人教新课标版数学高一必修1学案 2.3幂函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 幂函数

自主学习

1.掌握幂函数的概念.

2.熟悉α=1,2,3,1

2,-1时幂函数y =x α的图象与性质.

3.能利用幂函数的性质来解决一些实际问题.

1.一般地,幂函数的表达式为________________;其特征是以幂的________为自变量,________为常数.

2.幂函数的图象及性质

在同一坐标系中,幂函数y =x ,y =x 2,y =x 3,y =x 12,y =x -

1的图象如图.结合图象,

填空.

(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.

(2)若α>0时,幂函数图象过点________________,且在第一象限内________;当0<α<1时,图象上凸,当α>1时,图象________.

(3)若α<0,则幂函数图象过点________,并且在第一象限内单调________,在第一象限内,当x 从+∞趋向于原点时,函数在y 轴右方无限地逼近于y 轴,当x 趋于+∞时,图象在x 轴上方无限逼近x 轴.

(4)当α为奇数时,幂函数图象关于________________对称;当α为偶数时,幂函数图象关于________对称.

(5)幂函数在第________象限无图象.

对点讲练

理解幂函数的概念

【例1】 函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.

规律方法 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.

变式迁移1 已知y =(m 2+2m -2)x 1

m 2-1+2n -3是幂函数,求m ,n 的值.

幂函数单调性的应用

【例2】 比较下列各组数的大小 (1) 3-52与3.1-52;(2)-8-7

8与-⎝⎛⎭⎫1978.

规律方法 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.

变式迁移2 比较下列各组数的大小:

(1)⎝⎛⎭⎫-23-23与⎝⎛⎭⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.

幂函数性质的综合应用

【例3】 已知幂函数y =x 3m -

9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m

3

的a 的范围.

规律方法 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.

变式迁移3 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.

1.求幂函数的定义域时要看指数的正负和指数n

m

中的m 是否为偶数;判断幂函数的奇

偶性时要看指数n m 中的m 、n 是奇数还是偶数.y =x α,当α=n

m (m 、n ∈N *,m 、n 互质)时,

有:

2.幂函数y =x n m 的单调性,在(0,+∞)上,n m >0时为增函数,n

m <0时为减函数.

课时作业

一、选择题 1.下列命题:

①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小.

其中正确的是( )

A .①和④

B .④和⑤

C .②和③

D .②和⑤ 2.下列函数中,不是幂函数的是( )

A .y =2x

B .y =x -

1 C .y =x D .y =x 2

3.设α∈⎩

⎨⎧⎭

⎬⎫

-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单

调递减的α值的个数是( )

A .1

B .2

C .3

D .4 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( ) A .y =x 12

B .y =x -2

C .y =x 2

D .y =x -

1

5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =1 二、填空题

6.若幂函数y =f (x )的图象经过点⎝⎛⎭

⎫9,1

3,则f (25)=________. 7.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2.若对任意的x ∈[t ,t +2],不等式f (x +t )≥2f (x )恒成立,则实数t 的取值范围是____________.

8. 如图所示是幂函数y =x α在第一象限内的图象,已知α取±2,±1

2四个值,则相应于曲

线C 1,C 2,C 3,C 4的α依次为________________.

三、解答题

9.已知点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,1

4在幂函数g (x )的图象上,问当x 为何值时,

(1)f (x )>g (x ); (2)f (x )=g (x ); (3)f (x )

10.已知幂函数y =xm 2-2m -3(m ∈Z )在(0,+∞)上是减函数,求其解析式,并讨论此函数的单调性和奇偶性.

§2.3 幂函数 答案

自学导引

1.y =x α 底数 指数

相关文档
最新文档