数学联赛高一全国数学联赛暑期班讲义第8讲平面几何一学生版

合集下载

高一数学暑期预科-初高衔接课讲义

高一数学暑期预科-初高衔接课讲义

新高一数学必备知识一、乘法公式1、完全平方公式和平方差公式()2222b ab a b a +±=± ()()22b a b a b a -=-+2、和立方与差立方公式()3223333b ab b a a b a +++=+ ()3223333b ab b a a b a -+-=-3、立方和与立方差公式()()3322b a b ab a b a +=+-+ ()()3322b a b ab a b a -=++-二、一元二次方程1、韦达定理一元二次方程的根与系数之间存在下列关系:若ax 2+bx +c =0(a ≠0)两根分别是x 1,x 2,则x 1+x 2=b a -,x 1·x 2=ca.也被称为韦达定理.以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a ac b b x 2421-+-=,aac b b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=.【例题精讲】例1. 已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值.例2. 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值.例3. 已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______.【巩固练习】1. 1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 .2. 关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.3. 已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 .2、利用韦达定理逆定理,构造一元二次方程辅助解题等【例题精讲】例1. 设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值例2. 0519998081999522=++=+-b b a a 及已知,求ba的值.【巩固练习】1. 如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,求baa b +的值2. 设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值.3. △ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .3、根的分布定理 (1)0分布一元二次方程()200ax bx c a ++=≠的根从几何意义上来说就是二次函数()c bx ax x f ++=2与x 轴交点的横坐标,所以研究02=++c bx ax 的实根的情况,可从函数()c bx ax x f ++=2的图象上进行研究.0∆>⎧0∆>⎧【例题精讲】例1. 已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围.例2. 若方程05)2(2=-+-+m x m x 的根满足下列条件,分别求出实数m 的取值范围. (1)方程两实根均为正数;(2)方程有一正根一负根.【巩固练习】已知一元二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围.(2)k分布【知识梳理】kk k【例题精讲】例1. 若关于x 的方程02=++a x x 的一个大于1、另一根小于1,求实数a 的取值范围.例2. 若关于x 的方程02=++a x x 的两根均小于1,求实数a 的取值范围.例3.已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.【巩固练习】1. 关于x 的方程02)1(22=-+-+a x a x 的一个根比1大,另一个根比1小,则( )12121||11>-<<<-><<-a a D a Ca B a A 或2. 实数k 为何值时,方程022=-+-k kx x 的两根都大于21 .3. (1)已知:,αβ是方程()221420x m x m +-+-=的两个根,且2αβ<<,求m 的取值范围;(2)若220x ax ++=的两根都小于1-,求a 的取值范围.(3)m、n分布()0⎧>f m()0⎧<f m【例题精讲】例1. 已知关于x 的二次方程x 2+2mx +2m +1=0,(1)若方程有两根,其中一根满足011<<-x ,另一根满足212<<x ,求m 的范围; (2)若方程两根满足1021<≤<x x ,求m 的范围.例 2. 关于x 的二次方程()2271320x p x p p -++--=的两根βα,满足012αβ<<<<,求实数p 的取值范围.例3. 二次函数6)1(2522-++-=m x m x y 的图像与x 轴的两个交点满足1121≤<≤-x x ,且分居y 轴的两侧,求实数m 的取值范围.例4. 若二次函数y =的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求m 的取值范围.21x mx -+-【巩固练习】1. 关于x 的方程0532=+-a x x 的两根分别满足021<<-x ,312<<x ,求a 的取值范围.2. 二次方程2210x kx k ++-=的两个根1x 与2x ,当121x -<<-且212x <<时,实数k 的取值范围是 .总结:一元二方程根的分布只需考虑三个方面:(1)a 和△的符号(2)对称轴相对于区间的位置(3)所给区间端点函数值符号【例题精讲】例1.当关于x 的方程的根满足下列条件时,求实数a 的取值范围: (1)方程x 2-ax+a -7=0的两个根一个大于2,另一个小于2; (2)方程ax 2+3x+4=0的根都小于1;(3)方程x 2-2(a+4)x+2a 2+5a +3=0的两个根都在31-≤≤x 内;(4)方程7x 2-(a+13)x+2a -1=0的一个根在10<<x 内,另一个根在21<<x 内.例2.已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围.【巩固练习】已知方程03)3(24=+--m x m mx 有一个根小于1-,其余三个根都大于1-,求m 的取值范围.三、不等式1、一元二次不等式例1. 解下列不等式(1)()()x x x 2531-<--; (2)()()21311+>+x x x ;(3)()()()233122+>-+x x x ; (4)2223133x x x ->+-; (5)()13112->+-x x x x(6)x 2+2x -3≤0; (7)x -x 2+6<0; (8)4x 2+4x +1≥0; (9)x 2-6x +9≤0; (10)-4+x -x 2<0.例2.设R m ∈,解关于x 的不等式0322<-+m mx mx .2、分式不等式及高次不等式(1)简单分式不等式的解法:已知f (x )与g (x )是关于x 的多项式,不等式()0()f x g x >,()0()f x g x <,()0()f x g x ≥,()0()f xg x ≤称为分式不等式.前面介绍过的符号法则可以进行推广,进而可以研究分式不等式.将分式不等式进行同解变形,利用不等式的同解原理将其转化为有理整式不等式(组)即可求解.具体如下:()0()f x g x >①,即()0()0f x g x >⎧⎨>⎩或()0()0f xg x <⎧⎨<⎩,即()()0f x g x ⋅>;()0()f x g x <②,即()0()0f x g x >⎧⎨<⎩或()0()0f x g x <⎧⎨>⎩,即()()0f x g x ⋅<; ()0()f x g x ≥③,即()()0()0f x g x g x ⋅≥⎧⎨≠⎩,即()()0f x g x ⋅>或()0f x =; ()0()f x g x ≤④,即()()0()0f x g x g x ⋅≤⎧⎨≠⎩,即()()0f x g x ⋅<或()0f x =.(2)简单高次不等式的解法:不等式的最高次项的次数高于2的不等式称为高次不等式.前面介绍过的符号法则可以进行推广,进而可以研究高次不等式.解高次不等式的方法有两种:方法1:将高次不等式f (x )>0(<0)中的多项式f (x )分解成若干个不可约因式的乘积,根据符号法则等价转化为两个或多个不等式(组)即可求解.但应注意:原不等式的解集是各不等式(组)解集的并集,且次数较大时,此种方法比较烦琐.方法2:穿针引线法:①将不等式化为标准形式,右端为0,左端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号即可写出解集.例题解析(1)求不等式032≥-+x x 的解集 (2)求不等式3223x x -≥+的解集(3)求不等式221x x 的解集(4)求不等式()()0236522≤++--x x x x 的解集3、恒成立与有解问题一元二次不等式的恒成立问题,即可以看成一个函数()x f y =的图象与x 轴的位置关系问题,若是不等式()0>x f 恒成立,即函数图象恒在x 轴上方,且与x 轴无交点,同理可以得到其他类似情形。

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

讲义-[6-7]点共线和点共圆

讲义-[6-7]点共线和点共圆
B
L
M
I
D
E
A
C
N
40 | 高一·数学·第 8 讲·联赛班·学生版 |
第九讲 平面几何技巧(二)
名人名言
希尔伯特
我们必须知道,我们必将知道. 这是1930 年希尔伯特(D·Hilbert,1862~1943,德国数学家)在科尼斯堡讲演的最后一句 话,题为《认识自然和逻辑》.无论从哪个角度看,这都是伟大而有决定意义的诗句,表 达了数学家探索数学的决心和信心.正如1962 年库朗(R.Courant,1988~1972,德国数学家) 在纪念希尔伯特诞生100 周年大会上发表的演讲“我确信,希尔伯特那具有感染力的乐观主 义,即使到今天也在数学中保持着它的生命力.唯有希尔伯特精神,才会引导数学继往开 来,不断成功.”此外1900 年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》 的演讲.他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了 23 个最重要的 数学问题.这 23 个问题被称为“希尔伯特问题”,称为许多数学家力图攻克的难关,对现代 数学的研究和发展产生了深刻的影响并积极地推动作用. 希尔伯特是一位正直的数学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗
PN M
C
X
【例4】 设 A ,B ,C ,D 是平面上四点,如果对平面上任何点 P 都满足不等式:PA + PD ≥ PB + PC , 那么 B , C , A , D 四点共线.
【例5】 如图,设四边形 ABCD 外切于圆 O ,对角线 AC 和 BD 中点分别为 M , N .试证: M , N , O 三点共线.
A
DF
E
G
O
P
B
C
46 | 高一·数学·第 9 讲·联赛班·学生版 |

高一数学竞赛讲义:平面几何

高一数学竞赛讲义:平面几何

平面几何习题 2016.4.18例1、(2005)13.已知点 M 是 ABC ∆ 的中线 AD 上的一点, 直线 BM 交边AC 于点N , 且 AB 是 NBC ∆ 的外接圆的切线, 设BC BN λ=, 试求 BMMN(用 λ 表示).例2、(2006)15. △ABC 中,AB<AC,AD,AE 分别是BC 边上的高和中线,且∠BAD=∠EAC,证明∠BAC 是直角.例3、(2007)12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .EBCDAABCDNMAB CP例4、(2010)13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥,垂足H .过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形.例5、(2011)13.如图,P 是ABC 内一点.(1)若P 是ABC 的内心,证明:1902BPC BAC ∠=+∠;(2)若1902BPC BAC ∠=+∠且1902APC ABC ∠=+∠,证明:P 是ABC 的内心.ABC DEFH GM BDOA例6、(2012) 13. 如图,半径为1的圆O 上有一定点M, A 为圆O 上动点,在射线OM 上有一动点B,AB=1,OB>1. 线段AB 交圆O 于另一点C,D 为线段OB 的中点,求线段CD 长的取值范围例7、(2013)12.如图,梯形ABCD 中,B 、D 关于对角线AC 对称的点分别是'B 、'D ,A 、C 关于对角线BD 对称的点分别是'A 、'C .证明:四边形''''A B C D 是梯形.例8、(2014) 13.如图,已知ABC ∆是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB 上的高CH 于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG AE =.例9、(2015) 12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD=CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点. 求证:A 、P 、B 、C 四点共圆.ABCDP(第12题图)E。

高一全国高中数学联赛辅导课件----平面几何的几个重要定理

高一全国高中数学联赛辅导课件----平面几何的几个重要定理
B A1 C A1 AC1 BC1 B P co s P B C C P co s P C B A P co s P A B P B co s P B A , C B1 A B1 C P co s P C A A P co s P A C ,
平面几何──平面几何的几个重要定理
引入
梅涅劳斯定 理
托勒密定 理
塞瓦定理
课外思考
1
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支, 且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、 向量法等许多证法, 这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题. 平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 2
12
思考(1999 年全国联赛第二试试题) 如 图, 在四 边形 A B C D 中 , 对角 线 A C 平 分 B A D ,在 C D 上取一点 E , B E 与 AC 相交于点 F,延长 D F 交 B C 于 G ,求证: G A C E A C .
证明:如图,直线 BD 交 AC 于 H,对 B C D 用 塞 瓦 定 理 ,
CG BH DE 有: 1因 A H 是 B A D 的 平 分 , GB HD BC 由角平分 定理,可得 BH HD 的 平 行 交 AE的 延 于 J CG CI DE AD CI AB AD : , 1 GB AB EC CJ AB AD CJ 而 : C I C J 又 C I // A B , C J // A D ACI BAC DAC ACJ A C I A C J IA C J A C G A C E A C

高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:APAB+AQ AC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DCAQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NCME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O与BC 、CA 、AB图6AN CDEB MAGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB .(提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°) 3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)O图107. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG .(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.A BGCD FE图1ABCDPO 图2设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.A图3BPQDHC A EDCB图4解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',E A NCD B FM 12345图6(1)(2)图8ABCA'B'C'c a b a'c'b'ABCa bb c∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=aa '=DB b '. 故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.F DAEC图10图11(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

高中数学竞赛专题讲座课件:平面几何

高中数学竞赛专题讲座课件:平面几何
三角形中的几个特殊点:旁心、费马点,欧拉线. 几何不等式. 几何极值问题. 几何中的变换:对称、平移、旋转. 圆的幂和根轴. 面积方法,复数方法,向量方法,解析几何方法.
(一)、平面几何的几个重要的定理 1、梅涅劳斯定理及其逆定理
若一条直线截△ABC 的三条边 AB、BC、CA (或他们的延长线),所得交点分别为 P、Q、R,
数学竞赛 专题讲座
平面几何初步
一.平面几何主要知识点
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题。
(三)面积法与等积变换
主要知识:
1.面积公式
S△ ABC

1 2 aha

1 2
ab sin C

2R2
sin
Asin B p b)( p c) pr (p 是周长的一半) 2.面积定理
等底等高的三角形的面积相等.
等高(比)的两个三角形的面积之经等于底(高)之比.
=( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK,
∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º.由此知 QH⊥AH,即 PQ⊥AB.

高中数学竞赛平面几何讲义

高中数学竞赛平面几何讲义

高中平面几何(叶中豪话题几何问题的联系和转化解题和编题的一些规律调和点列,反演与配极,调和四边形完全四边形及其 Miquel 点例题和习题1. △ ABC 中, AB =AC , BD ⊥ AC 于 D , E 在 AC 延长线上,且 CE =CD , F 在CA 延长线上,且 AF = 12CD 。

求证:BE ⊥ BF 。

2. AB 为半圆直径, C 为半圆上一点,由 C 引 AB 的垂线, D 为垂足。

分别在半圆上截取 AE =AD , BF =BD 。

求证:CD 平分 EF 。

3. 已知半圆的直径 AB 的长为 2r ,半圆外的直线 l 与 BA 的延长线垂直,垂足为T ,AT =2a (2a <2r , 半圆上有相异两点 M 、 N , 它们与直线 l 的距离 MP 、 NQ 满足 MP AM=NQAN=1。

求证:AM +AN =AB 。

l PQ T4. 在△ ABC 的边 BC 的延长线上取一点 D ,使 CD =AC ,△ ACD 的外接圆与以BC边为直径的圆交于 C 、 G 两点,直线 BG 、 AC 交于 E ,直线 CG 、 AB 交于F 。

求证:D 、 E 、 F 三点共线。

B5. △ ABC 内心为 I ,内切圆切 AB 、 AC 边于 E 、 F ,延长 BI 、 CI 分别交直线EF 于 M 、N 。

求证:S 四边形 AMIN =S △ IBC 。

B6. AC 是与 BD 垂直于 E 的直径, G 是 BA 延长线上一点,过 B 作 BF ∥ DG 交DA 延长线于 F ,作 CH ⊥ GF 于 H 。

求证:B 、 E 、 F 、 H 四点共圆。

7. 如图,圆 O 1和圆 O 2相交于 E 、 F ,过 E 作割线 AB ,使 AE =EB ,过 F 作割线CD , 联 AD 、 BC ,并过 A 作 AD 的垂线、过 B 作 BC 的垂线,设两条垂线相交于 P 点。

2022年全国高中数学联赛几何专题(平面几何解析几何)

2022年全国高中数学联赛几何专题(平面几何解析几何)

2022年全国高中数学联赛几何专题(平面几何解析几何)数学竞赛中的平面几何一、引言1.国际数学竞赛中出现的几何问题,包括平面几何与立体几何,但以平面几何为主体.国际数学竞赛中的平面几何题数量较多、难度适中、方法多样(综合几何法、代数计算法、几何变换法等),从内容上看可以分成三个层次:第一层次,中学几何问题.这是与中学教材结合比较紧密的常规几何题,虽然也有轨迹与作图,但主要是以全等法、相似法为基础的证明题,重点是与圆有关的命题,因为圆的命题知识容量大、变化余地大、综合性也强,是编拟竞赛试题的优质素材.第二层次,中学几何的拓展.第三层次,组合几何——几何与组合的交叉.这是用组合数学的成果来解决几何学中的问题,主要研究几何图形的拓扑性质和有限制条件的欧几里得性质.所涉及的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题在第六届IMO(1964)就出现了,但近30年,无论内容、形式和难度都上了新的台阶,成为一类极有竞赛味、也极具挑战性的新颖题目.组合几何的异军突起是数学竞赛的三大热点之一.2.在中国的数学竞赛大纲中,对平面几何内容除了教材内容外有如下的补充.初中竞赛大纲:四种命题及其关系;三角形的不等关系;同一个三角形中的边角不等关系,不同三角形中的边角不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质.高中竞赛大纲:几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形中的几个特殊点:旁心、费马点,欧拉线;几何不等式;几何极值问题;几何中的变换:对称、平移、旋转;圆的幂和根轴;面积方法,复数方法,向量方法,解析几何方法.二、基本内容全等三角形的判别与性质,相似三角形的判别与性质,等腰三角形的判别与性质,“三线八角”基本图形,中位线定理,平行线截割定理,圆中角(圆心角、圆周角、弦切角)定理等大家都已经非常熟悉,此外,竞赛中还经常用到以下基本内容.定义1点集的直径是指两个端点都属于这个集合且长度达到最大值的线段(一个点集可能有多条直径,也可能没有直径).定义2如果对点集A中的任意两点,以这两点为端点的线段包含在A 里,则集合A称为是凸的.定义3设M1,M2,,Mn是多边形,如果MM1M2Mn并且当ij时,Mi与Mj 没有公共的内点,则称多边形M剖分为多边形M1,M2,,Mn.定义4如果凸边形N的所有顶点都在凸多边形M的边上,则称多边形N内接于多边性M.定理1两点之间直线距离最短.推论三角形的两边之和大于第三边,两边之差小于第三边.定理2三角形的内角之等于180.凸n边形(n3)的n个内角和等于(n2)外角和为180180;(每一个顶点处只计算一个外角).702022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用证明如图1,过C作CE//AB,则有ECAA,(两直线平行,内错角相等)得ABCACB(结合律)ECBB(等量代换)180.(两直线平行,同旁内角互补图1推论三角形的一个外角等于两个不相邻内角之和.定理3三角形中大边对大角、小边对小角.证明(1)如图2,在ABC中,已知ABAC,可在AB上截取ADAC,则在等腰ACD中有12.(等腰三角形的性质定理)又在BCD中,2B,(外角定理)更有C12B.(传递性)说明由上面的证明知ABACBC,ABACBC,ABACBC,这样的分断式命题,其逆命题必定成立.证明如下:图2(2)反之,在ABC中,若CB,这时AB,AC有且只有三种关系ABAC,ABAC,ABAC.若ABAC,由上证得CB,与已知CB矛盾.若ABAC,由等腰三角形性质定理得CB,与已知CB矛盾.所以ABAC.定理4在ABC与A1B1C1中,若ABA1B1,ACAC11,则AA1BCB1C1.定理5凸四边形ABCD内接于圆的充分必要条件是:ABCCDA180(或BADDCB180).证明当四边形ABCD内接于圆时,由圆周角定理有ABCCDA1111ADCABCADCABC180.2222同理可证BADDCB180.反之,当ABCCDA180时,首先过不共线的三点A,B,C作O,若点D不在O上,则有两种可能:(1)D在O的外部(如图3(1)).记AD与O相交于S,连CS,在CDS中有ASCCDA.又由上证,有ABCASC180,得180ABCCDAABCASC180,矛盾.712022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用图3(2)D在O的内部(如图3(2)).记AD的延长线与O相交于S,连CS,在CDS中有ASCCDA.又由上证,有ABCASC180,得180ABCCDAABCASC180,矛盾.定理6凸四边形ABCD外切于圆的充分必要条件是ABCDBCAD.证明当凸四边形ABCD外切于圆时,设各边的切点分别为P,Q,R,S (如图4),根据圆外一点到圆的两切线长相等,有APAS,PBBQ,CRQC,DRDS.相加APPBCRDRASBQQCDS,得ABCDBCAD.图4反之,若ABCDBCAD,我们引B,C的平分线,因为BC360,所以,两条角平分线必定相交于四边形内部一点,记为N,则N到三边AB,BC,CD的距离相等,可以以N为圆心作N与AB,BC,CD同时相切,这时AD与N的关系有且只有三种可能:相离、相切、相交.(1)若AD与N相离(如图5(1)).过A作切线与CD相交于D,在ADD中,有//DDADAD.①//但由上证,有ABCDBCAD,又由已知,有ABCDBCAD相减得CDCDADAD,////DD/ADAD/,与①矛盾.图5722022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用(2)若AD与N相交(如图5(2)).过A作切线与CD的延长线相交于D,在ADD中,有①//DDADAD.//但由上证,有ABCDBCAD,//又由已知,有ABCDBCAD相减得CDCDADAD,//即DDADAD,与①矛盾.综上得AD与N的相切,即凸四边形ABCD外切于圆.定理7(相交弦定理)圆内的两条相交弦,被交点分成的两条线段长的积相等.定理8(切割线定理)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.定义5从一点A作O的割线交O于B,C,则点A到两交点B,C的线段长度之积ABAC称为点A对O的羃.对于两个已知圆有等羃的点的轨迹,称为两圆的根轴(或等羃轴).定理9若两圆相交,其根轴在两圆公共弦所在的直线上;若两圆相切,其根轴在过两圆切点的公切线上;若两圆相离,则两圆的四条公切线的中点在根轴上.定理10(三角形面积公式)在ABC中,记a,b,c为三边长,p//1(abc)为半周长,R是2外接圆半径,r为内切圆半径,ha是边BC上的高,ra是与边BC及AB,AC的延长线相切的旁切圆的半径,则ABC的面积S为:(1)S111ahabhbchc;222111(2)SabinCacinBbcinA;222(3)Sp(pa)(pb)(pc);(4)Sabc2R2inAinBinC;4R(5)Srp;1ra(bca);21(7)SR2(in2Ain2Bin2C).2定理11在RtABC中,有(6)S(1)abc,(勾股定理的逆定理也成立)(2)r2221c(abc),R.22732022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用定理12(角平分线定理)设AD是ABC中A的平分线,则.ABBD.ACDC此定理有10多种证法,下面是有辅助线与无辅助线的两种代表性证法.证明1(相似法)如图6,延长BA到E,使AEAC,连CE,则BAD1A(已知)21AECACE(外角定理)2AEC,(等腰三角形的两个底角相等)有AD//CE,BDABAB得.(平行线截割定理)图6DCAEAC11ABADinABCSABD2AB2证明2(面积法).DCSACD1ACADin1AAC22定理13(正弦定理、余弦定理)在ABC中,有(1)abcoBccoC,bacoAccoC,cacoAbcoB.abC2R;(2)inAinBinC222(3)abc2bccoA,b2a2c22accoB,c2a2b22abcoC.(4)inAinBinC2inBinCcoA.222abC2R;inAinBinC证明1(1)当ABC为直角三角形时,命题显然成立.(2)当ABC为锐角三角形时,如图7(1),作ABC外接圆O,则圆心O在ABC的内部,(2)连BO交O于D,连结DC.因为BD是O的直径,所以BCD90,在直角BCD中有aabc2R,但AD,故得2R.同理可证2R,2R.inDinAinBinCabC2R.得inAinBinC(1)(2)图7(3)当ABC为钝角三角形时,记A为钝角,则圆心O在ABC的外部,过A作直径,仿上证74。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

高中数学竞赛平面几何讲座(非常详细).

高中数学竞赛平面几何讲座(非常详细).

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQAC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAEC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

最新高一数学暑假预科讲义 第8讲 函数的奇偶性基础班教师版

最新高一数学暑假预科讲义 第8讲 函数的奇偶性基础班教师版

目录第八讲函数的奇偶性 (2)考点1:函数奇偶性的定义与判别 (2)题型一:函数奇偶性判断 (2)题型二:已知奇偶性反求参 (4)考点2:函数奇偶性的简单应用 (5)题型三:利用奇偶性求解析式 (5)题型四:利用奇偶性求值 (6)考点3:单调性与奇偶性综合 (7)题型五:利用奇偶性与单调性综合 (7)课后综合巩固 (10)第八讲 函数的奇偶性考点1:函数奇偶性的定义与判别1.奇函数:如果对于函数()y f x =的定义域D 内任意一个,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;2.偶函数:如果对于函数()y g x =的定义域D 内任意一个x ,都有x D -∈,且()()g x g x -=,那么函数()g x 就叫做偶函数.3.图象特征:如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形,反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数;如果一个函数是偶函数,则它的图象是以y 轴为对称轴的轴对称图形,反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数.题型一:函数奇偶性判断例1.(1)证明:()4211f x x x =++是偶函数; 【解答】定义域为()()00-∞+∞,,,(2)证明:31()g x x x=+是奇函数; 【解答】定义域为()()00-∞+∞,,,(3)(2018秋•偃师市校级月考)函数53()f x x x x =++的图象( );A .关于y 轴对称B .关于直线y x =对称C .关于坐标原点对称D .关于直线y x =-对称 【解答】解:53()f x x x x =++, 5353()()()f x x x x x x x f x ∴-=---=-++=-,∴函数()f x 为奇函数,即函数53()f x x x x =++的图象关于原点对称.故选:C .例2.(2017秋•新泰市校级月考)判断下列函数的奇偶性:(1)421()3f x x x=+; (2)()f x =(3)2()||1f x x x =-+,[1x ∈-,4];(4)()|1||1|f x x x =+--;(5)()f x =(6)()f x =(7)()f x =; (8)()(1)f x x -; (9)10()10x f x x ⎧=⎨-<⎩≥,,; (10)10()10x x f x x x ->⎧=⎨+<⎩,,. 【解答】解:(1)()f x 的定义域为{|0}x x ≠,(2)由函数有意义可得1010x x -⎧⎨-⎩,解得:1x =. ()f x ∴为非奇非偶函数.(3)函数的定义域不关于坐标原点对称,故函数()f x 是非奇非偶函数.(4)函数的定义域为R ,关于坐标原点对称,且:()|1||1|(|1||1|)()f x x x x x f x -=-+---=-+--=-,函数()f x 是奇函数.(5)既是奇函数又是偶函数;(6)是偶函数但不是奇函数;(7)奇函数但不是偶函数;(8)既不是奇函数也不是偶函数;(9)既不是奇函数也不是偶函数;(10)奇函数但不是偶函数.题型二:已知奇偶性反求参例3.(1)(2019春•海安县校级月考)已知函数2()3f x ax bx a b =+++是偶函数,且定义域为[2a ,1]a -,那么a b += .【解答】解:根据题意,()f x 是定义在[2a ,1]a -上的偶函数,则有2(1)0a a +-=,解又由2()3f x ax bx a b =+++是偶函数,则有223()()3ax bx a b a x b x a b +++=-+-++, 变形可得20bx =,分析可得0b =,(2)(2017秋•海淀区校级期中)若函数2()(1)(2)3f x k x k x k =-+-+是偶函数,则()f x 的递减区间是( )A .(1,)+∞B .(,1)-∞C .(0,)+∞D .(,0)-∞【解答】解:根据题意,函数2()(1)(2)3f x k x k x k =-+-+是偶函数,则有()()f x f x =-,即22(1)(2)3(1)(2)3k x k x k k x k x k -+-+=---+变形可得20k -=,即2k =,则2()6f x x =+,其递减区间为(,0)-∞;故选:D .(3)(2014春•静海县校级月考)若22()(1)(1)(2)f x m x m x n =-+-++为奇函数,则m ,n 的值为( )A .1m =,2n =B .1m =-,2n =C .1m =±,2n =-D .1m =±,n R ∈【解答】解:由奇函数的定义知:2222()(1)(1)(2)()(1)(1)(2)f x m x m x n f x m x m x n -=---++=-=-----+;22(1)(1)m m ∴-=--,2(2)n n +=-+,1m ∴=±,2n =-;故选:C .考点2:函数奇偶性的简单应用与奇偶性相关的几个问题:奇偶性在图象范围是一种对称性的体现:如果告诉你一个函数是偶函数,已知右半边的图象,你能否画出左边的?若已知一个函数是奇函数,给出左边图象,能否画右边的?. 那这个过程能解决什么问题?若一个函数是奇/偶函数,且告诉你它在一半区间上的特点,就能反推到另一半特点,比如已知左边单调性、与x 轴交点、最大值、最小值,你就能知道另一半什么样,就好有一个镜子,你照一半,就知道另一半什么样.如:已知()f x 是偶函数,且()13f =,则(1)3f -=;若()f x 是奇函数,其它条件不变,则有()13f -=-.再比如已知()f x 是奇/偶函数,给出()f x 在0x >(或0x <)的解析式,就可以得到另一半的解析式.题型三:利用奇偶性求解析式例4.(1)(2017秋•南阳期末)函数()f x 是定义域为R 的偶函数,当0x >时,()1f x x =-+,则当0x <时,()f x 的表达式为( )A .1x -+B .1x --C .1x +D .1x - 【解答】解:函数()f x 是定义域为R 的偶函数;∴设0x <,则0x ->;()()1()f x x f x ∴-=--+=;()1f x x ∴=+.故选:C .(2)(2018秋•青羊区校级月考)已知()f x 是R 上的偶函数,且当0x >时()(1)f x x x =-,则当0x <时()f x 的解析式是()(f x = )A .(1)x x --B .(1)x x -C .(1)x x -+D .(1)x x +【解答】解:()f x 是R 上的偶函数; ()()f x f x ∴-=;设0x <,0x ->,则:()(1)()f x x x f x -=-+=;0x ∴<时()f x 的解析式是()(1)f x x x =-+.故选:C .(3)已知函数()f x 为R 上的奇函数,且当0x >时,21()f x x x =-.求函数()f x 的解析式.题型四:利用奇偶性求值例5.(1)(2018秋•五华区校级期中)已知函数()()2g x f x =+,若()f x 是奇函数,且g(1)3=,则(1)(g -= )A .1-B .3-C .1D .3【解答】解:g (1)f =(1)23+=;f ∴(1)1=; ()f x 是奇函数;(1)(1)2g f f ∴-=-+=-(1)2121+=-+=.故选:C .(2)(2018秋•龙凤区校级月考)已知3()2(0)f x ax bx ab =++≠,若(2018)f k =,则(2018)(f -= )A .kB .k -C .4k -D .2k -【解答】解:3(2018)201820182f a b k =++=;3201820182a b k ∴+=-; 3(2018)201820182224f a b k k ∴-=--+=-++=-.故选:C .(3)(2018秋•南阳期末)已知:3()2f x ax bx =++,若(2)3f -=,则f (2)(= )A .1B .2C .3D .4【解答】解:(2)3f -=;8223a b ∴--+=;821a b ∴+=-;f ∴(2)822121a b =++=-+=.故选:A .考点3:单调性与奇偶性综合单调性:若一个偶函数在()0+∞,上单调递增,则在()0-∞,上单调递减; 若一个奇函数在()0+∞,上单调递增,则在()0-∞,上单调递增.说明:偶函数在对应区间上单调性相反,奇函数在对应区间上单调性相同.题型五:利用奇偶性与单调性综合例6.(1)(2018秋•宁县期末)2()(1)23f x m x mx =-++为偶函数,则()f x 在区间(2,5)上( )A .有增有减B .增减性不确定C .是增函数D .是减函数则2()3f x x =-+,在区间(2,5)上为减函数; 故选:D . (2)(2015秋•泗阳县校级月考)若函数2()(1)3f x kx k x =+++是偶函数,则()f x 的递减区间是 .【解答】解:函数2()(1)3f x kx k x =+++是偶函数所以10k +=解得1k =-所以2()3f x x =-+此二次函数的对称轴为0x =,开口向下所以()f x 的递减区间是[0,)+∞故答案为[0,)+∞例7.(1)定义在R 上的偶函数()f x 满足在[0)+∞,上单调递增,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-【解答】B(2)(2019春•鼓楼区校级月考)定义在R 上的偶函数()f x ,当0x 时,()f x 是减函数,若(1)()f m f m -<,则实数m 的取值范围是 .【解答】解:()f x 是偶函数,当0x 时,()f x 是减函数, ∴不等式(1)()f m f m -<等价为(|1|)(||)f m f m -<, 即|1|||m m ->,平方得2212m m m -+>,(3)(2018秋•金华期末)已知()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增,若实数a 满足(1)(2)f a f +>-,则a 的取值范围是 . 【解答】解:()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增, ()f x ∴在区间(0,)+∞上单调递减,则(1)(2)f a f +>-,等价为(|1|)f a f +>(2), 即|1|2a +<,则212a -<+<,得31a -<<,即实数a 的取值范围是(3,1)-,故答案为:(3,1)-(4)(2018秋•马山县期中)若函数3()f x x x =+,且(210)(3)0f a f a -+<,则实数a 的取值范围是 .。

联赛新高一暑假第1讲(学生版)

联赛新高一暑假第1讲(学生版)

枚举法即列举问题的所有可能情形,一一证之;这是“分而治之”的思想.往往一个复杂的问题,在经过巧妙的分类枚举之后,对每一种情形可能就比较好证明或者易于计算了.反证法近年来不是中考所要求的内容,但是在竞赛中反证法却发挥着异乎寻常的重要作用.作为一种证明方法,它广泛应用于数学竞赛的所有板块之中以及以后的数学研究中.简而言之,反证法就是反设结论不成立,然后根据反设进行严谨的推理,最后推出一个与某个条件或已知的某个定理相矛盾的结论,于是反设不成立.但是在实际问题中,应用反证法是很困难的,首先是难以想到用反证法,其次在反证法的推理过程中,往往我们并不预先清楚到底会推出与什么条件或定理相矛盾.1.寻找矛盾:主要运用的是基本逻辑,若A 推导出B 是欲证明的结论,那么如果A 成立的同时B 不成立能够推出矛盾,从反面证明了有A 成立必然有B 成立。

2.抓住问题核心:正确的通过反设找出矛盾的核心是重中之重,某些时候需要我们从两方面推进,即将条件转化为各种推论,将结论的反面转化为各种推论,并从这些林林总总的可能性中找出矛盾的所在,有时候需要的只是枚举,但有时候更需要灵感。

3.构造:一个例子的力量抵得上千言万语,特别是在证明极大极小的组合问题时,往往在构思相关例子的同时得到解决问题的方法。

本讲概述第1讲枚举与反证(1)【例1】 找出所有这样的正整数n ,对于它们,数5n 的各位数字之和等于2n 。

【例2】 求证:从任意n 个整数12,,,n a a a 中,一定可以找到若干个数,使它们的和可被n 整除.【例3】 ,a b 均为正无理数,b a 是否一定是正无理数?【例4】 今有男女各20人,围成内外两圈跳交谊舞,每圈20人,有男有女,外圈人向内,内圈人向外.跳舞规则如下:每当音乐响起,若面对者为一男一女,则一起跳舞;若不然,则鼓掌助兴.曲终时,外圈所有人顺时针一起走一步,如此进行下去,直至外圈人移动一周.证明:在整个跳舞过程中至少有一次跳舞的人不少于10对.例题精讲【例5】在八边形的8个顶点上是否可以分别记上数1,2,,8,使得任意三个相邻的顶点上的数的和大于13?【例6】试找出所有这样的4元实数组,使得其中任何一个数,都是剩余数中的两数乘积。

联赛新高一暑假第8讲(学生版)

联赛新高一暑假第8讲(学生版)

证明点共圆应从以下几方面考虑:1. 圆的定义:到同一点的距离相等;2. 线段的同侧张角相等时,张角顶点与线段的端点共圆;3. 凸四边形对角互补,或凸四边形的外角等于它的内对角,则四个顶点共圆;4. 相交弦定理、切割线定理的逆定理的运用;5. 托勒密定理的逆定理;6. 注意到特殊图形(如矩形、等腰梯形)的顶点共圆;7. 与有外接圆的多边形相似的多边形的顶点共圆;8. 用同一法等其它方法证明四点共圆.证明四点乃至更多点共圆往往是证明一道困难的平几问题的关键环节. 托勒密定理:四边形ABCD 内接于圆,则AC BD AD BC AB CD ⋅=⋅+⋅A BCD托勒密定理的逆定理:在凸四边形ABCD 中,若AC BD AD BC AB CD ⋅=⋅+⋅,那么该四边形内接于一个圆(或者说该四边形的四个顶点共圆).本讲概述第8讲四点共圆【例1】 在ABC △中,C ∠为钝角,点E 和H 位于边AB 上,点K 和M 分别位于边AC 和BC 上,使得AH AC =,EB BC =,AE AK =,BH BM =.求证:E H K M ,,,四点共圆.【例2】 圆O 内切于四边形ABCD ,与不平行的两边BC 、AD 分别切于E 、F 点.设直线AO 与线段EF 相交于K 点,直线DO 与线段EF 相交于N 点,直线BK 与直线CN 相交于M 点. 证明:O 、K 、M 和N 四点共圆.【例3】 在凸五边形ABCDE 中,已知AB DE =,BC EA =,AB EA ≠,且B C D E ,,,四点共圆.证明:若AC AD =,则A B C D ,,,四点共圆.反过来也成立.例题精讲MH K EC B A NM K O FE D C B A E DCB A【例4】 如图,在Rt ABC △中,90C ∠=︒,CH AB ⊥,H 为垂足,圆1O 和圆2O 分别是AHC △和BHC △的内切圆,两圆的另外一条外公切线分别交AC ,BC 于P ,Q . 求证:P ,A ,B ,Q 四点共圆.【例5】 如图所示,若给出平面上一个锐角ABC △,以AB 为直径的圆与AB 边的高线CC '及其延长线交于M ,N ,以AC 为直径的圆与AC 边上的高线及其延长线交于P ,Q .求证:M ,N ,P ,Q 四点共圆.【例6】 如图,1O ⊙与2O ⊙相交于点C ,D ,过点D 的一条直线分别与1O ⊙,2O ⊙相交于点A ,B ,点P 在1O ⊙的弧AD ︵上,PD 与线段AC 的延长线交于点M ,点Q 在2O ⊙的弧BD ︵上,QD 与线段BC 的延长线交于点N .O 是ABC △的外心,且MN OD ⊥,求证:P ,Q ,M ,N 四点共圆.A B 'C 'CB AQ P N MN【例7】 过ABC △顶点A 、C ,且与BC 交于K 、N (K 与N 不同).ABC △外接圆和BKN △外接圆相交于B 和M .求证:90BMO ∠=︒.【例8】 (九点圆)三角形的三条高的垂足、三边的中点以及三个顶点与垂心连线的中点,九点共圆.NMK O C B A E R L H NM Q P F DC B A【例9】 四边形ABCD 内接于圆,BCD △、ACD △、ABD △、ABC △的内心依次记为A I 、B I 、C I 、D I .试证:A B C D I I I I 是圆内接四边形.1. 如图,在圆周上给定四个点A B C D ,,,.过每两个相邻点都作一个圆周,将每两个相邻圆周的第二个交点分别记作1111A B C D ,,,.求证:1111A B C D ,,,四点共圆.2. 设P M ,分别在正方形ABCD 的边DC BC ,上,PM 与以A 为圆心、AB 为半径的圆相切,线段PA 与MA 分别交对角线BD 于Q N ,.求证:P Q N M C ,,,,五点共圆. 大显身手I DI CI BI AD CBAD 1C 1B 1A 1DCB ATN MQPDCBA3. A B C ,,三点共线,O 点在直线外,1O 、2O 、3O 分别为OAB △、OBC △、OCA △的外心.求证:123O O O O ,,,四点共圆.4. 正方形ABCD 的边长等于a ,在边BC 上取线段BE 等于3a,在边DC 的延长线上取CF 等于2a,求证:直线AE 和BF 的交点M 在正方形ABCD 的外接圆上.5. 如图,已知P 为⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交AB 于E .过E 点的弦交⊙O 于,C D .求证:APC BPD ∠=∠.O 3O 2O 1CBAOM F EDCBA POEDC BA6. 在直角三角形ABC △的两条直角边AC BC ,上各取一点D 和E ,由顶点C 分别向直线DE 、EA 、AB 和BD 引垂线,求证:所得的4个垂足共圆.7. 1O 交2O 于A ,B 两点,射线1O A 交2O 于C 点,射线2O A 交1O 于D 点.求证:点A 是BCD △的内心.8. ABC △为不等边三角形.A ∠的平分线及其外角平分线分别交对边中垂线于1A 、2A ;同样得到1212B B C C ,,,.求证:121212A A B B C C ==.9. 在Rt ABC △中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC SRQ PEDCBAO 2O 1DCBAE QPDCBA的垂线交过B 所作AB 的垂线于Q 点.求证:PD QD 丄.10. 设H 为ABC △的垂心,P 为ABC △的外接圆上一点,则从点P 引出的三角形的西姆松线平分PH .11. ABC △的内切圆分别切切BC CA AB ,,于点D E F ,,,点X 是ABC △内一点,XBC △的内切圆也与BC 切于点D ,并与CX XB ,分别切于点Y 和Z ,求证:E F Z Y ,,,四点共圆.ZY XHPCBAD ZYXF E CB A。

江苏省泰兴中学2015-2016学年高一数学竞赛培训讲义:平面几何(学生版)

江苏省泰兴中学2015-2016学年高一数学竞赛培训讲义:平面几何(学生版)

(高中)平面几何基础知识(基本定理、基本性质)1.勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3.中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b ma-+=.4.垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abcc p b p a p p a hasin sin sin ))()((2===---=.5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.6.如△ABC 中,AD 平分∠BAC ,则ACAB DCBD =;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp c b ta+=-+=(其中p 为周长一半).7.正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径).8. 余弦定理:Cab b a ccos 2222-+=.9.张角定理:ABDAC ACBAD ADBAC ∠+∠=∠sin sin sin .10.斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .11.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)12.弦切角定理:弦切角等于夹弧所对的圆周角.13.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)14.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.15.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O 交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴".三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.16.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立).(广义托勒密定理)AB·CD+AD·BC≥AC·BD.17.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.18.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.19.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△-—外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△--内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.20.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:21.(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.22.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.23.欧拉(Euler)公式:设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d ,则d 2=R 2-2Rr .24.锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.25.重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B Ay y y x x xG ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ; (2)设G 为△ABC 的重心,则ABC AC G BC G ABGS S S S∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE ;(4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA+++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).26.垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CcB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCABCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.27.内心:三角形的三条角分线的交点-内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KDIK KIAK IDAI +===;(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为FE D ,,,内切圆半径为r ,令)(21c b a p ++=,则①prS ABC =∆;②cp CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.28.外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O CB AC B A ++++++++外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.29.旁心:一内角平分线与两外角平分线交点-—旁切圆圆心;设△ABC的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为CB AI I I,,,其半径分别记为CB Ar r r,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设AAI 的连线交△ABC 的外接圆于D ,则DCDB DI A==(对于CBCI BI,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .30.三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中ah 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=.31.三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++===32.梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)33.梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.34.梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.35.塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是错误!·错误!·错误!=1.36.塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M .37. 塞瓦定理的逆定理:(略)38.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.39.塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.40.西摩松(Simson )定理:从△ABC 的外接圆上任意一点P 向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).41.西摩松定理的逆定理:(略)42.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.43.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.44.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.45.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.46.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.47.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.48.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.49.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.50.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ).51.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C 三点关于△PQR的的西摩松线交于与前相同的一点.52.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.53.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.54.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.55.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.56.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.57.清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.58.他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)59.朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.60.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.61.一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.62.康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.63.康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.64.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD 的康托尔点.65.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L 三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.66.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.67.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.68.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A 和D、B和E、C和F,则这三线共点.69.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线.70.阿波罗尼斯(Apollonius)定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C 和外分点D为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.71.库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.72.密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点.73.葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA 于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.第一讲托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:定理:在四边形中,有:⋅+⋅≥⋅ABCD AB CD AD BC AC BD并且当且仅当四边形内接于圆时,等式成立;ABCD一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重EDCBA求证:PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理":在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).三、构造图形借助托勒密定理例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by ≤1.四、巧变原式妙构图形,借助托勒密定理例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.五、巧变形妙引线借肋托勒密定理例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,巩固练习1.已知△ABC中,∠B=2∠C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

36 | 高一·数学·第8讲·联赛班·学生版 |
知识点拨
毕达哥拉斯(二)
令毕达格拉斯学派引以为傲的应该是“毕达哥拉斯定理”的发现,即:直角三角形两直
角边的平方和等于斜边的平方——我国称为“勾股定理”.毕达哥拉斯定理可谓数学史上的
第一块里程碑,它揭示了三角形边长的数量和形状的关系,后来成为解析几何的“距离公
式”,并在高维空间的数学中有着重要作用,因此被人们誉为数学大厦的“拱心石”.
毕达哥拉斯定理已有4000多年的历史,它的证明方法多达400余种,这中间有著名画
家达·芬奇的杰作,也有一位盲童的贡献,甚至爱因斯坦也和毕氏定理有过邂逅.
有一次雅可比叔叔向爱因斯坦讲了毕氏定理得内容,而未讲任何证明.他的侄儿理解
所涉及的关系,并感到基于一种理由可推导出来.......这个小孩在三个星期中用其全部
的思维力量去证明这一定理.他专注到三角形的相似性(从直角三角形的一个顶点向斜边
作垂线)得到了一个证明.为此他久久地激动不已!这虽然仅涉及一个非常古老的著名定
理,他却经历了发现者的首次快乐.
据说毕氏学派为了纪念这一发现,要杀掉一百头牛来庆贺.但是,他们却没有想到,
由毕达哥拉斯定理引发的关于无理数的发现,却使毕达哥拉斯学派陷入困境.
根据“毕达哥拉斯定理”,单位正方形对角线的长应为2,那么2是什么性质的数呢?
名人名言
第八讲
平面几何技巧(一)
三点共线是平面几何中典型的问题,证明点共线的思路:
1.从角考虑:证得以中间一点为顶点,两侧两点所在射线所成的角为平角;证得以中间一点为顶点且
作一直线,其余两点所在射线构成对顶角;证得以一点为顶点且作一射线,其余两点所在射线与前一条射线所成的两个角相等.
2.从线考虑:证第三点在过另两点的直线上;证得三点两两连线与同一直线垂直或平行;证得三点两
两连结的线段有和或差关系.
3.从形考虑:证得三点所成的三角形面积为零;证得以一点为位似中心,其余两点为位似变换的一对
对应点.
4.从有关结论考虑:注意到梅涅劳斯等.
5.从方法上考虑:可考虑反证法、同一法、面积法等.
【例1】 如图,在直角三角形ABC 中,CH 为斜边AB 上的高,以A 为圆心,AC 为半径作圆A ,过B
作圆A 的任一割线交圆A 于D ,E ,交CH 于F (D 在B ,F 之间);又作ABG ABD ∠=∠,G 在圆周上,G 与D 在AB 两侧.求证:E ,H ,G 三点共线. G H
D F
E C
B
A
【例2】 如图,在ABC △中,90BAC ∠=︒,点E 在ABC △的
外接圆Γ的弧BC (不含点A )内,AE EC >.连接EC
并延长至点F ,使得EAC CAF ∠=∠,连接BF 交圆Γ
于点D ,连接ED ,记DEF △的外心为O .
求证:A C O ,,三点共线.
【例3】 H 是ABC △垂心,P 是任一点,由H 向PA ,PB ,PC 引垂线HL ,HM ,HN 与BC ,CA ,
BA 的延长线相交于X ,Y ,Z .证明:X ,Y ,Z 三点共线.
例题精讲
ΓF E D C
B A O
36 | 高一·数学·第8讲·联赛班·学生版 |
H
Z
Y
X N
M
L
P C B A
【例4】 设A ,B ,C ,D 是平面上四点,如果对平面上任何点P 都满足不等式:PA PD PB PC ++≥,
那么B ,C ,A ,D 四点共线.
【例5】 如图,设四边形ABCD 外切于圆O ,对角线AC 和BD 中点分别为M ,N .试证:M ,N ,
O 三点共线. N M O
D
C
B A
【例6】 如图,设AC ,CE 是正六边形ABCDEF 的两条对角线,点M ,N 分别内分AC ,CE ,使
33
AM CN AC CE ==,求证:B ,M ,N 共线.
N M
F
E
D C B A
【例7】 已知,C D 是以AB 为直径的半圆O 上的两个点,弦,AD BC 交于点E ,,F G 分别是,AC BD 延
长线上的点,且满足AF BG AE BE ⋅=⋅,若,AEF BEG ∆∆的垂心分别为12,H H , 证明⑴12,AH BH 的交点K 在圆O 上;⑵,,F K G 三点共线.
1. 锐角ABC △中,B C ∠=∠,O H 、分别是其外心、垂心,求证:BOH △的外心在直线AB 上.
大显身手
36 | 高一·数学·第8讲·联赛班·学生版 |
2. 如图,作ABC △的外接圆,连接弧AC ︵中点与AB ︵和BC ︵中点的弦,分别与AB 边交于D ,与
BC 边交于E .证明:D ,E ,三角形内心共线. I E D
M
N L
C B
A。

相关文档
最新文档