2020-2021学年九年级上学期期末数学提高训练题 (60)(含答案解析)

合集下载

2020-2021学年重庆八中九年级上学期期末数学试卷(含答案解析)

2020-2021学年重庆八中九年级上学期期末数学试卷(含答案解析)

2020-2021学年重庆八中九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列四个数中,最小的是()A. −2B. 0C. |−1|D. −(−2)2.下列计算中正确的是()A. a5−a2=a3B. |a+b|=|a|+|b|C. (−3a2)⋅2a3=−6a6D. a2m=(−a m)2(其中m为正整数)3.如图是由四个小正方体叠成的一个几何体,它的俯视图是()A.B.C.D.4.在平面直角坐标系中,点A′(2,−2)可以由点A(−2,3)通过两次平移得到,则正确的是()A. 先向左平移4个单位长度,再向上平移5个单位长度B. 先向右平移4个单位长度,再向上平移5个单位长度C. 先向左平移4个单位长度,再向下平移5个单位长度D. 先向右平移4个单位长度,再向下平移5个单位长度5.下列调查中,适合用普查的是()A. 了解我省初中学生的家庭作业时间B. 了解“嫦娥三号”卫星零部件的状况C. 华为公司一批某型号手机电池的使用寿命D. 了解某市居民对废电池的处理情况6.下列说法正确的是()A. 分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE//BC,则△ADE是△ABC放大后的图形B. 两位似图形的面积之比等于位似比C. 位似多边形中对应对角线之比等于位似比D. 位似图形的周长之比等于位似比的平方7.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A. 73B. 81C. 91D. 1098.如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A. 70°B. 90°C. 40°D. 60°9.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. 32米B. 35米C. 36米D. 40米10.若关于x的不等式组{x−m<09−2x≤1的整数解共4个,则m的取值范围是()A. 7<m<8B. 7<m≤8C. 7≤m<8D. 7≤m≤811.在Rt△ABC中,∠C=90°,AC=12,BC=16,则点C到AB的距离为()A. B. C. D.12.如图,长方形纸片的宽为1,沿直线BC折叠,得到重合部分△ABC,∠BAC=30°,则△ABC的面积为()A. 1B. 2C. √3D. √33二、填空题(本大题共6小题,共24.0分)13.若a+4a+1表示一个整数,则整数a可以取.14.2016年,扬州泰州机场升级为国际机场,全年旅客吞吐量143.7万人次.将143.7万用科学记数法表示为______ .15.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=−x2+bx+c经过点A、B.点P在抛物线上,连接PA,PB,则当△PAB的面积为1时,点P的坐标是______.16.已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x轴的交点坐标是______.17.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点P(x0,y0)到直线Ax+By+C=0的距离(d)公式是:d=|Ax0+By0+C|√A2+B2如:求:点P(1,1)到直线2x+6y−9=0的距离.解:由点到直线的距离公式,得d=|2×1+6×1−9|√22+62=1√40=√1020根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线l1:2x+3y=8和l2:2x+3y+18=0间的距离是______.18.来自武汉高校的若干个社团参加了“敢为人先,追求卓越”的城市精神的研讨会,参加研讨会的每两个社团之间都签订了一份合作协议,所有社团共签订了45份协议,共有个社团参加研讨会。

2020-2021学年北京市东城区九年级(上)期末数学试卷(含解析)

2020-2021学年北京市东城区九年级(上)期末数学试卷(含解析)

2020-2021学年北京市东城区九年级第一学期期末数学试卷一、选择题(共8小题).1.下列图形中,既是中心对称图形又是轴对称图形的是()A.直角三角形B.圆C.等边三角形D.四边形2.在平面直角坐标系xOy中,下列函数的图象上存在点P(m,n)(m>0,n>0)的是()A.y=B.y=﹣x﹣1C.y=﹣x2﹣1D.y=﹣3x3.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1B.﹣1C.﹣D.﹣34.若菱形的面积为定值,则它的一条对角线的长与另一条对角线的长满足的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.二次函数关系5.在平面直角坐标系xOy中,△ABC与△A'B'C'关于原点O成中心对称的是()A.B.C.D.6.不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是,则n的值是()A.250B.10C.5D.17.如图,在圆形花圃中有两条笔直的小径,两端都在花圃边界上,分别记为AC,BD,设交点为P,点C,D之间有一座假山,为了测量C,D之间的距离,小明已经测量了线段AP和PD的长度,只需再测量一条线段的长度,就可以计算C,D之间的距离.小明应该测量的是()A.线段BP B.线段CP C.线段AB D.线段AD8.如图所示,在矩形纸片上剪下一个扇形和一个圆形,使之恰好能围成一个圆锥模型.若扇形的半径为R,圆的半径为r,则R与r满足的数量关系是()A.R=r B.R=2r C.R=3r D.R=4r二、填空题(共8小题).9.写出一个二次函数,使其满足:①图象开口向下;②当x>0时,y随着x的增大而减小,这个二次函数的解析式可以是.10.如图,点A在⊙O上,弦BC垂直平分OA,垂足为D.若OA=4,则BC的长为.11.A盒中有2个黄球、1个白球,B盒中有1个黄球、1个白球,这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,取出的2个球都是白球的概率是.12.2017年生产1吨某种商品的成本是3000元,由于原料价格上涨,两年后,2019年生产1吨该商品的成本是5000元,求该种商品成本的年平均增长率.设年平均增长率为x,则所列的方程应为(不增加其它未知数).13.在平面直角坐标系xOy中,将抛物线y=x2沿着y轴平移2个单位长度,所得抛物线的解析式为.14.如图,△ABC是等边三角形,若将AC绕点A逆时针旋转角α后得到AC',连接BC'和CC',则∠BC'C的度数为.15.已知抛物线y=x2﹣2x+c与直线y=m相交于A,B两点,若点A的横坐标x A=﹣1,则点B的横坐标x B的值为.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为.三、解答题(共52分,第17-21题,每小题5分,第22题6分,第23-25题每小题5分)17.已知:如图,线段AB.求作:以AB为斜边的直角△ABC,使得一个内角等于30°.作法:①作线段AB的垂直平分线交AB于点O;②以点O为圆心,OA长为半径画圆;③以点B为圆心,OB长为半径画弧,与⊙O相交,记其中一个交点为C;④分别连接AC,BC.△ABC就是所求作的直角三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC,∵AB是⊙O的直径,∴∠ACB=°()(填推理的依据).∴△ABC是以AB为斜边的直角三角形.∵OC=OB=BC,∴△OBC是等边三角形.∴∠COB=60°.∴∠A=°.18.在平面直角坐标系xOy中,二次函数的图象与y轴交于点A(0,﹣1),且过点B(1,4),C(﹣2,1).(1)求二次函数的解析式;(2)当﹣1≤x≤0时,求y的取值范围.19.如图,AM平分∠BAD,作BF∥AD交AM于点F,点C在BF的延长线上,CF=BF,DC的延长线交AM于点E.(1)求证:AB=BF;(2)若AB=1,AD=4,求S△EFC:S△EAD的值.20.关于x的一元二次方程x2+mx+n=0.(1)若方程有两个相等的实数根,用含m的代数式表示n;(2)若方程有两个不相等的实数根,且m=﹣4.①求n的取值范围;②写出一个满足条件的n的值,并求此时方程的根.21.在平面直角坐标系xOy中,已知双曲线y=过点A(1,1),与直线y=4x交于B,C 两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=交于点D(t,y1),与直线y=4x交于点E(t,y2),当y1<y2时,写出t的取值范围.22.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,以点D为圆心,DC长为半径画⊙D.(1)补全图形,判断直线AB与⊙D的位置关系,并证明;(2)若BD=5,AC=2DC,求⊙D的半径.23.在平面直角坐标系xOy中,已知抛物线y=x2﹣2bx+1.(1)若此抛物线经过点(﹣2,﹣2),求b的值;(2)求抛物线的顶点坐标(用含b的式子表示);(3)若抛物线上存在两点A(m,m)和B(n,n),且|m|>2,|n|<2,求b的取值范围.24.在△ABC中,AB=2,CD⊥AB于点D,CD=.(1)如图1,当点D是线段AB的中点时,①AC的长为;②延长AC至点E,使得CE=AC,此时CE与CB的数量关系是,∠BCE与∠A的数量关系是;(2)如图2,当点D不是线段AB的中点时,画∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠A,CE=CB,连接AE.①按要求补全图形;②求AE的长.25.在平面直角坐标系xOy中,⊙O的半径为1.给出如下定义:记线段AB的中点为M,当点M不在⊙O上时,平移线段AB,使点M 落在⊙O上,得到线段A'B'(A',B'分别为点A,B的对应点)线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)已知点A的坐标为(﹣1,0),点B在x轴上.①若点B与原点O重合,则线段AB到⊙O的“平移距离”为;②若线段AB到⊙O的“平移距离”为2,则点B的坐标为;(2)若点A,B都在直线y=x+4上,且AB=2,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(3,4),且AB=2,记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.参考答案一、选择题(共8小题).1.下列图形中,既是中心对称图形又是轴对称图形的是()A.直角三角形B.圆C.等边三角形D.四边形解:A、直角三角形不一定是轴对称图形,一定不是中心对称图形,故本选项不合题意;B、圆既是轴对称图形,又是中心对称图形,故本选项符合题意;C、等边三角形是轴对称图形,不是中心对称图形,故本选项不合题意;D、四边形不一定是轴对称图形,也不一定是中心对称图形,故本选项不合题意.故选:B.2.在平面直角坐标系xOy中,下列函数的图象上存在点P(m,n)(m>0,n>0)的是()A.y=B.y=﹣x﹣1C.y=﹣x2﹣1D.y=﹣3x解:由题意,图象经过第一、三象限的函数是满足条件的,A、函数y=的图象在一、三象限,满足条件;B、函数y=﹣x﹣1的图象经过二、三、四象限,不经过第一象限,不满足条件;C、函数y=﹣x2﹣1的图象经过三、四象限,不经过第一象限,不满足条件;D、函数y=﹣3x的图象经过二、四象限,不经过第一象限,不满足条件;故选:A.3.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1B.﹣1C.﹣D.﹣3解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故选:C.4.若菱形的面积为定值,则它的一条对角线的长与另一条对角线的长满足的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.二次函数关系解:设菱形的面积为S,两条对角线的长分别为x、y,则有,xy=S,∴y=,而菱形的面积为定值,即2S为定值,是常数不变,所以y是x的反比例函数,故选:B.5.在平面直角坐标系xOy中,△ABC与△A'B'C'关于原点O成中心对称的是()A.B.C.D.解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(﹣,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;故选:D.6.不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是,则n的值是()A.250B.10C.5D.1解:由题意得,=,解得n=10,故选:B.7.如图,在圆形花圃中有两条笔直的小径,两端都在花圃边界上,分别记为AC,BD,设交点为P,点C,D之间有一座假山,为了测量C,D之间的距离,小明已经测量了线段AP和PD的长度,只需再测量一条线段的长度,就可以计算C,D之间的距离.小明应该测量的是()A.线段BP B.线段CP C.线段AB D.线段AD解:如图,连接AB.∵∠DBP=∠ABP,∠DPC=∠APB,∴△APB∽△DPC,∴AP:DP=AB:DC.∴只需再测量AB线段的长度,就可以计算C,D之间的距离.故选:C.8.如图所示,在矩形纸片上剪下一个扇形和一个圆形,使之恰好能围成一个圆锥模型.若扇形的半径为R,圆的半径为r,则R与r满足的数量关系是()A.R=r B.R=2r C.R=3r D.R=4r解:扇形的弧长是:=,圆的半径为r,则底面圆的周长是2πr,圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2πr,即:R=4r,R与r之间的关系是R=4r.故选:D.二、填空题(本题共24分,每小题3分)9.写出一个二次函数,使其满足:①图象开口向下;②当x>0时,y随着x的增大而减小,这个二次函数的解析式可以是y=﹣x2﹣2x﹣1.解:二次函数y=ax2+bx+c,①开口向下,∴a<0;②当x>0时,y随着x的增大而减小,﹣≤0,即b<0;∴只要满足以上两个条件就行,如a=﹣1,b=﹣2,c=﹣1时,二次函数的解析式是y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.10.如图,点A在⊙O上,弦BC垂直平分OA,垂足为D.若OA=4,则BC的长为4.解:连接OC,∵BC⊥OA,∴∠ODC=90°,BD=CD,∵OD=AD,∴OD=OA==2,∴CD===2,∴BC=2CD=4,故答案为4.11.A盒中有2个黄球、1个白球,B盒中有1个黄球、1个白球,这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,取出的2个球都是白球的概率是.解:根据题意画图如下:共有6种等可能的结果数,其中取出的2个球都是白球的有1种,则取出的2个球都是白球的概率是.故答案为:.12.2017年生产1吨某种商品的成本是3000元,由于原料价格上涨,两年后,2019年生产1吨该商品的成本是5000元,求该种商品成本的年平均增长率.设年平均增长率为x,则所列的方程应为3000(1+x)2=5000(不增加其它未知数).解:设这种商品的年平均增长率为x,3000(1+x)2=5000.故答案为:3000(1+x)2=5000.13.在平面直角坐标系xOy中,将抛物线y=x2沿着y轴平移2个单位长度,所得抛物线的解析式为y=x2+2或y=x2﹣2.解:将抛物线y=x2沿着y轴正方向平移2个单位长度,所得抛物线的解析式为y=x2+2;将抛物线y=x2沿着y轴负方向平移2个单位长度,所得抛物线的解析式为y=x2﹣2;故答案是:y=x2+2或y=x2﹣2.14.如图,△ABC是等边三角形,若将AC绕点A逆时针旋转角α后得到AC',连接BC'和CC',则∠BC'C的度数为30°.解:∵将AC绕点A逆时针旋转角α后得到AC',∴AC=AC',∠CAC'=α,∴∠ACC'=∠AC'C=,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴AB=AC',∴∠AC'B==60°﹣,∴∠BC'C=∠AC'C﹣∠AC'B==30°.故答案为:30°.15.已知抛物线y=x2﹣2x+c与直线y=m相交于A,B两点,若点A的横坐标x A=﹣1,则点B的横坐标x B的值为3.解:把x A=﹣1代入y=x2﹣2x+c得,y=1+2+c=3+c,∴A(﹣1,3+c),∵抛物线y=x2﹣2x+c与直线y=m相交于A,B两点,∴B的纵坐标为3+c,把y=3+c代入y=x2﹣2x+c得,3+c=x2﹣2x+c,解得x=﹣1或x=3,∴点B的横坐标x B的值为3,故答案为3.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三、解答题(本题共52分,第17-21题,每小题5分,第22题6分,第23-25题每小题5分)解答应写出文字说明、演算步骤或证明过程17.已知:如图,线段AB.求作:以AB为斜边的直角△ABC,使得一个内角等于30°.作法:①作线段AB的垂直平分线交AB于点O;②以点O为圆心,OA长为半径画圆;③以点B为圆心,OB长为半径画弧,与⊙O相交,记其中一个交点为C;④分别连接AC,BC.△ABC就是所求作的直角三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角)(填推理的依据).∴△ABC是以AB为斜边的直角三角形.∵OC=OB=BC,∴△OBC是等边三角形.∴∠COB=60°.∴∠A=30°.解:(1)如图,△ABC即为所求作.(2)连接OC,∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角)(填推理的依据).∴△ABC是以AB为斜边的直角三角形.∵OC=OB=BC,∴△OBC是等边三角形.∴∠COB=60°.∴∠A=30°.故答案为:90,直径所对的圆周角是直角,30.18.在平面直角坐标系xOy中,二次函数的图象与y轴交于点A(0,﹣1),且过点B(1,4),C(﹣2,1).(1)求二次函数的解析式;(2)当﹣1≤x≤0时,求y的取值范围.解:(1)设二次函数的解析式为y=ax2+bx+c,把A(0,﹣1),B(1,4),C(﹣2,1)代入得,解得,∴二次函数解析式为y=2x2+3x﹣1;(2)∵y=2x2+3x﹣1=2(x+)2﹣,∴当x=﹣时,y有最小值为﹣,∵x=﹣1时,y=2x2+3x﹣1=﹣2;x=0时,y=﹣1,∴当﹣1≤x≤0时,y的取值范围为﹣≤y≤﹣1.19.如图,AM平分∠BAD,作BF∥AD交AM于点F,点C在BF的延长线上,CF=BF,DC的延长线交AM于点E.(1)求证:AB=BF;(2)若AB=1,AD=4,求S△EFC:S△EAD的值.【解答】证明:(1)∵AM平分∠BAD,∴∠BAM=∠DAM,∵BF∥AD,∴∠BFA=∠DAM,∴∠BAM=∠BFA,∴AB=BF;(2)∵AB=1,∴AB=BF=CF=1,∵BF∥AD,∴△CEF∽△DEA,∴=()2=.20.关于x的一元二次方程x2+mx+n=0.(1)若方程有两个相等的实数根,用含m的代数式表示n;(2)若方程有两个不相等的实数根,且m=﹣4.①求n的取值范围;②写出一个满足条件的n的值,并求此时方程的根.解:(1)∵关于x的一元二次方程x2+mx+n=0有两个相等的实数根,∴△=m2﹣4n=0,∴n=m2;(2)①∵方程有两个不相等的实数根,且m=﹣4.∴△=(﹣4)2﹣4n>0,解得n<4;②∵n<4,∴n可以是3,此时方程为x2﹣4x+3=0,(x﹣3)(x﹣1)=0,解得x1=3,x2=1.21.在平面直角坐标系xOy中,已知双曲线y=过点A(1,1),与直线y=4x交于B,C 两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=交于点D(t,y1),与直线y=4x交于点E(t,y2),当y1<y2时,写出t的取值范围.解:(1)∵双曲线y=过点A(1,1),∴k=1×1=1;(2)解得或,∴B(﹣,﹣2),C(,2);(3)观察函数的图象,当y1<y2时,t的取值范围为﹣<t<0或t>.22.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,以点D为圆心,DC长为半径画⊙D.(1)补全图形,判断直线AB与⊙D的位置关系,并证明;(2)若BD=5,AC=2DC,求⊙D的半径.解:(1)图形如图所示,结论AB与⊙D相切.理由:过点D作DE⊥AB于E.∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DE=DC,∴⊙D与AB相切.(2)设DE=DC=r,BE=x.∵AB,AC是⊙D的切线,∴AC=AE=2CD=2r,∵∠ACB=∠BED=90°,则有,解得,∴⊙D的半径为3.23.在平面直角坐标系xOy中,已知抛物线y=x2﹣2bx+1.(1)若此抛物线经过点(﹣2,﹣2),求b的值;(2)求抛物线的顶点坐标(用含b的式子表示);(3)若抛物线上存在两点A(m,m)和B(n,n),且|m|>2,|n|<2,求b的取值范围.解:(1)∵抛物线经过点(﹣2,﹣2),∴4+4b+1=﹣2,解得b=﹣;(2)∵y=x2﹣2bx+1=(x﹣b)2﹣b2+1,∴抛物线的顶点坐标为(b,﹣b2+1);(3)∵点A(m,m)和B(n,n),∴点A(m,m)和B(n,n)在直线y=x上,由,消去y得x2﹣2bx+1=x,整理得x2﹣(2b+1)x+1=0,∴△=(2b+1)2﹣4>0,即(2b+3)(2b﹣1)>0,∴或,解得b>或b<﹣,由x2﹣(2b+1)x+1=0可知m•n=1,∴m、n同号,∵|m|>2,|n|<2,∴当m>n>0时,m+n>,∴2b+1>,解得b>当0>m>n时,m+n<﹣,∴2b+1<﹣,解得b<﹣,综上,b的取值范围为b>或b<﹣.24.在△ABC中,AB=2,CD⊥AB于点D,CD=.(1)如图1,当点D是线段AB的中点时,①AC的长为;②延长AC至点E,使得CE=AC,此时CE与CB的数量关系是CE=CB,∠BCE 与∠A的数量关系是∠BCE=2∠A;(2)如图2,当点D不是线段AB的中点时,画∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠A,CE=CB,连接AE.①按要求补全图形;②求AE的长.解:(1)①如图1中,∵AD=DB=AB=,CD⊥AB,∴CA=CB,∠ADC=90°,∵CD=,∴AC===.故答案为:.②连接BE.∵CA=CE,CA=CB,∴CE=CB,∵CA=CB,∴∠A=∠CBA,∴∠ECB=∠A+∠CBA=2∠A,故答案为:CE=CB,∠BCE=2∠A.(2)①图形如图2所示:②如图2中,在AC的上方作△ACT,使得CT=CA,∠ACT=∠BCE,过点C作CH⊥AT于H.∵CA=CT,CH⊥AT,∴AH=HT,∠ACH=∠TCH,∵∠BCE=2∠CAB,∠ECB=∠ACT,∴∠ZCH=∠CAB,∴CH∥AB,∴∠CHA=∠HAB=90°,∵CD⊥AB,∴∠ADC=90°,∴四边形ADCH是矩形,∴CD=AH=HT=,∴AT=2AH=2,∵∠ACT=∠ECB,∴∠ACE=∠TCB,∵CA=CT,CE=CB,∴△ACE≌△TCB(SAS),∴AE=BT,∵BT===2,∴AE=BT=2.25.在平面直角坐标系xOy中,⊙O的半径为1.给出如下定义:记线段AB的中点为M,当点M不在⊙O上时,平移线段AB,使点M 落在⊙O上,得到线段A'B'(A',B'分别为点A,B的对应点)线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)已知点A的坐标为(﹣1,0),点B在x轴上.①若点B与原点O重合,则线段AB到⊙O的“平移距离”为;②若线段AB到⊙O的“平移距离”为2,则点B的坐标为B(﹣5,0)或(7,0);(2)若点A,B都在直线y=x+4上,且AB=2,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(3,4),且AB=2,记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.解:(1)①∵A(﹣1,0),B(0,0),AM=BM,∴M(﹣,0),∴线段AB到⊙O的“平移距离”=线段AM的长=,故答案为:.②∵线段AB到⊙O的“平移距离”为2,∴M(﹣3,0)或(3,0),∵MA=MB,∴B(﹣5,0)或(7,0).故答案为:B(﹣5,0)或(7,0).(2)如图1中,设直线y=x+4交x轴于F,交y轴于E,则E(0,4),F(﹣3,0).过点O作OH⊥EF于H,交⊙O于K.∵OE=4,OF=3,∴EF===5,∵S△OEF=×OE×OF=×EF×OH,∴OH=,观察图像可知,当AB的中点M与H重合时,线段AB到⊙O的“平移距离”最小,最小值=OH﹣OK=.即d1=.(3)如图2中,由题意,AB的中点M的运动轨迹是A为圆心1为半径是圆,d2的最小值=PQ=5﹣2=3,d2的最大值=PR=5+1=6,∴3≤d2≤6.。

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)1.(2019·山东九年级期末)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y (万件)与销售单价x (元)之间的函数关系如下表格所示:(1)求每月的利润W (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【答案】(1)221321600W x x =-+-;(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.(1)由表格可知,y 与x 之间的函数关系是一次函数, 设y 与x 之间的函数关系式为y kx b =+, 将(30,40)和(40,20)代入得:30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为2100y x =-+, 因此,(16)(16)(2100)W x y x x =-=--+, 即221321600W x x =-+-;(2)由题意得:221321600480x x -+-=, 整理得:26610400x x -+=, 解得26x =或40x =,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元; (3)由题意得:48003016y ≤≤=, 则0210030x ≤-+≤, 解得3550x ≤≤,将二次函数221321600W x x =-+-化成顶点式为22(33)578W x =--+, 由二次函数的性质可知,在3550x ≤≤范围内,W 随x 的增大而减小, 则当35x =时,W 取得最大值,最大值为22(3533)578570-⨯-+=(万元), 答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.2.(2020·迁安市迁安镇第一初级中学九年级期末)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x 元,填写下表.(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少; (3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x ;180;180-10x ;(2)60元;(3)2240元 解:(1)若设第二个月的销售定价每套增加x 元,填写下表:故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得: (52-40)×180+(52+x-40)(180-10x )=4160, 解得:x 1=-2(舍去),x 2=8, 当x=-2时,52+x=50(舍去),当x=8时,52+x=60.答:第二个月销售定价每套应为60元. (3)设第二个月利润为y 元. 由题意得到:y=(52+x-40)(180-10x ) =-10x 2+60x+2160 =-10(x-3)2+2250 ∵-10<0∴当4≤x≤6时,y 随x 的增大而减小, ∴当x=4时,y 取最大值,此时y=2240, ∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元. 【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 3.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭;(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要1⎛+ ⎝⎭米.(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩,解得274b c =⎧⎪⎨=⎪⎩,则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+,则当1x =时,y 取得最大值,最大值为114,故喷出的水流距水面的最大高度是114米;(3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外. 【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.4.(2020·保定市第二十一中学九年级期末)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x (元)()40x >,请你分别用含x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)1000-10x ,-10x 2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元. 解:(1)∵根据销售单价每涨1元,就会少售出10件玩具, ∵销售量y (件)为:600-10(x-40)=1000-10x ;销售玩具获得利润w (元)为: [600-10(x-40)](x-30) =-10x 2+1300x-30000 故答案为:1000-10x ,-10x 2+1300x-30000;(2)令-10x 2+1300x-30000=10000,解得:x=50 或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润; (3)根据题意得:10001054044x x -≥⎧⎨≥⎩解得:44≤x≤46由w=-10x 2+1300x-30000=-10(x-65)2+12250 ∵-10<0,对称轴是直线x=65. ∵当44≤x≤46时,w 随增大而增大 ∵当x=46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.5.(2020·河北九年级期末)某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. (1)当x=6时,y 1=3,y 2=1, ∵y 1-y 2=3-1=2,∵6月份出售这种蔬菜每千克的利润是2元; (2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩,∴1273=-+y x ; 将(3,4)代入y 2=a(x-6)2+1,得, 4=a (3-6)2+1, 解得:a=13, ∵()222116141333y x x x =-+=-+,∵P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∵当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000, ∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.6.(2020·福建九年级期末)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元. (1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款; (2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.【答案】(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗. 解:(1)∵50<60, ∵120506000⨯=(元),∵答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为120607200⨯=元8800<元, ∵该中学购买的树苗超过60棵. 又∵120100601000.5-+=,∵购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元, 此时所需支付的树苗款超过10000元,而100008800>, ∵该中学购买的树苗不超过100棵. 设购买了()60100x x <≤棵树苗, 依题意,得()1200.5608800x x --=⎡⎤⎣⎦, 化简,得2300176000x x -+=, 解得1220100x =>(舍去),280x =. 答:这所中学购买了80棵树苗. 【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.7.(2020·四川九年级期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣, 解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-<∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能. 【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析.8.(2018·河北新河中学九年级期末)如图,在矩形 ABCD 中,AB =6cm ,BC =8cm ,动点 P 以 2cm /s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm /s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P 、Q 两点移动 ts (0<t <5)后,△CQP 的面积为 Scm 2.在 P 、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm 2?若能,求出此时 t 的值;若不能,请说明理由.【答案】2 或 3 解:在矩形 ABCD 中, ∵AB =6cm ,BC =8cm ,∴AC =10cm ,AP =2tcm ,PC =(10﹣2t )cm , CQ =tcm ,过点 P 作 PH ⊥BC 于点 H ,易知:PH PC AB AC ==10210t-,∴PH =35(10﹣2t )cm , 根据题意,得12t •35(10﹣2t )=3.6, 解得:t 1=2,t 2=3.答:△CQP 的面积等于 3.6cm 2 时,t 的值为 2 或 3.【点睛】本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用.9.(2021·安徽九年级月考)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间 解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∴当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∴当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =; (3)当40y =时,8002040x ==. ∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤, 即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.10.(2020·内蒙古和林格尔县第三中学九年级月考)某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时)与时间x (小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x ≥时,求出风速y (千米/小时)与时间x (小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.【答案】(1)32,10;(2)640y x=;(3)共有59.5小时 解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =, 解得:640k =. 所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =. (3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =, 得64010x=,解得64x =, 64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】 本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.11.(2020·浙江九年级一模)2020年4月,学校复学后,为确保学生的安全,某校对各教室进行“84”消毒液消毒,如下左图描述了防疫人员消毒阶段室内每立方米空气中含药量()mg y 与时间()min x 的关系:表格记录了消毒结束后室内每立方米空气中含药量()mg y 与时间()min x 的部分数据.(1)求前3分钟消毒阶段y 关于x 的函数表达式;(2)在给出的平面直角坐标系中,根据表中数据画出消毒后y 关于x 的函数图象,并求出该函数表达式;(3)研究表明,当每立方米空气中含药量低于1.2mg 时,对人体无毒害作用,那么在哪个时段学生不能停留在教室里?【答案】(1)y=83x (0≤x≤3);(2)图像见详解,y=24x (x >3);(3)在920分钟到20分钟内不能停留在教室解:(1)设前3分钟消毒阶段的解析式为y=kx ,将(3,8)代入得8=3k ,解得k=83, ∴解析式为:y=83x (0≤x≤3);(2)图像如下:设函数表达式为y=k x, 将(6,4)代入得k=24,∴解析式为:y=24x(x >3); (3)当y=1.2时,在前三分钟内:得1.2=83x (0≤x≤3), 解得x=920, 在后期1.2=24x (x >3), 解得x=20, ∴920<x <20 ∴在920<x <20这段时间内不能回教室. 【点睛】本题考查了反比例函数和一次函数的综合,求出解析式是解题关键.12.(2020·河南九年级其他模拟)某校科技小组进行野外考察,途中遇到一片湿地,为了人员和设备能够安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.根据学习函数的经验,该小组对木板对地面的压强与木板的面积之间的关系进行探究.已知当压力不变时,木板对地面的压强()P Pa 与木板面积()2S m的对应值如下表:(1)求P 与S 之间满足的函数关系式;(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (3)结合图形,如果要求压强不超过4000Pa ,木板的面积至少要多大?【答案】(1)600Sp =;(2)见解析;(3)当压强不超过4000Pa 时,木板面积至少20.15m 解:(1)1600154002300600⨯=⨯=⨯=.,600Sp ∴=; (2)如图所示,(3)当4000p =时,20.15s m =.答:当压强不超过4000Pa 时,木板面积至少20.15m .【点睛】本题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题,要认真观察图象得出正确的结果.13.(2020·广东深圳实验学校九年级期中)如图1,大桥桥型为低塔斜拉桥,图2是从图1抽象出的平面示意图,现测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离B C 为4米,两拉索底端距离AD 为20米,试求立柱BE 的长.(结果精确到0.1 1.732≈)【答案】立柱BE 的长约为15.3米如图2,设BE=x 米,由BC=4米得CE=(x-4)米,在Rt △ABE 中 ∵tan BE A AE=,∠A=30°∴tan tan 30BE x AE A ===︒米; 在Rt △DCE 中 ∵tan CDE CE DE∠=,∠CDE=60°∴4D 4)tan tan 60CE x E x CDE -===-∠︒米 由AE-DE=20米,得4)20x -=解之得215.3x =≈.答:立柱BE 的长为15.3米.【点睛】此题考查三角函数的实际应用.此题关键是要分别在两个直角形内运用三角函数列关系式,再据题意例方程求解.14.(2020·长春吉大附中力旺实验中学九年级月考)数学爱好小组要测量5G 信号基站高度,一名同学站在距离5G 信号基站30m 的点E 处,测得基站项部的仰角52ACD ∠=°,已知测角仪的高度15m CE =..求这个5G 信号基站的高AB (精确到1m ).(参考数据:sin520.79,cos520.62,tan52 1.28===)【答案】40解:如图,过点C 作CD AB ⊥,垂足为D .则四边形CEBD 是矩形,15m BD CE ==.,在Rt ACD △中,30m,52CD EB ACD ==∠=︒ ∵tan AD ACE CD∠=, ∴tan 30 1.2838.4(m)AD CD ACD ∠=⋅≈⨯=.∴38.4 1.540(m)AB AD BD =+=+≈.答:这个5G 信号基站的高AB 约为40m .【点睛】本题主要考查锐角三角函数的应用.通过做辅助线,分割图形,构建直角三角形,并解直角三角形是解答本题的关键.15.(2020·潍坊市寒亭区教学研究室九年级一模)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45︒,小明从A 点出发沿斜坡走D ,在此处测得树顶端点B 的仰角为31︒,且斜坡AF 的坡比为1:2.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC 的高度?若能,请计算:若不能,请说明理由.(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)【答案】(1)4米 (2)能;22米解:(1)作DH AE ⊥于H ,如图所示:在Rt ADH ∆中, ∵12DH AH =, ∴2AH DH =,∵222AH DH AD +=,∴()(2222DH DH +=, ∴4DH =.答:小明从点A 到点D 的过程中,他上升的高度为4米.(2)如图所示:过点D 作DG BC ⊥于点G ,设BC xm =,在Rt ABC ∆中,45BAC ∠=︒,∴AC BC x ==,由(1)得28AH DH ==,在矩形DGCH 中,4DH CG ==,8DG CH AH AC x ==+=+,在Rt BDG ∆中,由4tan 0.68BG x BAG DG x ∠-==≈+, 解得:22x =答:大树的高度约为22米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.16.(2020·浙江九年级一模)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.【答案】(1)点D′到BC 的距离为()厘米;(2)E∵E′两点的距离是 解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFD′=∠BHD′=90°.在Rt △AD′F 中,D′F=AD′•sin ∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC 的距离为(453+70)厘米.(2)连接AE ,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=厘米,∴EE′=3010厘米.答:E 、E′两点的距离是3010厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.17.(2019·甘州中学九年级月考)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32º,底部C 的俯角为45º,观测点与楼的水平距离AD 为31m ,则楼BC 的高度大约为多少米?(结果取整数).(参考数据:sin 320.5︒≈,cos320.8︒≈,tan 320.6︒≈)【答案】50.解:在Rt △ABD 中, ∵AD =31,∠BAD =32°, ∴BD =AD ⋅tan32°=31×0.6=18.6, 在Rt △ACD 中, ∵∠DAC =45°, ∴CD =AD =31,∴BC =BD +CD =18.6+31≈50m . 答:楼BC 的高度大约为50米. 【点睛】本题考查了仰角与俯角的知识,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键. 18.(2020·浙江九年级一模)如图,小区内有一条南北方向的小路MN ,快递员从小路旁的A 处出发沿南偏东53°方向行走200m 将快递送至B 楼,又继续从B 楼沿南偏西30°方向行走120m 将快递送至C 楼,求此时快递员到小路MN 的距离.(计算结果精确到1m .参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】120m如图,过B 作BD ⊥MN 于D ,过C 作CE ⊥MN 于E ,过B 作BF ⊥EC 于F , 则四边形DEFB 是矩形, ∴BD =EF ,在Rt △ABD 中,ADB 90∠=︒ ,53DAB ∠=︒,AB =200m , ∴sin532000.8160BD AB =︒=⨯=m ,在Rt △BCF 中,90BFC ∠=︒ ,3CBF 0∠=︒,BC =120m , ∴1602CF BC ==m , ∴16060100CE EF CF =-=-=m , 答:快递员到小路MN 的距离是100m .【点睛】此题主要考查了解直角三角形的应用-方向角问题,正确把握定义是解题关键.19.(2020·浙江省临海市回浦实验中学九年级期中)在我市开展的创建文明城市活动中,某居民小区要在一块一边靠墙(墙长18m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC 边长为()x m ,花园的面积为2()y m(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到2200m 吗?若能,求出此时x 的值;若不能,说明理由; (3)当x 取何值时,花园的面积最大?最大面积为多少?【答案】(1)2240(1120)y x x x =-+≤<;(2)不能,理由见解析;(3)当x 取11米时,花园的面积最大,最大面积是2198m . 解:(1)由题意可得,()2402240y x x x x =⋅-=-+,0040218x x >⎧⎨<-≤⎩解不等式得11≤x <20即2240(1120)y x x x =-+≤<; (2)不能,理由:将200y =代入2240y x x =-+, 得2200240x x =-+, 解得,121011x x ==<,答:花园面积不能达到2200m ;(3)∵222402(10)200y x x x =-+=--+,∴函数图象的顶点为()10,200,开口向下,当10x <时,y 随x 的增大而增大,当10x >时,y 随x 的增大而减小,由题意可知,1120x ≤<,∴当11x =时,y 最大,此时198y =,答:当x 取11米时,花园的面积最大,最大面积是2198m . 【点睛】本题考查了二次函数的应用,结合实际问题并从中抽象出函数模型,借助二次函数解决实际问题是解决本题的关键.20.(2020·浙江九年级其他模拟)如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径和爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表:(1)根据这些数据在图2的直角坐标系中画出相应的点,选择适当的函数表示h (米)与t (秒)之间的关系,并求出相应的函数表达式;(2)当第一发花弹发射2秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于18米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?【答案】(1)h=-2(t-3)2+19.8;(2)6.28米;(3)花弹的爆炸高度符合安全要求,理由见详解解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t-3)2+19.8,把点(0,1.8)代入得:1.8=a(0-3)2+19.8,∴a=-2,∴h=-2(t-3)2+19.8,故相应的函数解析式为:h=-2(t-3)2+19.8,(2)∵花每隔1.6秒发射一发花弹∴当第一发花弹发射2秒后,第二发已经飞行了0.4秒,∴把t=0.4代入关系式h=-2(t-3)2+19.8即h=-2(0.4-3)2+19.8=6.28米,∴当第一发花弹发射2秒后,第二发花弹达到的高度为6.28米(3)∵这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=-2(t-3)2+19.8,∴第二发花弹的函数解析式为:h′=-2(t-4.6)2+19.8,皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,则令h=h′得-2(t-3)2+19.8=-2(t-4.6)2+19.8∴t=3.8秒,此时h=h′=18.52米>18米,答:花弹的爆炸高度不符合安全要求.【点睛】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.。

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8 2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥34.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3896.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=12.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处米.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB 边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8【解答】解:将方程3x2=﹣7x+8化为一元二次方程的一般形式为:3x2+6x﹣8=7,其二次项系数、常数项分别为3、6.故选:D.2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,∴k=2×(﹣3)=﹣6<5,∴该反比例函数经过第二、四象限.故选:C.3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥3【解答】解:根据题意得Δ=(﹣6)2﹣3×3×m>0,解得m<6.故选:A.4.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定【解答】解:∵k=﹣1<0,∴反比例函数的两个分支在二、四象限,y随x的增大而增大,∵2>0,∴y1<4,∵﹣2<﹣1<8,∴0<y2<y6,∴y1<y2<y2,故选:A.5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=389【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元2元,由题意,得:389(6+x)2=438.故选:B.6.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%【解答】解:该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:×100%=60%;故选:C.7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=【解答】解:∵∠A=∠A,∴当∠APC=∠ACB或∠ACP=∠B或AC:AB=AP:AC或AC2=AB•AP时,△ACP∽△ABC.故选:D.8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=【解答】解:由图可知,AC=2;AB==;根据三角函数的定义,A、tan B==;B、cos B===;C、sin B===;D、sin B===.故选:D.9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,由矩形的对称性得:AE=DE,∴EF=DE,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15【解答】解:∵AE:ED=2:1,∴AE:AD=6:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴S△ABE:S△ACD=4:7,∴S△ACD=S△ABE,∵AE:ED=5:1,∴S△ABE:S△BED=2:4,∴S△ABE=2S△BED,∴S△ACD=S△ABE=S△BED,∵S△ABC=S△ABE+S△ACD+S△BED=8S△BED+S△BED+S△BED=S△BED,∴S△BDE:S△ABC=2:15,故选:D.二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是甲.【解答】解:∵s甲2=3.3,s乙2=4.8,∴s甲2<s乙2,∴小麦长势比较整齐的是甲,故答案为:甲.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为﹣2.【解答】解:根据题意得:x1+x2=﹣7,x1x2=k﹣4,x12+x42﹣x1x2=(x1+x2)7﹣3x1x7=4﹣3(k﹣7)=13,∴k=﹣2,经检验,k=﹣2符合题意,故答案为:﹣5.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为3+.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=1210.【解答】解:∵AB⊥BD,CD⊥BD,∴∠D=∠B=90o,∵∠DOC=∠BOA,∴△AOB∽△COD,∴,∵AB=3,BO=4,∴,∴CD=5,在Rt△DOC中,OC===10,故答案为:10.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处2米.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=4,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=5,故答案为:2.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为﹣3.【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴=cot∠AOB=,∵∠AOB=30°,AB=BO,∴∠AOB=∠BAO=30°,∴∠ABD=60°,∴=cot∠ABD=,∵OB=OD﹣BD,∴=,∴=,∵S△ABO=,∴S△ADO=|k|=,∵反比例函数图象在第二象限,∴k=﹣8故答案为:﹣3.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.【解答】解:(1)4x2﹣121=5,x2=,所以x8=﹣,x2=;(2)整理得,x2﹣6x=﹣8,x2﹣6x+3=﹣3+9,即(x﹣7)2=6,x﹣4=±,所以x1=5+,x2=8﹣.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.【解答】解:(1)原式=﹣×+×()5=﹣+=;(2)原式=3﹣3+2﹣+3×=﹣2+2﹣+=0.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【解答】解:(1)把A(﹣3,2)代入,∴反比例函数解析式为;把B(n,﹣6)代入,解得n=5,∴B点坐标为(1,﹣6),把A(﹣7,2),﹣6)代入y4=kx+b,得,解方程组得,∴一次函数解析式为y=﹣5x﹣4;(2)当x=0时,y=﹣7x﹣4=﹣4,﹣4),∴△AOB的面积=.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点【解答】解:过点A作AD⊥BC于D,如图所示:根据题意得:∠ABC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在Rt△ADC中,∠ACD=60°,∴CD=AC cos60°=100×=50(海里),答:船继续航行50海里与钓鱼岛A的距离最近.21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴∴∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?【解答】解:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40﹣12﹣16﹣4=8,合格所占百分比:5÷40×100%=20%,优秀人数:12÷40×100%=30%,如图所示:(2)成绩未达到良好的男生所占比例为:20%+10%=30%,所以估计成绩未达到良好有600×30%=180(名).23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.【解答】解:(1)设经过x秒以后,△PBQ面积为4cm2(4<x≤3.5)此时AP=xcm,BP=(8﹣x)cm,由,得,整理得:x5﹣5x+4=4,解得:x=1或x=4(舍);答:8秒后△PBQ的面积等于4cm2;(2)设经过t秒后,PQ的长度等于2=BP2+BQ7,即40=(5﹣t)2+(2t)2,解得:t=﹣1(舍去)或4.则3秒后,PQ的长度为;(3)假设经过t秒后,△PBQ的面积等于5cm2,即,,整理得:t2﹣7t+7=0,由于b2﹣4ac=25﹣28=﹣3<8,则原方程没有实数根,所以△PQB的面积不能等于7cm2.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.【解答】(1)证明:∵AE⊥AF,∴∠EAF=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ABF=∠D=90°,∴∠EAF=∠BAD,∴∠F AB=∠DAE,∵∠ABF=∠D=90°,∴△ADE∽△ABF;(2)①如图1,过点G作GH⊥BF于H,∵∠GHF=∠C=90°,∴GH∥EC,∵点G为EF的中点,∴FG=GE,∴FH=HC,∴EC=2GH=7y,∵DE+EC=CD=AB=20,∴x+2y=20,∴;②∵,∴设EC=8k,BG=5k,∵EC=6GH,∴GH=4k,由勾股定理得:BH=3k,∴FH=CH=4k+10,∴FB=6k+10,∵△ADE∽△ABF,∴,∵,x=20﹣8k,∴,∴,∴;(3)如图2,连接BE,CD=BC=b.∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴AB=BC=CD=AD,设DE=a,CD=BC=b,∵∠F AB=∠EAD,AD=AB,∴△ADE≌△ABF,∴BF=DE=a,∴,∵S=b2,S=5S1,∴b2=4b2﹣a2﹣ab,∴b3﹣ab﹣a2=0,∴,解得:,∴.。

2020-2021学年北京市密云区九上期末数学(含答案)

2020-2021学年北京市密云区九上期末数学(含答案)

2020-2021学年北京市密云区九上期末数学一、选择题1.抛物线y=(x+2)2−1的顶点坐标是( )A.(2,−1)B.(−2,−1)C.(2,1)D.(−2,1)2.如图,直线l1∥l2∥l3.直线l4被l1,l2,l3所截得的两条线段分别为CD,DE,直线l5被l1,l2,l3所截得的两条线段分别为FG,GH.若CD=1,DE=2,FG=1.2,则GH的长为( )A.0.6B.1.2C.2.4D.3.6图象上的两点,则( )3.已知点P(1,y1),Q(2,y2)是反比例函数y=3xA.y1<y2<0B.y2<y1<0C.0<y1<y2D.0<y2<y1,则锐角A的正弦值( )4.将Rt△ABC的各边长都缩小为原来的12A.不变B.缩小为原来的12C.扩大为原来的2倍D.缩小为原来的145.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(3,0)和C(0,−1),则下列结论错误的是( )A.二次函数图象的对称轴是x=1B.方程ax2+bx+c=0的两根是x1=−1,x2=3C.当x<1时,函数值y随自变量x的增大而减小D.函数y=ax2+bx+c的最小值是−26.如图,AB是⊙O的直径,C,D是⊙O上的两点,∠CDB=20∘,则∠ABC的度数为( )A . 20∘B . 40∘C . 70∘D . 90∘7. 如图,在平面直角坐标系 xOy 中有两点 A (−2,0) 和 B (−2,−1),以原点 O 为位似中心作 △COD ,△COD 与 △AOB 的相似比为 2,其中点 C 与点 A 对应,点 D 与点 B 对应,且 CD 在 y 轴左侧,则点 D 的坐标为 ( )A . (4,2)B . (−4,−2)C . (1,12)D . (−1,−12) 8. 如图,AB 是 ⊙O 的直径,AB =4,P 是圆周上一动点(点 P 与点 A 、点 B 不重合),PC ⊥AB ,垂足为 C ,点 M 是 PC 的中点,设 AC 长为 x ,AM 长为 y ,则表示 y 与 x 之间函数关系的图象大致为 ( )A .B .C.D.二、填空题9.已知扇形的圆心角为60∘,半径为2,则该扇形的弧长为.10.已知△ABC中,D是BC上一点,添加一个条件使得△ABC∽△DAC,则添加的条件可以是.11.已知点P(x1,y1),Q(x2,y2)是反比例函数y=2图象上的两点,其中x1+x2=0,则y1+y2=.x12.如图,平行四边形ABCD中,E是AD中点,BE与AC交于点F,则△AEF与△CBF的面积比为.13.二次函数y=x2−2x−3的最小值是.14.如图,A,B,C是⊙O上三点,BC⊥OA,垂足为D.已知OA=3,AD=1,则BC长为.15.如图是某商场自动扶梯的示意图.自动扶梯AB的倾斜角为30∘,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60∘,A,C之间的距离为6m,则自动扶梯的垂直高度BD=m.(结果保留根号)16.《九章算术》是我国古代数学名著,也是古代东方数学的代表作之一.书中记载了一个问题:“今有勾五步,股十二步,问勾中容圆径几何?”译文:“如图,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该直角三角形内切圆的直径为步.三、解答题17.计算:√8−2sin45∘+2cos60∘+∣1−√2∣.18.已知抛物线y=x2+bx+c经过两点A(4,0),B(2,−4).(1) 求该抛物线的表达式.(2) 在平面直角坐标系xOy内画出抛物线的示意图.(3) 若直线y=mx+n经过A,B两点,结合图象直接写出不等式x2+bx+c<mx+n的解集.19.如图,AB⊥BC,EC⊥BC,点D在BC上,AB=1,BD=2,CD=3,CE=6.(1) 求证:△ABD∽△DCE.(2) 求∠ADE的度数.20.如图,四边形ABCD中,∠CBA=∠CAD=90∘,∠BCA=45∘,∠ACD=60∘,BC=√2,求AD的长.与直线l1交于A(1,2)和B(−2,m).21.已知双曲线y=kx(1) 求k,m值.(2) 将直线l1平移得到l2:y=ax+b,且l1,l2与双曲线围成的封闭区域内(不含边界)恰有3个整点(把横纵坐标均为整数的点称为整点)结合图象,直接写出b的取值范围.22.如图,AB是⊙O的直径,C,D是圆上两点,CD=BD,过点D作AC的垂线分别交AC,AB延长线于点E,F.(1) 求证:EF是⊙O的切线;,求⊙O的半径.(2) 若AE=3,sin∠EAF=4523.已知抛物线y=ax2+bx+3a与y轴交于点P,将点P向右平移4个单位得到点Q,点Q也在抛物线上.(1) 抛物线的对称轴是直线x=.(2) 用含a的代数式表示b.(3) 已知点M(1,1),N(4,4a−1),抛物线与线段MN恰有一个公共点,求a的取值范围.24.如图,矩形ABCD中,AD>AB,DE平分∠ADC交BC于点E,将线段AE绕点A逆时针旋转90∘得到线段AF,连接EF,AD与FE交于点O.(1) ①补全图形.②设∠EAB的度数为α,直接写出∠AOE的度数(用含α的代数式表示).(2) 连接DF,用等式表示线段DF,DE,AE之间的数量关系,并证明.25.对于平面直角坐标系xOy中的图形M,N.给出如下定义:P是图形M上的任意一点,Q是图形N上任意一点,如果P,Q两点间距离有最小值,则称这个最小值为图形M,N的“最小距离”,记作d(M,N).已知⊙O的半径为1.(1) 如图,P(4,3),则d(点O,⊙O)=,d(点P,⊙O)=.⏜的度数为60∘.(2) 已知A,B是⊙O上两点,且AB①若AB∥x轴且在x轴上方,直线l:y=√3x−2,求d(l,AB)的值.②若点R坐标为(√2,1),直接写出d(点R,AB)的取值范围.答案一、选择题1. 【答案】B【原文】【解析】∵当x=−2时,y=(−2+2)2−1=−1,∴抛物线y=(x+2)2−1的顶点坐标为(−2,−1),故B正确.2. 【答案】C【原文】【解析】∵l1∥l2∥l3,∴CDDE =FGGH,∵CD=1,DE=2,FG=1.2,∴12=1.2GH,∴GH=2.4.3. 【答案】D【原文】【解析】∵反比例系数k=3>0,∴当x>0时,y>0,y随x的增大而减小,∵0<1<2,∴0<y2<y1,故答案选D.4. 【答案】A【原文】【解析】将Rt△ABC的各边长都缩小为原来的12,则锐角A的正弦值不变.5. 【答案】D【原文】【解析】∵二次函数y=ax2+bx+c的图象经过点A(−1,0),B(3,0),∴二次函数图象的对称轴x=−1+32=1,故A正确;方程ax2+bx+c=0的根为x1=−1,x2=3,即图象与x轴相交时,当x=−1或x=3时,函数y的值都等于0,故B正确;由已知图象可知,当x<1时,函数值y随自变量x的增大而减小,故C正确;将A(−1,0),B(3,0),C(0,−1)代入y=ax2+bx+c得:{a−b+c=0, 9a+3b+c=0, c=−1,解得{a=13,b=−23, c=−1,∴y=13x2−23x−1=13(x2−2x+1)−43=13(x−1)2−43.∴函数y=ax2+bx+c的最小值为−43,故D错误.6. 【答案】C【原文】【解析】∵∠CDB=20∘,且BC⏜=BC⏜,∴∠CAB=∠CDB=20∘,∵AB为⊙O的直径,∴∠ACB=90∘,则∠ABC=∠ACB−∠CAB=90∘−20∘=70∘.7. 【答案】B【原文】【解析】∵B(−2,−1),以顶点O为位似中心作△COD,△COD与△AOB的相似比为2,其中点D与点B对应,且CD在y轴左侧,∴点D的坐标为(−2×2,−1×2),即为(−4,−2).8. 【答案】B【原文】【解析】当x=1时,画图可知AM>AC,y>x,排除C,D,当x=3时,画图可知AM>AC,y>x,排除A.故选B.二、填空题9. 【答案】23π;【原文】【解析】依题意,n=60,r=2,∴扇形的弧长=nπr180=60π×2180=23π.10. 【答案】∠B=∠CAD或∠BAC=∠CDA或ACCD =BCAC;【原文】【解析】∵∠C=∠C,∴添加∠B=∠CAD或∠BAC=∠CDA或ACCD =BCAC都可以证明△ABC∽△DAC.11. 【答案】0;【原文】【解析】∵点A(x1,y1),B(x2,y2)是反比例函数y=2x图象上两点,∴y1=2x1,y2=2x2,∴y1+y2=2x1+2x2=2(x1+x2)x1x2,∴若x1+x2=0,则y1+y2=0.12. 【答案】14;【原文】【解析】∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD,∵E是AD的中点,∴AE=DE,则BC=2AE,∴△AEF∽△CBF,则S△AEFS△CBF =(AEBC)2=(AE2AE)2=14.13. 【答案】−4;【原文】【解析】∵二次函数y=x2−2x−3可化为y=(x−1)2−4,∴最小值是−4.14. 【答案】2√5;【原文】【解析】连接OB,∵OA⊥BC,∴BD=CD,∵OA=OB=3,AD=1,∴OD=OA−AD=2,在Rt△ODB中,BD=√OB2−OD2=√32−22=√5∴BC=2BD=2√5.15. 【答案】3√3;【原文】【解析】∵∠BAC+∠ABC=∠BCD=60∘,∠BAC=30∘,∴∠ABC=30∘,∴∠ABC=∠BAC,∴BC=AC=6m,在 Rt △BCD 中,BD =BCsin60∘=6×√32=3√3 m .故答案为:3√3.16. 【答案】 4 ;【原文】【解析】连接 OA ,OB ,OC ,OF ,OD ,OE ,由题意可知 F ,D ,E ,为边 AB ,BC ,AC 与内切圆的切点, ∴OE ⊥AC ,OF ⊥AB ,OD ⊥BC ,在 Rt △ABC 中,AC =12,BC =5,∠C =90∘,∴AB =√AC 2+BC 2=√122+52=13,∴S △ABC =12AC ⋅BC =12×12×5=30, 且S △ABC =S △AOB +S △BOC +S △AOC=12AB ⋅r +12BC ⋅r +12AC ⋅r =12r (AB +BC +AC )=12r (13+5+12)=15r,则有 15r =30,解得 r =2,∴ 内切圆的直径为 4 步.三、解答题17. 【答案】 √8−2sin45∘+2cos60∘+∣1−√2∣=2√2−2×√22+2×12+√2−1=2√2−√2+1+√2−1=2√2.【原文】18. 【原文】【答案】(1) ∵ 抛物线 y =x 2+bx +c 经过两点 (4,0),(2,4),∴{16+4b +c =0,4+2b +c =−4, 解得 {b =−4,c =0,∴ 该抛物线的表达式为 y =x 2−4x .(2) y =x 2−4x =(x −2)2−4,顶点坐标 (2,−4), 令 y =0 得 x 2−4x =0,解得 x 1=0,x 2=4,∴ 与 x 轴交于 (0,0),(4,0),x =1 时,y =1−4=−3,x =3 时,y =9−12=−3,图象如下图所示.(3) 2<x <4.【解析】(3) ∵ 直线 y =mx +n 经过 A ,B ,∴x 2+bx +c <mx +n 解集为 2<x <4.19. 【原文】【答案】(1) ∵AB ⊥BC ,EC ⊥BC ,点 D 在 BC 上,∴∠ABD =∠DCE =90∘,∵AB =1,BD =2,CD =3,CE =6,∴AB BD =12,DC CE =12,∴AB BD =DC CE ,∴△ABD ∽△DCE .(2) ∵△ABD ∽△DCE ,∴∠BAD =∠EDC ,∵∠BAD +∠ADB =90∘,∴∠ADB +∠EDC =90∘,∴∠ADE =180∘−∠ADB −∠EDC =90∘.20. 【答案】 ∵∠CBA =90∘,∠BCA =45∘,BC =√2,∴AC =√2sin45∘=2,∵∠CAD =90∘,∠ACD =60∘,∴AD AC =tan60∘=√3,∴AD =2√3.【原文】21. 【原文】【答案】(1) ∵ 双曲线 y =k x 与直线 l 1 交于 A (1,2) 和 B (−2,m ), ∴k =2,∴m =2−2=−1,即 k =2,m =−1.(2) −1<b <0 或 2<b <3.【解析】(2) 已知 A (1,2),B (−2,−1) 在 l 1 上,∴ 设 l 1:y =k 1x +b 1(k 1≠0),∴{2=k 1+b 1,−1=−2k 1+b 1,∴{k 1=1,b 1=1,∴l1:y=x+1,∵l1∥l2,∴l2:y=x+b.①当l2在l1上方时,l1l2与双曲线围成封闭区域内恰有3个整点为(−2,0),(−1,1),(0,2),当l2过点(0,2)时,b=2,当l2过点(0,3)时b=3,∴满足要求的b为2<b<3;②当l2在l1下方时,l1l2与双曲线围成封闭区域内恰有3个整点为(−1,1),(0,0),(1,1),当l2过(0,0)时,b=0,当l2过(0,−1)时,b=−1,∴满足要求的b为−1<b<0,综上b的取值范围为−1<b<0或2<b<3.22. 【原文】【答案】(1) 连接OD,AD,∵CD=BD,∴∠CAD=∠DAB.∵OA=OD,∴∠ADO=∠DAB,∴∠CAD=∠ADO.∵AE⊥ED,∴∠AED=90∘,∴∠EAD+∠EDA=90∘,∴∠ADO+∠EDA=90∘,∴EF⊥OD,∴EF是⊙O的切线.(2) 在Rt△AEF中,∠AEF=90∘,,∴sin∠EAF=EFAF,∴sin∠EAF=45设EF=4k,AF=5k(k>0),解得AE=3k,∵AE=3,∴k=1,∴AF=5,∵EF⊥OD,EF⊥AE,∴OD∥AE,∴△FOD∽△FAE,∴FOFA =ODAE,∴5−r5=r3,解得:r=158.23. 【原文】【答案】(1) 2;(2) ∵抛物线的对称轴是直线x=2,∴−b2a=2,∴b=−4a.(3) 由(2)可知,抛物线的表达式为y=ax2−4ax+3a,令y=0,解得:x1=1,x2=3,∴抛物线经过(1,0)和(3,0),设点R(1,y1),S(4,y2)在抛物线上,则y1=0,y2=3a.故此点M在R上方.①当a>0时,若使抛物线与线段恰有一个公共点,需满足点N与点S重合(如图1)或点N在点S下方(如图2),即3a≥4a−1,解得:a≤1,即0<a≤1.②当a<0时,3a>4a−1,故此点N在点S下方,此时抛物线与线段恰有一个公共点(如图3).综上所述:a的取值范围是:a<0或0<a≤1.【解析】(1) ∵点P在y轴上,所以点P的横坐标是0,∵点P向右平移4个单位得到点Q,所以点Q的横坐标是4,∵点P和点Q都在抛物线上,且纵坐标相等,(0+4)2=2,∴抛物线的对称轴是直线x=2.24. 【原文】【答案】(1) ①补全图形如下:② ∠AOE=45∘+α.(2) DF2+DE2=2AE2.延长DE,AB交于点G.∵四边形ABCD是矩形,∴∠ADC=∠DAB=90∘.∵DE平分∠ADC,∴∠ADE=45∘,∴AD=AG.∵∠FAE=90∘,∴∠FAD+∠DAE=90∘.∵∠DAE+∠EAG=90∘,∴∠FAD=∠EAG.∵AF=AE,在△FAD和△EAG中,{AF=AE,∠FAD=∠EAG, AD=AG,∴△FAD≌△EAG(SAS),∴∠FDA=∠EGA=45∘,∴∠FDE=∠FDA+∠ADE=45∘+45∘=90∘,∴DF2+DE2=FE2,∵FE2=AE2+AF2=2AE2,∴DF2+DE2=2AE2.【解析】(1) ② ∵线段AE绕A逆时针旋转90∘得到线段AF,∴AF=AE,∠FAE=90∘,∴∠F=45∘,∵四边形ABCD是矩形,∴∠DAB=90∘,∴∠DAB=∠FAE,∴∠DAB−∠DAE=∠FAE−∠DAE,即∠FAD=∠EAB=α,∴∠AOE=∠F+∠FAD=45∘+α.25. 【原文】【答案】(1) 1;4;(2) ①方法一:不妨设点B在点A右侧,AB与y轴交于点P,连接OA,OB,∵AB⏜的度数为60∘,∴∠AOB=60∘,∴∠POB=30∘,∴∠BOC=60∘,设直线l与x轴交于点C,与y轴交于点D,则点C(2√33,0),D(0,−2),∴tan∠OCD=2√3=√33,∴∠OCD=60∘.∴OB∥CD.观察图形可知,点B到CD的距离就是AB与直线l的“最小距离”,过点O作OE⊥CD,垂足为E,∵∠OCD=60∘,∴∠ODC=30∘,∴OE=1,∴d(l,AB)=1.② [√3−1,√3+1].【解析】(1) d(点O,⊙O)=r=1,d(点P,⊙O)=PO−r=√42+32−1=4.(2) 方法二:d(l,AB⏜)即为B到直线l的距离,B(12,√32),l:√3x−y−2=0,d=∣√3×12−√32−2∣√(√3)+(−1)2=1.(点到直线的距离d=00√A2+B2)②连接OR,⏜),最短为:OR−r,最长为:OR+r,则d(点R,ABOR=√(√2)2+12=√3,⏜)≤√3+1,∴√3−1≤d(点r,AB⏜)取值范围为[√3−1,√3+1].∴d(点R,AB。

2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷

2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷

2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的为()A.x2=0B.x2﹣2y=0C.2x﹣3=0D.x2+=﹣3 2.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5B.x1=0,x2=﹣5C.x1=0,x2=D.x1=0,x2=﹣3.(3分)点(﹣2,3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,2)4.(3分)下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球5.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.6.(3分)⊙O为△ABC的内切圆,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点7.(3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.8.(3分)如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°9.(3分)如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.1510.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C .D .二、填空题(每小题3分,共24分)11.(3分)底面半径为3cm,母线长为5cm的圆锥的侧面积为cm2.12.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.13.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球试验次100100050001000050000100000数36387201940091997040008“摸出黑球”的次数“摸出黑0.3600.3870.4040.4010.3990.400球”的频率(结果保留小数点后三位)根据试验所得数据,估计“摸出黑球”的概率是.(结果保留小数点后一位)14.(3分)点A,B,C在⊙O上,∠AOB=100°,∠BOC=40°,则∠ABC=.15.(3分)已知二次函数y=x2﹣(m﹣1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是.16.(3分)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是.17.(3分)奥运五环是奥林匹克的标志,是由皮埃尔•德•顾拜旦设计的,图案中包含了圆和圆的位置关系有.18.(3分)如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则弧A2019A2020的长是.三、解答题(第19题10分,第20题12分,共22分)19.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1;(2)作出△ABC关于原点O成中心对称的△A2B2C2,写出B2和C2的坐标;(3)直接写出△ABC绕原点O顺时针旋转一周扫过的图形面积.20.(12分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果:(2)求小明恰好抽中B、D两个项目的概率.四、(每题12分,共24分)21.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,CF为⊙O的切线,OE⊥AB于点O,分别交AC,CF于D,F两点.(1)求证:ED=EC;(2)若EC=1,∠A=30°,求图中阴影部分的面积.22.(12分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为.(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.五、(本题12分)23.(12分)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.(1)判断DE与⊙O的位置关系,并说明理由;(2)若DE=17,CE=13,求⊙O的半径.六、(本题12分)24.(12分)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?七、解答题:(12分)25.(12分)如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.八、(本题14分)26.(14分)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.2020-2021学年辽宁省抚顺市新抚区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的为()A.x2=0B.x2﹣2y=0C.2x﹣3=0D.x2+=﹣3【解答】解:A、∵x2=0是一元二次方程,∴选项A符合题意;B、∵x2﹣2y=0含有两个未知数,∴x2﹣2y=0不是一元二次方程,选项B不符合题意;C、∵2x﹣3=0的未知数的最高次数是1,∴2x﹣3=0不是一元二次方程,选项C不符合题意;D、∵x2+=﹣3不是整式方程,∴x2+=﹣3不是一元二次方程,选项D不符合题意.故选:A.2.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5B.x1=0,x2=﹣5C.x1=0,x2=D.x1=0,x2=﹣【解答】解:∵x(x+5)=0,∴x=0或x+5=0,解得:x1=0,x2=﹣5,故选:B.3.(3分)点(﹣2,3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,2)【解答】解:∵点(﹣2,3)关于原点对称,∴点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故选:C.4.(3分)下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球【解答】解:A、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件,不符合题意;B、任意买一张电影票,座位号是3的倍数,是随机事件,不符合题意;C、掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;D、从一个只有白球的盒子里摸出一个球是白球,是必然事件,符合题意;故选:D.5.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.【解答】解:根据题意可得:一个不透明的盒子中装有2个白球,6个红球,共8个,摸到红球的概率为:=.故选:A.6.(3分)⊙O为△ABC的内切圆,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点【解答】解:如图,⊙O为△ABC的内切圆,切点分别是E、F、D,连接OE,OD,OF,∵⊙O为△ABC的内切圆,∴OE⊥AB,OF⊥AC,OD⊥BC,OE=OD=OF,∴O是△ABC的三角的平分线的交点,故选:D.7.(3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.8.(3分)如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°【解答】解:根据旋转的定义可知∠AOC=∠BOD=40°,∵∠AOD=90°,∴∠BOC=90°﹣40°﹣40°=10°,故选:B.9.(3分)如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.15【解答】解:连接OA、OD、OF,如图,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF﹣∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故选:C.10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A .B .C .D .【解答】解:当0<t≤2时,S =t2,当2<t≤4时,S =t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故选:C.二、填空题(每小题3分,共24分)11.(3分)底面半径为3cm,母线长为5cm 的圆锥的侧面积为15πcm2.【解答】解:圆锥的侧面积=2π×5×3÷2=15πcm2.故答案为:15π.12.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.13.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:100100050001000050000100000摸球试验次数“摸出黑36387201940091997040008球”的次数“摸出黑0.3600.3870.4040.4010.3990.400球”的频率(结果保留小数点后三位)根据试验所得数据,估计“摸出黑球”的概率是0.4.(结果保留小数点后一位)【解答】解:观察表格发现随着摸球次数的增多摸出黑球频率逐渐稳定在0.4附近,故摸到黑球的概率估计值为0.4;故答案为:0.4.14.(3分)点A,B,C在⊙O上,∠AOB=100°,∠BOC=40°,则∠ABC=110°或30°.【解答】解:①如图1,∵∠AOB和∠ACB是弧AB所对的角,∴∠AOB=2∠ACB,∵∠AOB=100°,∴∠ACB=50°,同理:∠BOC=40°,∴∠BAC=20°,∴∠ABC=180°﹣50°﹣20°=110°,②如图2,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=60°,∠ABC=AOC=30°故答案为110°或30°.15.(3分)已知二次函数y=x2﹣(m﹣1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是m≤3.【解答】解:∵a=1>0,∴抛物线的开口向上,又∵当x≥1时,y随x的增大而增大,∴抛物线的对称轴x≤1.∵二次函数的解析式为y=x2﹣(m﹣1)x+1,∴抛物线的对称轴为x=≤1,解得:m≤3.故答案为m≤3.16.(3分)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是.【解答】解:由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴小球最终停留在黑色区域的概率是;故答案为:.17.(3分)奥运五环是奥林匹克的标志,是由皮埃尔•德•顾拜旦设计的,图案中包含了圆和圆的位置关系有外离和相交.【解答】解:由图案可知,图案中包含了圆和圆的位置关系有外离和相交,故答案为相外离和相交.18.(3分)如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则弧A2019A2020的长是1010π.【解答】解:A(1,1),由题意得,A1(2,0),A2(0,﹣2),A3(﹣3,1),A4(1,5),A5(6,0),A6(0,﹣6),A7(﹣7,1),A8(1,9)…,∴A4n(1,4n+1),A4n+1(4n+2,0),A4n+2(0,﹣(4n+2)),A4n+3(﹣(4n+3),1).∵2019=504×4+3,2020=505×4,∴A2019的坐标为(﹣2019,1),A2020的坐标为(1,2021),∴弧A2019A2020的半径为2020.∴弧A2019A2020==1010π,故答案为:1010π.三、解答题(第19题10分,第20题12分,共22分)19.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1;(2)作出△ABC关于原点O成中心对称的△A2B2C2,写出B2和C2的坐标;(3)直接写出△ABC绕原点O顺时针旋转一周扫过的图形面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,B2(4,﹣1),C2(1,﹣2);(3)OB==,OC==,所以△ABC绕原点O顺时针旋转一周扫过的图形面积=π×()2﹣π×()2=12π.20.(12分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果:(2)求小明恰好抽中B、D两个项目的概率.【解答】解:(1)画树状图:由树状图知共有6种等可能结果;(2)小明恰好抽中B、D两个项目的只有1种情况,所以小明恰好抽中B、D两个项目的概率为.四、(每题12分,共24分)21.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,CF为⊙O的切线,OE⊥AB于点O,分别交AC,CF于D,F两点.(1)求证:ED=EC;(2)若EC=1,∠A=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,如图所示:∵CF为⊙O的切线,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OE⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACE=∠ODA=∠CDE,∴ED=EC;(2)解:∵∠A=30°,∠AOD=90°,∴∠ADO=∠CDE=∠ACE=60°,∴∠CED=60°,∠EOC=30°,∵∠OCE=90°,∴OC=CE•tan60°=1×=,∴图中阴影部分的面积=S△COE﹣S扇形COD=×OC×CE﹣=.22.(12分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为.(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.【解答】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不小于2的情况有:2,3,4,共3种,则P(小球上写的数字不小于2)=;故答案为:;(2)根据题意列表得:1234 1﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,则P(两次摸出小球上的数字和恰好是奇数)==.五、(本题12分)23.(12分)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.(1)判断DE与⊙O的位置关系,并说明理由;(2)若DE=17,CE=13,求⊙O的半径.【解答】(1)DE是⊙O的切线;证明:连接OD,∵∠ACB=90°,CA=CB,∴∠ABC=45°,∴∠COD=2∠ABC=90°,又∵四边形GDEC是平行四边形,∴DE∥CG,∴∠EDO+∠COD=180°,∴∠EDO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:设⊙O的半径为r,∵四边形GDEC为平行四边形,∴DG=CE=13,CG=DE=17,∵∠DOG=90°∴OD2+OG2=DG2,即r2+(17﹣r)2=132,解得r1=5,r2=12,当r=5时,OG=12,点G在⊙O外,∴r=5不成立,舍去,∴r=12.六、(本题12分)24.(12分)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?【解答】解:(1)设y与x之间的函数关系式为y=kx+b,,解得,,即y与x之间的函数表达式是y=﹣20x+2600;(2)(x﹣50)(﹣20x+2600)=24000,解得,x1=70,x2=110,∵尽量给客户优惠,∴这种衬衫定价为70元;(3)由题意可得,w=(x﹣50)(﹣20x+2600),=﹣20x2+3600x﹣130000,w=﹣20(x﹣90)2+32000,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴,解得,50≤x≤75,∵a=﹣20<0,抛物线开口向下,∴当x=75时,w取得最大值,此时w=27500,答:售价定为75元时,可获得最大利润,最大利润是27500元.七、解答题:(12分)25.(12分)如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是等边三角形;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.【解答】解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠PFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.八、(本题14分)26.(14分)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c得,,解得,∴抛物线的关系式为y=x2+2x﹣3.(2)设P的纵坐标为y.∵正方形AMPN与△AOP面积之比为5:2.∴(32+y2)=××3×|y|.解得:y=±或=±6.∴点P的坐标为:P1(0,)或P2(0,﹣)或P3(0,6)或P4(0,﹣6).(3)设P(0,m),连接MN交AP于T,过点T作TJ⊥OA于J,过点P作PE⊥TJ于E,过点N作NF⊥TJ于F,过点M作MG⊥TJ于G.∵四边形AMPN是正方形,∴TA=TP=TM=TN,AP⊥MN,∵A(﹣3,0),P(0,m),∴T(﹣,m),∵∠PET=∠F=∠PTN=90°,∴∠PTE+∠NTF=90°,∠NTF+∠TNF=90°,∴∠PTE=∠TNF,∴△PET≌△TFN(AAS),∴ET=FN,PE=TF,同法可证△PET≌△TGM,∴MG=ET=FN,GT=PE=TF,∴M(﹣﹣,+),N(﹣+,﹣),当点M在抛物线上时,+=(﹣﹣)2+2(﹣﹣)﹣3,解得m=±,当点N在抛物线上时,﹣=(﹣+)2+2(﹣+)﹣3,解得m=2±∴满足条件的点P的坐标是:(0,﹣3)或(0,)或(0,﹣)或(0,﹣)或(0,2﹣)或(0,2+).。

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题05 二次函数的图象与性质【典型例题】1.(2020·福建省连江第三中学初三月考)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( ) A . B . C . D .【答案】D2.(2020·上海市静安区实验中学初三课时练习)抛物线()232y x =-+3可以看作把抛物线23y x =向_______平移_______个单位,向_______平移_______个单位得到. 【答案】右 2 上 33.(2020·湖南长沙·初三开学考试)已知一个二次函数的图象经过点()1,0A -、()3,0B 和()0,3C -三点. (1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.【答案】(1)设二次函数解析式为()()13y a x x =+-,∵抛物线过点()0,3C -,∴()()30103a -=+-,解得1a =,∴()()21323y x x x x =+-=--.(2)由(1)可知:223y x x =--, ∵a =1,b =-2,c =-3, ∴对称轴是直线12b x a =-=,244ac ba -=-4,顶点坐标是()1,4-.4.(2020·浙江杭州外国语学校初三月考)已知一条抛物线分别过点(3,2)-和(0,1),且它的对称轴为直线2x=,试求这条抛物线的解析式.【答案】解:∵抛物线的对称轴为2x =,∴可设抛物线的解析式为2(2)y a x b =-+把(3,2)-,(0,1)代入解析式得()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩, 解得1a =,3b =-,∴所求抛物线的解析式为2(2)3y x =-- 【专题训练】一、选择题1.(2020·竹溪县蒋家堰镇中心学校期末)函数()221y x ++=-的顶点坐标是() A .(2,-1) B .(-2,1) C .(-2,-1) D .(2,1)【答案】B2.(2020·江苏崇川·期末)抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x +1)2+3 B .y =(x +1)2﹣3 C .y =(x ﹣1)2﹣3 D .y =(x ﹣1)2+3【答案】D3.(2020·福建省连江第三中学初三月考)二次函数y =﹣(x -2)2+1的图象中,若y 随x 的增大而减小,则x 的取值范围是( )A .x <2B .x >2C .x <﹣2D .x >﹣2【答案】B4.(2020·竹溪县蒋家堰镇中心学校期末)若函数y =(a ﹣1)x 2﹣4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ). A .-1 B .2 C .-1或2 D .-1或2或1【答案】D5.(2021·福建学业考试)若二次函数2(0)y ax bx c a =++<的图像对称轴为直线12x =-经过不同的5点(),A p q ,()00,B y ,()12,C y ,)2D y ,()1,E p q --,则0y ,1y ,2y 的大小关系( )A .012y y y >>B .012y y y <<C .021y y y >>D .102y y y >>【答案】C6.(2020·竹溪县蒋家堰镇中心学校期末)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②b 2﹣4ac >0;③b >0;④4a ﹣2b +c <0;⑤a +c <23,其中正确结论的个数是( )A .②③④B .①②⑤C .①②④D .②③⑤【答案】B7.(2020·台州市椒江区前所中学月考)关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A.1142t<<B.114t-<≤C.1122t-≤<D.112t-<<【答案】D8.(2020·湖南长沙·初三开学考试)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或315B.6或315或-10C.﹣19或6D.6或315或-19【答案】C9.(2020·湖南长沙·初三开学考试)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.【答案】D10.(2020·浙江杭州外国语学校初三月考)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2-2)>0D.若x1>x2,则a(x1+x2-2)<0【答案】D二、填空题11.(2020·湖南隆回·初三一模)二次函数243y x x =--+的最大值为_________.【答案】712.(2020·湖南广益实验中学开学考试)二次函数223y x x =-+-图象的顶点坐标是 .【答案】(1,﹣2).13.(2020·上海市静安区实验中学初三课时练习)抛物线(2)(3)y x x =+-的开口______,对称轴是_____________,顶点是_______. 【答案】向下 直线x =12 11(,6)2414.(2020·上海市静安区实验中学初三课时练习)已知抛物线22y x mx =+-的对称轴为x =1,则m =______. 【答案】-215.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________.【答案】210S x x =-+16.(2020·浙江杭州外国语学校初三月考)抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.【答案】﹣3<x <117.(2020·湖南广益实验中学开学考试)在平面直角坐标系中,若点P (a ,b )的坐标满足a =b ≠0,则称点P 为“对等点”.已知二次函数y =x 2+mx ﹣m 的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_____.【答案】118.(2020·湖南长沙·初三开学考试)如图,二次函数2(0)y ax bx c a =++≠的图象经过点1(,0)2-,对称轴为直线1,x =下列5个结论:0abc <①;240a b c -+=②;20a b +>③;230c b -<④;()a b m am b +≤+⑤.其中正确的结论为_________________. (注:只填写正确结论的序号)【答案】②⑤三、解答题19.(2020·呼和浩特市敬业学校初二期末)直线33y x =-+与x 轴y 轴分别交于点A ,B ,抛物线2(2)y a x k =-+经过点A ,B ,并与x 轴交于另一点C ,其顶点为P , (1)求,a k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB 为底边的等腰三角形,求点Q 的坐标;【答案】解:(1)∵直线y=-3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x-2)2+k经过点A(1,0),B(0,3),∴43a ka k+=⎧⎨+=⎩,解得11ak=⎧⎨=-⎩,故a,k的值分别为1,-1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3-m)2,∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,∴Q点的坐标为(2,2).20.(2020·云南昆明·初三学业考试)如图,抛物线y =ax 2+bx 过点P (﹣1,5),A (4,0).(1)求抛物线的解析式;(2)在第一象限内的抛物线上有一点B ,当P A ⊥PB 时,求点B 的坐标.【答案】(1)由题意,把点(1,5),(4,0)P A -代入2y ax bx =+得51640a b a b -=⎧⎨+=⎩,解得14a b =⎧⎨=-⎩,则抛物线的解析式为24y x x =-;(2)如图,过P 点作PD x ⊥轴于D ,BE PD ⊥于E , ∵(1,5),(4,0)P A -,∴5,1,4PD OD OA ===,∴145AD OD OA =+=+=,∴5PD AD ==, 45APD DAP ∴∠=∠=︒,设2(,4)B m m m -,则21,45BE m PE m m =-=+-,点B 在第一象限内的抛物线上,4m ∴>,∵PA PB ⊥,即90APB ∠=︒,∴18045BPE APD APB ∠=︒-∠-∠=︒,∴PBE △是等腰直角三角形,∴BE PE =,即2145m m m -+=-,整理得:2560m m --=,解得6m =或14m =-<(舍去),此时22464612m m --=⨯=,故点B 的坐标为(6,12)B .21.(2020·上海市静安区实验中学初三课时练习)已知二次函数的图像过抛物线223y x x =++的顶点和坐标原点.(1)求二次函数的解析式(2)判断点A (-2,5)是否在这个二次函数的图像上 .【答案】解:(1)2223(1)2y x x x =++=++,∴顶点坐标为(-1,2)设2(1)2(0)y a x a =++≠,代入(0,0)得,02a =+,解得,2a =-∴二次函数的解析式为22(1)2y x =-++(2)当x =-2时,y =0,∴点A (-2,5)不在这个二次函数的图像上22.(2020·江苏如东·初三二模)已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1,且与x 轴只有一个公共点.(1)试用含a 的式子表示b 和c ;(2)若(x 1,y 1),(3,y 2)是该抛物线上的两点,y 2<y 1,求x 1的取值范围;(3)若将该抛物线向上平移2个单位长度所得新抛物线经过点(3,6),且当p ≤x ≤q 时,新抛物线对应的函数有最小值2p ,最大值2q ,求p ﹣q 的值.【答案】(1)∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1, ∴﹣2b a=1, ∴b =﹣2a ,∵抛物线与x轴只有一个公共点.∴b2﹣4ac=0,即(﹣2a)2﹣4ac=0,∴c=a;(2)∵(x1,y1),(3,y2)是该抛物线上的两点,对称轴为x=1,∴(3,y2)关于对称轴的对称点为(﹣1,y2),∵a>0,抛物线开口向上,∴y2<y1时,x1的取值范围是x1>3或x1<﹣1;(3)由(1)知:抛物线y=ax2﹣2ax+a=a(x﹣1)2(a>0),将该抛物线向上平移2个单位长度所得新抛物线为y=a(x﹣1)2+2,∵经过点(3,6),∴6=4a+2,解得a=1,∴新抛物线为y=(x﹣1)2+2,∴当x=1时,抛物线有最小值为2,∴2p=2,解得p=1,∴1≤x≤q,∵对称轴为x=1,∴当x=q时,在p≤x≤q范围内有最大值2q,∴2q=(q﹣1)2+2,解得q=3或1(舍去),∴p﹣q=1﹣3=﹣2.23.(2020·浙江金华·初三其他)已知:等腰△ABC的底边在x轴上,其中点C与平面直角坐标系原点重合,点A为(4,0),点B,点D是AB边的中点.抛物线y=ax2+bx+c始终经过A,C两点,(1)当△ABC是正三角形时,点B在抛物线上(如图).求抛物线的函数表达式;个单位后,发现抛物线经过点D,求n的值;(2)若将(1)中抛物线向下平移4(3)若将△ABC ABC n的值.【答案】解:(1)∵△ABC是正三角形,∴AC=BC=AB=4,∴点B(2,),设抛物线y=ax(x﹣4)且过(2,),∴=2a (2﹣4),∴a∴抛物线的解析式为y =﹣2x 2+; (2)∵AB =AC ,点A 为(4,0),点C (0,0),∴点B (2 n ), ∵点D 是AB 边的中点,∴点D (3n ),个单位,∴平移后的抛物线解析式为:y =﹣2x 2+﹣4, ∵平移后的抛物线经过点D ,∴2n =﹣2×9+3﹣4, ∴n =32;(3)∵△ABC 的重心坐标为(2),∴△ABC 向上平移3个单位后,重心坐标为(2,3 n +3),∵y2+x﹣2)2+∴顶点坐标为(2,,个单位,∵平移后△ABC的重心与抛物线顶点也相距3∴|∴n=4或6.24.(2020·浙江杭州外国语学校初三月考)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),∴设抛物线解析式为:y =a (x ﹣1)(x ﹣3),∵抛物线y =a (x ﹣1)(x ﹣3)(a ≠0)的图象经过点C (0,6),∴6=a (0﹣1)(0﹣3),∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x +6;(2)∵y =2x 2﹣8x +6=2(x ﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y ,∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分, ∴22++=P Q A D x x x x ,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.25.(2020·竹溪县蒋家堰镇中心学校期末)如图1,抛物线()21y x a x a -++=与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴负半轴交于点C ,若AB =4. (1)求抛物线的解析式;(2)如图2,E 是第三象限内抛物线上的动点,过点E 作EF ∥AC 交抛物线于点F ,过E 作EG ⊥x 轴交AC 于点M ,过F 作FH ⊥x 轴交AC 于点N ,当四边形EMNF 的周长最大值时,求点E 的横坐标;(3)在x 轴下方的抛物线上是否存在一点Q ,使得以Q 、C 、B 、O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q 的坐标;如果不存在,请说明理由.【答案】解:(1)依题意得:()21x a x a ++-=0,则12121,x x a x x a +=+=,则AB 4==,解得:a =5或﹣3,抛物线与y 轴负半轴交于点C ,故a =5舍去,则a =﹣3,则抛物线的表达式为:223y x x +=﹣…①;(2)由223y x x +=﹣得:点A 、B 、C 的坐标分别为:()3,0-、()()1,00-3、,, 设点E ()2,23m m m +﹣,OA =OC ,故直线AC 的倾斜角为45°,EF ∥AC ,直线AC 的表达式为:y =﹣x ﹣3,则设直线EF 的表达式为:y =﹣x +b ,将点E 的坐标代入上式并解得:直线EF 的表达式为:y =﹣x +()233m m +﹣…②,联立①②并解得:x =m 或﹣3﹣m ,故点F ()23,4m m m --+,点M 、N 的坐标分别为:(),3m m --、()33m m --+,,则EF ))23F E x x m MN -=--=,四边形EMNF 的周长C =ME +MN +EF +FN =(226m m --+-∵﹣2<0,故S 有最大值,此时m =32+-,故点E 的横坐标为:32+-; (3)①当点Q 在第三象限时,当QC 平分四边形面积时, 则1Q B x x ==,故点Q ()1,4--;当BQ 平分四边形面积时, 则1111,133222OBQ Q Q QCBO S y S x =⨯⨯=⨯⨯+⨯⨯四边形,则11121133222Q Q y x ⎛⎫⨯⨯=⨯⨯+⨯⨯ ⎪⎝⎭, 解得:32Q x =-,故点Q 315,24⎛⎫-- ⎪⎝⎭; ②当点Q 在第四象限时,同理可得:点Q ⎝⎭;综上,点Q 的坐标为:()1,4--或315,24⎛⎫-- ⎪⎝⎭或⎝⎭.。

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+34.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣16.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:97.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.58.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是.13.(4分)如果,那么=.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为cm.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义得出结论即可.【解答】解:由题意知,A、C选项中的图形是轴对称图形,D选项中的图形既不是轴对称也不是中心对称图形,B选项是中心对称图形,故选:B.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据方程的系数结合根的判别式即可得出Δ=﹣8<0,由此即可得出结论.【解答】解:∵在方程x2+2x+3=0中,Δ=22﹣4×1×3=﹣8<0,∴该方程无解.故选:C.3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+3【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选:D.4.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、三角形的内角和小于180°是不可能事件,故A符合题意;B、两实数之和为正是随机事件,故B不符合题意;C、买体育彩票中奖是随机事件,故C不符合题意;D、抛一枚硬币2次都正面朝上是随机事件,故D不符合题意;故选:A.5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣1【分析】根据反比例y=kx﹣1(k≠0)的定义解答即可.【解答】解:∵函数为反比例函数,∴m2+m=0,m≠0,∴m=﹣1.故选:D.6.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:9【分析】根据相似三角形的面积比等于相似比的平方解决问题即可.【解答】解:∵两个相似三角形的相似比是3:2,∴这两个相似三角形的面积比=9:4,故选:C.7.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.5【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选:C.8.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°【分析】求出∠ABC,证明∠ACB=90°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=∠ADC=50°,∴∠BAC=90°﹣50°=40°,故选:B.9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是k<2.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣2<0,解得k<2.故答案为:k<2.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是5.【分析】根据正六边形的特点,通过连接半径,结合等腰三角形的有关知识解决.【解答】解:如图,连接OA、OB.∴OA=OB=5,∠AOB=60°,∴AB=5,故答案为:5.13.(4分)如果,那么=.【分析】由,可设x=2k,y=3k,z=4k,代入,即可求得答案.【解答】解:∵,∴设x=2k,y=3k,z=4k,∴==.故答案为:.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为3:5.【分析】根据相似三角形对应边的比叫相似比,周长的比等于相似比解答.【解答】解:∵两个相似三角形对应边的比为3:5,∴两个相似三角形的相似比为3:5,∴它们周长比为3:5.故答案为:3:5.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为9πcm.【分析】利用圆锥的侧面展开图为一扇形和扇形的面积公式计算.【解答】解:该扇形围成的圆锥的侧面积==9π(cm2).故答案为9π.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为x1=﹣1,x2=3.【分析】结合图象得到抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,则抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称.【解答】解:∵抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,∴抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称,∴抛物线与x轴的另一交点坐标(3,0).∴方程ax2+bx+c=0的两根为:x1=﹣1,x2=3.故答案是:x1=﹣1,x2=3.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是0.5.【分析】利用概率公式即可求得答案.【解答】解:摸到黄球的概率为:=0.5.故答案为:0.5.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=﹣10.【分析】利用三角形的面积表示出点A的横纵坐标的积,进而根据点A所在象限得到k 的值.【解答】解:设A的坐标为(x,y),∵S△AOB=5,∴|xy|=5,∴|xy|=10,∵点A在第二象限,∴k=xy=﹣10,故答案为﹣10.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)【分析】因为点A、B、C在上,所以线段AB、BC是所在的⊙O的两条弦,而弦的垂直平分线经过圆心,则作出AB、BC的垂直平分线的交点即可得到所求的圆的圆心,连接圆心和点C得到的线段就是该圆的一条半径,即可作出这个圆.【解答】解:如图,分别作AB、BC的垂直平分线MN、PQ交于点O,连接OC,以O 为圆心、OC长为半径作圆,⊙O所在的圆.理由:∵点A、B、C在上,∴AB、BC是所在的⊙O的两条弦,∴⊙O的圆心在AB的垂直平分线上,也在BC的垂直平分线上,∴AB、BC的垂直平分线的交点就是⊙O的圆心,∴以O为圆心,以OC为半径的圆是所在的⊙O.20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.【分析】由DE∥BC得到∠B=∠D,∠C=∠E,根据相似三角形的判定得到△ABC∽△ADE,利用相似的性质得,而AD=4,DB=12,DE=3,则AB=DB﹣AD,然后代入进行计算即可得到BC的长.【解答】解:∵DE∥BC,∴∠B=∠D,∠C=∠E,∴△ABC∽△ADE,∴,∵AD=4,DB=12,DE=3∴,∴BC=6.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.【分析】(1)首先根据y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出y1和y2与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令x=﹣2,即可求出y的值.【解答】解:(1)由题意,设y1=k1x(k1≠0),y2=(k2≠0),则y=k1x+,因为当x=1时,y=4;当x=2时,y=5,所以有解得k1=2,k2=2.因此y=2x+.(2)当x=﹣2时,y=2×(﹣2)﹣1=﹣5.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.【分析】(1)根据题意可以求得k的值,从而可以求得点B的坐标,求出直线AB的解析式,得到点C的坐标,从而可以求得△ABO的面积;(2)观察图象求得即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过点A(﹣2,1),B(1,n)两点,∴k=﹣2×1=1×n,∴k=﹣2,n=﹣2,∴点B(1,﹣2),∵一次函数y=kx+b(k≠0)过点A(﹣2,1),点B(1,﹣2),∴,解得,∴y=﹣x﹣1,当y=0时,0=﹣x﹣1,得x=﹣1,∴y=﹣x﹣1与x轴的交点C为(﹣1,0),∵点A(﹣2,1),点B(1,﹣2),∴△ABO的面积是+=;(2)由图象可知,kx+b>的解集为x<﹣2或0<x<1.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比较即可.【解答】解:(1)列表:由列表法可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P(乙获胜)=;(2)公平.∵P(乙获胜)=,P(甲获胜)=.∴P(乙获胜)=P(甲获胜)∴游戏公平.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.【分析】根据反射定律可以推出∠1=∠2,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.【解答】解:结合光的反射原理得:∠CED=∠AEB.在Rt△CED和Rt△AEB中,∵∠CDE=∠ABE=90°,∠CED=∠AEB,∴Rt△CED∽Rt△AEB,∴,即,解得AB=15(m).答:铁塔AB的高度是15m.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.【分析】首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OF A=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.【解答】解:连接OD、OE,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OF A=∠A=90°,又∵OD=OF,∴四边形ODAF是正方形,设OD=AD=AF=r,则BE=BD=CF=CE=2﹣r,在△ABC中,∠A=90°,∴BC==2,又∵BC=BE+CE,∴(2﹣r)+(2﹣r)=2,得:r=2﹣,∴⊙O的半径是2﹣.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.【分析】(1)先连接OD、AD,由于AB是直径以及AB=AC,易证BD=CD,而OA=OB,从而可知OD是△ABC的中位线,那么OD∥AC,再结合DE⊥AC,易证∠ODE=∠CED=90°,即DE是⊙O的切线;(2)由⊙O半径是5,可知AB=10,而△ABC是等腰三角形,且AD⊥BC,利用等腰三角形三线合一定理可知∠CAD=∠BAD=60°,在Rt△ADB中,易求BD,进而可求BC.【解答】解:如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,∴DE是⊙O的切线;(2)∵⊙O半径是5,∴AB=10,∵△ABC是等腰三角形,且AD⊥BC,∴∠CAD=∠BAD=60°,在Rt△ADB中,BD=sin60°•AB=5,∴BC=10.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.【分析】(1)将点A、点B的坐标代入可求出b、c的值,继而可得出该抛物线的解析式;(2)连接BC,则BC与对称轴的交点,即是点Q的位置,求出直线BC的解析式后,可得出点Q的坐标.【解答】解(1)把A(1,0)、B(﹣3,0)代入抛物线解析式可得:,解得:故抛物线的解析式为y=﹣x2﹣2x+3.(2)存在.由题意得,点B与点A关于抛物线的对称轴对称,连接BC,则BC与抛物线对称轴的交点是点Q的位置,设直线BC解析式为y=kx+b,把B(﹣3,0)、C(0,3)代入得:,解得:,则直线BC的解析式为y=x+3,令Q X=﹣1 得Q y=2,故点Q的坐标为:(﹣1,2).。

2020-2021学年泰安市泰山区九年级上学期期末数学试卷(含答案解析)

2020-2021学年泰安市泰山区九年级上学期期末数学试卷(含答案解析)

2020-2021学年泰安市泰山区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A. 1.5mB. 1.6mC. 1.86mD. 2.16m2.下列反比例函数是()A. B. C. D.3.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. y=(x+3)2−1B. y=(x−3)2−2C. y=(x−3)2+2D. y=(x−3)2−14.一个盒子中装有标号为1,2,3,4的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A. 23B. 13C. 58D. 385.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…−2013…y…6−4−6−4…下列各选项中,正确的是()A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于−6D. 当x>1时,y的值随x值的增大而增大6. 在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. 54B. 45C. 34D. 437. 如图,点A、B、C、D在⊙O上,OB//CD.若∠A=28°,则∠BOD的大小为()A. 152°B. 134°C. 124°D. 114°8. 已知点P(−3,2),点Q(2.m)都在反比例函数y=kx(k≠0)的图象上,则m的值为()A. 2B. 3C. −2D. −39. 如图.在平面直角坐标系中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上。

连接OA,OB,若0A⊥OB,,则k的值为().A. B. C. −3 D. −210. 如图1,已知直角梯形ABCD,∠B=Rt∠.AD=CD=4cm,BC=6cm,如图在这块铁皮上剪下一个扇形和一个半径为1cm的圆形铁片,使之恰好围成一个图2所示的一个圆锥,则圆锥的高为()A. √17cmB. 2√2cmC. √3cmD. √15cm11. 如图,在面积为12的▱ABCD中,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交AB、CD于点E、F,若AE=2EB,则图中阴影部分的面积等于()A. 2B. 3C. 43D. 2312. 已知函数f(x)=x2−2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1−y2|≤4,则实数a的取值范围是()A. −1≤a≤3B. −1≤a≤2C. 2≤a≤3D. 2≤a≤4二、填空题(本大题共6小题,共24.0分)13. 已知双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为______ .14. 若cos2α+sin242o=1,则锐角α=_________。

2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷 解析版

2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷  解析版

2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+14.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.306.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2 10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB=90°,则a的值为()A .﹣B .﹣C .﹣D .﹣二、填空题(每题5分,共30分)11.(5分)如图,已知P(4,3)为∠α边上一点,则cosα=.12.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n10015020050080010006000到白球的次数m58961162954846013601摸到白球的频率0.580.640.580.590.6050.6010.600小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是(若有正确的,则填编号;若没有正确的,则填“无”).13.(5分)已知点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=﹣ax2+2ax ﹣1(a>0)的图象上,则y1,y2,y3的大小关系是.14.(5分)如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB 于N,连接BM,则∠BMN的度数为.15.(5分)如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.16.(5分)如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:;②m=(用含S1,S3的代数式表示m).三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.(8分)计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.18.(8分)如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.19.(8分)某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).20.(10分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.21.(10分)如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.22.(10分)如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接P A,PB,分别交⊙O 于点C,D,=.(1)求证:P A=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.23.(12分)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.24.(14分)如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求P A•AE的最大值.2020-2021学年浙江省宁波市慈溪市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.【分析】直接利用旋转的定义得出答案即可.【解答】解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件【分析】根据概率的意义找到正确选项即可.【解答】解:天气台预报明天下雨的概率为70%,说明明天下雨的可能性很大,故B正确.故选:B.3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+1【分析】根据平移规律“左加右减,上加下减”解答.【解答】解:把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为y=(x﹣1+3)2﹣3+4,即y=(x+2)2+1.故选:A.4.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:【分析】设圆的半径是R,则可表示出两个多边形的边长,进而求解.【解答】解:设此圆的半径为R,它的内接正六边形的边长为R,则它的内接正方形的边长为R,内接正六边形和内接四边形的边长比为R:R=1:.故选:C.5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.30【分析】利用平行线分线段成比例定理得到=,然后把已知条件代入计算即可.【解答】解:∵l1∥l2∥l3,∴=,即=,∴DF=25.故选:C.6.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=【分析】根据网格构造直角三角形利用勾股定理可求出三角形ABC的三边的长,进而得出此三角形是等腰直角三角形,在利用特殊锐角三角函数值得出答案.【解答】解:由网格构造直角三角形可得,AB2=12+32=10,AC2=12+22=5,BC2=12+22=5,∵AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠A=∠B=45°,∴sin A=sin45°=,cos A=cos45°=,tan A=tan45°=1,∴选项D是正确的,故选:D.7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π【分析】连接OB,求出∠BOD的度数,利用弧长公式求解即可.【解答】解:如图,连接OB.∵CD⊥AB,CD是直径,∴=,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠COB=∠AOB=60°,∴∠DOB=180°﹣60°=120°,∴的长==2π,8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米【分析】根据坡度坡角定义即可求出结果.【解答】解:由于台阶共高出地面1.53米,斜坡的坡角不得超过10°,斜坡的水平宽度AB至少为AB=≈8.5(米).故选:A.9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2【分析】分两种情形,利用相似多边形的性质求解即可.【解答】解:如图,当矩形ABCD∽矩形EFGH时,则有=,∴=,可得3x=2y,选项B符合题意,当矩形ABCD∽矩形EHFG时,则有=,∴=,推不出:x=y或3x=2y或x=1,y=2或x=3,y=2.故选项A,B,C,D都不满足条件,此种情形不存在.∴矩形ABCD∽矩形EFGH,可得3x=2y,10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB=90°,则a的值为()A.﹣B.﹣C.﹣D.﹣【分析】根据二次函数图象的性质,再结合二次函数图象,可以表达对称轴,并结合几何图形,利用相似三角形得出等量关系,建立等式,求解.【解答】解:∵C(m,n)和D(m+8,n),∴CD∥x轴,且二次函数的对称轴x=m+4,∴AB⊥CD,∵点C,D在二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f (e,f为常数)的图象上,∴y=ax2+bx+c=a(x﹣m)(x﹣m﹣8)+n,y=(x﹣m)(x﹣m﹣8)+n,∴A(m+4,n﹣16a),B(m+4,n﹣8),设AB与CD的交点为E,则E(m+4,n),则CE=4,AE=﹣16a,BE=8;在△ABC中,∠ACB=90°,且AB⊥CD,则CE2=AE•BE,∴42=﹣16a×8,解得,.故选:C.二、填空题(每题5分,共30分)11.(5分)如图,已知P(4,3)为∠α边上一点,则cosα=.【分析】过点P作x轴的垂线,构造直角三角形,根据勾股定理和锐角三角函数看求出答案.【解答】解:过点P(4,3)作PQ⊥x轴,垂足为Q,则PQ=3,OQ=4,在Rt△POQ中,OP===5,所以cosα==,故答案为:.12.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是②(若有正确的,则填编号;若没有正确的,则填“无”).【分析】根据题意和表格中的数据、概率的含义,可以判断①和②的结论是否成立,本题得以解决.【解答】解:由题意可得,若摸10000次,则频率不一定为0.6,可能为0.6,故①错误;由表格中的数据可以估计摸一次得白球的概率约为0.6,故②正确;故答案为:②.13.(5分)已知点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=﹣ax2+2ax ﹣1(a>0)的图象上,则y1,y2,y3的大小关系是y3<y1<y2.【分析】根据二次函数的解析式得出图象的开口向下,对称轴是直线x=1,根据x<1时,y随x的增大而增大,即可得出答案.【解答】解:∵y=﹣ax2+2ax﹣1(a>0),∴图象的开口向下,对称轴是直线x=﹣=1,∴A(4,y3)关于直线x=1的对称点是(﹣2,y3),∵﹣2<﹣1<﹣0.5,∴y3<y1<y2,故答案为y3<y1<y2.14.(5分)如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB 于N,连接BM,则∠BMN的度数为45°.【分析】连接OM.想办法求出∠MNB,∠NBM,即可解决问题.【解答】解:连接OM.∵AB是直径,=2,∴∠BOC=×180°=60°,∵=,∴∠MOB=∠COM=30°,∵OM=OB,∴∠B=∠OMB=(180°﹣30°)=75°,∵OC∥MN,∴∠MNB=∠COB=60°,∴∠BMN=180°﹣∠BNM﹣∠NBM=180°﹣60°﹣75°=45°,故答案为:45°.15.(5分)如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.【分析】如图,由DE∥BC,可得△ADE∽△ABC,利用相似三角形的性质,可求得△ADE的高,进而求得平行四边形的高,则问题可解.【解答】解:如图,作AM⊥BC于M,AM交DE于N.∵S△ABC=BC•AM=10,BC=5,∴AM=4.∵DE∥BC,AM⊥BC,∴△ADE∽△ABC,AM⊥DE,∴=,即=,∴AN=,∴平行四边形DEGF的高MN=AM﹣AN=4﹣=,∴平行四边形纸片的面积=2×=.故答案为:.16.(5分)如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:S2=(S1+S3);②m=.(用含S1,S3的代数式表示m).【分析】①由题意可得:S1=8S△AEH+S3,4S△AEH=S2﹣S3,代入化简即可得到答案;②先证明△MLK∽△KEH,设AE=x,PE=y,结合四边形MNOP的面积为m,可得答案.【解答】解:①观察图像(2)可知,S1=8S△AEH+S3,4S△AEH=S2﹣S3,∴S1=2(S2﹣S3)+S3,∴2S2=S1+S3,∴S2=(S1+S3),故答案为:S2=(S1+S3).②∵HE⊥EF,AK⊥HE,∴AK∥EF,同理:BL∥GF,DJ∥HE,CI∥GH,∴四边形MNOP是平行四边形,且△MKL≌△NLI≌△OIJ≌△PJK,∴MN∥GF∥EH,∴∠LMK=∠EKH=90°,∠MLK=∠HEL,∴△MLK∽△KEH,∴==,设AE=x,PE=y,则:==,∴ML=,MK==LN,∴MN=+=,∴m=MN2=2=,∵S1=(x+y)2,S2=x2+y2,S3=(x﹣y)2,∴m===.故答案为:.三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.(8分)计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.【分析】(1)直接利用一个未知数表示出a,b,进而代入化简得出答案;(2)直接利用特殊角的三角函数值代入得出答案.【解答】解:(1)∵,∴设a=3x,则b=4x,∴==﹣;(2)原式=2×﹣×=1﹣=﹣.18.(8分)如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.【分析】根据网格即可画出满足两个条件的三角形.【解答】解:如图所示,△ADE和△ADB即为所求.19.(8分)某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).【分析】(1)直接利用概率公式求解可得答案;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.【解答】解:(1)小丽通过A通道进入校园的概率为;(2)列表如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小丽和小聪从两个不同通道进入校园的有6种可能,∴小丽和小聪从两个不同通道进入校园的概率为=.20.(10分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.【分析】(1)过O作OG⊥BD于点G,根据等腰三角形的性质和平行线的性质可得∠EAB =∠BOG=28°,再利用锐角三角函数即可解决问题;(2)根据已知条件证明△AEB∽△CFD,对应边成比例即可求出CF的高度.【解答】解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG∥AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG=∠BOD=×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG∥AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF∥OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴=,∴CF===100(cm),答:C点离地面的高度CF为100cm.21.(10分)如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.【分析】(1)设矩形的长为x米,则宽为米,由题意可知x≤a,设矩形的面积为S,根据题意用含x的式子表示出S,将其写成二次函数的顶点式,则可知其对称轴,然后分别对①a=15;②a=10计算求得相应的最大值即可.(2)令S=67.5得关于x的一元二次方程,求得方程的解并结合由(1)的结论可得答案.【解答】解:(1)设矩形的长为x米,则宽为米,由题意可知x≤a,∴设矩形的面积为S,则S=x×=﹣x2+12x=﹣(x﹣12)2+72,∵﹣<0,抛物线开口向下,对称轴为直线x=12,∴当0<x≤12时,S随x的增大而增大,当x≥12时,S随x的增大而减小;①a=15时,x≤a即x≤15;∴当x=12时,S有最大值为72平方米;②a=10时,x≤a即x≤10,∴当x=10时,面积的最大值为﹣×(10﹣12)2+72=70(平方米).(2)令S=67.5得:﹣(x﹣12)2+72=67.5,解得x=9或x=15,由x≤a可知,当x=15时,a≥15,由(1)知,此时矩形最大值在x=12时取得,面积最大值为72平方米,故x=15舍去.∴a=9.22.(10分)如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接P A,PB,分别交⊙O 于点C,D,=.(1)求证:P A=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.【分析】(1)连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP交⊙O 于E.证明Rt△OMC≌Rt△OND(HL),推出OM=ON,再证明Rt△POM≌Rt△PON (HL),可得结论.(2)过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R,首先证明∠AOC=30°,利用三角形的面积公式求出R,即可解决问题.【解答】(1)证明:连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP 交⊙O于E.∵=,∴AC=BD,∵OA=OC=OB=OD,OM⊥AC,ON⊥BD,∴CM=AM,BN=DN,∠OMC=∠OND=90°,∴CM=DN,在Rt△OMC和Rt△OND中,,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,在Rt△POM和Rt△PON中,,∴Rt△POM≌Rt△PON(HL),∴PM=PN,∵AM=BN,∴P A=PB.(2)解:∵∠APB=60°,∠PMO=∠PNO=90°,∴∠MON=120°,∵△POM≌△PON,∴∠POM=∠PON=60°,∵=3,∴∠COE=3∠COM,∴∠COM=15°,∴∠AOC=2∠COM=30°,过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R∴S△AOC=9,∴•R••R=9,∴R=6,∴S阴=S阴=S阴﹣S△AOC=﹣9=3π﹣9.23.(12分)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.【分析】(1)利用待定系数可求解析式;(2)先求出AB,AC,BC,由勾股定理的逆定理可求解;(3)①由平行线的性质可得∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,由相似三角形的判定定理可得△PQM∽△COA;②先求出BC解析式,设P(m,﹣m2+m+2),则点M(m,﹣m+2),由锐角三角函数可求PQ的长,由二次函数的性质可求解.【解答】解:(1)∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),∴,解得:,∴二次函数表达式为y=﹣x2+x+2;(2)△ABC是直角三角形,理由如下:∵抛物线y=﹣x2+x+2与y轴交于点C,∴点C(0,2),又∵点A(﹣1,0),B(4,0),∴AB=5,AC===,BC===2,∵AB2=25,AC2+BC2=25,∴AB2=AC2+BC2,∴∠ACB=90°,∴△ABC是直角三角形;(3)①∵∠ACB=∠AOC=90°,∴∠ACO+∠BCO=90°=∠ACO+∠CAO,∴∠BCO=∠CAO,∵PQ∥AC,PM∥y轴,∴∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,∴△PMQ∽△COA;②如图,延长PM交AB于H,∵∠PMQ=∠BMH,∠PQM=∠PHB=90°,∴∠QPM=∠CBA,∵B(4,0),点C(0,2),∴直线BC解析式为y=﹣x+2,设P(m,﹣m2+m+2),则点M(m,﹣m+2),∴PM=﹣m2+m+2﹣(﹣m+2)=﹣(m﹣2)2+2,∵cos∠CBA=cos∠QPM,∴,∴=,∴PQ=﹣(m﹣2)2+,∴当m=2时,PQ有最大值为.24.(14分)如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求P A•AE的最大值.【分析】(1)①证明:如图1,连接PC,根据圆内接四边形的性质和圆周角定理得:∠PCB=∠PBC,所以弦相等,弧相等,可得结论;②如图2,作辅助线,构建直径PG,根据垂径定理得:BG=3,∠BOG=∠BAC,最后由三角函数定义可得结论;(2)如图3,过P作PG⊥BC于G,连接OC,根据勾股定理计算OG和PC的长,根据各角的关系证明∠APC=∠E,则CE和PC的长相等,可得结论;(3)如图4,过点C作CQ⊥AB于Q,证明△ACE∽△APB,列比例式得:P A•AE=AC •AB,根据三角形面积公式得P A•AE=S△ABC,由图形可知:点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,从而得结论.【解答】(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠P AF=∠PBC,∵AP平分∠BAF,∴∠P AF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠P AF=∠P AB,∴△ACE∽△APB,∴,∴P A•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴P A•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时P A•AE=×=80.。

2020-2021学年天津市东丽区九年级(上)期末数学试卷

2020-2021学年天津市东丽区九年级(上)期末数学试卷

2020-2021学年天津市东丽区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)抛物线y=2x2﹣4x+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2 3.(3分)下列描述的事件为必然事件的是()A.汽车累积行驶10000km,从未出现故障B.购买1张彩票,中奖C.任意画一个三角形,其内角和是180°D.明天一定会下雪4.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0 5.(3分)已知⊙O的半径是6cm,则⊙O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm6.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°7.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm8.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3 9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.(3分)半径为3的正六边形的周长为()A.18B.C.D.11.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=750012.(3分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD ,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一元二次方程x2﹣2x=0的两根分别为.14.(3分)掷两枚质地均匀的硬币,两枚硬币全部反面朝上的概率是15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.16.(3分)若抛物线y=3x2﹣4x﹣k与x轴没有交点,则k的取值范围为.17.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为.18.(3分)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为上一点,∠AOC =30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:10x2﹣5x﹣=x2﹣5x+.20.(8分)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球.(1)用画树状图或列表的方法表示出可能出现的所有结果;(2)求两次抽出数字之和为奇数的概率.21.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(Ⅰ)旋转中心是点,旋转角度是度;(Ⅱ)若连接EF,则△AEF是三角形,并证明你的结论.22.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC与BD相交于点F,BE是半圆O所在圆的切线,与AC的延长线相交于点E.(Ⅰ)若AD=BC,证:△CBA≌△DAB;(Ⅱ)若BE=BF,∠DAC=32°,求:∠EAB的度数.23.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55606570销售单价x(元/千克)销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(10分)已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(Ⅰ)如图1所示,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①求∠DAO的度数;②用等式表示线段OA,OB,OC之间的数量关系,并证明.(Ⅱ)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?并说明理由;②若等边△ABC的边长为1,请你直接写出OA+OB+OC的最小值.25.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.2020-2021学年天津市东丽区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)抛物线y=2x2﹣4x+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2【分析】将题目中的抛物线化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【解答】解:∵抛物线y=2x2﹣4x+1=2(x﹣1)2﹣1,∴该抛物线的对称轴是直线x=1,故选:B.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.(3分)下列描述的事件为必然事件的是()A.汽车累积行驶10000km,从未出现故障B.购买1张彩票,中奖C.任意画一个三角形,其内角和是180°D.明天一定会下雪【分析】事先能肯定它一定会发生的事件称为必然事件,据此进行判断即可.【解答】解:A.汽车累积行驶10000km,从未出现故障,是随机事件,不合题意;B.购买1张彩票,中奖,是随机事件,不合题意;C.任意画一个三角形,其内角和是180°,是必然事件,符合题意;D.明天一定会下雪,是随机事件,不合题意;故选:C.【点评】此题主要考查了随机事件,正确掌握随机事件的定义是解题关键.4.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0【分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】解:A.此方程判别式Δ=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式Δ=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式Δ=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式Δ=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.5.(3分)已知⊙O的半径是6cm,则⊙O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为12cm.故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).6.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°【分析】连接OD,根据切线的性质可得∠ODC=90°,再根据圆周角定理即可求出∠C 的度数.【解答】解:如图,连接OD,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠CDA=118°,∴∠ODA=∠CDA﹣∠ODC=118°﹣90°=28°,∵OD=OA,∴∠OAD=∠ODA=28°,∴∠DOC=2∠ODA=56°,∴∠C=90°﹣∠DOC=34°,故选:C.【点评】本题考查了切线的性质,圆周角定理,解决本题的关键是掌握切线的性质.7.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【点评】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【分析】利用概率公式可求解.【解答】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.10.(3分)半径为3的正六边形的周长为()A.18B.C.D.【分析】根据正六边形的半径等于边长进行解答即可.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长a=3,正六边形的周长l=6a=18,故选:A.【点评】本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.11.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.(3分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD ,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE ⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.【点评】本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一元二次方程x2﹣2x=0的两根分别为x1=0,x2=2.【分析】利用因式分解法求解可得.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.(3分)掷两枚质地均匀的硬币,两枚硬币全部反面朝上的概率是【分析】根据概率公式知,掷两枚质地均匀的硬币,有4种情况,两枚硬币全部反面朝上的概率是.【解答】解:根据题意可得:掷两枚质地均匀的硬币,有4种情况,则两枚硬币全部反面朝上的概率是.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于15π.【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:由已知得,母线长l=5,底面圆的半径r为3,∴圆锥的侧面积是s=πlr=5×3×π=15π.故答案为:15π.【点评】本题考查了圆锥的计算,要学会灵活的运用公式求解.16.(3分)若抛物线y=3x2﹣4x﹣k与x轴没有交点,则k的取值范围为k<﹣.【分析】由抛物线与x轴没有交点,可得出一元二次方程3x2﹣4x﹣k=0没有实数根,进而可得出Δ<0,解之即可得出k的取值范围.【解答】解:∵抛物线y=3x2﹣4x﹣k与x轴没有交点,∴一元二次方程3x2﹣4x﹣k=0没有实数根,∴△=(﹣4)2﹣4×3×(﹣k)<0,∴k<﹣.故答案为:k<﹣.【点评】本题考查了抛物线与x轴的交点,牢记“Δ=b2﹣4ac<0时,抛物线与x轴没有交点”是解题的关键.17.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为24°.【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B,由三角形的外角性质和三角形内角和定理可求解.【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故答案为:24°.【点评】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.18.(3分)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为上一点,∠AOC =30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.【分析】根据扇形的面积公式,利用图中阴影部分的面积=S扇形BOC﹣S△OBC+S△COD进行计算.【解答】解:∵∠AOB=90°,∠AOC=30°,∴∠BOC=60°,∵扇形AOB中,OA=OB=2,∴OB=OC=2,∴△BOC是等边三角形,∵过C作OA的垂线交AO于点D,∴∠ODC=90°,∵∠AOC=30°,∴OD=OC=,CD=OC=1,∴图中阴影部分的面积=S扇形BOC﹣S△OBC+S△COD=﹣+=π﹣.故答案为π﹣.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等边三角形的判定和性质.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:10x2﹣5x﹣=x2﹣5x+.【分析】整理后利用因式分解法求解即可.【解答】解:整理得9x2﹣1=0,∴(3x+1)(3x﹣1)=0,∴3x+1=0或3x﹣1=0,∴x1=﹣,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.20.(8分)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球.(1)用画树状图或列表的方法表示出可能出现的所有结果;(2)求两次抽出数字之和为奇数的概率.【分析】(1)列表可得所有等可能结果;(2)从所列的等可能结果中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)列表如下:4564(4,4)(5,4)(6,4)5(4,5)(5,5)(6,5)6(4,6)(5,6)(6,6)(2)所有等可能的结果有9种,其中之和为奇数的情况有4种,∴两次抽出数字之和为奇数的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(Ⅰ)旋转中心是点A,旋转角度是90度;(Ⅱ)若连接EF,则△AEF是等腰直角三角形,并证明你的结论.【分析】(Ⅰ)根据旋转变换的性质解决问题即可.(Ⅱ)利用旋转变换的性质解决问题即可.【解答】解:(Ⅰ)旋转中心是点A,旋转角度是90度.故答案为:A,90.(Ⅱ)由旋转的性质可知,∠DAE=∠BAF,AE=AF,∵四边形ABCD是正方形,∴∠BAD=90°,∴△AEF是等腰直角三角形.故答案为:等腰直角.【点评】本题考查作图﹣旋转变换,正方形的性质等知识,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.22.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC与BD相交于点F,BE是半圆O所在圆的切线,与AC的延长线相交于点E.(Ⅰ)若AD=BC,证:△CBA≌△DAB;(Ⅱ)若BE=BF,∠DAC=32°,求:∠EAB的度数.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠EAB=∠DAC=32°.【点评】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.23.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55606570销售单价x(元/千克)销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点评】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.24.(10分)已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(Ⅰ)如图1所示,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①求∠DAO的度数;②用等式表示线段OA,OB,OC之间的数量关系,并证明.(Ⅱ)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?并说明理由;②若等边△ABC的边长为1,请你直接写出OA+OB+OC的最小值.【分析】(Ⅰ)①根据旋转变换的性质、四边形内角和为360°计算即可;②连接OD,根据勾股定理解答;(Ⅱ)①将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,根据等边三角形的性质解答;②根据等边三角形的性质计算.【解答】解:(Ⅰ)①∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°,∴∠DAO=360°﹣60°﹣90°﹣120°=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2.如图1,连接OD.∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.在Rt△ADO中,∠DAO=90°,∴OA2+AD2=OD2.∴OA2+OB2=OC2.(Ⅱ)①如图2,当α=β=120°时,OA+OB+OC有最小值.作图如图2,如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②当等边△ABC的边长为1时,∵OB=OC,∴∠OBC=30°,在Rt△BDC中,BD=BC•cos30=,∴BA'=2BD=,∴OA+OB+OC的最小值A′B=.【点评】此题是几何变换综合题,主要考查了等边三角形的性质和判定,旋转的性质,含30度角的直角三角形的性质,构造出几何图形是解本题的关键.25.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.。

2020-2021学年上海市杨浦区九年级(上)期末数学试卷及参考答案

2020-2021学年上海市杨浦区九年级(上)期末数学试卷及参考答案

2020-2021学年上海市杨浦区九年级(上)期末数学试卷(一模)一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)关于抛物线y=x2﹣x,下列说法中,正确的是()A.经过坐标原点B.顶点是坐标原点C.有最高点D.对称轴是直线x=12.(4分)在△ABC中,如果sin A=,cot B=,那么这个三角形一定是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形3.(4分)如果小丽在楼上点A处看到楼下点B处小明的俯角是35°,那么点B处小明看点A处小丽的仰角是()A.35°B.45°C.55°D.65°4.(4分)在△ABC中,点D、E分别在AB、AC上,下列条件中,能判定DE∥BC的是()A.=B.=C.=D.=5.(4分)下列命题中,正确的是()A.如果为单位向量,那么=||B.如果、都是单位向量,那么=C.如果=﹣,那么∥D.如果||=||,那么=6.(4分)在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,下列说法中,错误的是()A.S△AOB=S△DOC B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:3(+2)﹣2(﹣)=.8.(4分)已知抛物线y=(1﹣a)x2+1的开口向上,那么a的取值范围是.9.(4分)如果小明沿着坡度为1:2.4的山坡向上走了130米,那么他的高度上升了米.10.(4分)已知线段AB的长为4厘米,点P是线段AB的黄金分割点(AP<BP),那么线段AP的长是厘米.11.(4分)已知抛物线y=x2﹣4x+3与x轴交于点A、B,与y轴交于点C,那么△ABC的面积等于.12.(4分)已知抛物线y=x2,把该抛物线向上或向下平移,如果平移后的抛物线经过点A (2,2),那么平移后的抛物线的表达式是.13.(4分)如图,已知小李推铅球时,铅球运动过程中离地面的高度y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为米.14.(4分)如图,已知在平行四边形ABCD中,点E在边AB上,=,联结DE交对角线AC于点O,那么的值为.15.(4分)如图,已知在△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,BC=4,那么cos∠GCB=.16.(4分)如图,已知在△ABC中,∠C=90°,AB=10,cot B=,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为.17.(4分)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.18.(4分)如图,已知在△ABC中,∠B=45°,∠C=60°,将△ABC绕点A旋转,点B、C分别落在点B1、C1处,如果BB1∥AC,联结C1B1交边AB于点D,那么的值为.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)已知一个二次函数的图象经过点A(﹣1,0)、B(0,3)、C(2,3).(1)求这个函数的解析式及对称轴;(2)如果点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,那么y1y2.(填“<”或“>”)21.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,点M为边BC上一点,BM=BC,联结AM交DE于点N.(1)求的值;(2)设=,=,如果=,请用向量、表示向量.22.(10分)如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)23.(12分)已知:如图,在梯形ABCD中,AD∥BC,对角线BD、AC相交于点E,过点A作AF∥DC,交对角线BD于点F.(1)求证:=;(2)如果∠ADB=∠ACD,求证:线段CD是线段DF、BE的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=﹣(x﹣m)2+4与y轴交于点B,与x轴交于点C、D(点C在点D左侧),顶点A在第一象限,异于顶点A的点P(1,n)在该抛物线上.(1)如果点P与点C重合,求线段AP的长;(2)如果抛物线经过原点,点Q是抛物线上一点,tan∠OPQ=3,求点Q的坐标;(3)如果直线PB与x轴的负半轴相交,求m的取值范围.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及x的取值范围;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.2020-2021学年上海市杨浦区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【分析】先用配方法把二次函数化成顶点式,即可判断B、D,由a的正负判断有最大值和最小值即可判断C,看(0,0)是否满足y=x2﹣x即可判断A.【解答】解:∵y=x2﹣x=(x﹣)2﹣,∴顶点坐标是:(,﹣),对称轴是直线x=,∵a=1>0,∴开口向上,有最小值,∵当x=0时,y=x2﹣x=0,∴图象经过坐标原点,故选:A.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,把二次函数化成顶点式是解题的关键.2.【分析】求出∠A,∠B的值即可判断.【解答】解:∵sin A=,cot B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°,∴△ABC是直角三角形,故选:D.【点评】本题考查解直角三角形,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.【分析】根据两点之间的仰角与俯角正好是两条水平线夹角的内错角,应相等即可得结论.【解答】解:因为从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.所以小丽在楼上点A处看到楼下点B处小明的俯角是35°,点B处小明看点A处小丽的仰角是35°.故选:A.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决本题的关键是掌握仰角与俯角的定义.4.【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【解答】解:当,则DE∥BC,故选项A不符合题意;当=,则DE∥BC,故选项B符合题意;当=,则DE∥BC,故选项C不符合题意;由于=,DE∥BC不一定成立,选项D不符合题意.故选:B.【点评】本题考查平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边5.【分析】根据平面向量的定义、共线向量的定义以及平面向量的模的定义进行分析判断.【解答】解:A、如果为单位向量,且与方向相同时,那么=||,故本选项不符合题意.B、如果、都是单位向量且方向相同,那么=,故本选项不符合题意.C、如果=﹣,则向量与﹣的大小相等、方向相反,那么∥,故本选项符合题意.D、若||=||,那么与的模相等,但是方向不一定相等,即=不一定成立,故本选项不符合题意.故选:C.【点评】本题主要考查了平面向量的知识,注意平面向量既有大小,又有方向,属于易错题.6.【分析】如图,利用三角形面积公式得到S△ABC=S△DCB,则S△AOB=S△DOC,于是可对A选项进行判断;根据平行线分线段成比例定理得到=,再利用三角形面积公式得到=,于是可对B选项进行判断;证明△AOD∽△COB,利用相似三角形的性质可对C选项进行判断;利用两平行线的距离的定义得到点B到AD的距离等于点A 到BC的距离,然后根据三角形面积公式可对D选项进行判断.【解答】解:如图,∵AD∥BC,=S△DCB,∴S△ABC+S△OBC=S△OBC+S△DOC,即S△AOBS△AOB=S△DOC,所以A选项的结论正确;∵AD∥BC,∴=,∵=,∴=;所以B选项的结论正确;∵AD∥BC,∴△AOD∽△COB,∴=()2,所以C选项的结论错误;∵AD∥BC,∴点B到AD的距离等于点A到BC的距离,∴=,所以D选项的结论正确;故选:C.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;可利用相似三角形的性质得到对应角相等,通过相似比进行几何计算.也考查了梯形和三角形面积公式.二、填空题:(本大题共12题,每题4分,满分48分)7.【分析】乘法结合律也同样应用于平面向量的计算.【解答】解:原式=3+6﹣2+2)=+8.故答案是:+8.【点评】本题主要考查了平面向量,属于基础题,实数的运算法则同样应用于平面向量的计算.8.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数1﹣a>0.【解答】解:因为抛物线y=(1﹣a)x2+1的开口向上,所以1﹣a>0,即a<1.故答案为:a<1.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.9.【分析】设他沿着垂直方向升高了x米,根据坡度的概念用x表示出他行走的水平宽度,根据勾股定理计算即可.【解答】解:设他沿着垂直方向升高了x米,∵坡比为1:2.4,∴他行走的水平宽度为2.4x米,由勾股定理得,x2+(2.4x)2=1302,解得,x=50,即他沿着垂直方向升高了50米,故答案为:50.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是掌握坡度坡角的定义.10.【分析】先根据黄金分割的定义求出BP的长,即可得出答案.【解答】解:∵点P是线段AB的黄金分割点,AP<BP,AB=4厘米,∴BP=AB=(2﹣2)厘米,∴AP=AB﹣BP=4﹣(2﹣2)=(6﹣2)厘米,故答案为:(6﹣2).【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.11.【分析】根据抛物线y=x2﹣4x+3,可以求得该抛物线与x轴和y轴的交点,然后即可得到点A、B、C的坐标,从而可以求得△ABC的面积.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣1)(x﹣3),∴当y=0时,x=1或x=3,当x=0时,y=3,∴点A、B、C的坐标为分别为(1,0),(3,0),(0,3),∴AB=2,∴△ABC的面积是:=3,故答案为:3.【点评】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.12.【分析】可设所求的函数解析式为y=x2+k,把A坐标代入可得平移后的抛物线.【解答】解:设所求的函数解析式为y=x2+k,∵点A(2,2)在抛物线上,∴2=22+k解得:k=﹣2,∴平移后的抛物线的表达式是y=x2﹣2.故答案为:y=x2﹣2.【点评】考查二次函数的平移问题;用到的知识点为:上下平移不改变二次项系数及顶点的横坐标,只改变顶点的纵坐标,上加下减.13.【分析】直接利用配方法求出二次函数最值即可.【解答】解:由题意可得:y=﹣x2+x+=﹣(x2﹣8x)+=﹣(x﹣4)2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.【点评】此题主要考查了二次函数的应用,正确利用配方法求出最值是解题关键.14.【分析】根据平行四边形的性质得AB∥CD,AB=CD,则利用比例的性质和等量代换得到=,接着证明△AOE∽△COD,然后利用相似比得到的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵=,∴=,∴=,∵AE∥CD,∴△AOE∽△COD,∴==.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;可利用相似三角形的性质得到对应角相等,通过相似比进行几何计算.也考查了平行四边形的性质.15.【分析】延长CG交AB于D,如图,根据三角形重心的定义和性质得到DG=CG=1,AD=BD,再利用直角三角形斜边上的中线性质得到CD=BD=AD=3,所以∠DCB=∠B,然后在Rt△ACB中利用余弦的定义求出cos B的值,从而得到cos∠GCB的值.【解答】解:延长CG交AB于D,如图,∵点G是△ABC的重心,∴DG=CG=1,AD=BD,∵∠ACB=90°,∴CD=BD=AD=2+1=3,∴AB=6,∠DCB=∠B,在Rt△ACB中,cos B===,∴cos∠GCB=.故答案为.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了解直角三角形.16.【分析】先利用余切的定义得到cot B==,则可设BC=t,则AC=2t,AB=t,所以t=10,求出得到BC=2,AC=4,过C点作CH⊥AB于H,交GF于M,如图,设正方形的边长为x,利用面积法得到CH=4,则CM=4﹣x,然后证明△CGF∽△CAB,则利用相似比得到=,从而解方程求出x即可.【解答】解:∵∠C=90°,∴cot B==,设BC=t,则AC=2t,∴AB==t,∴t=10,解得t=2,∴BC=2,AC=4,过C点作CH⊥AB于H,交GF于M,如图,设正方形的边长为x,易得四边形DGMH为矩形,∴MH=DG=x,∵CH×AB=×AC×BC,∴CH==4,∴CM=CH﹣MH=4﹣x,∵GF∥AB,∴△CGF∽△CAB,∴=,即=,解得x=,即正方形DEFG的边长为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;可利用相似三角形的性质得到对应角相等,通过相似比进行几何计算.也考查了正方形的性质和解直角三角形.17.【分析】如图,过端午A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.解直角三角形求出AE,DE即可解决问题【解答】解:如图,过端午A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.【分析】由旋转的性质和等腰三角形的性质可求∠B1AB=30°,由直角三角形的性质可求DB1=DE,DB=DE﹣DE,即可求解.【解答】解:如图,过点D作DE⊥AB1于E,∵∠B=45°,∠C=60°,∴∠CAB=75°,∵BB1∥AC,∴∠CAB=∠ABB1=75°,∵将△ABC绕点A旋转,∴AB=AB1,∠AB1C1=∠ABC=45°,∴∠AB1B=∠ABB1=75°,∴∠B1AB=30°,又∵DE⊥AB1,∠AB1C1=45°,∴AD=2DE,AE=DE,DE=B1E,∴AB1=DE+DE=AB,DB1=DE,∴DB=AB﹣AD=DE﹣DE,∴==,故答案为:.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.三、解答题:(本大题共7题,满分78分)19.【分析】把特殊角的三角函数值代入,根据二次根式的混合运算法则计算,得到答案.【解答】解:原式====4﹣2.【点评】本题考查的是特殊角的三角函数值、熟记特殊角的三角函数值是解题的关键.20.【分析】(1)根据待定系数法求得即可;(2)可根据二次函数增减性进行解答.【解答】解:(1)设二次函数的解析式为y=ax2+bx+c(a≠0).根据题意,得,解得.∴二次函数的解析式为y=﹣x2+2x+3,∴抛物线的对称轴为直线x=﹣=1;(2)由(1)可知,抛物线开口向下,对称轴为直线x=1,∵点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,∴y1<y2,故答案为<.【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.21.【分析】(1)利用平行线截线段成比例解答;(2)根据已知条件和三角形法则求得,然后利用(1)的结论求向量.【解答】(1)解:∵BM=BC,∴=.∵DE∥BC,∴=,∴==.即:的值是;(2)解:∵=,=,∴=﹣=﹣.∵DE∥BC,=,∴==.∴DN=BM.由(1)知,=,则NE=2DN.∴=2=2×=﹣.【点评】本题主要考查了平面向量的知识,难度不大,熟练运用三角形法则解题即可.22.【分析】作AD⊥BC与D,由三角函数得出CD=AD,AD=BD,由已知条件得出关于AD的方程,解方程即可.【解答】解:过点A作AD⊥BC于点D.如图所示:在Rt△ACD中,∵∠C=45°,∴tan C==1,∴CD=AD,在Rt△ABD中,∵∠B=64°,∴tan∠B==2.05,∴BD=BD,∵BC=BD+CD=50米,∴AD+AD=50米,解得:AD≈33.6(米).答:河的宽度约为33.6米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解此题的关键是把实际问题抽象到直角三角形中,利用三角函数求解.23.【分析】(1)根据平行线的性质和等量代换证明∠DAF=∠BCD,则可证明△DAF∽△BCD,利用相似比得到=,再证明△ADE∽△CBE,则=,然后利用等量代换得到结论;(2)证明△DCE∽△DBC,则根据相似比得DC2=DE•DB,再利用(1)中的结论得到=,利用等量代换得到DC2=DF•BE,从而得到结论.【解答】证明:(1)∵AD∥BC,∴∠CBD=∠ADF,∠ADC+∠BCD=180°,∵AF∥CD,∴∠ADC+∠DAF=180°,∴∠DAF=∠BCD,∴△DAF∽△BCD,∴=,∵AD∥BC,∴△ADE∽△CBE,∴=,∴=;(2)∵∠ADB=∠ACD,∠ADB=∠CBD,∴∠ECD=∠CBD,而∠CDE=∠BDC,∴△DCE∽△DBC,∴=,∴DC2=DE•DB,∵=,∴DE•DB=DF•BE,∴DC2=DF•BE,即线段CD是线段DF、BE的比例中项.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;可利用相似三角形的性质得到对应角相等,通过相似比进行几何计算.也考查了梯形的性质.24.【分析】(1)由题意,抛物线y=﹣(x﹣m)2+4经过点C(1,0),利用待定系数法求出m,再求出点P的坐标即可解决问题.(2)如图1中,延长PQ交X轴于F,设F(t,0).证明OF=PF,由此构建方程求出t,再求出直线PF的解析式,构建方程组确定交点坐标即可.(3)构建不等式组,解决问题即可.【解答】解:(1)由题意,抛物线y=﹣(x﹣m)2+4经过点C(1,0),∴(1﹣m)2=4,解得m=3或﹣1(舍弃),∴A(3,4),P(1,0),∴PA==2.(2)∵抛物线y=﹣(x﹣m)2+4经过点C(0,0),∴m2=4,解得m=2或﹣2(舍弃),∴抛物线的解析式为y=﹣(x﹣2)2+4,当x=1时,n=3,∴P(1,3),如图1中,延长PQ交X轴于F,设F(t,0).∵P(1,3),∴tan∠POF=3,∵tan∠OPQ=3,∴tan∠POF=tan∠OPQ,∴∠POF=∠OPQ,∴OF=PF,∴t2=32+(t﹣1)2,∴t=5,∴F(5,0),∴直线PF的解析式为y=﹣x+,由,解得(即点P)或,∴Q(,).(3)如图2中,当点B在y轴的正半轴上时,由题意,,解得<m<2且m≠1.当点B与原点O重合时,显然不符合题意,当点B在y轴的负半轴上时,4﹣m2<0,且m>2,∴m>2,此时点P在抛物线的对称轴的左侧,不符合题意.综上所述,<m<2且m≠1.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,不等式组等知识,解题的关键是学会利用参数构建方程或不等式组解决问题,属于中考压轴题.25.【分析】(1)过点D作DH⊥AB于H.解直角三角形求出DH,AH即可解决问题.(2)如图2中,过点A作AT⊥AC,延长FE交AT于T,直线DE交AT于K,交AC的延长线于R.想办法证明AR=AT=8,再证明△ACD∽△TAF,可得==,推出AF=2CD=2x,可得结论.(3)利用△CFD与△ADH相似,可得=或=,由此构建方程求出CD,当点F在下方时,同法可求CD.【解答】解:(1)如图1中,过点D作DH⊥AB于H.∵CA=CB=4,∠ACB=90°,∴AB===4,∵CD=DB=2,∠B=45°,∠DHB=90°,∴DH=BH=DB=,∴AH=AB﹣BH=3,∴tan∠DAB==.(2)如图2中,过点A作AT⊥AC,延长FE交AT于T,直线DE交AT于K,交AC的延长线于R.∵AT⊥AC,BC⊥AC,∴AT∥BC,∴∠ADC=∠DAK,∠EDB=∠AKD,∵∠ADC=∠EDB,∴∠DAK=∠DKA,∴DA=DK,∵∠R+∠DKA=90°,∠DAC+∠DAK=90°,∴∠DAC=∠R,∴DA=DR,∵DC⊥AR,∴AC=CR=4,∵∠AFE+∠CAD=90°,∠AKE+∠R=90°,∴∠AFE=∠AKE,∵∠EAF=∠EAK=45°,AE=AE,∴△AEF≌△AEK(AAS),∴AF=AK,∵∠RAK=∠TAF=90°,∠AKR=∠AFT,∴△AKR≌△AFT(ASA),∴AR=AT=8,∠R=∠T=∠DAC,∵∠ACD=∠TAF,∴△ACD∽△TAF,∴==,∴AF=2CD=2x,∵CF+AF=4,∴y+2x=4,∴y=4﹣2x(0<x≤2).(3)如图3中,连接DF,作DH⊥AB于H.∵∠GAE=∠DAH,∠AGE=∠AHD,∴△AGE∽△AHD,∵△CDF与△AGE相似,∴△CFD与△ADH相似,∴=或=,∴=或=,整理得,x2+8x﹣16=0或x2﹣16x﹣16=0,解得,x=4﹣4或﹣4﹣4(舍弃)或8﹣4或8+4(舍弃),∴CD=4﹣4或8﹣4,当点F在下方时,同法可得,CD=,综上所述,满足条件的CD的值为4﹣4或8﹣4或.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2020-2021学年安徽省合肥市蜀山区九年级(上)期末数学试卷及参考答案

2020-2021学年安徽省合肥市蜀山区九年级(上)期末数学试卷及参考答案

2020-2021 学年安徽省合肥市蜀山区九年级(上)期末 数学试卷参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 1.【分析】直接利用比例的性质变形得出答案.
【解答】解:∵3x﹣4y=0(xy≠0), ∴3x=4y, 则=,
故选:B. 【点评】此题主要考查了比例的性质,正确将已知变形是解题关键. 2.【分析】所给抛物线是顶点式,可直接得出抛物线的对称轴. 【解答】解:∵抛物线 y=a(x+h)2+k 的对称轴是直线 x=﹣h, ∴抛物线 y= (x+1)2﹣3 的对称轴是直线 x=﹣1.
第 1页(共 14 页)
∴△AOB 是等边三角形, ∴AB=OA=2, ∴正六边形 ABCDEF 的周长=6AB=12. 故选:C. 【点评】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB 是等边三角形是解题关键.
5.【分析】证明△ADE∽△ABC,相似比为 ,从而可得 S△ADE:S△ABC= ,即
11.(5 分)在平面直角坐标系中,点 A(﹣2,﹣3)关于坐标原点 O 中心对称的点的坐标


12.(5 分)扇形的圆心角是 45°,半径为 2,则该扇形的弧长为

第 2页(共 5 页)
13.(5 分)如图,反比例函数 y= 的图象经过矩形 ABCD 的顶点 D 和 BC 边上中点 E,若 △CDE 面积为 2,则 k 的值为 .
故选:D. 【点评】本题主要考查二次函数的性质,熟练掌握二次函数三种表达方式是解题关键. 3.【分析】过 P 作 PA⊥x 轴于 A,根据勾股定理求出 OP,根据锐角三角函数的定义求解即 可. 【解答】解:如图,过 P 作 PA⊥x 轴于 A, ∵P(3,4), ∴PA=4,OA=3, 由勾股定理得:OP=5, ∴α的余弦值是 = . 故选:C. 【点评】本题考查了勾股定理和锐角三角函数的定义的应用,主要考查学生的计算能力. 4.【分析】由正六边形的性质证出△AOB 是等边三角形,由等边三角形的性质得出 AB=OA, 即可得出答案. 【解答】解:设正六边形的中心为 O,连接 AO,BO,如图所示: ∵O 是正六边形 ABCDEF 的中心, ∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2,

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教新版2020-2021学年九年级上册数学期末复习试题1 一.选择题(共10小题,满分40分,每小题4分)1.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.162.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°3.如图,AB是⊙O的直径,CD是弦,点C,D在直径AB的两侧.若∠AOC:∠AOD:∠DOB=2:7:11,CD=4,则的长为()A.2πB.4πC.D.π4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.6.已知点(﹣1,y1),(,y2),(2,y3)在函数y=ax2﹣2ax+a﹣2(a>0)的图象上,则将y1、y2、y3按由大到小的顺序排列是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y1 7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④8.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣29.如图,△ABC的三个顶点坐标分别为A(1,2),B(4,2),C(4,4),若反比例函数y=在第一象限内的图象与△ABC有交点,则实数k的取值范围是()A.2≤k≤16B.2≤k≤8C.1≤k≤4D.8≤k≤16 10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质表示不满意的有人.12.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O米以内.14.一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图,若矩形的高为2m,宽为m,则要打掉墙体的面积为m2.15.如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积的和是.16.如图,平行四边形ABCD中,∠A=60°,.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为r1;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为r2与,则的值为.三.解答题(共8小题,满分80分,每小题10分)17.(1)解方程:(x﹣2)x=2x﹣1.(2)计算:|﹣|+×+()﹣1﹣(﹣)0.18.如图,在▱ABCD中,AE、CF分别平分∠BAD、∠BCD.求证:(1)AE=CF;(2)AE∥CF.19.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度,在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2位家长来自相同班级的概率.温馨提示:初三(1)班两名家长用A1,A2表示;初三(2)班两名家长用B1,B2表示.20.如图,下列网格由小正方形组成,点A,B,C都在正方形网格的格点上.(1)在图1中画出一个以线段BC为边,且与△ABC面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB为边,且与△ABC相似(但不全等)的格点三角形,并写出所画三角形与△ABC的相似比.(相同的相似比算一种)21.如图,Rt△ABC中,∠C=90°,AB=4,在BC上取一点D,连结AD,作△ACD 的外接圆⊙O,交A B于点E.张老师要求添加条件后,编制一道题目,并解答.(1)小明编制题目是:若AD=BD,求证:AE=BE.请你解答.(2)在小明添加条件的基础上请你再添加一条线段的长度,编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)22.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.23.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,S有最大值?并求出最大值.24.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,∴2020=﹣(x﹣h)2+2036,解得x1=h﹣4,x2=h+4,∴A(h﹣4,2020),B(h+4,2020),∵m=h﹣4,m+n=h+4,∴n=8,故选:C.2.解:∵正十二角形体的中心角为30°,∴观察图象可知,旋转角是30°的偶数倍数时,可以与本身重合,故选:B.3.解:∵∠AOC:∠AOD:∠DOB=2:7:11,∠AOD+∠DOB=180°,∴∠AOD=×180°=70°,∠DOB=110°,∠COA=20°,∴∠COD=∠COA+∠AOD=90°,∵OD=OC,CD=4,∴2OD2=42,∴OD=2,∴的长是==,故选:D.4.解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.5.解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.6.解:∵y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2(a>0),∴图象的开口向上,对称轴是直线x=1,∵点(﹣1,y1)到对称轴的距离最大,点(,y2)到对称轴的距离最小,∴y1>y3>y2,故选:B.7.解:∵①中的三角形的三边分别是:2,,,②中的三角形的三边分别是:3,,,③中的三角形的三边分别是:2,2,2,④中的三角形的三边分别是:3,,4,∵①与③中的三角形的三边的比为:1:,∴①与③相似.故选:C.8.解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:A.10.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点共圆,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==,故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:因为200名学生中对该食堂的服务质量表示不满意占总体的百分比为:1﹣46%﹣38%﹣9%=7%,所以200名学生中对该食堂的服务质量表示很满意有:200×7%=14(人).故答案为:14.12.解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.13.解:设OA右侧的抛物线的解析式为y=a(x﹣3)2+5,∵某市民广场有一个直径16米的圆形喷水池,∴该抛物线过点(8,0),∴0=a(8﹣3)2+5,得a=﹣,∴OA 右侧的抛物线的解析式为y =﹣(x ﹣3)2+5=x 2++,当y =1.8时,1.8=﹣(x ﹣3)2+5,得x 1=7,x 2=﹣1,∵各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,点A 的坐标为(0,),∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心O 7米以内, 故答案为:7.14.解:如图,连结AD 、BC 交于O ,∵∠BDC =90°,∴BC 是直径,∴BC ===, ∴OA =OB =AB =, ∴△AOB 是正三角形,∴∠AOB =60°,∠AOC =120°,∴S △AOB =,S △AOC =,∴S =2(S 扇形OAC ﹣S △AOC )+S 扇形OAB ﹣S △AOB=2[﹣]+[﹣]=π﹣,∴打掉墙体面积为(π﹣)平方米, 故答案为:(π﹣).15.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为49cm2.16.解:设AD=3k,AB=2k,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴的长===2πr1,可得r1=,∴的长===2πr2,可得r2=,∴=1,故答案为1.三.解答题(共8小题,满分80分,每小题10分)17.解:(1)(x﹣2)x=2x﹣1x2﹣2x﹣2x=﹣1,则x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)|﹣|+×+()﹣1﹣(﹣)0=+2+2﹣1=3+1.18.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAD=∠DCB,∴∠ADE=∠CBF,∵AE、CF分别平分∠BAD、∠BCD,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=CF.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.19.解:画树状图如下:共有12种等可能结果,其中2人来自相同班级的共有4种,所以2人来自相同班级的概率为=.20.解:(1)如图所示,△BCD即为所求.(2)如图所示,△ABE和△ABF即为所求,相似比;相似比.21.(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)答案不唯一.①第一层次:若AC=4,求BC的长.答案:BC=8;②第二层次:若CD=3,求BD的长.答案:BD=5;③第三层次:若CD=3,求AC的长.设BD=x,∵∠B=∠B,∠C=∠DEB=90°,∴△ABC~△DBE,∴=,∴=,∴x=5,∴AD=BD=5,∴AC==4.22.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当A B是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).23.解:(1)由题意可得,S=x(32﹣2x)=﹣2x2+32x,∵,解得,6≤x<16,即S与x之间的函数关系式是S=﹣2x2+32x(6≤x<16);(2)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,∴当x=8时,S有最大值,最大值是128平方米.24.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt △CFB 中,BF ====CF , ∵PB =PF +BF ,∴PB =CF +BF ,即:4=CF +CF ,解得:CF =6﹣2; (3)①∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,∵CA =CB ,∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF ,∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°,∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ),在Rt △ACB 中,AC =BC =AB =×70=35, ∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225;②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt △A ′PB 中,由勾股定理得:A ′B ===50,∵S △A ′PB =A ′B •PF =PB •A ′P ,∴×50×PF =×40×30,解得:PF =24,∴S 四边形PEDF =PF 2=242=576(m 2),∴当AP =30m 时.室内活动区(四边形PEDF )的面积为576m 2.。

2020-2021学年浙江省台州市仙居县九年级(上)期末数学试卷 (含解析)

2020-2021学年浙江省台州市仙居县九年级(上)期末数学试卷 (含解析)

2020-2021学年浙江省台州市仙居县九年级第一学期期末数学试卷一、选择题(共10小题).1.下列四个标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7D.掷一枚硬币,正面朝上3.如图,四边形ABCD是⊙O的内接四边形,∠C=130°,则∠BOD的度数为()A.70°B.90°C.100°D.110°4.一只不透明的袋子里放着6个只有颜色不同的小球,其中4个白球、2个红球,从该袋子里摸出一个球,摸到的球是红球的概率是()A.B.C.D.5.将函数y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移4个单位,所得图象的对称轴是()A.x=﹣2B.x=2C.x=﹣4D.x=﹣36.用配方法解一元二次方程x2+8x﹣3=0,下列变形中正确的是()A.(x﹣4)2=16+3B.(x+4)2=16+3C.(x+8)2=﹣3+64D.(x﹣8)2=3+647.某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A.10B.15C.20D.258.正六边形的边长为2a,则它的面积为()A .a2B .a2C.3a2D.6a29.如图,AB为⊙O的直径,点C是弧BE的中点.过点C作CD⊥AB于点G,交⊙O于点D,若BE=8,BG=2,则⊙O的半径长是()A.5B.6.5C.7.5D.810.已知两个整数a,b,有2a+3b=31,则ab的最大值是()A.35B.40C.41D.42二、填空题(共6小题.)11.关于x的一元二次方程x2+5x﹣2p=0的一个根为1,则p=.12.某商场设立了一个可以自由转动的转盘,并规定:顾客购物30元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:1002003005001000转动转盘的次数65122190306601落在“签字笔”区域的次数假如你去转动该转盘一次.你获得签字笔的概率约是.(精确到0.1)13.如图,已知点A(3,0),B(1,4),C(3,﹣2),D(7,0),连接AB,CD,将线段AB绕着某一点旋转一定角度,使A,B分别与C,D重合,则旋转中心的坐标为.14.如图,一把折扇展开后的圆心角为120°,扇骨OA长为30cm,扇面宽AB=18cm,则该折扇的扇面的面积S=cm2.15.已知二次函数y=﹣2(x﹣1)2+k的图象上有A(﹣,y1),B(2,y2),C(3,y3)三个点.用“<”连接y1,y2,y3的结果是.16.一种圆角正方形桌面如图所示.每段圆弧所对的圆心角是90°,用一根直尺测得轮廓上两点之间距离的最大值是100cm,平行的两直边之间的距离为80cm,则该圆角正方形的周长是.三、解答题(本题有8小题.)17.解下列方程:(1)x2=3x;(2)2x2﹣4x﹣1=0.18.学校食堂每天中午为学生提供A,B,C三种不同套餐.用列举法分析甲乙两人选择同款套餐的概率.19.如图,边长为1的正方形组成的网格中,△ABC的顶点均在格点上.点A,B,C的坐标分别是A(4,2),B(2,1),C(4,1).(1)作出△ABC绕点B顺时针旋转90°以后的图形.写出旋转后点A对应点的坐标;(2)求点A在旋转过程中所经过路径的长度.20.已知:抛物线y=﹣x2+px+q与直线y=mx+n交于B(3,0),C(0,﹣3)两点.(1)求抛物线顶点D的坐标;(2)当x取何值时,﹣x2+px+q>mx+n成立.21.背景:用圆规和没有刻度的直尺作图具有以下基本事实保证:已知圆心和半径能作一个圆且只能作一个圆;经过两点能作且只能作一条直线.尺规作图的原理是:通过圆、直线相交作出点,连接两点作线段,并进一步由线段组成各种图形.问题:已知圆心O和半径r可以作⊙O.在⊙O上任意取两点A,B,连同圆心O得到三个点,过其中的任意两点可以作直线与⊙O相交.(1)基于已知的三个点用直尺作出尽可能多的不同长度的线段,写出作法,并指出作出的线段;(2)若AB=2pr(0<p<1),用含有p,r的式子写出能作出的所有线段的长度,请简要写出计算过程;(3)能统一用一个公式写出能作出的所有线段的长度吗?22.现代电视屏幕尺寸的设计,主要追求以下目标:一是更符合人体工程学要求(宽与长的比接近与0.618);二是设计适当的长宽比使屏幕的面积尽可能大现行的电视机屏幕有“宽屏”和“普屏”两种制式,宽屏的长宽比为16:9;普屏的长宽比为4:3.(1)哪种屏幕更适合人体工程学要求?请说明理由.(2)一般地,电视屏幕的“几寸”指的是这个屏幕的长方形的对角线长有多少英寸,1英寸=2.54cm,小明家想买80寸的宽屏电视机(边框宽都为1cm),并嵌入到墙中.则需要预留的长方形位置的长、宽各多少cm?(最后结果保留到整数,≈18.4,≈5.8)(3)在相同尺寸的电视机屏幕中,宽屏的屏幕面积大还是普屏的屏幕面积大?请说明理由.23.如图,AB是⊙O的直径,C是⊙O上的一点,过点B作⊙O的切线BF,过圆心O作AC的平行线交直线BF于点F,交⊙O于点E,交BC于点D,连接CF.(1)判断CF与⊙O的位置关系,并证明结论;(2)若四边形ACFO是平行四边形,求的值;(3)若△ACB运动后能与△OFB重合,则=,请说明图形的运动过程.24.某种鱼迁入一生态系统后.在无人为干预的条件下.这种鱼的种群在10个生长周期内的自然生长速率(数量增长的百分率)与时间的关系如下表(每周期约3个月):第0周期第1周期第2周期第3周期第4周期生长速率(%)018324248这种鱼种群的数量增加到一定程度后,由于受生态制约,不再增加.(1)在无人为干预条件下,选择适当的函数模型描述该鱼种群的自然生长速率随生长周期变化的规律,写出函数解析式;(2)在无人为干预条件下,用函数图象描述该鱼种群数量与生长周期之间的关系,则下列A,B,C三个图象中最合理的是哪一个图象?请说明理由.(3)为了保证该鱼种群的可持续生长,考虑在适当时机进行捕获,问:最佳捕获时期是哪个时期?请说明理由.参考答案一、选择题(共10小题).1.下列四个标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.2.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7D.掷一枚硬币,正面朝上解:A、15个人中至少有两个人同月出生,是必然事件,符合题意;B、一位同学在打篮球,投篮一次就投中,是随机事件,不符合题意;C、在1,2,3,4中任取两个数,它们的和大于7是不可能事件,不符合题意;D、掷一枚硬币,正面朝上,是随机事件,不符合题意,故选:A.3.如图,四边形ABCD是⊙O的内接四边形,∠C=130°,则∠BOD的度数为()A.70°B.90°C.100°D.110°解:∵∠A+∠C=180°,∠C=130°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故选:C.4.一只不透明的袋子里放着6个只有颜色不同的小球,其中4个白球、2个红球,从该袋子里摸出一个球,摸到的球是红球的概率是()A.B.C.D.解:因为一共有6个球,红球有2个,所以从该袋子里摸出一个球,摸到的球是红球的概率是=.故选:B.5.将函数y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移4个单位,所得图象的对称轴是()A.x=﹣2B.x=2C.x=﹣4D.x=﹣3【解答】解;将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移4个单位,所得图象的函数表达式是y=﹣(x+4﹣2)2+1﹣4,即y=﹣(x+2)2﹣4.所以其顶点坐标是(﹣2,﹣4).所以,所得图象的对称轴是直线x=﹣2.故选:A.6.用配方法解一元二次方程x2+8x﹣3=0,下列变形中正确的是()A.(x﹣4)2=16+3B.(x+4)2=16+3C.(x+8)2=﹣3+64D.(x﹣8)2=3+64解:方程x2+8x﹣3=0,移项得:x2+8x=3,配方得:x2+8x+16=16+3,即(x+4)2=16+3.故选:B.7.某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A.10B.15C.20D.25解:设每件衬衫应降价x元.根据题意,得:(50﹣x)(30+2x)=2000,整理,得x2﹣35x+250=0,解得x1=10,x2=25.∵“增加盈利,减少库存”,∴x1=10应舍去,∴x=25.故选:D.8.正六边形的边长为2a,则它的面积为()A.a2B.a2C.3a2D.6a2解:∵此多边形为正六边形,∴∠AOB==60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=2a,∴OG=2a×=a,∴S△OAB=×AB×OG=×2a×a=a2,∴S六边形=6S△OAB=6×a2=6a2.故选:D.9.如图,AB为⊙O的直径,点C是弧BE的中点.过点C作CD⊥AB于点G,交⊙O于点D,若BE=8,BG=2,则⊙O的半径长是()A.5B.6.5C.7.5D.8解:连接OD,如图,设⊙O的半径为r,∵CD⊥AB,∴=,CG=DG,∵点C是弧BE的中点,∴=,∴=,∴CD=BE=8,∴DG=CD=4,在Rt△ODG中,∵OG=r﹣2,OD=r,∴42+(r﹣2)2=r2,解得r=5,即⊙O的半径为5.故选:A.10.已知两个整数a,b,有2a+3b=31,则ab的最大值是()A.35B.40C.41D.42解:∵(2a﹣3b)2≥0,∴(2a+3b)2﹣4(2a•3b)≥0,∴(2a+3b)2≥4(2a•3b),若ab取的最大值,则a、b都是正整数,∴ab≤(2a+3b)2,∴ab ≤,∵a,b是整数,∴ab的最大值为40,故选:B.二、填空题(本大题共6小题.在答题卷的相应空格上填上正确的答案.)11.关于x的一元二次方程x2+5x﹣2p=0的一个根为1,则p =3.解:把x=1代入x2+5x﹣2p=0,得1+5﹣2p=0,解得p=3.故答案是:3.12.某商场设立了一个可以自由转动的转盘,并规定:顾客购物30元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数1002003005001000落在“签字笔”区域的次数65122190306601假如你去转动该转盘一次.你获得签字笔的概率约是0.6.(精确到0.1)解:转动该转盘一次.你获得签字笔的概率约是≈0.6,故答案为:0.6.13.如图,已知点A(3,0),B(1,4),C(3,﹣2),D(7,0),连接AB,CD,将线段AB绕着某一点旋转一定角度,使A,B分别与C,D重合,则旋转中心的坐标为(2,﹣1).解:如图,连接BD,作线段BD,AC的垂直平分线交于点M,点M即为旋转中心,M (2,﹣1).故答案为:(2,﹣1).14.如图,一把折扇展开后的圆心角为120°,扇骨OA长为30cm,扇面宽AB=18cm,则该折扇的扇面的面积S=252πcm2.解:OB=OA﹣AB=30﹣18=12(cm),扇形的面积S=﹣=252π(cm2),故答案为:252π.15.已知二次函数y=﹣2(x﹣1)2+k的图象上有A(﹣,y1),B(2,y2),C(3,y3)三个点.用“<”连接y1,y2,y3的结果是y1<y3<y2.解:∵y=﹣2(x﹣1)2+k,∴图象的开口向下,对称轴是直线x=1,∴A(﹣,y1)关于直线x=1的对称点是(2+,y1),∵1<2<3,∴y1<y3<y2,故答案为y1<y3<y2.16.一种圆角正方形桌面如图所示.每段圆弧所对的圆心角是90°,用一根直尺测得轮廓上两点之间距离的最大值是100cm,平行的两直边之间的距离为80cm,则该圆角正方形的周长是(240+100π)cm2.解:如图,由题意AB=100cm,EF=80cm,在Rt△AOE中,∠AEO=90°,OE=40cm,OA=50cm,∴AE===30(cm),∴四个角上的圆弧的半径为10cm,∴该圆角正方形的周长=8×30+π•102=(240+100π)cm2.故答案为:(240+100π)cm2.三、解答题(本题有8小题.)17.解下列方程:(1)x2=3x;(2)2x2﹣4x﹣1=0.解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3;(2)2x2﹣4x﹣1=0,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.18.学校食堂每天中午为学生提供A,B,C三种不同套餐.用列举法分析甲乙两人选择同款套餐的概率.解:画树状图如图:所有等可能的情况有9种,其中甲乙两人选择同款套餐的有3种,则甲乙两人选择同款套餐的概率为=.19.如图,边长为1的正方形组成的网格中,△ABC的顶点均在格点上.点A,B,C的坐标分别是A(4,2),B(2,1),C(4,1).(1)作出△ABC绕点B顺时针旋转90°以后的图形.写出旋转后点A对应点的坐标;(2)求点A在旋转过程中所经过路径的长度.解:(1)如图,△A1BC1即为△ABC绕点B顺时针旋转90°以后的图形;旋转后点A对应点的坐标为(3,﹣1);(2)点A在旋转过程中所经过的路径的长度为:=π.20.已知:抛物线y=﹣x2+px+q与直线y=mx+n交于B(3,0),C(0,﹣3)两点.(1)求抛物线顶点D的坐标;(2)当x取何值时,﹣x2+px+q>mx+n成立.解:(1)∵抛物线y=﹣x2+px+q过B(3,0),C(0,﹣3)两点,∴,解得,∴抛物线为y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线顶点D的坐标为(2,1);(2)画出函数图象如图:由图象可知,当0<x<3时,﹣x2+px+q>mx+n成立.21.背景:用圆规和没有刻度的直尺作图具有以下基本事实保证:已知圆心和半径能作一个圆且只能作一个圆;经过两点能作且只能作一条直线.尺规作图的原理是:通过圆、直线相交作出点,连接两点作线段,并进一步由线段组成各种图形.问题:已知圆心O和半径r可以作⊙O.在⊙O上任意取两点A,B,连同圆心O得到三个点,过其中的任意两点可以作直线与⊙O相交.(1)基于已知的三个点用直尺作出尽可能多的不同长度的线段,写出作法,并指出作出的线段;(2)若AB=2pr(0<p<1),用含有p,r的式子写出能作出的所有线段的长度,请简要写出计算过程;(3)能统一用一个公式写出能作出的所有线段的长度吗?解:(1)如图,作直线AO交⊙O于C,作直线OB交⊙O于D,连接AD,CD,BC.线段AD,线段CD,线段BC即为所求作.(2)线段CD=BA=2pr.线段AD=BC==2r•.(3)线段的长度=2r•q(0<q<1).22.现代电视屏幕尺寸的设计,主要追求以下目标:一是更符合人体工程学要求(宽与长的比接近与0.618);二是设计适当的长宽比使屏幕的面积尽可能大现行的电视机屏幕有“宽屏”和“普屏”两种制式,宽屏的长宽比为16:9;普屏的长宽比为4:3.(1)哪种屏幕更适合人体工程学要求?请说明理由.(2)一般地,电视屏幕的“几寸”指的是这个屏幕的长方形的对角线长有多少英寸,1英寸=2.54cm,小明家想买80寸的宽屏电视机(边框宽都为1cm),并嵌入到墙中.则需要预留的长方形位置的长、宽各多少cm?(最后结果保留到整数,≈18.4,≈5.8)(3)在相同尺寸的电视机屏幕中,宽屏的屏幕面积大还是普屏的屏幕面积大?请说明理由.解:(1)=0.5625,=0.75,∵0.5625与0.618接近,∴宽屏更适合人体工程学要求.(2)设宽屏电视机的长为16xcm,宽为9xcm.则对角线的长==18.4x(cm),由题意18.4x=80×2.54,∴x≈11.04,∴宽屏电视机的长为176.64cm,宽为99.36cm,根据进一法,可得宽屏电视机的长为177cm,宽为100cm,∵边框宽都为1cm,∴预留的长方形位置的长、宽分别为:178cm,101cm.(3)设对角线的长为5a.则普屏的电视机的面积为12a2,设宽屏电视机的长为16y,宽为9y,则对角线=18.4y=5a,∴y=0.27a,∴宽屏电视机的面积=144y2≈10.5a2<12a2,∴在相同尺寸的电视机屏幕中,普屏的屏幕面积大.23.如图,AB是⊙O的直径,C是⊙O上的一点,过点B作⊙O的切线BF,过圆心O作AC的平行线交直线BF于点F,交⊙O于点E,交BC于点D,连接CF.(1)判断CF与⊙O的位置关系,并证明结论;(2)若四边形ACFO是平行四边形,求的值;(3)若△ACB运动后能与△OFB重合,则=1,请说明图形的运动过程.解:(1)CF与⊙O相切.理由如下:连接OC,如图1,∵AC∥OF,∴∠BAC=∠BOF,∠ACO=∠COF,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF(SAS),∴∠OBF=∠OCF,∵BF是⊙O的切线,∴∠OBF=90°,∴∠OCF=90°,∴CF是⊙O的切线;(2)根据题意作出图形,如图2,连接OC,∵四边形ACFO是平行四边形,∴CF∥AO,CF=AO,∵OA=OB,∴CF∥OB,CF=OB,∴四边形OBFC为平行四边形,∵OB=OC,∴四边形OBFC为菱形,∵BF是⊙O的切线,∴∠OBF=90°,∴四边形OBFC为正方形,∴∠BOD=45°,OE⊥BC,∴OD=OB,∵OE=OB,∴DE=OE﹣OD=OB﹣OB=OB,∴;(3)∵AB为直径,∴∠ACB=90°,∵BF是⊙O的切线,∴∠OBF=∠ACB=90°,∵AC∥OF,∴∠BOF=∠BAC,∵若△ACB运动后能与△OFB重合,∴必有△ACB≌△OBF,∴AC=OB=AB,∴∠ABC=30°,连接OC,如图3,∵AC∥OF,∴∠BAC=∠BOF,∠ACO=∠COF,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,∵OB=OC,∴OD⊥BC,∴OD=OB,∵OB=OE,∴DE=OE﹣OD=OB﹣OB=OB,∴,如图4,将△ABC沿CB直线,平移BC长度得△A'B'C',再将△A'B'C'沿∠FBB'的平分线对折,则与△OBF重合.故答案为:1.24.某种鱼迁入一生态系统后.在无人为干预的条件下.这种鱼的种群在10个生长周期内的自然生长速率(数量增长的百分率)与时间的关系如下表(每周期约3个月):第0周期第1周期第2周期第3周期第4周期生长速率(%)018324248这种鱼种群的数量增加到一定程度后,由于受生态制约,不再增加.(1)在无人为干预条件下,选择适当的函数模型描述该鱼种群的自然生长速率随生长周期变化的规律,写出函数解析式;(2)在无人为干预条件下,用函数图象描述该鱼种群数量与生长周期之间的关系,则下列A,B,C三个图象中最合理的是哪一个图象?请说明理由.(3)为了保证该鱼种群的可持续生长,考虑在适当时机进行捕获,问:最佳捕获时期是哪个时期?请说明理由.解:(1)设自然生长速率y随生长周期x变化的规律为:y=ax2+bx+c,由题意可得:,解得:,∴y=﹣2x2+20x,当x=3时,y=42,当x=4时,y=48,∴点(3,42),点(4,48)都在函数图象上;(2)∵y=﹣2x2+20x的图象是抛物线,∴图象A最合理;(3)最佳捕获时期是第5周期,理由如下:∵y=﹣2x2+20x=﹣2(x﹣5)2+50,∴当x=5时,y有最大值为50,∴最佳捕获时期是第5周期.。

山东省青岛市市北区2020-2021学年九年级(上)期末数学试卷及答案解析

山东省青岛市市北区2020-2021学年九年级(上)期末数学试卷及答案解析

2020-2021学年山东省青岛市市北区九年级(上)期末数学试卷一、选择题:(每小题3分,共计24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在△ABC中,∠C=90°,AB=5,BC=3,则sin A的值为()A.B.C.D.2.(3分)下列结论中正确的是()①在阳光照射下,同一时刻的物体,影子的方向是相同的.②物体在任何光线照射下影子的方向都是相同的.③固定的物体在路灯照射下,影子的方向与路灯的位置有关.④固定的物体在光线照射下,影子的长短仅与物体的长短有关.A.①③B.①③④C.①④D.②④3.(3分)在一个不透明的口袋中,装有除颜色外其他都相同的4个白球和n个黄球.某同学进行如下试验:从袋中随机摸出1个球记下它的颜色,放回、摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数的列表如下:摸球试验的次数1002005001000摸出白球的次数2139102199根据列表可以估计出n的值为()A.4B.16C.20D.244.(3分)如图所示的大鱼是由小鱼坐标变换后的结果,则小鱼上的点(a,b)对应大鱼上的点是()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)5.(3分)在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm.中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm2,设丝绸花边的宽为xcm,根据题意,可列方程为()A.(60﹣2x)•(40﹣x)=650B.(60﹣x)•(40﹣2x)=650C.2x•40+2x•x=650D.2x•40+x•(60﹣2x)=6506.(3分)将一个正方体截一个角,得到如图所示的几何体,则这个几何体的俯视图是()A.B.C.D.7.(3分)若点A(x1,1),B(x2,﹣2),C(x3,﹣3)在反比例函数y=的图象上,则x1、x2、x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x3<x1<x2D.x2<x1<x3 8.(3分)如图,线段AB=1,点P1是线段AB的黄金分割点(且AP1<BP1,即),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则线段AP2020的长度是()A.B.C.D.二、填空题:(每题3分,共18分)9.(3分)若,则=.10.(3分)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.11.(3分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.12.(3分)如图,边长分别为4和2的两个正方形ABCD和CEFG并排放在一起,连接EG 并延长交BD于点N,交AD于点M,则线段MN的长是.13.(3分)如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC 的坡度i=1:5,则AC的长度是cm.14.(3分)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有(填写=4S△OCF所有正确结论的序号)三.作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(6分)已知:线段a如图所示.求作:正方形ABCD,使得AB=a.四.解答题(本题共9小题,共72分)16.(5分)解方程:4x2﹣6x﹣3=0.17.(5分)若二次函数y=(m﹣1)x2+2x+1与x轴有交点,求m的取值范围.18.(6分)在一个不透明的盒子中只装2枚白色棋子和2枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出1枚棋子,记下颜色后放回,搅匀后再随机地摸出1枚棋子记下颜色.(1)请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率.(2)若小明、小亮做游戏,游戏规则是:两次摸出的棋子颜色不同则小明获胜,否则小亮获胜.你认为这个游戏公平吗?请说明理由.19.(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降价0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价出售.若张阿姨想要这种水果每天盈利300元,请你帮她算算每斤的售价应为多少元?20.(8分)如图,一艘货轮由A港沿北偏东60度方向航行100海里到达B港,装配好货物再沿北偏西58度方向航行运抵C港,C港在A港的正北方向.求B、C两港之间的距离.(结果精确到0.1海里)(参考数据:sin32°≈,cos32°≈,tan32°≈,≈1.732,≈1.414)21.(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.22.(10分)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?23.(10分)【问题提出】小颖发现某座房屋的侧面是一种特殊的五边形,她决定好好研究一下它的特点,并计算它的面积.【问题探究】定义:如图1,我们把满足AB=AE,CB=DE,∠C=∠D=90°的五边形ABCDE叫做屋形.其中AB,AE叫做脊,BC,DE叫做腰,CD叫做底.性质:边:屋形的腰相等,脊相等;角:①屋形腰与底的夹角相等;②脊与腰的夹角相等;对角线:①;②屋形有两组对角线分别相等,且其中一组互相平分.对称性:屋形是以底的垂直平分线为对称轴的轴对称图形;(1)请直接填写屋形对角线的性质①;(2)请你根据定义证明“屋形的脊与腰的夹角相等”.已知:如图,五边形ABCDE是屋形.求证:证明:【问题解决】如图2,在屋形ABCDE中,若AB=5,BC=8,CD=6,试求出屋形ABCDE的面积.24.(12分)已知:如图,在△ABC中,CD⊥AB,垂足D,BD=CD=4cm,AD=2cm;点P从点A出发,沿AD方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s;以PQ为底边作等腰三角形△PQM,使∠MPQ=∠A,并且△PQM与△ABC分别在AB的两侧,连接PC、QC,设运动时间为t(s).解答下列问题:(1)当0<t≤2时,是否存在某一时刻t,使MP∥CQ?若存在,求出此时t的值:若不存在,请说明理由;(2)设四边形MQCP的面积为y(cm2),求当0<t≤2时,y与t之间的函数关系式;(3)是否存在某一时刻t,使△PQM与以A、P、C为顶点的三角形相似?若存在,请直接给出此时t的值;若不存在,请说明理由.2020-2021学年山东省青岛市市北区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共计24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据正弦的定义得到sin A=,然后把AB=5,BC=3代入即可得到sin A的值.【解答】解:如图,∵∠C=90°,AB=5,BC=3,∴sin A==.故选:A.【点评】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于这个角的对边与斜边的比值.2.【分析】利用平行投影和中心投影的特点和规律分别分析可判断正误.【解答】解:①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的有①③.故选:A.【点评】本题考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.3.【分析】利用大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【解答】解:∵通过大量重复试验后发现,摸到白球的频率稳定于0.2,∴=0.2,解得:n=16.故选:B.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.4.【分析】由图可知,小鱼与大鱼是两个位似图形,位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为1:2.【解答】解:根据题意图形易得,小鱼与大鱼的位似比是1:2,∴大鱼的对应点是(﹣2a,﹣2b).故选:A.【点评】本题主要考查了坐标与图形的性质,以及位似变换中对应点的坐标的变化规律.5.【分析】利用长方形的面积计算公式结合丝绸花边的面积为650cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:2x•40+x•(60﹣2x)=650.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个正方形,正方形里面有一条撇向的实线.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,在每一象限内,y随x的增大而减小,所以x1>0,x2<x3<0,从而对各选项进行判断.【解答】解:∵k2+1>0,∴反比例函数图象分布在第一、三象限,在每一象限内,y随x的增大而减小,∴x1>0,x2<x3<0,∴x2<x3<x1.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比进行解答即可.【解答】解:根据黄金比的比值,BP1=,则AP1=1﹣=,AP2=()2,AP3=()3,…依此类推,则线段AP2020的长度是()2020故选:A.【点评】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.二、填空题:(每题3分,共18分)9.【分析】根据多项式除以单项式法则得出﹣1=,再求出答案即可.【解答】解:∵=,∴﹣=,∴﹣1=,∴=+1=,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.10.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.=|k|=3,【解答】解:根据题意可知:S△ABO由于反比例函数的图象位于第一象限,k>0,则k=6.故答案为:6.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.11.【分析】一般用增长后的量=增长前的量×(1+增长率),今年年要投入资金是3(1+x)万元,在今年的基础上再增长x,就是明年的资金投入5(1+x)(1+x),由此可列出方程5(1+x)2=7.2,求解即可.【解答】解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.12.【分析】根据正方形的四边相等,每个内角为90°,对角线平分对角即可判断.【解答】解:∵BD和EG为正方形ABCD和CEFG的对角线,∴∠DGN=∠CGE=∠NDG=45°,∴∠DNG=90°,DN⊥MG,又∵BD平分∠ADC,∴N为MG中点,∵CD=4,CG=2,∴DG=2,∴DM=2,∴MG=,∴MN=MG=,故答案为.【点评】本题主要考查正方形的性质,关键是要牢记正方形四边相等,四个内角都为90°,对角线平分一组对角等性质.13.【分析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.【解答】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.【点评】此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.14.【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.③正确.设BC=BE=EC=a,求出AC,BD即可判断.④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴==,∴OF=OB,=S△BOC=3S△OCF,故②错误,∴S△AOD设BC=BE=EC=a,则AB=2a,AC=a,OD=OB==a,∴BD=a,∴AC:BD=a:a=:7,故③正确,∵OF=OB=a,∴BF=a,∴BF2=a2,OF•DF=a•(a+a)=a2,∴BF2=OF•DF,故④正确,(也可以证明:△OEF∽△BCF,推出==,证明△BEF∽△DCF,推出==,可得=可得结论)故答案为①③④.【点评】本题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于填空题中的压轴题.三.作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.【分析】先画线段AB=a,再分别过A、B点作l的垂线AM、BN,并且截取AD=a,截取BC=a,则根据正方形的判定方法可判断四边形ABCD为正方形.【解答】作法:①在直线l上截取线段AB=a;②分别过A、B点作l的垂线AM、BN;③在AM上截取AD=a,在BN上截取BC=a,④连接CD,则四边形ABCD为所作的正方形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了正方形的判定.四.解答题(本题共9小题,共72分)16.【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程.【解答】解:△=(﹣6)2﹣4×4×(﹣3)=84,x==,所以x1=,x2=.【点评】本题考查了解一元二次方程:把x=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.用求根公式解一元二次方程的方法是公式法.17.【分析】根据题意可以得到关于m的不等式组,从而可以求得m的取值范围,注意二次项系数m﹣1≠0.【解答】解:∵二次函数y=(m﹣1)x2+2x+1与x轴有交点,∴,解得,m≤2且m≠1,即m的取值范围是m≤2且m≠1.【点评】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和不等式的性质解答.18.【分析】(1)画树状图,再由概率公式求解即可;(2)分别求出小明获胜、小亮获胜的概率,即可得出结论.【解答】解:(1)画树状图如图:共有16个等可能的结果,两次摸出的棋子是不同颜色的结果有8个,∴P(两次摸出的棋子是不同颜色)==;(2)由(1)得:P(小明获胜)=,∵两次摸出的棋子颜色相同的结果有8个,∴P(小亮获胜)==,∴P(小明获胜)=P(小亮获胜),∴这个游戏公平.【点评】本题考查的是列表法与树状图法、游戏公平性的判断.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】设每斤水果降价x元,则每天多售出200x斤,根据每日利润=每斤利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再根据每天至少售出260斤,即可得出关于x的一元一次不等式,解之即可确定x的值,此题得解.【解答】解:设每斤水果降价x元,则每天多售出200x斤,根据题意得:(4﹣2﹣x)(100+200x)=300,整理得:2x2﹣3x+1=0,解得:x1=0.5,x2=1.∵100+200x≥260,∴x≥0.8,∴x=0.5不合题意,舍去.∴4﹣x=4﹣1=3.答:若张阿姨想要这种水果每天盈利300元,则每斤的售价应为3元.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,根据每日利润=每斤利润×销售数量,列出关于x的一元二次方程是解题的关键.20.【分析】过B作BD⊥AC于D,解直角三角形即可得到结论.【解答】解:过B作BD⊥AC于D,在Rt△ABD中,AB=100,∠A=60°,∴BD=AB•sin60°=100×=50,在Rt△BCD中,cos∠CBD=cos32°===≈,∴(海里),答:B,C两刚之间距离约为101.9海里.【点评】本题考查了解直角三角形的应用,方向角问题,熟练掌握解直角三角形,作出辅助线构造直角三角形是解题的关键.21.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.【点评】本题主要考查对正方形的性质,平行四边形的判定,菱形的判定,平行线分线段成比例定理,全等三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.22.【分析】(1)观察函数图象可知:抛物线经过点(0,),顶点坐标是(4,4),篮圈中心的坐标是(7,3).设抛物线的解析式是y=a(x﹣4)2+4,根据抛物线上点的坐标利用待定系数法可求出抛物线的解析式,再利用二次函数图象上点的坐标特征验证篮圈中心点是否在抛物线上,此题得解;(2)代入x=1求出y值,由该值小于3.1可得出盖帽拦截成功.【解答】解:(1)由题意可知,抛物线经过点(0,),顶点坐标是(4,4),篮圈中心的坐标是(7,3).设抛物线的解析式是y=a(x﹣4)2+4,∵抛物线经过点(0,),∴=16a+4,解得:a=﹣,∴抛物线解析式为y=﹣(x﹣4)2+4.当x=7时,y=﹣×(7﹣4)2+4=3,∴篮圈的中心点在抛物线上,∴能够投中.(2)∵当x=1时,y=﹣×(1﹣4)2+4=3<3.1,∴能够盖帽拦截成功.【点评】本题考查了二次函数的应用、待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)观察函数图象找出点的坐标,利用待定系数法求出抛物线的解析式;(2)代入x=1求出y值.23.【分析】【问题提出】(1)屋形有一条对角线与底平行且相等.画出图形,写出已知,求证,证明.证明四边形BCDE是平行四边形,可得结论.(2)求证:屋形的脊与腰夹角相等.画出图形,写出已知,求证,证明,证明四边形BCDE是矩形,再利用等腰三角形的性质,证明即可.【问题解决】连接BE,过A作AH⊥BE.分别求出△ABE,矩形的面积即可.【解答】解:【问题提出】(1)屋形有一条对角线与底平行且相等.已知:如图1中,五边形ABCDE是屋形.求证:BE∥CD.证明:如图1中,连接BE.∵∠C=∠D=90°,∴∠C+∠D=180°,∴BC∥DE,∵BC=DE,∴四边形BCDE是平行四边形,∴BE=CD,BE∥CD.故答案为:屋形有一条对角线与底平行且相等.(2)求证:屋形的脊与腰夹角相等.已知:五边形ABCDE是屋形.求证:∠ABC=∠AED.证明:∵四边形BCDE为平行四边形,∠C=90°,∴四边形BCDE是矩形,∴∠CBE=∠DEB=90°,∵AB=AE,∴∠ABE=∠AEB,∴∠ABC=∠AED.【问题解决】连接BE,过A作AH⊥BE.∵四边形BCDE是矩形,∴BE=CD=6,∵AB=AE=5,AH⊥BE,∴,∴AH===3,=8×6=48,∴,S矩BCDE∴屋形ABCDE的面积12+48=60.【点评】本题属于四边形综合题,考查了平行四边形的判定和性质,矩形的频道进行中,等腰三角形的性质等知识,解题的关键是熟悉文字题目证明的步骤,属于中考常考题型.24.【分析】(1)存在,当MP∥CQ时,可证明CA=CQ,再求出t的值;(2)作ME⊥PQ于点E,可证明△MQE∽△CAD,用含t的代数式表示ME的长,再求出y与t之间的函数关系式;(3)存在,分两种情况,当PC=AC时,△MQP∽△CPA,此时PD=AD=2;当PC=PA时,△MQP∽△PCA,作PG⊥AC于点G,则AG=CG,由△AGP∽△ADC,求出AP的长.【解答】解:(1)存在,由题意得,AP=t,DQ=2t,AD=2,BD=CD=4,∴PQ=PD+DQ=2﹣t+2t=2+t.∵MP∥CQ,∴∠CQA=∠MPQ=∠A,∴CA=CQ,∵CD⊥AB,∴DQ=AD=2,∴2+2t=2+2,解得,t=1.(2)如图2,作ME⊥PQ于点E,则∠MEQ=∠CDA=90°,∵PM=QM,∴∠MQP=∠MPQ=∠A,∴△MQE∽△CAD,∴,∴QE=•QE=2QE,∵QE=PQ=(2+t),∴ME=2×(2+t)=2+t,=S△PQM+S△PQC,由S四边形MQCP得,y=(2+t)(2+t)+×4(2+t),即y=t2+4t+6.(3)存在,如图3,当PC=AC时,则∠CPA=∠A,∴∠MPQ=∠A,∠Q=∠CPA,∴△MQP∽△CPA,∵PC=AC,CD⊥AB,∴PD=AD=2,∴AP=PD+AD=4,∴t=4;如图4,当PC=PA时,则∠PCA=∠A,∴∠MPQ=∠A,∠Q=∠PCA,∴△MQP∽△PCA,作PG⊥AC于点G,则AG=CG,∵∠AGP=∠ADC=90°,∠A=∠A,∴△AGP∽△ADC,∴,∵AC===,∴AG=AC=,∴AP===5,∴t=5,综上所述,t=4或t=5.【点评】此题重点考查相似三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理及其推论及动点问题的解答等知识与方法,解题的关键是正确地作出所需要的辅助线,此题难度较大,属于考试压轴题.。

2020-2021学年山西省太原市九年级(上)期末数学试卷及参考答案

2020-2021学年山西省太原市九年级(上)期末数学试卷及参考答案

2020-2021学年山西省太原市九年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)若关于x的方程x2﹣2x+a=0有一个根为1,则a的值为()A.0B.﹣1C.1D.22.(3分)如图所示的几何体的左视图是()A.B.C.D.3.(3分)当x<0时,反比例函数y=的图象在()A.第三象限B.第二象限C.第一象限D.第四象限4.(3分)太原市轨道交通2号线一期于2020年12月26日12:00开通初期运营,从此山西驶入地铁时代.全线23个站厅的设计,有机融合了“晋阳古八景”、“锦绣太原城”等文化元素,打造成一条亮丽的“地下艺术走廊”在一幅比例尺为1:200000的设计图纸上,测得地铁线路全长约11.8cm,则地铁线路的实际长度约为()A.5.9km B.11.8km.C.23.6km D.57.2km5.(3分)下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.6.(3分)一个不透明的袋中装有黄、白两种颜色的球共30个,这些球除颜色外,其余都相同.在不倒出来的情况下,为了估计袋中两种颜色球的个数,小亮和同学们进行了多次摸球试验,统计分析后发现摸到黄球的频率稳定在0.3.由此估计袋中黄球有()A.9个B.12个C.21个D.24个7.(3分)同学们在物理课上做“小孔成像”实验.如图,蜡烛与带“小孔”的纸板之间的距离为l,当蜡烛火焰的高度AB是它在光屏上所成的像A'B'高度的一半时,带“小孔”的纸板距离光屏()A.3l B.2l C.l D.l8.(3分)已知A(﹣1,y1),B(2,y2),C(6,y3)三点都在反比例函数y=的图象上,则y1,y2,y3,的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3 9.(3分)在园林化城市建设期间,某市2018年绿化面积约为1000万平方米,2020年绿化面积约为1210万平方米.如果近几年绿化面积的年增长率相同,则2021年绿化面积约为()A.1221万平方米B.1331万平方米C.1231万平方米D.1323万平方米10.如图,矩形ABCD中,过对角线AC上一点M作EF∥AB,分别交AD于点E,交BC 于点F,连接DM,BM,已知DE=2,ME=5.从下面A、B两题中任选一题作答..A.△DEM与△BFM的面积和等于.B.若AM=2MC,则△ABM的面积等于.二、填空题(本大题含5个小题,每小题3分,共15分)把答案写在题中横线上11.(3分)一元二次方程x(x+2)=0的根为.12.(3分)如图,△A'B'C'是△ABC以点O为位似中心经过位似变换得到的三角形,若△A'B'C'的面积与△ABC的面积比是4:9,则OB':OB等于.13.(3分)如图,矩形ABCD的面积为4,顶点A和D在x轴的正半轴上,顶点B,C分别落在反比例函数y1=和y2=的图象上,则k的值等于.14.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个“岔路口”都是随机选择一条路径,食物的位置在点M和点N附近,则它爬行一次能获得食物的概率是.15.如图,矩形纸片ABCD中,AD=6,AB=8,点E在边DC上.将纸片沿AE折叠,点D落在点D'处.从下面A、B两题中任选一题作答..A.当点D'在对角线AC上时,DE的长为.B.当点D'在对角线DB上时,DE的长为.三、解答题(本大题含8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程。

山东省聊城市莘县2020-2021学年九年级(上)期末数学试卷 解析版

山东省聊城市莘县2020-2021学年九年级(上)期末数学试卷  解析版

2020-2021学年山东省聊城市莘县九年级(上)期末数学试卷一、选择题(本大题共12小题,共36分)1.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则△BCF与△DEF的周长比为()A.3B.9C.D.22.在△ABC中,∠ACB=90°,AC=1,BC=2,则sin B的值为()A.B.C.D.3.为防止疫情扩散,佩戴口罩成为疫情期间有效防范措施之一,某工厂为了能给市面上百日提供充足的口罩,第一个月至第三个月生产口罩由67500袋增加到90000袋,设该工厂第一个月至第三个月生产口罩平均每月增长率为x,则可列方程为()A.67500(1+2x)=90000B.67500×2(1+x)=90000C.67500+67500(1+x)+67500(1+x)2=90000D.67500(1+x)2=900004.如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()A.26°B.38°C.52°D.64°5.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y16.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6B.7C.8D.97.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1B.C.D.8.菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:①BF为∠ABE的角平分线;②DF=2BF;③2AB2=DF•DB;④sin∠BAE=.其中正确的为()A.①③B.①②④C.①④D.①③④9.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.410.如图,在Rt△ABC中,∠C=90°,sin A=,D为AB上一点,且AD:DB=3:2,过点D作DE⊥AC于E,连接BE,则tan∠CEB的值等于()A.B.2C.D.11.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A 的坐标为(1,0),那么点B2020的坐标为()A.(﹣1,1)B.C.(﹣1,﹣1)D.12.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)二、填空题(本大题共5小题,共15分)13.如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.14.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则(AE<BE)的值为.15.如图,在平面直角坐标系中,点A是函数y=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为.16.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA =2,则阴影部分的面积为.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.三.解答题(共69分)18.(1)计算:()﹣2﹣|1﹣tan60°|+sin60°+;(2)解方程:2x2﹣7x+6=0.19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=12,AF=6,求AE的长.20.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人.某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2018年投入5亿元资金,之后投入资金逐年增长,2020年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2021年该市计划保持相同的年平均增长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2021年该市能够帮助多少户建设保障性住房?21.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(参考数据:≈1.414,≈1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.22.某商店销售一种商品,每件进价为40元,对销售情况作了调查,结果发现月最大销售是y(件)与销售单价x(元)(50≤x≤90)之间的函数关系如图中的线段AB.(月最大销售量指进货量足够的情况下最多售出件数)(1)求出y与x之间的函数表达式.(2)该商品每月的总利润w(元),求w关于x的函数表达式,并指出销售单价x为多少元时利润w最大,该月进货数量应定为多少?(3)若该商店进货350件,如果销售不完,就以亏本36元/件计入总利润,则销售单价定为多少,当月月利润最大?23.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为点C,CD⊥x轴,垂足为点D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣>0的解集.24如图,P A为⊙O的切线,A为切点,过点A作AB⊥OP,垂足为点C,交⊙O于点B,延长BO与P A的延长线交于点D.(1)求证:PB为⊙O的切线;(2)若OB=3,OD=5,求PB和AB的长.25 如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△ACP为直角三角形?若存在,有几个?写出所有符合条件的点P的坐标;若不存在,说明理由.2020-2021学年山东省聊城市莘县九年级(上)期末数学试卷参考答案与试题解析一.选择题(共12小题)1.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则△BCF与△DEF的周长比为()A.3B.9C.D.2【分析】由平行四边形的性质得出BC=AD=3ED,AD∥BC,证明△BCF∽△DEF,得出====3,证出BF=3DF,CF=3EF,由相似三角形的性质即可得出答案.【解答】解:∵AE=2ED,∴AD=3ED,∵四边形ABCD是平行四边形,∴BC=AD=3ED,AD∥BC,∴△BCF∽△DEF,∴====3,∴BF=3DF,CF=3EF,∴===3,故选:A.2.在△ABC中,∠ACB=90°,AC=1,BC=2,则sin B的值为()A.B.C.D.【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,∴AB==,∴sin B===,故选:A.3.为防止疫情扩散,佩戴口罩成为疫情期间有效防范措施之一,某工厂为了能给市面上百日提供充足的口罩,第一个月至第三个月生产口罩由67500袋增加到90000袋,设该工厂第一个月至第三个月生产口罩平均每月增长率为x,则可列方程为()A.67500(1+2x)=90000B.67500×2(1+x)=90000C.67500+67500(1+x)+67500(1+x)2=90000D.67500(1+x)2=90000【分析】根据该工厂第一个月及第三个月生产口罩的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得67500(1+x)2=90000,故选:D.4.如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()A.26°B.38°C.52°D.64°【分析】连接OC,如图,先根据圆周角定理得到∠BOC=2∠A=52°,再利用互余计算出∠OCD=38°,然后利用等腰三角形的性质得到∠D的度数.【解答】解:连接OC,如图,∵∠A=26°,∴∠BOC=2∠A=52°,∵AB⊥CD,∴∠OCD=90°﹣∠BOC=90°﹣52°=38°,∵OC=OD,∴∠D=∠OCD=38°.故选:B.5.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=6,y2=﹣=﹣3,y3=﹣=﹣2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.6.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6B.7C.8D.9【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.7.将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=()A.1B.C.D.【分析】根据题意可以写出平移后的函数解析式,然后根据截x轴所得的线段长为4,可以求得a的值,本题得以解决.【解答】解:二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位之后的函数解析式为y=a(x﹣3)2﹣2,当y=0时,ax2﹣6ax+9a﹣2=0,设方程ax2﹣6ax+9a﹣2=0的两个根为x1,x2,则x1+x2=6,x1x2=,∵平移后的函数截x轴所得的线段长为4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故选:D.8.菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:①BF为∠ABE的角平分线;②DF=2BF;③2AB2=DF•DB;④sin∠BAE=.其中正确的为()A.①③B.①②④C.①④D.①③④【分析】由四边形ABCD是菱形,即可得BF为∠ABE的角平分线;可得①正确;由当∠ABC=60°时,DF=2BF,可得②错误;连接AC,易证得△AOD∽△F AD,由相似三角形的对应边成比例,可证得AD:DF=OD:AD,继而可得2AB2=DF•DB,即④正确;连接FC,易证得△ABF≌△CBF(SAS),可得∠BCF=∠BAE,AF=CF,然后由正弦函数的定义,可求得④正确.【解答】解:①∵四边形ABCD是菱形,∴BF为∠ABE的角平分线,故①正确;②连接AC交BD于点O,∵四边形ABCD是菱形,∴AB=BC=AD,∴当∠ABC=60°时,△ABC是等边三角形,即AB=AC,则DF=2BF,∵∠ABC的度数不定,∴DF不一定等于2BF;故②错误;③∵AE⊥BC,AD∥BC,∴AE⊥AD,∴∠F AD=90°,∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=DB,AD=AB,∴∠AOD=∠F AD=90°,∵∠ADO=∠FDA,∴△AOD∽△F AD,∴AD:DF=OD:AD,∴AD2=DF•OD,∴AB2=DF•DB,即2AB2=DF•DB;故③正确;④连接CF,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴∠BCF=∠BAE,AF=CF,在Rt△EFC中,sin∠ECF==,∴sin∠BAE=.故④正确.故选:D.9.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4【分析】过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,由垂径定理得出DF=CF,AG=BG=AB=3,得出EG=AG﹣AE=2,由勾股定理得出OG==2,证出△EOG是等腰直角三角形,得出∠OEG=45°,OE=OG=2,求出∠OEF=30°,由直角三角形的性质得出OF=OE=,由勾股定理得出DF═,即可得出答案.【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2,∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=,在Rt△ODF中,DF===,∴CD=2DF=2;故选:C.10.如图,在Rt△ABC中,∠C=90°,sin A=,D为AB上一点,且AD:DB=3:2,过点D作DE⊥AC于E,连接BE,则tan∠CEB的值等于()A.B.2C.D.【分析】在Rt△AED中,sin A==,可以假设AD=15k,DE=9k,则AE=12k,利用平行线分线段成比例定理,求出BC,EC即可解决问题;【解答】解:在Rt△AED中,∵sin A==,∴可以假设AD=15k,DE=9k,则AE=12k,∵AD:DB=3:2,∴DB=10k,∵DE∥BC,∴==,∴==,∴BC=15k,AC=20k,∴EC=AC﹣AE=8k,∴tan∠CEB==,故选:D.11.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A 的坐标为(1,0),那么点B2020的坐标为()A.(﹣1,1)B.C.(﹣1,﹣1)D.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(﹣1,﹣1)故选:C.12.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)【分析】由△BCP的面积=S△PHB+S△BHC=PH×OB,即可求解.【解答】解:对于y=﹣x2+x+2,令y=﹣x2+x+2=0,解得x=﹣1或4,令x=0,则y=2,故点A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,2),过点P作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为y=﹣x+2,设点P的坐标为(x,﹣x2+x+2),则点H的坐标为(x,﹣x+2),则△BCP的面积=S△PHB+S△BHC=PH×OB=×4×(﹣x2+x+2+x﹣2)=﹣x2+4x,∵﹣1<0,故△BCP的面积有最大值,当x=2时,△BCP的面积有最大值,此时,点P的坐标为(2,3),故选:A.二.填空题(共5小题)13.如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为69°.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°14.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则(AE<BE)的值为.【分析】由正方形EFGH与正方形ABCD的相似比为,不妨假设EF=k,AB=3k,证明△HAE≌△EBF(AAS),推出AE=BF,设AE=BF=x则EB=3k﹣x,在Rt△EFB中,根据EF2=BE2+BF2,构建方程即可解决问题.【解答】解:∵正方形EFGH与正方形ABCD的相似比为,∴不妨假设EF=k,AB=3k,∵∠A=∠B=∠FEH=90°,∴∠AEH+∠BEF=90°,∠BEF+∠EFB=90°,∴∠AEH=∠EFB,∵EH=EF,∴△HAE≌△EBF(AAS),∴AE=BF,设AE=BF=x则EB=3k﹣x,在Rt△EFB中,∵EF2=BE2+BF2,∴(k)2=(3k﹣x)2+x2,整理得x2﹣3kx+2k2=0,解得x=k或2k(舍弃),∴AE=k,BE=2k,∴=,故答案为.15.如图,在平面直角坐标系中,点A是函数y=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为﹣2.【分析】根据已知条件得到三角形ABO的面积=AB•OB,由于三角形ABC的面积=AB•OB=1,得到|k|=2,即可得到结论.【解答】解:∵AB⊥y轴,∴AB∥CO,∴三角形AOB的面积=AB•OB,∵S三角形ABC=AB•OB=1,∴|k|=2,∵k<0,∴k=﹣2,故答案为﹣2.16.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA =2,则阴影部分的面积为+π.【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD的面积与扇形OBC的面积之和再减去△BDO的面积,本题得以解决.【解答】解:作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=30°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.【分析】首先根据使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)确定a的值,然后利用概率公式求解.【解答】解:∵使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∴[﹣2(a﹣1)]2﹣4×1×a(a﹣3)>0,解得:a>﹣1,∵以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0),∴12﹣(a2+1)﹣a+2≠0,∴a≠1且a≠﹣2,∴满足条件的a只有0和2,∴使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是,故答案为:.三.解答题18.(1)计算:()﹣2﹣|1﹣tan60°|+sin60°+;(2)解方程:2x2﹣7x+6=0.【考点】实数的运算;负整数指数幂;解一元二次方程﹣因式分解法;特殊角的三角函数值.【专题】实数;一元二次方程及应用;运算能力.【答案】(1)7﹣;(2)x1=2,x2=1.5.【分析】(1)先计算负整数指数幂、代入三角函数值、计算算术平方根,再去绝对值符号,最后计算加减即可;(2)利用因式分解法求解即可.【解答】解:(1)原式=4﹣|1﹣|++2=4+1﹣++2=7﹣;(2)∵2x2﹣7x+6=0,∴(x﹣2)(2x﹣3)=0,则x﹣2=0或2x﹣3=0,解得x1=2,x2=1.5.19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=12,AF=6,求AE的长.【考点】平行四边形的性质;相似三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形;图形的相似;几何直观;推理能力.【答案】见试题解答内容【分析】(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD 和∠C是等角的补角,由此可判定两个三角形相似;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出=,代入各线段长度可求出DE的长度,再在Rt△ADE中,利用勾股定理即可求出AE的长..【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴=,即=,∴DE=16.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=16,AD=12,∴AE====4.20.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人.某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2018年投入5亿元资金,之后投入资金逐年增长,2020年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2021年该市计划保持相同的年平均增长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2021年该市能够帮助多少户建设保障性住房?【考点】一元二次方程的应用.【专题】增长率问题;应用意识.【答案】(1)该市这两年投入资金的年平均增长率为20%.(2)2021年能帮助28800户建设保障性住房.【分析】(1)今年年要投入资金是5(1+x)万元,在今年的基础上再增长x,就是明年的资金投入5(1+x)(1+x),由此可列出方程5(1+x)2=7.2,求解即可;(2)将(1)中求得的增长率代入即可求得2021年能够帮助多少户建设保障性住房.【解答】解:(1)设年平均增长率为x,依题意得:5(1+x)2=7.2.解得x1=﹣2.2(舍去),x2=0.2.∴x=0.2=20%.答:该市这两年投入资金的年平均增长率为20%.(2)7.2×(1+20%)=8.64(亿元)=86400(万元)86400÷3=28800(户)答:2021年能帮助28800户建设保障性住房.21.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(参考数据:≈1.414,≈1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.【考点】解直角三角形的应用﹣坡度坡角问题.【专题】解直角三角形及其应用.【答案】见试题解答内容【分析】(1)根据新的坡度,可以求得坡角的正切值,从而可以解答本题;(2)根据题意和题目中的数据可以求得P A的长度,然后与3比较大小即可解答本题.【解答】解:(1)∵新坡面坡角为α,新坡面的坡度为1:,∴tanα=,∴α=30°;(2)该文化墙PM不需要拆除,理由:作CD⊥AB于点D,则CD=6米,∵新坡面的坡度为1:,∴tan∠CAD=,解得,AD=6米,∵坡面BC的坡度为1:1,CD=6米,∴BD=6米,∴AB=AD﹣BD=(﹣6)米,又∵PB=8米,∴P A=PB﹣AB=8﹣(﹣6)=14﹣6≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM不需要拆除.22.某商店销售一种商品,每件进价为40元,对销售情况作了调查,结果发现月最大销售是y(件)与销售单价x(元)(50≤x≤90)之间的函数关系如图中的线段AB.(月最大销售量指进货量足够的情况下最多售出件数)(1)求出y与x之间的函数表达式.(2)该商品每月的总利润w(元),求w关于x的函数表达式,并指出销售单价x为多少元时利润w最大,该月进货数量应定为多少?(3)若该商店进货350件,如果销售不完,就以亏本36元/件计入总利润,则销售单价定为多少,当月月利润最大?【考点】二次函数的应用.【专题】二次函数的应用;运算能力;应用意识.【答案】(1)y=﹣10x+1000;(2)w=﹣10(x﹣70)2+9000,70,300;(3)52.【分析】(1)根据函数图象中的数据,可以得到y与x之间的函数表达式;(2)根据题意,可以得到w关于x的函数表达式,并指出销售单价x为多少元时利润w 最大,该月进货数量应定为多少;(3)根据题意,可以得到利润与单价之间的函数关系式,然后即可得到销售单价定为多少,当月月利润最大.【解答】解:(1)设y与x的函数关系式为y=kx+b,∵点(50,500),(90,100)在函数y=kx+b上,∴,解得,即y与x的函数关系式为y=﹣10x+1000;(2)由题意可得,w=(x﹣40)(﹣10x+1000)=﹣10(x﹣70)2+9000,∴当x=70时,w取得最大值,此时﹣10x+1000=300,即w关于x的函数表达式是w=﹣10(x﹣70)2+9000,销售单价x为70元时利润w最大,该月进货数量应定为300件;(3)设销售利润为W元,W=(x﹣40)(﹣10x+1000)﹣36[350﹣(﹣10x+1000)]=﹣10(x﹣52)2+10440,∴当x=52时,W取得最大值,即销售单价定为52元时,当月月利润最大.23.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为点C,CD⊥x轴,垂足为点D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣>0的解集.【考点】反比例函数与一次函数的交点问题.【专题】反比例函数及其应用.【答案】见试题解答内容【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出kx+b﹣>0的解集.【解答】解:(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2,∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣>0的解集是x>6.24如图,P A为⊙O的切线,A为切点,过点A作AB⊥OP,垂足为点C,交⊙O于点B,延长BO与P A的延长线交于点D.(1)求证:PB为⊙O的切线;(2)若OB=3,OD=5,求PB和AB的长.【考点】勾股定理;垂径定理;切线的判定与性质.【专题】与圆有关的位置关系;推理能力.【答案】(1)证明见解答过程;(2).【分析】(1)连接OA,根据切线的性质得到∠OAP=90°,证明△OBP≌△OAP,根据全等三角形的性质得到∠OBP=∠OAP=90°,根据切线的判定定理证明结论;(2)先根据勾股定理求出AD,再求出PB,根据三角形的面积公式求出BC,根据垂径定理解答即可.【解答】(1)证明:连接OA,∴由垂径定理可知:∠BOC=∠AOC,∵P A是⊙O的切线,∴∠OAP=90°,在△OBP与△OAP中,,∴△OBP≌△OAP(SAS),∴∠OBP=∠OAP=90°,∵OB是⊙O半径,∴PB是⊙O的切线;(2)解:在Rt△AOD中,AD==4,∵P A、PB为⊙O的切线,∴P A=PB,在Rt△DBP中,PD2=PB2+BD2,即(P A+4)2=PB2+82,解得,PB=P A=6,在Rt△OBP中,OP==3,∵S△OBP=×OP×BC=×OB×PB,∴×3×BC=×3×6,解得,BC=,∴AB=2BC=.25 如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△ACP为直角三角形?若存在,有几个?写出所有符合条件的点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【专题】代数几何综合题;几何直观.【答案】见试题解答内容【分析】(1)先确定C(0,6),设交点式y=a(x+1)(x﹣6),然后把C点坐标代入求出a的值即可;(2)连接AC,与对称轴交点即为所求点M,先利用待定系数法求出AC所在直线解析式,再将二次函数解析式配方得到其对称轴方程,继而可得答案;(3)设P点坐标为(x,﹣x2+5x+6),根据两点间的距离公式得到PC2=x2+(﹣x2+5x)2,P A2=(x﹣6)2+(﹣x2+5x+6)2,AC2=72,讨论:当∠P AC=90°,利用勾股定理得到(x﹣6)2+(﹣x2+5x+6)2+72=x2+(﹣x2+5x)2;当∠PCA=90°,利用勾股定理得到72+x2+(﹣x2+5x)2=(x﹣6)2+(﹣x2+5x+6)2;当∠APC=90°,利用勾股定理得到(x﹣6)2+(﹣x2+5x+6)2+x2+(﹣x2+5x)2=72,然后分别解方程即可得到对应的P点坐标.【解答】解:(1)当x=0时,y=ax2+bx+6=6,则C(0,6),设抛物线的解析式为y=a(x+1)(x﹣6),把C(0,6)代入得a•1•(﹣6)=6,解得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣6),即y=﹣x2+5x+6;(2)连接AC,与对称轴交点即为所求点M,设AC所在直线的解析式为y=mx+n,将A(6,0),C(0,6)代入,得:,解得:,则AC所在直线解析式为y=﹣x+6,又y=﹣x2+5x+6=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,在直线y=﹣x+6中当x=时,y=,则M的坐标为(,);(3)设P点坐标为(x,﹣x2+5x+6),存在4个点P,使△ACP为直角三角形.PC2=x2+(﹣x2+5x)2,P A2=(x﹣6)2+(﹣x2+5x+6)2,AC2=62+62=72,当∠P AC=90°,∵P A2+AC2=PC2,∴(x﹣6)2+(﹣x2+5x+6)2+72=x2+(﹣x2+5x)2,整理得x2﹣4x﹣12=0,解得x1=6(舍去),x2=﹣2,此时P点坐标为(﹣2,﹣8);当∠PCA=90°,∵PC2+AC2=P A2,72+x2+(﹣x2+5x)2=(x﹣6)2+(﹣x2+5x+6)2,整理得x2﹣4x=0,解得x1=0(舍去),x2=4,此时P点坐标为(4,10);当∠APC=90°,∵P A2+AC2=PC2,∴(x﹣6)2+(﹣x2+5x+6)2+x2+(﹣x2+5x)2=72,整理得x3﹣10x2+20x+24=0,x3﹣10x2+24x﹣4x+24=0,x(x2﹣10x+24)﹣4(x﹣6)=0,x(x﹣4)(x﹣6)﹣4(x﹣6)=0,(x﹣6)(x2﹣4x﹣4)=0,而x﹣6≠0,所以x2﹣4x﹣4=0,解得x1=2+2,x2=2﹣2,此时P点坐标为(2+2,4+2)或(2﹣2,4﹣2);综上所述,符合条件的点P的坐标为(﹣2,﹣8)或(4,10)或(2+2,4+2)或(2﹣2,4﹣2).。

2020-2021学年北京市海淀区九上期末数学(含答案)

2020-2021学年北京市海淀区九上期末数学(含答案)

2020-2021学年北京市海淀区九上期末数学试卷一、选择题1.已知反比例函数y=kx的图象经过点A(2,3),则k的值为( )A.3B.4C.5D.62.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是( )A.B.C.D.3.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为( )A.13B.12C.23D.14.如图,△ABC中,点D,E分别在边AB,AC的反向延长线上,且DE∥BC.若AE=2,AC=4,AD=3,则AB为( )A.9B.6C.3D.325.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是( )A.x−1=0B.x2+x=0C.x2−1=0D.x2+1=06.如图,⊙O的内接正六边形ABCDEF的边长为1,则BC⏜的长为( )A.14πB.13πC.23πD.π7.已知二次函数y=ax2+bx+c的部分图象如图所示,则使得函数值y大于2的自变量x的取值可以是( )A.−4B.−2C.0D.28.下列选项中,能够被半径为1的圆及其内部所覆盖的图形是( )A.长度为√5的线段B.斜边为3的直角三角形C.面积为4的菱形D.半径为√2,圆心角为90∘的扇形二、填空题9.写出一个二次函数,使得它有最小值,这个二次函数的解析式可以是.10.若点(1,a),(2,b)都在反比例函数y=4的图象上,则a,b大小关系是:a b(填“>”“=”或“<”).x11.如图,△ABC为等腰三角形,O是底边BC的中点,若腰AB与⊙O相切.则AC与⊙O的位置关系为(填“相交”、“相切”或“相离”).12.关于x的一元二次方程x2−3x+m=0有一个根是x=1,则m=.13.某城市启动“城市森林”绿化工程,林业部门要考察某种树苗在一定条件下的移植成活率.在同样条件下,对这种树苗进行大量移植,并统计成活情况,数据如下表所示:移植总数10270400750150035007000900014000估计树苗移植成活的概率是成活数量8235369662133532036335807312628成活频率0.8000.8700.9230.8830.8900.9150.9050.8970.902(结果保留小数点后一位).14.如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB=1.5m,同时量得BC=2m,CD=12m,则旗杆高度DE=m.15. 如图,在 Rt △ABC 中,∠ABC =90∘,AB =BC =3.点 D 在 AC 上,且 AD =2,将点 D 绕着点 A 顺时针方向旋转,使得点 D 的对应点 E 恰好落在 AB 边上,则旋转角的度数为 ,CE 的长为 .16. 已知双曲线 y =−3x 与直线 y =kx +b 交于点 A (x 1,y 1),B (x 2,y 2).(1)若 x 1+x 2=0,则 y 1+y 2= .(2)若 x 1+x 2>0 时,y 1+y 2>0,则 k 0,b 0(填“>”,“=”或“<”).三、解答题17. 解方程:x 2−4x +3=018. 如图,在 Rt △ABC 和 Rt △ACD 中,∠B =∠ACD =90∘,AC 平分 ∠BAD .(1) 证明:△ABC ∽△ACD .(2) 若 AB =4,AC =5,求 BC 和 CD 的长.19. 如图 1 是博物馆展出的古代车轮实物,《周礼 ⋅ 考工记》记载:“⋯⋯ 故兵车之轮六尺有六寸,田车之轮六尺有三寸 ⋯⋯”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整. 如图 2 所示,在车轮上取 A ,B 两点,设 AB⏜ 所在圆的圆心为 O ,半径为 rcm . 作弦 AB 的垂线 OC ,D 为垂足,则 D 是 AB 的中点,其推理依据是: , 经测量:AB =90cm ,CD =15cm ,则 AD = cm ; 用含 r 的代数式表示 OD ,OD = cm .在 Rt △OAD 中,由勾股定理可列出关于 r 的方程:r 2= , 解得 r =75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.20. 文具店购进了 20 盒“2B ”铅笔,但在销售过程中,发现其中混入了若干“HB ”铅笔.店员进行统计后,发现每盒铅笔中最多混入了 2 支“HB ”铅笔,具体数据见下表:混入"HB"铅笔数012盒数6mn(1) 用等式写出m,n所满足的数量关系.(2) 从20盒铅笔中任意选取1盒:①“盒中没有混入‘ HB’铅笔”是事件(填“必然”、“不可能”或“随机”).②若“盒中混入1支‘ HB’铅笔”的概率为1,求m和n的值.421.如图,在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B(4,2),以点O为位似中心,(x>0)的图象上.相似比为2,在第一象限内将线段AB放大得到线段CD,已知点B在反比例函数y=kx(1) 求反比例函数的解析式,并画出图象.(2) 判断点C是否在此函数图象上.(3) 点M为直线CD上一动点,过M作x轴的垂线,与反比例函数的图象交于点N,若MN≥AB,直接写出点M横坐标m的取值范围.22.如图,Rt△ABC中,∠ACB=90∘,点D在BC边上,以CD为直径的⊙O与直线AB相切于点E、且E是AB中点,连接OA.(1) 求证:OA=OB.(2) 连接AD,若AD=√7,求⊙O的半径.23.在平面直角坐标系xOy中,点P(m,y1)在二次函数y=x2+bx+c的图象上点Q(m,y2)在一次函数y=−x+4的图象上.(1) 若二次函数图象经过点(0,4),(4,4).①求二次函数的解析式与图象的顶点坐标.②判断m<0时,y1与y2的大小关系.(2) 若只有当m≥1时,满足y1⋅y2≤0,求此时二次函数的解析式.24.已知∠MAN=45∘,点B为射线AN上一定点,点C为射线AM上一动点(不与点A重合)点D在线段BC的延长线上,且CD=CB.过点D作DE⊥AM于点E.(1) 当点C运动到如图1的位置时,点E恰好与点C重合,此时AC与DE的数量关系是.(2) 当点C运动到如图2的位置时,依题意补全图形,并证明:2AC=AE+DE.(3) 在点C运动的过程中,点E能否在射线AM的反向延长线上?若能,直接用等式表示线段AC,AE,DE之间的数量关系;若不能,请说明理由.25.如图1,对于△PMN的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ为半径的圆与直线MN的公共点都在线段MN上,则称点Q为△PMN关于点P的内联点.在平面直角坐标系xOy 中:(1) 如图2,已知点A(7,0),点B在直线y=x+1上.①若点B(3,4),点C(3,0),则在点O,C,A中,点是△AOB关于点B的内联点.②若△AOB关于点B的内联点存在,求点B纵坐标n的取值范围.(2) 已知点D(2,0),点E(4,2),将点D绕原点O旋转得到点F.若△EOF关于点E的内联点存在.直接写出点F横坐标m的取值范围.答案一、选择题 1. 【答案】D【原文】【解析】 ∵ 反比例函数 y =kx 的图象经过点 A (2,3), ∴k =2×3=6.2. 【答案】A【原文】3. 【答案】A【原文】【解析】 ∵ 不透明袋子中有 1 个红球和 2 个绿球,共有 3 个球,∴ 从袋子中随机取出 1 个球是红球的概率是 13.4. 【答案】B【原文】【解析】 ∵DE ∥BC ,∴AEAC =ADAB ,∵AE =2,AC =4,AD =3, ∴24=AD AB ,∴AB =6.5. 【答案】C【原文】【解析】A 选项:x −1=0,得 x =1,故A 错误;B 选项:x 2+x =x (x +1)=0,解得 x =0 或 x =−1,故B 错误;C 选项:x 2−1=(x +1)(x −1)=0,解得 x =±1,故C 正确;D 选项:x 2+1=0,得 x 2=−1,解不存在,无解,故D 错误.6. 【答案】B【原文】【解析】连接 OB ,OC .∵ 六边形 ABCDEF 是 ⊙O 的内接正六边形,∴∠BOC =360∘6=60∘,∴BC⏜=60π×1180=π3.7. 【答案】B【原文】【解析】由二次函数的图象可得当0≤x时,y的范围为y≤2,则排除选项C,D,又二次函数的对称值x=x1,其值−2<x1<−1,则依据对称性有当x=−4时,其函数值y与x=1时的值比较接近,即y值在0的附近,故排除A选项,又依据对称性,当x=−2时,其值与x=−1时的值接近,由图象很明显的可得到x=−1时或当x值介于对称轴与0之间时(x≠0),其函数值明显大于2.8. 【答案】D【原文】【解析】A选项:半径为1的圆中,最长的弦为2.∵√5>√4.∴√5>2.∴半径为1的圆不能覆盖长度为√5的线段.故A错误;B选项:半径为1的圆能覆盖的直角三角形的斜边长最大为2.故半径为1的圆不能覆盖斜边为3的直角三角形.故B错误;C选项:半径为1的圆能覆盖的菱形最大面积为12×2×2=2,故半径为1的圆不能覆盖面积为4的菱形.故C错误;D选项:如图所示,⊙O的半径为1.AC=BC=√2,∠ACB=90∘.扇形ACB是半径为√2,圆心角为90∘.∴半径为1的圆能覆盖半径为√2,圆心角为90∘的扇形.故D正确.二、填空题9. 【答案】y=x2(答案不唯一,开口向上的二次函数即可);【原文】10. 【答案】>;【原文】【解析】把A(1,a),B(2,b)代入反比例函数y=4x中得:a=41=4,b=42=2,则a>b.11. 【答案】相切;【原文】【解析】根据题意以点为圆心作圆切AB于点D,连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线.12. 【答案】2;【原文】【解析】将x=1代入式中x有一解为1,代入式中求出m值,x2−3x+m=01−3+m=0m=2.13. 【答案】0.9;【原文】【解析】由表格中树苗的成活频率估计概率可知,树苗移植成活的概率是0.9.14. 【答案】9;【原文】【解析】根据镜面反射原理可知,∠ACB=∠DCE,∵∠ABC=∠EDC=90∘,∴△ABC∽△EDC.∴ABED =BCCD.∵CD=12,AB=1.5,BC=2,∴ED=9.故旗杆的高度DE为9米.15. 【答案】45∘;√10;【原文】【解析】∵AB=BC=3,∠ABC=90∘,∴∠BAC=∠C=45∘,∴旋转角为45∘,∵AD=AE=2,∴BE=AB−AE=1,在Rt△BCE中,CE=√BC2+BE2=√32+12=√10.16. 【答案】0;<;>;【原文】【解析】(1)∵y1=−3x1,y2=−3x2,x1+x2=0代入,y1+y2=−3x1+(−3x2)=−3(x1+x2)x1x2=0.(2)∵x1+x2>0,y1+y2>0,(x1,y1),(x2,y2)相当于两个方程联立的解,即kx+b=−3x,∴−kx2−bx−3=0,又∵x1+x2=−bk >0,两根之和为−ba,又∵y1+y2=k(x1+x2)+2b=b>0,(x1+x2=−bk代入),∴b>0,又∵−bk>0,∴k<0,∴k<0,b>0.三、解答题17. 【答案】x2−4x+3=0,(x−1)(x−3)=0,x−1=0,x−3=0,x1=1,x2=3.【原文】18. 【原文】【答案】(1) ∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD=90∘,∴△ABC∽△ACD.(2) 在Rt△ABC中,BC=√AC2−AB2=√52−42=3,由(1)知△ABC∽△ACD,∴ABBC =ACCD,∵AB=4,BC=3,∴43=5CD,解得CD=154.19. 【答案】垂直于弦的直径平分弦;45;(r−15);(r−15)2+452【原文】20. 【原文】【答案】(1) m+n=14;(2) ① 随机;②根据题意,可得m20=14,∴m=5,∴n=20−6−m=14−5=9.;【解析】(1) 根据题意可得:m+n=20−6,即m+n=14.(2) ①“盒中没有混入‘ HB’ 铅笔”是随机事件.21. 【原文】【答案】(1) ∵点B(4,2)在反比例函数y=kx(x>0)的图象上,∴k=4×2=8,∴反比例函数的解析式为y=8x,反比例函数y=8x经过(1,8),(2,4),(4,2),(8,1)等点,描点用平滑的曲线连接各点,即可得到函数图象,如图所示:(2) 以O为位似中心,相似比为2,将线段AB放大得到线段CD,如图所示,则C点坐标为(2,4),∵2×4=8,∴点C(2,4)在反比例函数y=8x的图象上.(3) 0<m≤87或m≥8.【解析】(3) ∵点C的坐标为(2,4),点D的坐标为(8,4),∴直线CD即为y=4,∵点M在直线CD上,∴设M点坐标为(m,4),∵MN⊥x轴,∴N点坐标为(m,8m),∴MN=∣∣8m−4∣∣,∵MN ≥AB ,AB =3,∴MN ≥3,∴∣∣8m −4∣∣≥3,当 8m −4≥3 时,8m ≥7,0<m ≤87,当 4−8m ≥3 时,8m≤1,m ≥8, ∴ 点 M 横坐标 m 的取值范围是 0<m ≤87 或 m ≥8.22. 【原文】【答案】(1) 连接 OE ,∵⊙O 与直线 AB 相切于 E ,∴OE ⊥AB .又 ∵E 为 AB 的中点,∴OE 为 AB 的垂直平分线,∴OA =OB .(2) ∵OE ⊥AB ,故 ∠OEB =90∘.又 ∵∠ACB =90∘,∠B 为 △OEB 与 △ACB 的公共角,∴△OEB ∽△ACB ,∴OB AB =OE AC ,设 AC =x ,OC =OE =r .在 △ADE 和 △AOC 中,{OE =OC,∠OEA =∠OEB =90∘,AO =AO,∴△AOE ≌△AOC (SAS ),∴AC =AE =x .∵E 为 AB 中点,∴AB =2AE =2AC =2x ,OB =√OE 2+BE 2=√r 2+x 2,OB AB =OE AC 即 √x 2+r 22x =r x 可得 x =√3r ,在 Rt △AOC 中 AO =BO =√r 2+x 2,在 Rt △ADC 中 AD 2=AC 2+DC 2,即 (√7)2=x 2+(2r )2,将 x =√3r 代入,即 7r 2=7,r =1.23. 【原文】【答案】(1) ①代入 (0,4),(4,4),{c =4,16+4b +c =4, ∴{b =−4,c =4,∴y =x 2−4x +4.顶点(2,0).②如图所示,当m=0时,y1=y2,当m<0时,y1在y2上方,故y1>y2.(2) 当m≥1时,y1⋅y2≤0,即(m2+mb+c)(−m+4)≤0,当1≤m≤4时,m2+mb+c≤0.m>4时,m2+mb+c>0.题中“只有”当m≥1时,说明1、4是二次函数两个根,代入可得b=−5,c=4,∴二次函数解析式:y=x2−5x+4.24. 【原文】【答案】(1) AC=DE;(2) 补全图如图二:在射线AM取点F,使AC=CF,在△ABC和△FDC中,{AC=CF,∠BCA=∠DCF, BE=DC,∴△ABC≌△FDC(SAS),∵DE⊥AM,∠DFC=∠BAC=45∘,∴DE=EF,∴AF=2AC=AE+EF=AE+DE,∴2AC=AE+DE.(3) 2AC=AE−DE.【解析】(1) ∵DE⊥AM,D在线段BC的延长线上,∴B,C,D三点共线,∴BC⊥AC,在Rt△ABC中,∠BAC=45∘,∴∠ABC=45∘,∴AC=BC,又∵CD=CB,∴AC=DC=DE.(3) 结论:2AC=AE−DE,证明:如图三,作BF⊥EM,在△CED和△CFB中,{∠BCF=∠DCE,∠BFC=∠DEC, BC=CD,∴△CED≌△CFB(AAS),∴DE=BF,CE=CF,∵∠MAN=45∘,∴BF=AF,∴AF=DE,∴AF=AC+CF=AC+EC=AC+AC+AE=2AC+AE,∵AF=DE,∴DE=2AC+AE,∴2AC=AE−DE.25. 【原文】【答案】(1) ① O,C②①点B为(0,1)时,此时以BO为半径作圆可以得到点O是△ADB关于点B的内联点,∴n≥1,此时若B往左移,作图发现将不再有内联点.②点B为(7,8)时,以BA为半径作圆可以得到点A是△AOB关于点B的内联点,∴n≤8,此时若点B往右移,作图发现将不再有内联点,综上,1≤n≤8;(2) −2√55≤m<4√55.【解析】(1) ①分别以BO,BC,BA为半径作圆,如图所示,以BO为半径作圆,OB与OA有2个公共点,且都在线段OA上,∴点O是ADB关于点B的内联点;以BC为半径作圆,只有一个公共点C,在线段OA上,符合定义;以BA为半径作圆,有2个公共点,但其中一个不在线段OA上,不符合;综上,O,C是△AOB关于点B的内联点.故答案为:O;C.(2) 将点 D 绕原点 O 旋转得到点 F ,说明点 F 在以 O 为圆心,半径为 2 的圆上,如下图:当 ∠EFO 为直角时,如下图:有两处满足条件,即上图中的点 F 和 Fʹ,其中点 F 横坐标为 0,EF =4,OF =2,同时 △EOF ≌△EOFʹ, 过点 Fʹ 作 y 轴的垂线,过点 E 作 x 轴的垂线,如下图:我们可证明 △OGFʹ∽△FʹHE ,其中 OFʹ=2,EFʹ=4,即相似比为 1:2,而 GFʹ=m ,FH =2m ,FʹH =4−m ,在 Rt △EFʹH 中,由勾股定理 16=(4−m )2+(2m )2,解得 m =0或85. 当 ∠EOF 为直角时,如下图:同样有两处满足条件,即上图中的点 F 和 Fʹ,以点 F 横坐标求解为例,我们过点 F ,E 分别向 x 轴作垂线,如下图:我们可证明 △FOM ∽△OEN ,其中 OE =2√5,OF =2,EN =2,OM =2√55,而点 F 与 Fʹ 关于原点 O 对称,因此点 F 横坐标为 −2√55,点 Fʹ 横坐标为 2√55. 故当 −2√55≤m ≤0 或 2√55≤m ≤85 时,△EOF 关于点 F 的内联点存在.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年九年级上学期期末数学提高训练题 (60)一、选择题(本大题共5小题,共15.0分)1.一元二次方程4x2−2x−1=0的根的情况为()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2.有11名同学参加传统文化比赛,他们的预赛成绩各不相同,现取其中前5名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这11名同学成绩的()A. 方差B. 平均数C. 众数D. 中位数3.已知二次函数y=−x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0,t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是()A. −1≤t≤0B. −1≤t≤−12C. −12≤t≤0 D. t≤−1或t≥04.如图,P为▱ABCD边AD的中点,E、F分别是PB、PC上的点,且PEEB =PFFC=12,则的值为()A. 14B. 13C. 29D. 275.如图,△ABD内接于圆O,∠BAD=60°,AC为圆O的直径.AC交BD于P点且PB=2,PD=4,则AD的长为()A. 2√3B. 2√6C. 2√2D. 4二、填空题(本大题共12小题,共24.0分)6.已知x3=y4=z5,则x+y−zy=______.7.数据5,8,7,8,9的中位数是______.8.如图,⊙O是△ABC的外接圆,连接OC,若∠ACO=40°,则∠ABC=________°.9.已知关于x的一元二次方程x2+(a−1)x+a=0有一个根是−2,则a的值为______.10.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE//BC.如果DEBC =35,CE=4,那么AE的长为______.11.若一元二次方程x2−2x+m=0总有实数根,则m应满足的条件是_________.12.点A(x1,y1)、B(x2,y2)在二次函数y=x2−4x−1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)13.如图,利用标杆BE测量建筑物DC的高度,如果标杆BE长为1.5米,测得AB=2米,BC=8米,且点A、E、D在一条直线上,则楼高CD是______米.14.已知圆锥的底面半径为6cm,母线长为8cm,它的侧面积为cm2.15.已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:x…−2−1012…y…−612−4−212−2−212…则该二次函数y=ax2+bx+c在x=3时,y=______.16.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m−2=0有两个不相等的实数根,则整数m的最小值为______.17.如图,已知△ABC,∠B=30°,∠C=60°,AC=2,E是BC边上一点,将△AEC沿AE翻折,点C落在点D处,若DE//AB,则EC=______.三、解答题(本大题共10小题,共81.0分)18.解方程:2y2+4y=y+2.19.甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.20.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩,测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测议成绩表测试序号12345678910成绩(分)7687758787(1)小明将三人的成绩整理后制作了下面的表格:平均数中位数众数方差甲7b70.8乙77d0.4丙a c e0.81则表中a=______,b=______,c=______,d=______,e=______.(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请作出简要分析.21.关于x的一元二次方程x2−x−(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.22.正方形ABCD内接于⊙O,如图所示,在劣弧A^B上取一点E,连接DE、BE,过点D作DF//BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.23.如图,已知AB//FD,点E在BC边上,点F在DC的延长线上,且∠AEB=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,CE=6,BE=2,求FC的长.24.已知二次函数y=12x2−3x+52.(1)该二次函数图象与x轴的交点坐标是______;(2)将y=12x2−3x+52化成y=a(x−ℎ)2+k的形式,并写出顶点坐标;(3)在坐标轴中画出此抛物线的大致图象;(4)写出不等式12x2−3x+52>0的解集.25.某农户生产经销一种农产品,已知这种农产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售单价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?26.如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.(1)求证:EF是⊙O的切线;(2)证明:∠CAD=∠CDF;(3)若∠F=30°,AD=√3,求⊙O的面积.27.如图1,已知抛物线y=−x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.-------- 答案与解析 --------1.答案:B解析:解:∵△=(−2)2−4×4×(−1)=20>0,∴一元二次方程4x2−2x−1=0有两个不相等的实数根.故选:B.先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.2.答案:D解析:解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选D.11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3.答案:A解析:此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的t的值为解题关键.找到最大值和最小值差刚好等于5的时刻,则t的范围可知.解:如图1所示,当t等于0时,∵y=−(x−1)2+4,∴顶点坐标为(1,4),当x=0时,y=3,∴A(0,3),当x=4时,y=−5,∴C(4,−5),∴当t=0时,D(4,5),∴此时最大值为5,最小值为0;如图2所示,当t=−1时,此时最小值为−1,最大值为4.综上所述:−1≤t≤0,故选:A.4.答案:C解析:解:∵PEEB =PFFC=12,∠EPF=∠BPC,∴△PEF∽△PBC,,∵P为▱ABCD边AD的中点,∴S△PAB=12S△PBC,,故选:C.证明△PEF∽△PBC,根据相似三角形的面积比等于相似比的平方计算即可.本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.5.答案:B解析:本题主要考查了圆周角定理,特殊角的函数值,相似三角形的性质和判定,勾股定理,正确作出辅助线和熟练掌握直径所对的圆周角是直角是解决问题的关键.连接DO并延长交⊙O于E,连接BE,由DE是⊙O的直径,推出∠EBD=90°,根据含30°直角三角形定理可求得BD,DE,进而求得OA=OD=2√3,通过计算证得ODBD =PDDE,由相似三角形的判定证得△ODP∽△BDE,即可证得∠POD=∠PBE=90°,根据勾股定理即可求得结论.解:如图,连接DO并延长交⊙O于E,连接BE,∵DE是⊙O的直径,∴∠EBD=90°,∵∠BED=∠BAD=60°,∴∠EDB=30°,∴DE=2BE,∵PB=2,PD=4,则BD=6,BD DE =sin60°=√32,∴DE=4√3,则OA=OD=2√3,∵ODBD =2√36=√33,PDDE=4√3=√33,∴ODBD =PDDE,又∵∠ODP=∠BDE,∴△ODP∽△BDE,∴∠POD=∠PBE=90°,∴AD2=OA2+OD2=24,∴AD=2√6,故选:B.6.答案:12解析:解:设x3=y4=z5=a,x=3a,y=4a,z=5a.x+y−zy =3a+4a−5a4a=12,故答案为:12.根据等比的性质,可得答案.本题考查了比例的性质,利用等式的性质得出x=3a,y=4a,z=5a是解题关键.7.答案:8解析:解:将数据5,8,7,8,9重新排列为5、7、8、8、9,则中位数为8,故答案为:8.根据中位数的概念求解.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.答案:50解析:此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.连接OA,进而得出∠OAC=∠ACO=40°,因此可得∠AOC=180°−∠CAO−∠ACO=100°,根据圆周角定理可得∠AOC=2∠ABC,从而得出∠ABC的度数.解:连接AO,∵∠ACO=40°,∴∠CAO=40°,∴∠AOC=180°−40°−40°=100°.∠AOC,又∠ABC=12∴∠ABC=1×100°=50°.2故答案为50.9.答案:6解析:解:把x=−2代入方程x2+(a−1)x+a=0得4−2(a−1)+a=0,解得a=6.故答案为6.把x=−2代入方程x2+(a−1)x+a=0得4−2(a−1)+a=0,然后解关于a的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.答案:32解析:解:∵DE//BC∴△ADE∽△ABC∴DEBC=AEAC=35∴设AE=3k,AC=5k(k≠0)),∴CE=3k+5k=4,∴k=1 2∴AE=3k=3 2故答案为:32根据相似三角形的性质可得DEBC =AEAC=35,即可求AE的长.本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.11.答案:m≤1解析:解:∵方程x2−2x+m=0总有实数根,∴△≥0,即4−4m≥0,∴−4m≥−4,∴m≤1.故答案为:m≤1.根据根的判别式,令△≥0,建立关于m的不等式,解答即可.本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.答案:<解析:解:由二次函数y=x2−4x−1=(x−2)2−5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.13.答案:7.5解析:解:∵BE//CD,∴△ABE∽△ACD,∴BECD =ABAC,即1.5CD=22+8,解得CD=7.5,所以楼高CD是7.5米.故答案为7.5.先证明△ABE∽△ACD,然后利用相似比求CD即可.本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.14.答案:48π解析:本题考查了圆锥侧面积的计算,熟练记忆圆锥侧面积的公式是解题的关键.根据圆锥的侧面积公式计算即可.解:圆锥母线长=8cm ,底面半径r =6cm ,则圆锥的侧面积为S =πrl =π×6×8=48πcm 2.故答案为48π.15.答案:−4解析:本题考查了二次函数的图象的性质,利用表格找到二次函数的对称点是解决此题的关键,另外本题还可以先求出函数的解析式,然后代入求值.根据题目提供的满足二次函数解析式的x 、y 的值,确定二次函数的对称轴,利用对称轴找到一个点的对称点的纵坐标即可.解:由上表可知函数图象经过点(0,−212)和点(2,−212),∴对称轴为x =0+22=1,∴当x =−1时的函数值等于当x =3时的函数值,∵当x =−1时,y =−4,∴当x =3时,y =−4.故答案为−4.16.答案:1解析:本题考查二次函数的图象,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.根据抛物线的图象以及二次函数与一元二次方程的之间的关系即可求出答案. 解:∵ax 2+bx +m −2=0有两个不相等的实数根,∴ax 2+bx =2−m 有两个不相等的实数根,令y 1=ax 2+bx ,y 2=2−m(表示与x 轴平行的直线),∴y 1与y 2有两个交点,∴2−m <2,∴m>0∵m是整数,∴m=1,故答案是:1.17.答案:4−2√3解析:解:如图所示,由折叠可得∠D=∠C=60°,AD=AC= 2,∵DE//AB,∴∠BAD=∠D=60°,又∵∠B=30°,∴∠AFB=90°,即AD⊥BC,∴∠CAD=90°−60°=30°,∴CF=12AC=12×2=1,AF=√3,DF=2−√3,设CE=DE=x,则EF=1−x,∵Rt△DEF中,EF2+DF2=DE2,∴(1−x)2+(2−√3)2=x2,解得x=4−2√3,∴EC=4−2√3.故答案为:4−2√3.先根据折叠的性质以及含30°角的直角三角形的性质,求得DF=2−√3,再设CE=DE=x,则EF= 1−x,根据Rt△DEF中,EF2+DF2=DE2,得到方程(1−x)2+(2−√3)2=x2,解得x=4−2√3,进而得到EC=4−2√3.本题主要考查了折叠问题,含30°角的直角三角形的性质以及勾股定理的综合应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解决问题的关键是:设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.18.答案:解:2y2+4y=y+2,整理得:2y2+3y−2=0,整理得:(2y −1)(y +2)=0,解得:y 1=12,y 2=−2.解析:本题主要考查的是因式分解法解一元二次方程的有关知识,由题意先将给出的方程进行变形,然后再利用因式分解法解一元二次方程即可.19.答案:解:画树状图得:∵共有6种情况,取出的2个小球上的数字之和为6的有2种情况,∴取出的2个小球上的数字之和为6的概率为:26=13.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的2个小球上的数字之和为6的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 20.答案:解:(1)6.3;7;6;7;6(2)∵甲、乙、丙三人的众数为7;7;6,甲、乙、丙三人的中位数为7;7;6,甲、乙、丙三人的平均数为7;7;6.3,∴甲、乙较丙优秀一些,∵S 甲2>S 乙2,∴选乙运动员更合适.解析:解:(1)运动员甲测试成绩按从小到大的顺序排列为:5,6,7,7,7,7,7,8,8,8,所以中位数b =(7+7)÷2=7.运动员乙测试成绩中,数据7出现了5次,次数最多,所以众数d =7.运动员丙测试成绩的平均数为a =110(2×5+4×6+3×7+1×8)=6.3,中位数c =(6+6)÷2=6,众数e =6;故答案是6.3,7,6,7,6;(2)∵甲、乙、丙三人的众数为7;7;6,甲、乙、丙三人的中位数为7;7;6,甲、乙、丙三人的平均数为7;7;6.3,∴甲、乙较丙优秀一些,∵S 甲2>S 乙2, ∴选乙运动员更合适.(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)先根据平均数、中位数与众数得出甲、乙较丙优秀一些,再由S 甲2=0.8、S 乙2=0.4,根据方差越小数据越稳定即可判断.本题考查列表法、条形图、折线图、中位数、众数、平均数、方差等知识,熟练掌握基本概念是解题的关键.21.答案:解:(1)∵方程x 2−x −(m +2)=0有两个不相等的实数根,∴(−1)2+4(m +2)>0,解得m >−94;(2)∵m >−94,∴m 的最小整数为−2,∴方程为x 2−x =0,解得x =0或x =1.解析:本题考查一元二次方程根的判别式,以及解一元二次方程,掌握一元二次方程根的判别式是解题关键.(1)根据方程有两个不相等的实数根可得(−1)2+4(m +2)>0,解得m 的取值范围即可;(2)根据m 的的取值范围得出m 的最小整数值,代入方程中,再解方程即可.22.答案:证明:(1)∵正方形ABCD 内接于⊙O ,∴∠BED =∠BAD =90°,∠BFD =∠BCD =90°,又∵DF//BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴ÂD的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFG=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.解析:(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质A^D的度数是90°,进而得出BE=DF,则BE=DG.此题主要考查了正方形的性质以及圆周角定理和矩形的判定等知识,正确应用正方形的性质是解题关键.23.答案:(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,∴∠1=∠2.∵∠AEB=∠F,∴△ABE∽△ECF.(2)解:∵△ABE∽△ECF,∴ABCE =BECF,∴56=2CF,∴CF=125.解析:(1)根据平行四边形的性质得出AB//CD故∠1=∠2,再由∠AEB=∠F即可得出结论;(2)根据相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.24.答案:(1)(1,0),(5,0)(2)y=12x2−3x+52=12(x2−6x)+52=12(x2−6x+9−9)+52=12(x−3)2−2,所以二次函数图象的顶点坐标为(3,−2);(3)当x=0时,y=12x2−3x+52=52,则抛物线与y轴的交点坐标为(0,52),如图,(4)不等式12x2−3x+52>0的解集为x<1或x>5.解析:解:(1)当y=0时,12x2−3x+52=0,解得x1=1,x2=5,所以该二次函数图象与x轴的交点坐标为(1,0),(5,0);故答案为(1,0),(5,0);(2)见答案(3)见答案(4)见答案(1)解方程12x2−3x+52=0,解得该二次函数图象与x轴的交点坐标;(2)利用配方法得到y=12(x−3)2−2,从而得到抛物线的顶点坐标;(3)利用描点法画出二次函数的图象;(4)利用函数图象,写出抛物线在x轴上方所对应的自变量的范围即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.25.答案:解:(1)w=(x−20)(−2x+80)=−2x2+120x−1600;(2)w=−2x2+120x−1600=−2(x−30)2+200.∵−2<0,∴当x=30时,w最大为200.∴该产品销售价定为每千克30元时,每天的销售利润最大,最大利润是200元.解析:本题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.26.答案:(1)证明:如右图,连接OD,AD,∵AC是直径,∴∠ADC=90°,即AD⊥BC,又AB=AC,∴BD=CD,又AO=CO,∴OD//AB,又FE⊥AB,∴FE⊥OD,∴EF是⊙O的切线;(2)∵OD =OC ,∴∠ODC =∠OCD ,∵∠ADC =∠ODF =90°,∴∠CAD +∠OCD =90°,∠CDF +∠ODC =90°,∴∠CAD =∠CDF ;(3)在Rt △ODF 中,∠F =30°,∴∠DOC =90°−30°=60°,∵OA =OD ,∴∠OAD =∠ODA =12∠DOC =30°, 在Rt △ADC 中,AC =AD cos30∘=√3√32=2,∴r =1,∴S ⊙O =π⋅12=π,∴⊙O 的面积为π.解析:(1)连接OD ,AD ,证点D 是BC 的中点,由三角形中位线定理证OD//AB ,可推出∠ODF =90°,即可得到结论;(2)由OD =OC 得到∠ODC =∠OCD ,由∠CAD +∠OCD =90°和∠CDF +∠ODC =90°即可推出∠CAD =∠CDF ;(3)由∠F =30°得到∠DOC =60°,推出∠DAC =30°,在Rt △ADC 中,由锐角三角函数可求出AC 的长,推出⊙O 的半径,即可求出⊙O 的面积.本题考查了圆的有关性质,切线的判定与性质,解直角三角形等,解题关键是能够根据题意作出适当的辅助线,并熟练掌握解直角三角形的方法.27.答案:解:(1)将A(−1,0)、B(3,0)代入y =−x 2+bx +c ,{−1−b +c =0−9+3b +c =0,解得:{b =2c =3, ∴抛物线的表达式为y =−x 2+2x +3.(2)在图1中,连接PC ,交抛物线对称轴l 于点E ,∵抛物线y =−x 2+bx +c 与x 轴交于A(−1,0),B(3,0)两点,∴抛物线的对称轴为直线x =1.当x =0时,y =−x 2+2x +3=3,∴点C 的坐标为(0,3).若四边形CDPM 是平行四边形,则CE =PE ,DE =ME ,∵点C 的横坐标为0,点E 的横坐标为1,∴点P 的横坐标t =1×2−0=2,∴点P 的坐标为(2,3),∴点E 的坐标为(1,3),∴点M 的坐标为(1,6).故在直线l 上存在点M ,使得四边形CDPM 是平行四边形,点M 的坐标为(1,6).(3)①在图2中,过点P 作PF//y 轴,交BC 于点F .设直线BC 的解析式为y =mx +n(m ≠0),将B(3,0)、C(0,3)代入y =mx +n ,{3m +n =0n =3,解得:{m =−1n =3, ∴直线BC 的解析式为y =−x +3.∵点P 的坐标为(t,−t 2+2t +3),∴点F 的坐标为(t,−t +3),∴PF =−t 2+2t +3−(−t +3)=−t 2+3t ,∴S =12PF ⋅OB =−32t 2+92t =−32(t −32)2+278.②∵−32<0, ∴当t =32时,S 取最大值,最大值为278.∵点B 的坐标为(3,0),点C 的坐标为(0,3),∴线段BC =√OB 2+OC 2=3√2,∴P 点到直线BC 的距离的最大值为278×23√2=9√28,此时点P 的坐标为(32,154).解析:(1)由点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC ,交抛物线对称轴l 于点E ,由点A 、B 的坐标可得出对称轴l 为直线x =1,利用平行四边形对角线互相平分可得出点P、E的坐标,进而可得出点M的坐标;(3)①过点P作PF//y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P 点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)利用平行四边形的对角线互相平分找出点E的坐标;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.。

相关文档
最新文档