双水相体系萃取(精)

合集下载

《双水相萃取技术》课件

《双水相萃取技术》课件
影响因素
03
双水相萃取技术的实验操作
实验准备
01
02
03
实验材料
准备双水相萃取所需的试 剂和材料,如蛋白质溶液 、双水相体系、离心管等 。
实验设备
确保实验所需的设备齐全 ,如离心机、天平、量筒 等。
安全措施
确保实验环境安全,穿戴 适当的实验服和护目镜, 避免试剂溅出。
实验步骤
加入蛋白质溶液
将待分离的蛋白质溶液加入离 心管中。
应用范围广泛
该技术在生物、医药、环保等领域有 广泛应用,可用于蛋白质、酶、细胞 等的分离和纯化。
操作简便高效
双水相萃取技术操作简单,分离速度 快,可实现大规模生产。
环境友好
该技术使用无毒或低毒性的物质,对 环境友好,符合绿色化学的发展趋势 。
技术展望
深入研究机理
进一步深入研究双水相萃取技术的机理,提高分 离效率和选择性。
蛋白质回收率测定
测定蛋白质的回收率,评估双水相萃取技术的效 果。
3
数据分析
对实验数据进行统计分析,了解双水相萃取技术 的分离效果和影响因素。
04
双水相萃取技术的优缺点
技术优势
高分离效率
双水相萃取技术能够实现高效率的分离过程,对于一些难以分离 的物质,如蛋白质、酶等,能够实现快速、准确的分离。
低成本
收集上清液
将上清液收集到适当的容器中 ,以便后续分析。
配制双水相体系
按照所需的浓度配制双水相体 系,确保比例准确。
离心分离
将离心管放入离心机中,设定 适当的转速和时间进行离心分 离。
清洗沉淀
清洗离心管中的沉淀,确保蛋 白质的纯度和回收率。
实验结果分析
1 2

双水相萃取解析

双水相萃取解析

➢ 一般采用室温操作: 成相系统聚合物PEG对蛋白质有稳定作用,常温下蛋 白质不会发生变性; 常温下溶液粘度较低, 容易相分离; 常温操作节省冷却费用。
4.双水相萃取技术的发展
(1)历史:
➢ 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与 可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随 之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility); ➢ 20世纪60年代,瑞典Lund大学的Albertsson P A及同事 最先提出了双水相萃取技术; ➢ 1979年,西德的Kula M R等人首次将ATPE应用于生物产 品分离;
➢大量研究表明:生物分子的分配系数取决于溶质与双水相系统 间的各种相互作用,主要有静电作用、疏水作用和亲和作用等, 其分配系数可为各种相互作用之和。
ln m ln me ln mh ln ml
①静电作用:两相系统中若有带电溶质存在,会ห้องสมุดไป่ตู้大分子在两 相间的分配系数产生影响。(图5-15) Donnan Potential:当大分子或粒子带有静电荷时,在带有电荷 分配不相等时,就会在两相间产生电位差,称为道南电位。 ②疏水作用:某些大分子物质表面具有疏水区,溶质的表面疏 水性会对其在两相间的分配系数产生影响。
3.影响双水相分配的主要因素
高聚物的相对分子质量 高聚物的浓度 盐的种类和浓度 PH值 温度
(1)高聚物的相对分子质量:
➢在高聚物浓度保持不变的前提下,降低该高聚物的相对分子质 量,被分配的可溶性生物大分子如蛋白质或核酸,或颗粒如细 胞或细胞碎片和细胞器,将更多地分配于该相。
以PEG-Dextran体系为例,↓Dextran→K↓ ↓PEG→K↑(表5-4)

蛋白分离纯化技术之双水相萃取技术

蛋白分离纯化技术之双水相萃取技术

蛋白分离纯化技术之双水相萃取技术双水相萃取是一项蛋白分离和蛋白纯化技术,是利用物质在两相间的选择分配差异而进行分离提纯的,目前已经被广泛应用与医药化学、细胞生物学、生物化工和食品工业等领域。

双水相萃取技术用于提取蛋白质等生物活性物质时,具有操作简单、体系含水量高,在萃取过程中可以保持物质的构象稳定、蛋白不易失活并获得高的萃取率的特点。

1、双水相萃取技术可分离和纯化蛋白双水相萃取技术可以用于蛋白分离和蛋白纯化,包含在一些蛋白分离公司提供的服务。

早期,如在20世纪60年代,有研究者全面进行了生物大分子在双水相系统中的分配行为的研究,得到了蛋白质、酶、核酸、病毒、抗体抗原复合物以及细胞等的分配数据。

双水相系统具有温和的操作条件,对于在极性条件下易造成变性失活的蛋白质和酶的提取中表现出了很大的优势。

双水相萃取法进行蛋白分离和蛋白纯化的原理是:聚合物与聚合物之间或聚合物与盐之间由于分子空间阻碍作用形成了双水相。

当待分离物质进入体系后,由于各组分表面性质、电荷作用和各种力的作用和溶液环境的影响,使其在上、下相中的分配系数不同,通过调节体系参数使被分离物质在两相间选择性分配,从而实现目标组分的分离纯化。

双水相萃取技术进行蛋白分离和蛋白纯化具有以下优点:(1)易于放大,各种参数可以按照比例放大而不降低产物收率[1];(2)双水相系统传质和平衡过程速度快,回收效率高、能耗较小;(3)易于进行连续化操作、设备简单,且可以直接与后续提纯工序相连接,无需进行特殊处理;(4)相分离条件温和,双水相体系的张力很小,有利于保持生物分子的活性,可以直接用在发酵液中;(5)影响双水相体系的因素比较复杂,可调参数多,便于改变操作条件提高纯化效果。

美迪西提供蛋白质分离纯化技术服务,可以根据客户要求,提供从小试到规模生产全程的蛋白分离纯化服务,并根据工艺的要求结合产品特点给客户定制适用的工艺和系统。

2、双水相萃取技术分离和纯化物质的研究α-淀粉酶是一类用途十分广泛的酶,在粮食、食品加工,以及医药行业等都经常使用,由于α-淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。

双水相萃取(精选双水相萃取PPT,超级有用)

双水相萃取(精选双水相萃取PPT,超级有用)

基本流程
3.2.1 目的产物的萃取


原料匀浆液与PEG和无机盐在萃取器中混合,然 后进入分离器分相。 通过选择合适的双水相组成,一般使目标蛋白质 分配到上相(PEG相),而细胞碎片、核酸、多 糖和杂蛋白等分配到下相(富盐相)。 第二步萃取是将目标蛋白质转入富盐相,方法是 在上相中加入盐,形成新的双水相体系,从而将 蛋白质与PEG分离,以利于使用超滤或透析将 PEG回收利用和目的产物进一步加工处理。
K= ct/ cb
其中ct 、cb 分别代表溶质在上相、下相中的浓度
基本原理
系统固定时, 分配系数为一常数, 与 溶质的浓度无关。当目标物质进入双水 相体系后, 在上相和下相间进行选择性 分配, 这种分配关系与常规的萃取分配 关系相比, 表现出更大或更小的分配系 数。如各种类型的细胞粒子、噬菌体的 分配系数都大于100或者小于0101, 因此 为物质分离提供了可能[7]。
[7] 严希康,俞俊棠. 生化分离工程[M]. 北京: 化学工业出版社, 2001.1692187.
三、双水相萃系分类

双水相体系主要有以下几种: (1)高聚物/高聚物双水相体系 (2)高聚物/无机盐双水相体系 (3)低分子有机物/无机盐双水相体系 (4)表面活性剂双水相体系


发展历程 Kula教授研究小组对双水相的应用,工艺流程、 操作参数、工程设备、成本分析等进行了大量研 究,在应用上获得成功。1978年首先将双水相萃 取技术用于酶的大规模分离纯化,建成了一套工 业装置,达到20Kg/h的处理能力,分离纯化了几 十种酶,也应用于基因工程产品的分离[3,4]。 双水相萃取可分离多肽,蛋白质、酶、核酸、病 毒、细胞、细胞器、细胞组织、以及重金属离子 等,近年来,还应用于一些小分子,如抗生素, 氨基酸和植物的有效成分等的分离纯化。

【生物工程下游技术】第七章双水相萃取(精)

【生物工程下游技术】第七章双水相萃取(精)
两相区 均 相 区 双节线 系线
聚合物的分子量越高,相分离 所需的浓度越低 两种聚合物的分子量相差越 大,双节线的形状越不对称。
3、物质在两相中的分配
和溶剂萃取法一样,物质在两水相中的分配用分配系数 K表示。 CT K= —— CB Ct、CB——分别代表上相、下相中溶质的浓度 K—与温度、压力以及溶质和溶剂的性质有关,与溶质的浓度无关。 1)表面自由能的影响(大分子物质表面性质对K影响很大) 2)表面电荷的影响(盐效应:两相系统中如存在盐,对K影响较大) 3)综合考虑(影响因素很多,单因素定量很困难,最佳操作条件靠实验) 4)影响分配平衡的参数 (1)聚合物的影响; (3)体系PH的影响; (2)体系中无机盐离子的影响; (4)体系温度的影响;
三、 双水相萃取技术的发展
1. PEG衍生物:在PEG上引入亲和基团或离
子基团;
2. 采用多级萃取。
作业:
1.
第七章 双水相萃取
普通的溶剂萃取法不适宜分离提纯蛋白质,其原因是: (1) ;(2) 2. 生物工程中常用的双水相体系主要 有: , 等体系。 3. 聚乙二醇(PEG)/葡聚糖(Dex)体系的相图是一条双节 线。双节线 下方为 ,双节线上方即 为 ,两相分别有不同的组成和密度恒压条件下,影响物质在聚乙二醇(PEG)/葡聚糖 (Dex)双水相体系中分配的因素有哪些?分配系数K分别怎 样变化? 5. 请自行设计双水相提取胞内酶的操作流程及操作要点。
保持生物活性和强化相际间的质量传递 ② 分相时间短(特别是聚合物/ 盐系统) ,自然分相时间一般 只有5~15min。 ③ 双水相萃取技术易于连续化操作。 ④ 目标产物的分配系数一般大于3 ,大多数情况下,目标产物
有较高的收率。
⑤ 大量杂质能够与所有固体物质一起去掉,与其它常用固液 分离方法相比,双水相萃取技术可省去1~2 个分离步骤,使 整个分离过程更经济。 ⑥ 设备投资费用少,操作简单,不存在有机溶剂残留问题。

双水相萃取法的原理与应用

双水相萃取法的原理与应用

双水相萃取法的原理与应用1. 原理介绍双水相萃取法是一种分离提取化合物的方法,通过利用两种不相溶的溶剂构成两个水相层,达到从一个水相层向另一个水相层进行分配的目的。

双水相萃取法具有选择性强、操作简便、成本低廉等特点,已广泛应用于生物分离纯化、环境污染检测、食品安全等领域。

2. 原理步骤双水相萃取法的基本步骤如下:1.准备两种互不相溶的溶剂,一般常用的是极性和非极性的溶剂,如水和有机溶剂。

确保两种溶剂相分离的界面有尽可能大的接触面积。

2.将待提取物溶解在一个适宜的溶剂中,使其分布均匀。

3.加入两种溶剂,振荡或搅拌使两相充分混合并达到平衡分配。

4.待体系分层后,通过离心或重力沉淀将两相分离。

5.收集有机相或水相中的萃取物,进行进一步的分析或应用。

3. 应用领域双水相萃取法在以下领域有广泛的应用:•生物分离纯化:双水相萃取法可用于分离和纯化生物大分子,如蛋白质、酶等。

通过调节溶剂体系的性质,可以实现对不同生物大分子的选择性分离。

•环境污染检测:双水相萃取法在环境污染物的检测中有重要应用。

通过使用适当的溶剂和调节pH值,可以有效地富集和分离样品中的有机污染物,如农药、重金属等。

•食品安全:双水相萃取法被广泛应用于食品安全领域。

利用双水相萃取法可以快速、高效地提取食品中的有害物质,如农药残留、食品添加剂等,确保食品质量和安全性。

•药物研发:双水相萃取法在药物研发中起着重要作用。

通过双水相萃取法可以从复杂的生物样品中富集和分离药物分子,为药物研发提供重要的前处理步骤。

4. 优缺点双水相萃取法具有以下优点:•选择性强:通过调节溶剂体系的性质,可以实现对不同化合物的选择性分离。

•操作简便:双水相萃取法操作简单方便,不需要复杂的仪器设备。

•成本低廉:双水相萃取法所需的溶剂成本较低,适用于大规模应用。

然而,双水相萃取法也存在一些缺点:•萃取效率较低:双水相萃取法对于某些极性化合物的富集效果较差。

•溶剂耗量大:双水相萃取法需要大量的有机溶剂来保证分离效果。

双水相体系配制与萃取实验报告

双水相体系配制与萃取实验报告

双水相体系配制与萃取实验报告一、实验目的本实验旨在掌握双水相体系的配制方法及其在萃取中的应用,了解萃取原理,熟练掌握萃取方法。

二、实验原理1. 双水相体系双水相体系是指两种不相溶的水溶液混合后形成两个互不混合的层。

常见的双水相体系有三种:乙醇-盐酸、聚乙二醇-硫酸和磷酸盐-硫酸。

其中以乙醇-盐酸为例,当乙醇和盐酸混合时,由于两者极性不同,无法完全混合,形成两个不同密度的液相。

2. 萃取原理萃取是利用不同物质在溶剂中的溶解度差异而进行分离纯化的方法。

常用于分离提纯化学物质或生物物质。

在双水相体系中,可以利用两个不同密度的液相进行分离。

三、实验步骤1. 配制双水相体系将10mL浓盐酸加入50mL 95%乙醇中,搅拌均匀。

2. 萃取实验将10mL橙黄色染料加入双水相体系中,轻轻摇晃容器使其混合均匀。

观察到橙黄色染料被分配到乙醇相中。

3. 分离两相用滴管吸取乙醇相,移至干燥的试管中。

用水洗涤滴管后再吸取盐酸相,移至另一个干燥的试管中。

4. 检测分离后的物质在乙醇相中加入少量氢氧化钠溶液,观察到橙黄色染料变成了蓝色。

在盐酸相中加入苯胺溶液,观察到产生了沉淀。

四、实验结果通过本次实验,成功配制出了乙醇-盐酸的双水相体系,并利用该体系进行了萃取实验。

观察到橙黄色染料被分配到乙醇相中,并成功分离两个不同密度的液相。

最终,在乙醇相中检测到了蓝色染料,在盐酸相中检测到了沉淀。

五、实验思考1. 双水相体系的应用有哪些?双水相体系可以用于萃取、分离和纯化生物大分子,如蛋白质、DNA和RNA等。

此外,还可以用于制备纳米材料、催化剂和药物等。

2. 萃取实验中为什么要加入氢氧化钠溶液和苯胺溶液?氢氧化钠溶液可以使橙黄色染料变成蓝色,从而检测出乙醇相中的染料。

苯胺溶液可以与盐酸反应产生沉淀,从而检测出盐酸相中的物质。

3. 双水相体系如何选择?选择双水相体系应考虑所需分离物质的性质和目标纯度。

不同双水相体系对不同物质有不同的选择性,因此需要根据实际情况进行选择。

双水相萃取原理

双水相萃取原理

双水相萃取原理
双水相萃取是一种将有机物从水溶液中分离出来的方法。

它基于水和有机溶剂不相溶的性质,通过两相之间的分配系数差异来实现目标物质的选择性提取。

双水相萃取的原理是利用两种互不相溶的溶剂(一般是水和有机溶剂),在某一条件下将目标物质在两相之间分配。

通常情况下,有机物更易溶于有机相,而无机物更易溶于水相。

具体的操作步骤如下:首先将水溶液和有机溶剂混合,形成两相体系。

然后经过搅拌或震荡,让目标物质在两相之间达到平衡分配。

接下来,待两相分离后将有机相和水相分开。

最后,可以通过蒸发或其他方法将目标物质从有机相中提取出来。

双水相萃取的选择性是基于目标物质在两相之间的分配系数差异。

分配系数是指物质在两相之间分配的比例,由物质的溶解度和两相的互溶性决定。

通常情况下,选择合适的有机溶剂和水相条件可以使目标物质在有机相中富集,而其他杂质则大部分留在水相中。

双水相萃取的优点是操作简单、成本低廉,适用于大量样品的初步分离和富集。

但是也存在一些局限性,例如只适用于水溶液中的有机物质,对目标物质的选择性有一定要求。

总之,双水相萃取是一种利用两相体系中的分配差异来实现目标物质提取的方法。

通过选择合适的有机相和水相条件,可以实现对目标物质的选择性富集,从而达到分离和纯化的目的。

简述双水相萃取的工艺流程

简述双水相萃取的工艺流程

简述双水相萃取的工艺流程
双水相萃取的工艺流程主要包括以下步骤:
1、配制一系列不同浓度、pH及离子强度的双水相,每个双水相改变一个参数。

2、加入料液,再加水使整个系统质量达到5~10g。

离心管封口后充分混合。

3、在1800-2000g的离心力下离心3-5min,使两相完全分离。

4、用吸管或移液管将上相和下相分别吸出,测定上、下相中目标产物的浓度或生物活性,计算分配系数。

5、比较上、下两相中目标产物的总量与加入量,以检验是否存在沉淀或界面吸附现象,并可确认浓度或活性测定中产生的系统误差。

6、分析目标产物的收率和纯化倍数,确定最佳双水相系统。

在特定的应用场景下,例如从破碎的细胞中萃取分离酶,工艺流程可能会有所不同,但大致都遵循以上的基本步骤。

双水相萃取技术

双水相萃取技术

三、双水相萃取3.1 双水相萃取的原理及特点3.1.1 双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。

当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。

分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。

3.1.2 双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。

由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。

在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。

在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。

萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。

用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。

双水相萃取技术

双水相萃取技术

三、双水相萃取3.1双水相萃取的原理及特点3.1.1双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。

当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。

分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。

3.1.2双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%〜90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min ;⑶界面张力小(10-7〜10-4mN/m),有助于强化相际间的质量传递;⑷不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。

由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

3.2双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。

在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。

在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH 在下相的收率均在80%以上。

萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。

用PEG/(NH4)2SO4 双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取a淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2S04(20%),pH=8,a淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。

双水相萃取法

双水相萃取法
非电解质型溶质的分配系数不受静电作用的影响,利用相平衡 热力学理论可推导下述分配系数表达式:
lnm=-Mλ/RT
m-分配系数;M-溶质的相对分子质量;λ-与溶质表面性质和 成相系统有关的常数; R-气体常数,J/(mo1.K);T-绝对温度, K。
因此,溶质的分配系数的对数与相对分子质量之 间呈线性关系,在同一个双水相系统中,若λ>0,不 同溶质的分配系数随相对分子质量的增大而减小。同 一溶质的分配系数随双水相系统的不同而改变,这是 因为式中的λ随双水相系统而异。
图a和b分别为PEG/Dx和PEG/KPi系统的典型相图 a
系线 两相区 双节线 双节线
b
两相区 系线
均相区
均相区
均相区
临界点
在系线上各点处系统的总浓度不同,但均分成组成相同而 体积不同的两相。两相的体积近似服从杠杆规则,即
上下相组成分别为T和B,
系线的长度是衡量两相间相对差别的尺度,系线越长, 两相间的性质差别越大,反之则越小。当系线长度趋向于零时, 即在图b的双节线上K点,两相差别消失,任何溶质在两相中的 分配系数均为1,因此K点称为临界点(critical point)。

在生物分子回收和纯化以后,怎样从含有目标产物残余物的 水溶液中回收聚合物或盐就成为一个重要的问题。例如从 1000kg面包酵母中萃取反丁烯二酸酶需要用680kgPEG-1550和 533kgK3PO4,若不回收利用,化学品的消耗会使生产成本大幅 度上升。如果产品是蛋白质,并且分配在盐相,则盐可以在 错流过程操作方法下,用超滤或渗析膜过滤回收。如果蛋白 质积聚在聚乙二酵中,可以通过加入盐来精制,加入的盐导 致蛋白质在盐相中重新分配。PEG的分离同样可以用膜分离来 实现,即用选择性孔径大小的半透膜来截留蛋白质,同时排 除PEG进行回收。 另一种力法是通过盐析或使用水-可混溶性 的溶剂来沉淀蛋白质,但是固体(产物)的去除被存在的PEG阻 碍。也可使用离子交换和吸附,它们是通过蛋白质与基质的 选择性相互作用进行的。然而,当黏性聚合物溶液通过柱被 处理的时候,会出现高的压力降。在上述的三种方法中,膜 分离是分离和浓缩被纯化的蛋白质并同步去除聚合物的最佳 方法。

双水相萃取

双水相萃取

(2)双水相体系形成的原因:
聚合物的不相溶性(空间位阻)

聚合物的不相溶性:各个聚合物分子,都倾向于在其
周围有形状、大小和极性相同的分子,同时,由于不同
类型分子间的斥力大于同它们的亲水性有关的相互吸引 力,因此聚合物发生分离,形成两个不同的相。

对于某些聚合物溶液与一些无机盐溶液相混时,只要
浓度达到一定范围时,体系形成双水相的机理尚不清楚。

这种影响与蛋白质相对分子质量也存在关系,相对分子质量越
大,影响也随之增大。
(2)高聚物的浓度:

成相物质的总浓度越高,蛋白质越容易分配于其中的某一相;
而对于细胞等颗粒来说,在临界点附近细胞大多分配于其中的
某一相。
(3)盐的种类和浓度:

盐的种类和浓度对分配系数的影响,主要反映在相间电位和
蛋白质的疏水性差异上,这是由于当双水相系统中存在这些
加入盐使目标蛋白质转入富盐相来回收 PEG;B)将 PEG
相通过离子交换树脂,用洗脱剂先洗去 PEG,再洗出蛋 白质。 无机盐的循环:将含无机盐相冷却,结晶,然后用离 心机分离收集。除此之外还可用电渗析法、膜分离法回
收盐类或除去 PEG相的盐。
(3)双水相萃取在药物分离中的应用
①细胞匀浆液中 蛋白质的纯化
液膜萃取
反胶团萃取
内容提纲:
1.双水相体系 2.双水相萃取的基本原理 3.影响双水相分配的主要因素
4.双水相萃取技术的发展
5.双水相萃取操作及应用
1.双水相体系
(1)双水相系统:一定浓度的两种水溶性高聚物或一
种高聚物与盐类在水中能形成两层互不相溶的匀相水溶液, 这样的水相系统称为双水相系统。
5%PEG6000 上层组成:2%Dextran500 93%水 3%PEG6000 下层组成:7%Dextran500 90%水

双水相萃取

双水相萃取
16
双水相系统的分类
按照物质在双水相系统的分配作用类型,可分为空 间排阻分配、电化学分配、构型相关性分配、亲和分配、 疏水分配和手性分配等类型。
分配类型 空间排阻分配 电化学分配 构型相关性 分配 亲和分配 典型相系统 PEG/EDX PEG/盐 影响因素 相系统因素 聚合物分子大小 相界面静电位 聚合物分子空间 构型 配基亲和性能 主要可调因素 溶质性质 表面积 表面电荷 空间构型 特异的亲和位 点 表面疏水性 聚合物分子量、浓度 pH、盐种类、聚合物 电荷性质 聚合物分子量、浓度、 pH、温度 配基种类、浓度、pH
10
选择双水相的原则
• 能够获得高的产物回收和生物活性回收, 高的分离纯化倍数; • 系统的物理化学性质有利于大规模的应 用,有良好的工艺性能,系统黏度低, 相分离快,达到相平衡时间短,工艺参 数容易控制,工艺条件可调性范围大; • 系统经济,成本低,无毒,适合大规模 应用。
11
双水相系统相图
PEG (%)
离子分配萃取
利用共价键将离子交换基团如 -NH2,-COOH, -PO43-, -SO42-结合在成相水溶性聚合物上,构成双 水相系统,与酶蛋白分子的相互作用进行分配的双 水相萃取,其分配行为在很大程度上与蛋白质的表 面电荷性质有关,也受到系统的各种因素,如pH、 盐浓度和种类、温度等条件的影响。由于这一类功 能团配基与酶的相互作用的选择性并不很高,萃取 效率和纯化倍数虽然比一般双水相萃取系统高,但 低于其他亲和萃取系统。 例如利用PEG-磷酸酯/磷酸盐系统进行β-干扰素 的提取,分配系数可达到630,杂蛋白几乎完全分配 在下相。 20
相图的双节点线的位置和形状与相系统组成及相系统组分的物理化 学性质有关,如聚合物的分子量和分子形状。在PEG/葡聚糖系统,如 果PEG分子量不变,增加葡聚糖的分子量,相分离所需的葡聚糖浓度 越低;两种聚合物分子量相差越大,双节点线的形状越不对称。 15 在PEG/盐系统中,PEG分子量越大,双节点线也越陡立。

双水相萃取技术详解

双水相萃取技术详解

4.3 在医药行业的应用
双水相体系不仅可以用于分离医药行业需要的细胞,还 可以用来高效的提取抗生素。抗生素不仅能杀灭细菌,而且 对支原体、衣原体等致病微生物也具有良好的抑制及杀灭效 果。所以双水相萃取技术在医药行业得到广泛认可。 如: ①利用免疫亲和性PEG/Dextran 双水相体系从脐带血中分离 造血干细胞/源细胞。 ②亲水性离子液体 1-丁基-3- 甲基咪唑四氟硼 BF₄和 NaH₂PO₄形成的双水相体系能够快速从青霉素水溶液中萃取 青霉素G。 ③用亲水性离子液体四氟硼酸 1-丁基-3- 甲基咪唑四氟硼 BF4 和 NaH2PO₄组成的双水相体系萃取分离四环素。
2.1.4 相图
图1是典型的高聚物-高聚 物-水双水相体系的直角坐标 相图。两种聚合物A、B以适 当比例溶于水就会分别形成 有不同组成密度的两相。轻 相组成用T点表示,重相组成 用B点表示。曲线TCB称为 结线,直线TMB称为系线 。结线上方是两相区,下方 为单相区。

其中上下相组成分别为T和B, T和B量的遵循杠杆定律: 即T和B相质量之比等于系线 上MB与MT的线段长度之比。
⑤为降低成本和保证安全操作,应将成本高的和易燃易爆的液
体作为分散相。
产生分散相的动 力 重力差
微分接触式 喷啉塔、填料塔
逐级接触式 筛板塔、流动混合 器
机械搅拌
转盘萃取塔、搅拌 萃取塔、振动筛板 塔 脉冲填料塔、脉冲 筛板塔 连续式离心萃取器
混合澄清器
脉冲
离心力作用
脉冲混合澄清器
逐级式离心萃取器
3.5.2 脉动填料塔
3.3进行两水相生物转化反应需满足以下条件
● 催化剂应单侧分配; ● 底物应分配于催化剂所处的相中;产物应分配 在另
一相中;要有合适的相比。如产物分配在上相中,则

双水相萃取(精选双水相萃取PPT,超级有用)概论

双水相萃取(精选双水相萃取PPT,超级有用)概论

双水相萃取原理示意图
基本原理
双水相萃取与一般的水—有机物萃取的原理相似, 都 是依据物质在两相间的选择性分配。
当萃取体系的性质不同, 物质进入双水相体系后, 由于 分子间的范德华力、疏水作用、分子间的氢键、分子与 分子之间电荷的作用, 目标物质在上、下相中的浓度不 同, 从而达到分离的目的。
溶质(包括蛋白质等大分子物质、稀有金属以 及贵金属的络合物、中草药成分等)在双水相体系 中服从Nernst分配定律:
[3]Kula M R, Krone K H, Hustedt H. Advances in biochemical Engineering, edited by Fiechte A, Berlin, Heideberg, New York 1982,24:73~118 [4] Hustedt H, Krone K H, Menge U, et al. Protein recovery using aqueous twophasw system[J]. Trends in Biotechnol, 1985,31(6):139
在水溶液中,聚合物的长链分子通过氢键同周 围的水分子发生强烈地相互作用,每一个氧原子 结合两个水分子,使溶液中的PEG分子被一层高 度有序的水合作用层所包围。葡聚糖虽无与PEG 类似的结构,但同样,分子中的羟基通过氢键作 用在分子周围形成水分子层。
基本原理
某些水溶性聚合物溶液与某些盐溶液混合, 两者浓度达到一定值时,也会分为两相,形 成聚合物-盐双水相系统。机理不清楚。一 种解释为‘盐析’作用。
[12] Silva L H M dMeirelles A J .Protein Partitioning[J].J.Chem.Eng.Data,2001,46(2):251-255. [13] Salabat A,Abnosi M H,Motahari A.Investigation of Amino Acid Partitioning in Aqueous TwoPhase Systems Containing Polyethylene Glycol and Inorganic Salts[J].J.Chem.Eng.Data,2008,53(9):2018—2021.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双水相萃取技术
早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉,这种现象被称为聚合物的不相溶性(incompatibility,从而产生了双水相体系(Aqueous two phase system,ATPS。

传统的双水相体系是指双高聚物双水相体系,其成相机理是由于高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向,在一定条件下即可分为二相。

一般认为只要两聚合物水溶液的憎水程度有所差异,混合时就可发生相分离,且憎水程度相差越大,相分离的倾向也就越大。

可形成双水相体系的聚合物有很多,典型的聚合物双水相体系有聚乙二醇(polyethylene glycol,略作PEG/葡聚糖(dextran,聚丙二醇(polypropylene glycol/聚乙二醇和甲基纤维素(methylcellulose/葡聚糖等。

另一类双水相体系是由聚合物/盐构成的。

此类双水相体系一般采用聚乙二醇(polyethylene glycol作为其中一相成相物质,而盐相则多采用硫酸盐或者磷酸盐。

萃取原理
双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配。

当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等的存在和环境因素的影响,使其在上、下相中的浓度不同。

物质在双水相体系中分配系数K可用下式表示:
K= C上/ C下
其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度。

分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。

其分配情况服从分配定律,即,“在一定温度一定压强下,如果一个物质溶解在两个同时存在的互不相溶的液体里,达到平衡后,该物质在两相中浓度比等于常数”,分离效果由分配系数来表征。

由于溶质在双水相系统两相间的分配时至少有四类物质在两个不同相系统共存,要分配的物质和各相组分之间的相互作用是个复杂的现象,它涉及到氢键、电荷相互作用、范德华力、疏水性相互作用以及空间效应等,因此,可以预料到溶质在双水相系统中两相间的分配取决于许多因素,它既与构成双水相系统组成化合物的分子量和化学特性有关,也与要分配物质的大小、化学特性和生物特性相关。

大量研究表明,生物分子在双水相系统中的实际分配是生物分子与双水相系统间静电作用、疏水作用、生物亲和作用等共同作用的结果,形式上可以将分配系数的对数值分解为几项:
InK = InKm+InKe+In Kh+InKb+InKs+InKc
式中,Ke-----静电作用对溶质分配系数的贡献;
Kh----- 疏水作用对溶质分配系数的贡献;
Kb-----生物亲和作用对溶质分配系数的贡献;
Ks----- 分子大小对溶质分配系数的贡献;
Kc----- 分子构型影响对溶质分配系数的贡献;
Km -----除上述因素外的其它因素影响对溶质分配系数的贡献。

值得指出的是,这些因素中虽然没有一个因素完全独立于其它因素,但一般来说,这些不同的因素或多或少是独立存在的。

影响待分离物质在双水相体系中分配行为的主要参数有成相聚合物的种类、成相聚合物的分子质量和总浓度、无机盐的种类和浓度、pH 值、温度等。

双水相的优势
A TPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:
(1含水量高(70%--90%,在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;
(2可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶,还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;
(3分相时间短,自然分相时间一般为5min~15 min;
(4界面张力小(10-7~10-4mN/m,有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;
(5不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;
(6大量杂质可与固体物质一同除去;
(7易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;
(8操作条件温和,整个操作过程在常温常压下进行;
(9亲和双水相萃取技术可以提高分配系数和萃取的选择性。

虽然该技术在应用方面已经取得了很大的进展,但几乎都是建立在实验的基础上,到目前为止还没能完全清楚地从理论上解释双水相系统的形成机理以及生物分子在系统中的分配机理。

应用
双水相萃取技术已广泛应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了许多成功的范例,主要是分离蛋白质,酶,病毒,脊髓病毒和线病毒的纯化,核酸, DNA的分离,干扰素,细胞组织,抗生素,多糖,色素,抗体等。

此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存在着溶剂污染环境,对人体有害,运行成本高,工艺复杂等缺点。

双水相技术萃取技术引入到该领域,无疑是金属分离的一种新技术。

目前,用此法来提纯的酶已达数十种,其分离过程也达到相当规模,I-Horng Pan等人利用PEG1500/ NaH2PO4体系从Trichoderma koningii发酵液中分离纯化β-木糖苷酶,该酶主要分配在下相,下相酶活回收率96.3%,纯化倍数33;
双水相体系分类
高聚物/高聚物双水相体系
高聚物/无机盐双水相体系
低分子有机物/无机盐双水相体系
表面活性剂双水相体系。

相关文档
最新文档