asin (ωx+φ)+B (A>0,ω>0)的解析式的一般步骤. (1)求A ,B.确定函数的最大值M 和最小值m ,则A=M -m 2,B=M+m 2.(2)求ω.确定函数的周期T ,则ω=2πT .(3)求φ.常用方法如下:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.式题 已知函数f (x )=2sin (ωx+φ)ω>0,|φ|<π2的部分图像如图3-19-7所示,若f (0)=√3,且AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =π28-8,B ,C 分别为最高点与最低点. (1)求函数f (x )的单调递增区间;(2)若将f (x )的图像向左平移π6个单位长度,得到函数g (x )的图像,求函数g (x )在区间0,π2上的最大值和最小值.图3-19-7探究点四 三角函数模型的简单应用4 有一个半径为4 m 的水轮(如图3-19-8),水轮的圆心O 距离水面2 m ,已知水轮逆时针转动,且每分钟转动4圈,当水轮上的点P 从水中浮现(即到达图中点P 0)时开始计时. (1)将点P 距离水面的高度h (m )表示为时间t (s )的函数;(2)在水轮转动一圈的过程中,有多长时间点P 距水面的高度超过4 m.图3-19-8[总结反思](1)解三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=Asin(ωx+φ)+k中的待定系数.(2)为函数f(x)所满足的条件,通过数学运算得到相关结论,.式题某城市一年中12个月的月平均气温与月份的关系可近似地用函数y=a+Acosπ6(x-6)(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的月平均气温为℃.课时作业一、填空题1.将函数f(x)=sin 2x的图象向左平移π12个单位,得到函数g(x)=sin(2x+φ)0<φ<π2的图象,则φ等于________.2.将函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为________.3.下列函数中,周期为π,且在[π4,π2]上为减函数的是________.①y=sin(2x+π2) ②y=cos(2x+π2) ③y=sin(x+π2) ④y=cos(x+π2)4.函数y=cos x(x∈R)的图象向左平移π2个单位后,得到函数y=g(x)的图象,则g(x)的解析式应为________.5.已知函数y=cos(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则________.①ω=1,φ=2π3②ω=1,φ=-2π3③ ω=2,φ=2π3④ ω=2,φ=-2π36.要得到函数y =sin(x -π6)的图象可将函数y =sin(x +π6)的图象上的所有点________.7.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.8.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________.9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )=________.10.设y =sin(ωx +φ)(ω>0,φ<(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称;③在[0,π6]上是增函数; ④在[-π6,0]上是增函数.正确结论的编号为________.11.已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 二、解答题12. 已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.13.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2) 将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.。

函数y=Asin(ωx+φ)的图象及应用讲义

函数y=Asin(ωx+φ)的图象及应用讲义

函数y =A sin(ωx +φ)的图象及应用一、知识梳理1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈R振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )一个周期内的简图时,要找五个特征点 如下表所示:x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径注意:1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin )4(π-x 的图象是由y =sin )4(π+x 的图象向右平移π2个单位长度得到的.( ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求函数解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( ) 题组二:教材改编2.为了得到函数y =2sin )32(π-x 的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度3.]函数y =2sin )321(π-x 的振幅、频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π34.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为__________________________.题组三:易错自纠 5.要得到函数y =sin )34(π-x 的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度6.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.三、典型例题题型一:函数y =A sin(ωx +φ)的图象及变换 典例 已知函数y =2sin )32(π+x .(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象; (3)说明y =2sin )32(π+x 的图象可由y =sin x 的图象经过怎样的变换而得到.思维升华:(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.跟踪训练:(1)若把函数y =sin )6(πω-x 的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A .2 B.32 C.23 D.12(2)把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位长度,得到的函数图象的解析式是________.题型二:由图象确定y =A sin(ωx +φ)的解析式典例 (1)函数y =A sin(ωx +φ)的部分图象如图所示,则y =________________.(2)已知函数f (x )=sin(ωx +φ))2,0(πϕω<>的部分图象如图所示,则y =f )6(π+x 取得最小值时x 的集合为________.思维升华:y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口. 跟踪训练 已知函数f (x )=A sin(ωx +φ)+B )2,0,0(πϕω<>>A 的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点)23,3(π对称,则m 的值可能为( )A.π6B.π2C.7π6D.7π12 题型三:三角函数图象性质的应用 命题点1:三角函数模型典例 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin )6(ϕπ+x +k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10 命题点2:函数零点(方程根)问题典例 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在),2(ππ上有两个不同的实数根,则m 的取值范围是____________.引申探究:本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 命题点3:三角函数图象性质的综合 典例 已知函数f (x )=3sin )32(πω+x (ω>0)的图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点)0,3(π-,求当m 取得最小值时,g (x )在]127,6[ππ-上的单调递增区间.思维升华:(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.跟踪训练 (1)已知函数f (x )=sin(ωx +φ))2,0(πϕω≤>的图象上的两个相邻的最高点和最低点的距离为22,且过点)21,2(-,则函数f (x )的解析式为__________.四、反馈练习1.已知曲线C 1:y =cos x ,C 2:y =sin )322(π+x ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8D.5π43.若函数y =sin(ωx -φ))2,0(πϕω<>在区间],2[ππ-上的图象如图所示,则ω,φ的值分别是( )A .ω=2,φ=π3B .ω=2,φ=-2π3C .ω=12,φ=π3D .ω=12,φ=-2π34.函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移的单位长度是( ) A.π2 B.2π3 C.π3D.π45.将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位长度,所得函数图象关于y 轴对称,则a 的最小值是( )A.π6B.π3C.π2D.2π3 6.函数f (x )=sin(2x +φ))2(πϕ<的图象向左平移π6个单位长度后所得函数图象的解析式是奇函数,则函数f (x )在]2,0[π上的最小值为( )A .-32B .-12C.12D.327.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是______________. 8.函数f (x )=2sin(ωx +φ))20,0(πϕω<<>的部分图象如图所示,已知图象经过点A (0,1),B )1,3(-π,则f (x )=________.9.已知函数f (x )=cos )33(π+x ,其中x ∈],6[m π,若f (x )的值域是]23,1[--,则m 的取值范围是________. 10.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 11.已知函数y =A sin(ωx +φ))2,0,0(πϕω<>>A 的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式;(2)求函数f (x )的单调递增区间. 12.将函数f (x )=sin(2x +θ))2(πϕ<的图象向右平移φ(0<φ<π)个单位长度后,得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P )23,0(,则φ的值为________. 13.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________.14.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f )61(的值为________..15.设函数f (x )=sin )6(πω-x +sin )2(πω-x ,其中0<ω<3.已知f )6(π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.。

指数函数、对数函数、幂函数图像及性质讲义

指数函数、对数函数、幂函数图像及性质讲义

精选文档指数函数、对数函数、幂函数的图像与性质理解有理数指数幂的含义,掌握幂的运算;理解指数函数的观点,理解指数函数的单一性,掌握指数函数图象经过的特别点;理解对数的观点及其运算性质,理解对数函数的观点,理解对数函数的单一性,掌握对数函数图象经过的特别点。

认识指目标数函数y=a x与对数函数ylog a x 互为反函数〔a0,且a1〕。

认识幂函数的概11念。

联合函数y=x ,y=x 2,y=x 3,y ,y x 2的图象,认识它们的变化状况。

x要点指数、对数的运算性质;指数函数、对数函数的图像与性质的综合应用;幂函数图像的应用。

难点 指数函数、对数函数的图像与性质的综合应用,幂函数图像的应用。

方法建议第一回首指数、对数的运算性质;指数函数、对数函数的图像与性质等根底知识。

再经过经典例题的解析,帮助学生理解根底知识,加深对知识的认识和记忆。

再通过精题精练,使学生形成能力。

在例题和习题的选择上能够依据学生的实质状况进 行。

讲堂精讲例题 搭配讲堂训练题 课后作业程度及数目A 类 〔4 〕道 〔4 〕道 〔11 〕道B 类 〔3 〕道 〔3 〕道 〔10 〕道C 类 〔0〕道 〔0〕道 〔0〕道理解有理数指数幂的含义,掌握幂的运算;理解指数函数的观点,理解指数函数的单一性,掌握指数函数图象经过的特别点。

理解对数的观点及其运算性质。

理解对数函数的观点, 理解对数函数的单一性,掌握对数函数图象经过的特别点。

认识指数函数 y=a x 与对数函数y log a x 互为反函数〔 a 0,且a 1〕。

认识幂函数的观点。

联合函数 y=x ,y=x 2,y=x 3,1y1,yx 2的图象,认识它们的变化状况。

指数函数、对数函数在高中数学中据有十x分重要的地位,是高考要点考察的对象, 热门是指数函数、 对数函数的图象与性质的综合应用.同时考察分类议论思想和数形联合思想;多以选择、填空题的形式出现,有时会与其余知识联合在知识交汇点处命题。

2019中考数学冲刺讲义:第3讲函数图象的分析与作图(含答案)

2019中考数学冲刺讲义:第3讲函数图象的分析与作图(含答案)

第3讲、函数图象的分析与作图(讲义)1.已知在平面直角坐标系xOy中(如图),抛物线y=-x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,连接AM,用含m的代数式表示∠AMB 的正切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.2.在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,作线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹).(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上.①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴、y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.图13.已知二次函数y=ax2-2ax+c(a<0)的最大值为4,且抛物线过点79()24,,点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式及顶点D的坐标;(2)求|PC-PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2-2a|x|+c的图象只有一个公共点,请直接写出t的取值.4. 如图,抛物线L :1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线ky x=(k >0,x >0)于点P ,且12OA MP ⋅=.(1)求k 的值;(2)当t=1时,求AB 的长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标; (4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.【参考答案】1. (1)抛物线的表达式为y=-x 2+2x+2;点B(1,3);(2)tan ∠AMB=12m -;(3)点Q 的坐标为3)2-,3)2-. 2. (1)作图略;(2)①21122y x =+,曲线L 是抛物线; ②d 1+d 2≥12;P 1(3,5),P 2(-3,5);③k 的取值范围为k <<. 3. (1)二次函数的解析式为y=-x 2+2x+3;顶点D(1,4);(2)|PC-PD|,对应的点P 坐标为(-3,0); (3)32≤t <3,72t =或t ≤-3.4. (1)k 的值为6;(2)直线MP 与L 对称轴之间的距离为32; (3)图象G 最高点的坐标为2()28t t t -+,;(4)t 的取值范围为5≤t ≤8,7≤t ≤8.2019-2020学年数学中考模拟试卷一、选择题1.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B. C. D.2.如图,矩形ABCD,AD=1,CD=2,点P为边CD上的动点(P不与C重合),作点P关于BC的对称点Q,连结AP,BP和BQ,现有两个结论:①若DP≥1,当△APB为等腰三角形时,△APB和△PBQ一定相似;②记经过P,Q,A三点的圆面积为S,则4π≤S<254.下列说法正确的是()A.①对②对B.①对②错C.①错②对D.①错②错3.如图,在四边形中,分别是,,,边上的点,某同学探索出如下结论,其中不正确...的是()A.当是各边中点且时,四边形为菱形B.当是各边中点且时,四边形为矩形C.当不是各边中点时,四边形不可能为菱形D.当不是各边中点时,四边形可以为平行四边形4.某几何体的平面展开图如图所示,则该几何体是()A .三棱锥B .三棱柱C .四棱锥D .四棱柱5.四位同学在研究函数2y ax bx c =++(a ,b ,c 是常数)时,甲发现当x=-1时函数的最小值为-1;乙发现4a-2b+c=0成立;丙发现当x<1时,函数值y 随x 的增大而增大;丁发现当x=5时,y=-4.已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙C .丙D .丁6.若代数式和的值相等,则x 的值为( ) A .x =﹣7B .x =7C .x =﹣5D .x =37.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF 的长为( )A .4B .72C .3D .528.若不等式组无解,则m 的取值范围是( )A.B.C.D.9.如图,在⊙O 中,∠BOD =120°,则∠BCD 的度数是( )A .60°B .80°C .120°D .150°10.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A.1 B.2 C.3 D.411.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()A.300 B.90 C.75 D.8512.下列运算正确的是()A.a3•a4=a12B.a5÷a﹣3=a2C.(3a4)2=6a8D.(﹣a)5•a=﹣a6二、填空题13.如图,在每个小正方形的边长为1的网格中,点,A B均在格点上,12,l l是一条小河平行的两岸. (Ⅰ)AB的距离等于_____;(Ⅱ)现要在小河上修一座垂直于两岸的桥MN(点M在1l上,点N在2l上,桥的宽度忽略),使++最短,请在如图所示的网格中,用无刻度的直尺,画出MN,并简要说明点M,N的位AM MN NB置是如何找到的(不要求证明)_________________________________.14.正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A(2,n),且n>0,当时,的取值范围是___________________.15.如图,l1∥l2,∠1=56°,则∠2的度数为______.16.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.17.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18.关于x的一元二次方程(a-1)x2+x+(a2-1)=0的一个根是0,则a的值是________.三、解答题19.如图,在方格纸中每个小正方形的边长均为l,线段AB的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB为边的四边形ABCD是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB为边的四边形ABMN是轴对称图形,且只有一个角是直角,面积为15.20.尺规作图(只保留作图痕迹,不要求写出作法)如图,已知∠a和线段a、b求作:(1)△ABC,使∠A=∠α,AB=a,AC=b.(2)在(1)的条件下,作AB边上的中线CD.21.如图,直线l 1 在平面直角坐标系中,直线l 1与y 轴交于点A,点B(-3,3)也在直线1上,将点B 先向右平移1个单位长度、再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上。

【解析版】中考数学思维方法讲义:第8讲二次函数图象的应用

【解析版】中考数学思维方法讲义:第8讲二次函数图象的应用

【解析版】中考数学思维方法讲义:第8讲二次函数图象的应用§第8讲二次函数图象的应用(一)【今日目标】1、二次函数图象与系数的关系(二次函数中a,b,c的作用):⑴决定__________。

①当__时,图象开口向上,当x=_________时,函数有最___值________;当x﹥-时,y随x的增大而________;当x﹤-时,y随x的增大而________。

②当_________时,图象开口向下,当x=_________时,函数有最___值________;x﹥-时,y随x的增大而________;当x﹤-时,y随x的增大而________。

③当||越大,图象开口越_____。

(2)和b共同决定________。

①b=0时,对称轴为______;②和b同号时对称轴在y轴___侧;③和b异号时对称轴在y轴___侧。

简记为。

(3)c的大小决定抛物线与_____的交点的位置。

当___时,图象与y轴正半轴相交;当___时,图象与y轴负半轴相交;当___时,图象过原点。

(4)当___时,图象与x轴有两个交点;当_时,图象与x轴仅有一个交点;当___时,图象与x轴没有交点。

2、以二次函数图象为载体,通过对四大要素的理解,结合动点、特殊三角形、特殊四边形、相似,利用勾股定理、相似为框架、以方程为工具解决存在型问题、最值问题、图形形状问题等。

【思想方法】数形结合法、特殊值法、整体思想、构造思想等。

【精彩知识】题型一二次函数的图象与系数的关系【例1】已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是(填番号)●变式练习:如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确的个数是()A. 1B. 2C. 3D. 4题型二二次函数的图象和性质的基本应用【例2】已知,二次函数的解析式y1=-x2+2x+3.(1)求这个二次函数的顶点坐标;(2)求这个二次函数图象与x轴的交点坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?(5)若直线y2=ax+b(a≠0)的图象与该二次图象交于A(,m),B(2,n)两点,结合图象直接写出当x取何值时y1>y2?●变式练习:对于二次函数,有下列说法:①它的图象与轴有两个公共点;②如果当≤1时随的增大而减小,则;③如果将它的图象向左平移3个单位后过原点,则;④如果当时的函数值与时的函数值相等,则当时的函数值为.其中正确的说法是.(把你认为正确说法的序号都填上)【例3】二次函数的图象如图,若一元二次方程有实数根,则m的最大值为()A.-3B.3C.-5D.9●变式练习:如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是(填番号)题型三二次函数图象为载体解决存在型问题、最值问题、图形形状问题等【例4】如图,若抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n),已知一元二次方程x2-4x+3=0的两根是m,n且m<n.(1)求抛物线的解析式;(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?(3)点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.●变式练习:如图,已知二次函数的图象经过A(,),B(0,7)两点.⑴求该抛物线的解析式及对称轴;⑵当为何值时,?⑶在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.【例5】如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线y=ax2+bx+c(a≠0).所得抛物线与轴交于两点(点在点的左ADCBOx y(1)求抛物线的解析式;(2)判断的形状,并说明理由;(3)在线段上是否存在点,使∽?若存在,求出点的坐标;若不存在,说明理由.【例6】如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.【例7】如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=。

二次函数的表达式、图象、性质及计算(讲义及答案)

二次函数的表达式、图象、性质及计算(讲义及答案)
当 x=______时,y 有最_____值,是_______,当 x______时,y 随 x 的增大而减小.
7. 抛物线 y 1 x2 x 开口向_____,对称轴是直线___________,顶点坐标是 2
_____________,当 x=_______时,y 有最_____值,是_______,当 x_______时,y
点,函数值 y 有最______值,是________.
4. 已知抛物线 y=x2+2x-3,该二次函数图象开口______,有最________点,将其表达式
配成顶点式________,对称轴是直线______,顶点坐标为__________,当_______时,
y 随 x 的增大而减小,当 x=_________时,y 有最____值,是_________.
A.-3
B.3
C.±3
D.5
3. 抛物线 y=2(x+m)2+n(m,n 是常数)的顶点坐标是_______;y=ax2+bx+c 的顶点坐标
是_____________(用含 a,b,c 的代数式表示);利用上述公式计算二次函数
y=-2x2+4x+1 的顶点坐标为__________,该二次函数图象开口______,有最_______
10. 抛物线 y=x2+bx+c 的图象向右平移 2 个单位,再向下平移 3 个单位;3,则 b,c 的值为( )
A.b=2,c=3
B.b=2,c=6
C.b=-2,c=-1
D.b=-3,c=2
11. 将抛物线 y=(x-3)2-2 向左平移______个单位后经过点 A(2,2).
12. 如图,将抛物线 y=(x+1)2-7 沿 x 轴平移,若平移后的抛物线经过点 P(-2,2),则平

一次函数应用题(讲义及答案)

一次函数应用题(讲义及答案)

一次函数应用题(讲义)➢课前预习1.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10 km;②出发1.25 h后两人相遇;③出发2 h后甲到达C村庄;④甲每小时比乙多骑行8 km.其中正确的个数是()A.1个B.2个C.3个D.4个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②甲走完全程用了40分钟;③乙用16分钟追上甲;④乙走完全程用了30分钟;⑤乙到达终点时,甲离终点还有300米.其中正确的结论是___________.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y与x之间的函数关系,结合图象解答下列问题:(1)求线段AB所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a的值;(3)出发多长时间,两车相距140千米?3.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有______个,甲机器每小时加工______个零件,乙机器排除故障后每小时加工______个零件;(2)求y与x之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为_____米/分,点M的坐标为__________;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A地出发,经过多长时间在返回途中追上乙?x/分45.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率降低到原来的12;乙运输队在整个运输过程中工作效率保持不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x (天)的函数图象如图所示,结合图象解答下列问题:(1)a=________,b=________.(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50吨物资时x的值.6.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为________千米/时,a=________;(2)求快车的速度和B点坐标;(3)两车出发后几小时相距的路程为200千米?请直接写出答案.【参考答案】➢课前预习1.D➢精讲精练1.①②④2.(1)线段AB所在直线的函数解析式为140280y x=-+;甲乙两地之间的距离为280千米;(2)a的值为210;(3)出发1 h或3 h时,两车相距140千米.3.(1)270,20,40;(2)50(01)2030(136090(36)x xy x xx x<⎧⎪=+<⎨⎪-<⎩≤≤≤);(3)在整个加工过程中,甲加工1.5小时或4.5小时时,甲与乙加工的零件个数相等.4.(1)240,(6,1200);(2)2402640y x=-+;(3)甲从A地出发,经过8分钟在返回途中追上乙;5.(1)5,11;(2)2525y x=+(511)x≤≤;(3)乙运输队比甲运输队多运50吨物资时,x的值为6或9.6.(1)60,360;(2)快车的速度为120km/h,B点的坐标为(4,0);(3)两车出发149h,349h或143h时,相距的路程为200千米.。

正比例函数的图像与性质讲义全

正比例函数的图像与性质讲义全

龙文教育个性化辅导教案讲义任教科目:数学授课题目:正比例函数的图像及性质年级:八年级任课教师:任老师授课对象:武汉龙文个性化教育校区教研组组长签字:教学主任签名:日期:武汉龙文教育学科辅导讲义知识点1.形如___________(k是常数,k≠0)的函数是正比例函数,其中k叫,正比例函数都是常数与自变量的乘积的形式2.正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx.当k>0时,图像位于第象限,从左向右,y随x的增大而,也可以说成函数值随自变量的增大而_________;当k<0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________.3.正比例函数的图像是经过坐标 点和定点__ __两点的一条 。

根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象. 例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.例2:根据下列条件求函数的解析式 ①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.选择题1、如图函数y =-x (x <0)的图象是()2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .y=-5xD .y=x3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能两条直线的位置关系与系数K 之间的关系6.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么( )(A )21k k (B )21k k (C )21k k (D )K1和K2不确定7.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么(K1与K2有什么数量关系 ) 8.若正比例函数x k y 1 和x k y 2 的图像关于坐标轴对称,那么( ) (A )21k k (B )21k k (C )21k k (D )K1和K2不确定平移规律8、.若正比例函数Y=2X 向上平移2个单位,那么平移后的解析式( ) 9、若正比例函数Y=2X 向下平移2个单位,那么平移后的解析式( ) 10、若正比例函数Y=2X 向左平移2个单位,那么平移后的解析式( ) 11、若正比例函数Y=2X 向右平移2个单位,那么平移后的解析式( )一 根据正比例函数解析式的特点求值1、若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则的值为?2、果y=x-2a+1是正比例函数,则a 的值为?3、若y =(n-2)x ︳n ︳-1 ,是正比例函数,则n 的值为?4、已知y=(k+1)x+k-5是正比例函数求k 的值.5、若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )6、已知函数y=(2m+1)x+m -3 若函数图象经过原点,求m 的值?二 求正比例函数的解析式1、正比例函数图象过(-2,3),则这个正比例函数的解析式?2、已知y与x成正比例,且x=2时y=-6,则y=9时x的值是多少?.3.一个函数的图像是经过原点的直线,并且这条直线过第四象限及点(2,-3a)与点(a,-6),求这个函数的解析式.4.已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值.三正比例函数图象的性质1、正比例函数y=(m-1)x的图象经过一、三象限,则m的取值范围是2、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,x2)和B(y1,y2),当x1<x2时,y1>y2,则k的取值范围是3、点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1与y2的大小关系是?4、已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()5、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第二、四象限.(1)求m的取值范围(2)当x1>x2时,比较y1与y2的大小,并说明理由.4已知y-4与x成正比例,且当x = 6时,y =-4.(1)求y与x的函数关系式;(2)画出(1)中函数的图象;(3)设点P在y轴上,(1)中函数的图象与x轴、y轴分别交于A、B两点,△ABP的面积等于9,求点P的坐标探究题 1、在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).2、如图,三个正比例函数的图像分别对应的解析式是 ①y=ax ② y=bx ③ y=cx,则a 、b 、c 的大小关系是( )A.a>b>cB.c>b>aC.b>a>cD.b>c>a1.2.已知y = y 1+ y 2,y 1与x 2成正比例,y 2与x -2成正比例,当x =1时,y =0,当x =-3时,y =4,求x =3时,y 的值.3.有一长方形AOBC 纸片放在如图3-3所示的坐标系中,且长方形的两边的比为OA :AC =2:1.(1)求直线OC 的解析式;(2)求出x =-5时,函数y 的值; (3)求出y =-5时,自变量x 的值; (4)画这个函数的图象;(5)根据图象回答,当x 从2减小到-3时,y 的值是如何变化的?①②③武汉龙文教育学科辅导教案附:跟踪回访表家长(学生)反馈意见:学生阶段性情况分析:自我总结及调整措施:主任签字:龙文教育教务处。

幂函数及函数应用(讲义及答案)

幂函数及函数应用(讲义及答案)

5
12.
函数
f
(x)
x
2
2x
3,x

0
的零点个数为(
2 ln x,x 0
A.2
B.3
C.4
) D.5
13. 已知0 a 1,则方程a|x| | log xa | 的实数根的个数为(

A.1
B.2
C.3
D.4
14. 已知函数 f (x) 的图象是连续不断的,且有如下的 x, f (x) 的 对应值表:
1 当 m (m,n∈N*,且互质)时:
n 若 m,n 均为奇数,则函数 y x 是奇函数,其图象关于原点 对称; 若 m 为偶数,n 为奇数,则函数 y x 是偶函数,其图象关 于 y 轴对称; 若 m 为奇数,n 为偶数,则函数 y x 是非奇非偶函数,只 在第一象限内有图象.
2 当 m (m,n∈N*,且互质)时:
10. 比较下列各数的大小:
5
5
(1) 3 2
3.1 2 ;
6
(2) (0.3)11
5
(3) (0.88)3
(0.88)3 ;
(4)(
2
)
2 3
3
6
0.711 ;
( 1) 3 . 4
11. 函数 f (x)=2x+3x 的零点所在的一个区间是( A.(-2,-1) B.(-1,0) C.(0,1)
) D.(1,2)
线,并且有
,那么,函数 y f (x) 在区间
内有零点,即
,使得
,这个
c 也就是方程 f (x) 0 的根.
三、二分法 1. 定义:对于在区间[a,b]上连续不断,且 f (a) f (b) 0 的函数

一次函数方案类应用题(讲义及答案).

一次函数方案类应用题(讲义及答案).

一次函数方案类应用题(讲义)知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.精讲精练1.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y甲(元),y乙(元)与印刷数量x(份)之间的关系式;(2)在同一直角坐标系内画出它们的图象;(3)根据图象回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②该公司拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?2.小明用的练习本可在甲、乙两个商店购买,已知两个商店的标价都是每本1元.但甲的优惠条件是:购买10本以上,从第11本开始按标价的六折卖;乙商店的优惠条件是:从第1本开始就按标价的八折卖.设小明在甲商店购买x本练习本所需要的费用为y1元,在乙商店购买x本练习本所需要的费用为y2元.(1)请分别写出y1,y2关于x的函数关系式;(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个商店购买更省钱.3.甲、乙两个厂家生产的办公桌和办公椅的质量、价格都相同,每张办公桌800元,每把办公椅80元,甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的8折优惠.现学校要为新校区购买10张办公桌和若干把办公椅.若学校购买x把办公椅(x≥30),到甲厂家购买桌椅所需费用为y1元,到乙厂家购买桌椅所需费用为y2元.(1)请分别写出y1,y2关于x的函数关系式;(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个厂家购买更合算.4.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.⎩【参考答案】1.(1)y 甲=x +1500,y 乙=2.5x ;(2)图略;(3)①印制800份宣传材料时,选择乙印刷厂比较合算;②选择甲印刷厂印刷宣传材料能多一些.2.(1)y =⎧x (0<x ≤10);y =0.8x (x >0);1⎨0.6x +4(x >10)2(2)图略.当0<x <20时,选择乙商店购买更省钱;当x =20时,选择甲、乙两商店购买一样省钱;当x >20时,选择甲商店购买更省钱.3.(1)y 1=80x +5600(x ≥30);y 2=64x +6400(x ≥30)(2)图略.当30≤x <50时,选甲厂更合算;当x =50时,甲乙两厂费用相同;当x >50时,选乙厂更合算.4.(1)银卡:y =10x +150;普通卡:y =20x ;(2)A (0,150),B (15,300),C (45,600);(3)当0<x <15时,选普通票更合算.当x =15时,选普通票和银卡都一样,比金卡合算;当15<x <45时,选银卡更合算;当x =45时,选银卡和金卡都一样,比普通卡合算;当x >45时,选金卡更合算.。

三角函数的图象及性质应用(讲义)

三角函数的图象及性质应用(讲义)

三角函数的图象及性质应用(讲义)➢知识点睛一、三角函数的图象及性质1.定义域:R2. 值域:[-A ,A ]3. 周期性:周期:2T π=ω周期T 的整数倍也是函数的一个周期 4. 奇偶性:当πk k ϕ=∈Z ()时,为奇函数;当ππ2k k ϕ=+∈Z ()时,为偶函数. 5. 单调性:单调增区间可由ππ2π2π22k x k k ωϕ-++∈Z ≤≤()解得;单调减区间可由π32π2ππ22k x k k ωϕ+++∈Z ≤≤()解得.6. 对称性:对称轴:可由方程ππ2x k k ωϕ+=+∈Z ()解出,相邻两对称轴间的距离为2T . 对称中心:对称中心的横坐标可由πx k k ωϕ+=∈Z ()解得,纵坐标为0,相邻两对称中心间的距离也为2T.➢ 精讲精练1. sin 2cos3tan 4的值( )A .小于0B .大于0C .等于0D .不存在2.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内,α的取值范围是()A.π3π24⎛⎫⎪⎝⎭,∪5ππ4⎛⎫⎪⎝⎭,B.ππ42⎛⎫⎪⎝⎭,∪5ππ4⎛⎫⎪⎝⎭,C.π3π24⎛⎫⎪⎝⎭,∪5π3π42⎛⎫⎪⎝⎭,D.ππ42⎛⎫⎪⎝⎭,∪3ππ4⎛⎫⎪⎝⎭,3.求下列函数的定义域:(1)tan2tan=xyx________________;(2)y;(3)y=lg(tan x-3)+3cos2+x________________;(4)y=.4.求下列函数的值域:(1)πππ2cos(2)()323y x x=+∈-,,________________;(2)2ππ3cos 4sin 4[]33y x x x =+-∈-,,______________;(3)22tan tan 1tan tan 1x x y x x -+=++________________;(4)sin 2cos 2x y x -=-________________.5. 填空:(1)函数y =|tan x |的单调递增区间是____________;(2)函数πsin(2)3y x =-+的递减区间是___________;(3)函数12πlog cos()34x y =+的递减区间是_____________.6.设函数ππ())042f x x ωϕωϕ=++><(,)的最小正周期为π,且)()(x f x f =-,则( )A .)(x f 在π02⎛⎫ ⎪⎝⎭,单调递减B .)(x f 在π3π44⎛⎫⎪⎝⎭,单调递减C .)(x f 在π02⎛⎫ ⎪⎝⎭,单调递增 D .)(x f 在π3π44⎛⎫ ⎪⎝⎭,单调递增7. 如果函数y =3cos(2x +φ)的图象关于点4π03⎛⎫⎪⎝⎭,中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π28. 已知函数||sin 1()||1x x f x x x -+=∈+R ()的最大值为M ,最小值为m ,则M +m =_______.9. 已知πππ()sin()0()()363f x x f f ωω=+>=(),,且)(x f 在区间ππ()63,上有最小值,无最大值,则ω=__________.10. 设函数()sin()f x x ωϕ=+,00A ω>>,,若)(x f 在区间ππ[]62,上具有单调性,且π2ππ()()()236f f f ==-,则)(x f 的最小正周期为________.11. 函数y =sin 2x +2cos x 的定义域为2π[]3α-,,值域为1[2]4-,,则α的取值范围是________.12. 已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .1524⎡⎤⎢⎥⎣⎦,B .1324⎡⎤⎢⎥⎣⎦,C .102⎛⎤ ⎥⎝⎦,D .(]02,13. 已知函数f (x )=sin(ωx -3π4),0ω>,5π9π()()088f f +=,且 f (x )在区间(5π8,9π8)上单调递减,则ω的值为( ) A .2 B .67C .2或67D .8601277k k +=,,(…)14. 设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a ,试确定满足1()2f a =的a 的值,并对此时的a 值求y 的最大值.【参考答案】1. A2. B3. (1){|}4k x x k Z π≠∈, (2)[22]3x k k k Z π∈+ππ+π ∈,,(3)]32x k k k Z ππ∈+π+π ∈(,, (4)522][2266x k k k k k Z ππ∈π+π+ππ+π∈(,,),4. (1)22]y ∈(-, (2)131[]43y ∈--, (3)1[3]3y ∈,(4)44[33y ∈, 5. (1)2k k k Z ππ+π∈(,), (2)51212k k k Z ππ-+π+π∈(,), (3)936644k k k Z ππ-+π-+π∈(,), 6. A 7. A 8. 29. 14310. π11. 2[0]3π,12. A 13. A 14. a =-1,y =5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图象应用(讲义)➢ 精讲精练1. 王阿姨傍晚散步,往往先从家出发,行进到广场后,会在广场上停留一段时间,与老朋友们聊聊天,然后再返回家中;如图是某天王阿姨散步时步行的路程s (单位:m )与时间t (单位:min )的函数图象,其中曲线段AB 是如图以B 为顶点的抛物线一部分.下列说法中:①点B 的实际意义为王阿姨步行20分钟走了1 200米,正好到达广场;②如果当天王阿姨7:20出发,王阿姨能在8:15之前赶回家看电视剧;③王阿姨在广场上停留了5分钟;④25 min~50 min ,王阿姨步行的路程为800 m ;⑤线段CD 的函数解析式为s =32t +400(25≤t ≤50);⑥曲线段AB 的函数解析式为 s =-3(t -20)2+1 200(5≤t ≤20);⑦5 min~20 min ,王阿姨步行速度由慢到快.正确的有( )个. A .4B .5C .6D .7第1题图 第2题图2. 一条公路旁依次有A ,B ,C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离s (km )与骑行时间t (h )之间的函数关系如图所示,下列结论:①A ,B 两村相距10 km ;②出发1.25 h 后甲追上乙;③2小时时,甲到达C 村庄;④甲每小时比乙多骑行 8 km ;⑤乙出发2.5 h 后到达C 村庄;⑥甲追上乙后,乙又骑行了15 min 或65 min 时两人相距2 km .其中正确的个数是( ) A .3个B .4个C .5个D .6个5s /m t /minO DCB A 20255052512002000s /km t /h108642 2.521.25O3. 如图1,在等腰△ABC 中,AB =AC ,点P ,Q 从点B 同时出发,点P 以3cm/s 的速度沿BC 方向运动到点C 停止,点Q 以1 cm/s 的速度沿BA -AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),y 与x 之间的函数关系图象如图2所示,则BC 长为( ) A .4 cmB .8 cmC .83cmD .43cm4. 如图1,已知平行四边形ABCD 中,AB =BC .点M 从点D出发,沿D →C →A 以1 cm/s 的速度匀速运动到点A .图2是点M 运动时,△MAB 的面积y (cm 2)随时间x (s )变化的关系图象,则边AB 的长为( )A .136B .13C .52D .2135. 如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是____________.Q PCBA图1图28443yxOD CBAM图1O y xaa +13a 图2PCBA图1图24Oxy M56. 如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上最低点,则a +b 的值为( ) A .73B .234C .1433D .22337. 如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 作FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .2548. 如图,菱形ABCD 的边长是4 cm ,∠B =60°,动点P 以1 cm/s的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以 2 cm/s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点P ,Q 同时出发,运动了t s ,记△BPQ 的面积为S cm 2,则下面图象中能表示S 与t 之间的函数关系的是( )E PDCBA图1H yxOab 6图2ABCDEF图1Oyx图25252QABCDPA .B .C .D .9. 如图,矩形ABCD 中,AB =8 cm ,BC =6 cm ,点P 从点A 出发,以1 cm/s 的速度沿A →D →C 方向匀速运动,同时点Q 从点A 出发,以2 cm/s 的速度沿A →B →C 方向匀速运动,当一个点到达点C 时,另一个点也随之停止.设运动时间为t (s ),△APQ 的面积为S (cm 2),下列能大致反映S 与t 之间函数关系的图象是( )ABCD832342S /cm 2t /sOt /sS /cm 2832342O t /sS /cm 22342Ot /sS /cm 22342O 242116764S /cm 2t /sO242116764S /cm 2t /sO242116764S /cm 2t /sO242116764S /cm 2t /sOAB CD P Q10. 如图,在等腰直角三角形ABC 中,∠ACB =90°,AB =8 cm ,CH 是AB 边上的高,正方形DEFG 的边DE 在高CH 上,F ,G 两点分别在AC ,AH 上.将正方形DEFG 以每秒1 cm 的速度沿射线DB 方向匀速运动,当点G 与点B 重合时停止运动.设运动时间为t s ,正方形DEFG 与△BHC 重叠部分的面积为S cm 2,则能反映S 与t 的函数关系的图象是( )A .B .C .D .11. 如图,边长为2的等边△ABC 和边长为1的等边△A′B′C′,它们的边B′C′,BC 位于同一条直线l 上.开始时,点C′与B 重合,△ABC 固定不动,然后把△A′B′C′自左向右沿直线l 平移,移出△ABC 外(点B′与C 重合)停止,设△A′B′C′平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .42S Ot624426tOS 24426tOS 24426tOS 2434321O xy 34y xO12334321Oxy 32321Oxy FE (D )C BA H GC B AC′(C′)A′A′B′B′l12. 如图,△ABC 中,AB =AC =2,∠B =30°,△ABC 绕点A 逆时针旋转α(0<α<120°)得到△AB′C′,B′C′与BC ,AC 分别交于点D ,E .设CD +DE =x ,△AEC′的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .13. 如图,点P 是以AB 为直径的半圆上的动点,CA ⊥AB ,PD ⊥AC 于点D , 连接AP ,设AP =x ,P A -PD =y ,则下 列函数图象能反映y 与x 之间关系的 是( )A .B .C .D .B′C′ABCDE233y xO233y xO233y xO233y xOxyO xO yOxyxOyPO A BC D14. 如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E在BD 上由点B 向点D 运动(点E 不与点B 重合),连接AE ,将线段AE 绕点A 逆时针旋转90°得到线段AF ,连接BF 交AO 于点G .设BE 的长为x ,OG 的长为y ,下列图象中大致反映y 与x 之间的函数关系的是( )A .B .C .D .15. 如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能..表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③yxO O xyOxyyxOx/s2Oy ①2Oy x/s②2Oy x/s③2Oy x/s ④DCBA OEF GBPO A16. 已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( )A .B .C .D .O yxAAAA【参考答案】1.C2.D3.D4.A5.126.C7.B8.D9.A10.B11.B12.B13.C14.A15.D16.A。

相关文档
最新文档