计算最短路径的Dijkstra算法的编程实现
Dijkstra算法原理详细讲解
Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
Dijkstra最短路径算法的实现及优化
Dijkstra最短路径算法的实现及优化 施培港 厦门信息港建设发展股份有限公司 厦门市槟榔路1号联谊广场五层 361004 Email:spg@xminfoport.com 摘要:最短路径算法种类繁多,比较有名的算法包括:Dijkstra算法、Ford算法、Floyd算法、Moore算法、A*算法、K值算法,而即使同一种算法也有多种不同的实现方式。
本文就Dijkstra算法的两种实现方式做一定的分析,并采用一种新的实现方法达到对算法优化的目的。
关键字:Dijkstra算法 最短路径 网络分析 地理信息系统(GIS) 1. 何谓最短路径 所谓最短路径就是网络中两点之间距离最短的路径,这里讲的距离可以是实际的距离,也可以引申为其它的度量,如时间、运费、流量等。
因此,从广义上讲,最短路径算法就是指从网络中找出两个点之间最小阻抗路径的算法。
2. Dijkstra算法介绍 Dijkstra算法本身是一种贪婪算法,它通过分步的方法来求最短路径。
首先,初始产生源点到它自身的路径,其长度为零,然后在贪婪算法的每一步中,产生一个到达新的目的顶点的最短路径。
其算法描述如下(算法中以有向图表示网络结构): 对于有向图G =(V,E),图中有n个顶点,有e条弧,其中V为顶点的集合,E为弧的集合,求源点VS到终点VT的最短路径。
(1) 用带权的邻接矩阵L来表示有向图,L(X,Y)表示弧<X,Y>的权值,若弧<X,Y>不存在,则设L(X,Y)=∞;用D(X)表示源点VS到顶点X的距离,除源点VS的值为0外,其余各点设为∞;用S表示已找到的从源点VS出发的最短路径的顶点的集合,其初始状态为空集;用V-S表示未找到最短路径的顶点的集合; (2) 选择源点VS做标记,令Y = VS,S = S ∪ {VS}; (3) 对于V-S中各顶点, 若D(X) > D(Y) + L(Y,X),则修改D(X)为 D(X) = D(Y) + L(Y,X) 其中Y是己确定作标记的点; (4) 选择Vj,使得D(j) = min{ D(i) | Vi ∈ V-S } 若D(j)为∞,则说明VS到V-S中各顶点都没有通路,算法终止;否则,Vj就是当前求得的一条从源点VS出发的最短路径的终点,对Vj做标记,令Y = Vj,并把Vj放入集合S中,即令S = S ∪ {Vj}; (5) 如果Y等于VT,则说明已经找到从VS到VT的最短路径,算法终止;否则,转到3继续执行。
dijkstra算法代码实现
dijkstra算法代码实现Dijkstra算法是用来求解单源最短路径问题的一种贪心算法。
下面是Dijkstra算法的代码实现:```import sys# 定义一个类来保存图的节点和边的信息class Node:def __init__(self, name): = nameself.visited = Falseself.distance = sys.maxsizeself.adjacent_nodes = []self.previous_node = None# Dijkstra算法的实现函数def dijkstra(start_node):start_node.distance = 0unvisited_nodes = [start_node]while unvisited_nodes:current_node = unvisited_nodes[0]for neighbor in current_node.adjacent_nodes:if not neighbor.visited:new_distance = current_node.distance +neighbor.distanceif new_distance < neighbor.distance:neighbor.distance = new_distanceneighbor.previous_node = current_nodecurrent_node.visited = Trueunvisited_nodes.remove(current_node)unvisited_nodes.sort(key=lambda node: node.distance)# 测试nodeA = Node("A")nodeB = Node("B")nodeC = Node("C")nodeD = Node("D")nodeE = Node("E")nodeF = Node("F")nodeA.adjacent_nodes = [(nodeB, 10), (nodeC, 15)]nodeB.adjacent_nodes = [(nodeD, 12), (nodeF, 15)]nodeC.adjacent_nodes = [(nodeE, 10)]nodeD.adjacent_nodes = [(nodeE, 2), (nodeF, 1)]nodeF.adjacent_nodes = [(nodeE, 5)]dijkstra(nodeA)print(nodeE.distance)```在上面的代码中,我们定义了一个`Node`类用来保存节点的信息,包括节点的名称、是否已访问、距离起始节点的距离、相邻节点和前置节点等。
c语言最短路径的迪杰斯特拉算法
c语言最短路径的迪杰斯特拉算法Dijkstra的算法是一种用于查找图中两个节点之间最短路径的算法。
这个算法可以应用于有向图和无向图,但是它假设所有的边都有正权值,并且不包含负权值的边。
以下是一个简单的C语言实现:c复制代码#include<stdio.h>#define INF 99999#define V 5 // 顶点的数量void printSolution(int dist[]);void dijkstra(int graph[V][V], int src);int main() {int graph[V][V] = { { 0, 4, 0, 0, 0 }, { 4, 0, 8, 11, 7 },{ 0, 8, 0, 10, 4 },{ 0, 11, 10, 0, 2 },{ 0, 7, 4, 2, 0 } };dijkstra(graph, 0);return0;}void dijkstra(int graph[V][V], int src) { int dist[V];int i, j;for (i = 0; i < V; i++) {dist[i] = INF;}dist[src] = 0;for (i = 0; i < V - 1; i++) {int u = -1;for (j = 0; j < V; j++) {if (dist[j] > INF) continue;if (u == -1 || dist[j] < dist[u]) u = j;}if (u == -1) return;for (j = 0; j < V; j++) {if (graph[u][j] && dist[u] != INF && dist[u] + graph[u][j] < dist[j]) {dist[j] = dist[u] + graph[u][j];}}}printSolution(dist);}void printSolution(int dist[]) {printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) {printf("%d \t\t %d\n", i, dist[i]);}}这个代码实现了一个基本的Dijkstra算法。
单源最短路径dijkstra算法c语言
单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
最短路径算法dijkstra算法python
最短路径算法dijkstra算法python Dijkstra算法是一种用于求解图中两点之间最短路径的经典算法。
该算法由荷兰计算机科学家Edsger Dijkstra于1956年提出,至今仍然被广泛运用于各个领域,例如路由算法、网络优化、地图导航等。
本文将以Python 语言为基础,详细介绍Dijkstra算法的原理和实现过程。
一、Dijkstra算法的原理Dijkstra算法的核心思想是利用贪心策略逐步构建最短路径树。
该算法首先将起始节点的距离设置为0,将其他节点的距离设置为无穷大。
然后在每一轮选择距离起始节点最近的节点,并更新其周围节点的距离。
通过不断选择距离最近的节点,并更新距离,直到找到终点节点或所有节点都被访问完毕,即可得到起始节点到终点节点的最短路径。
二、算法的实现步骤下面将详细介绍Dijkstra算法的实现步骤。
1. 创建一个空的顶点集合visited和距离集合distance,并初始化起始节点的距离为0,其他节点的距离为无穷大。
2. 选择起始节点,并将其加入visited集合。
3. 遍历起始节点的邻居节点,计算起始节点到每个邻居节点的距离,并更新distance集合。
4. 在distance集合中选择距离起始节点最短的节点,将其加入visited 集合。
5. 重复步骤3和步骤4,直到终点节点被加入visited集合或所有节点都被访问完毕。
6. 根据visited集合和distance集合,可以得到起始节点到终点节点的最短路径。
三、Dijkstra算法的Python实现下面将使用Python语言实现Dijkstra算法,并解决一个具体的例子。
首先,创建一个图的类,包含节点和边的信息,并定义一些基本的方法。
其中,节点信息包括标识符、邻居节点和距离,边的信息包括起始节点、终点节点和权重。
pythonclass Graph:def __init__(self):self.nodes = []self.edges = []def add_node(self, node):self.nodes.append(node)def add_edge(self, start, end, weight):edge = (start, end, weight)self.edges.append(edge)接下来,实现Dijkstra算法的主要函数,用于求解最短路径。
最短路径问题dijkstra求解过程
Dijkstra算法是一种用于求解最短路径问题的常用算法,适用于带权有向图。
以下是Dijkstra 算法的求解过程:
初始化:将起始节点标记为当前节点,并将起始节点到所有其他节点的距离初始化为无穷大(表示暂时未知)。
将起始节点到自身的距离设置为0,表示起始节点到自身的最短路径长度为0。
遍历所有节点:
选择当前节点的邻接节点中,距离最小且尚未被访问的节点。
更新该邻接节点的最短路径长度。
如果经过当前节点到达该邻接节点的路径比当前记录的最短路径更短,则更新最短路径长度。
继续遍历未访问的节点,直到所有节点都被访问。
重复步骤3,直到所有节点都被访问或者没有可达节点。
最终得到起始节点到其他节点的最短路径长度。
在Dijkstra算法的求解过程中,使用一个距离表(distances)来记录起始节点到各个节点的当前最短路径长度,一个访问表(visited)来标记节点是否已被访问。
同时,使用优先队列(例如最小堆)来选取下一个距离最小且尚未被访问的节点。
具体的实现可以使用迭代或递归的方式,根据实际情况来选择合适的数据结构和算法实现。
在实际编程中,可能还需要考虑处理边的权重、处理节点的邻接关系和路径记录等细节。
Dijkstra算法要求图中的边权重非负,且无法处理负权边的情况。
对于含有负权边的图,可以考虑使用其他算法,如Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)等。
最短路径——dijkstra算法代码(c语言)
最短路径——dijkstra算法代码(c语⾔)最短路径问题看了王道的视频,感觉云⾥雾⾥的,所以写这个博客来加深理解。
(希望能在12点以前写完)()⼀、总体思想1.初始化三个辅助数组s[],dist[],path[]s[]:这个数组⽤来标记结点的访问与否,如果该结点被访问,则为1,如果该结点还没有访问,则为0;dist[]:这个数组⽤来记录当前从v到各个顶点的最短路径长度,算法的核⼼思想就是通过不断修改这个表实现; path[]:这个数组⽤来存放最短路径;2.遍历图,修改上⾯的各项数组,每次只找最短路径,直到遍历结束⼆、代码实现1void dijkstra(Graph G, int v)2 {3int s[G.vexnum];4int dist[G.vexnum];5int path[G.vexnum];6for(int i = 0; i < G.vexnum; i++)7 {8 s[i] = 0;9 dist[i] = G.edge[v][i];10if(G.edge[v][i] == max || G.edge[v][i] == 0)11 {12 path[i] = -1;13 }14else15 {16 path[i] = v;17 }18 s[v] = 1;19 }2021for(int i = 0; i < G.vexnum; i++)22 {23int min = max;24int u;25for(int j = 0; j < G.vexnum; j++)26 {27if(s[j] != 1 && dist[j] < min)28 {29 min = dist[j];30 u = j;31 }32 }33 s[u] = 1;34for(int j = 0; j < G.vexnum; j++)35 {36if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])37 {38 dist[j] = dist[u] + G.edge[u][j];39 path[j] = u;40 }41 }42 }43 }三、代码解释先⾃⼰定义⼀个⽆穷⼤的值max#define max infdijkstra算法传⼊的两个参为图Graph G;起点结点 int v;⾸先我们需要三个辅助数组1int s[G.vexnum];//记录结点时是否被访问过,访问过为1,没有访问过为02int dist[G.vexnum];//记录当前的从v结点开始到各个结点的最短路径长度3int path[G.vexnum];//记录最短路径,存放的是该结点的上⼀个为最短路径的前驱结点初始化三个数组1for(int i = 0; i < G.vexnum; i++)2 {3 s[i] = 0;//⽬前每个结点均未被访问过,设为04 dist[i] = G.edge[v][i];//dist[]数组记录每个从v结点开到其他i结点边的长度(权值)5if(G.edge[v][i] == max || G.edge[v][i] == 0)6 {7 path[i] = -1;8 }//如果v到i不存在路径或者i就是v结点时,将path[i]设为-1,意为⽬前v结点不存在路径到i9else10 {11 path[i] = v;12 }//反之,若v到i存在路径,则v就是i的前驱结点,将path[i] = v13 s[v] = 1;//从遍历起点v开始,即已经访问过顶点s[v]=114 }开始遍历数组并且每次修改辅助数组以记录⽬前的情况,直⾄遍历结束1for(int i = 0; i < G.vexnum; i++)2 {3int min = max;//声明⼀个min = max⽤来每次记录这次遍历找到的最短路径的长度(权值)4int u;//声明u来记录这次历找到的最短路径的结点5for(int j = 0; j < G.vexnum; j++)//开始遍历找⽬前的最短路径6 {7if(s[j] != 1 && dist[j] < min)8 {9 min = dist[j];10 u = j;11 }//找出v到结点j的最短路径,并且记录下最短路径的结点u = j12 }13 s[u] = 1;//找到结点u,即已访问过u,s[u] = 114for(int j = 0; j < G.vexnum; j++)//开始遍历修改辅助数组的值15 {16if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])17 {18 dist[j] = dist[u] + G.edge[u][j];19 path[j] = u;20 }//如果v→j的路径⽐v →u→j长,那么修改dist[j]的值为 dist[u] + G.edge[u][j],并且修改j的前驱结点为path[j] = u21 }22 }遍历结束后,数组dist[]就是存放了起点v开始到各个顶点的最短路径长度最短路径包含的结点就在path数组中例如我们得到如下的path[]数组1 path[0] = -1;//0到⾃⼰⽆前驱结点2 path[1] = 0;//1的前驱为结点0,0⽆前驱结点,即最短路径为0 →13 path[2] = 1;//2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →24 path[3] = 0;//3的前驱为结点0,0⽆前驱结点,即最短路径为0 →35 path[4] = 2;//4的前驱结为点2,2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →2 →4 dijkstra对于存在负权值的图不适⽤,明天再更新Floyd算法叭。
最短路径 dijkstra算法的matlab代码实现
最短路径dijkstra算法的matlab代码实现如何用Matlab实现Dijkstra算法求解最短路径问题?Dijkstra算法是一种用于计算图中的最短路径的经典算法。
该算法以一个起始节点为基础,通过不断更新节点到其他节点的最短距离,直到找到最短路径为止。
本文将一步一步地回答如何使用Matlab实现Dijkstra算法,以及如何在Matlab中构建图并求解最短路径。
第一步:构建图Dijkstra算法是基于图的算法,因此我们首先需要在Matlab中构建一个图。
图可以用邻接矩阵或邻接表等方式表示。
这里我们选择使用邻接矩阵来表示图。
在Matlab中,可以使用矩阵来表示邻接矩阵。
假设我们的图有n个节点,我们可以创建一个n×n的矩阵来表示图的邻接矩阵。
如果节点i和节点j 之间有一条边,则将邻接矩阵中的第i行第j列的元素设置为边的权重,如果没有边相连,则将元素设置为一个较大的值(例如无穷大)表示不可达。
现在,我们可以开始构建邻接矩阵。
这里以一个具体的例子来说明。
假设我们有一个包含6个节点的无向图,如下所示:0 1 2 3 4 5-0 0 4 3 0 0 01 4 0 1 4 0 02 3 1 0 2 1 03 04 2 0 3 24 0 0 1 3 0 25 0 0 0 2 2 0在Matlab中,可以将邻接矩阵表示为一个n×n的矩阵。
在这个例子中,我们可以这样定义邻接矩阵:G = [0 4 3 0 0 0;4 0 1 4 0 0;3 1 0 2 1 0;0 4 2 0 3 2;0 0 1 3 0 2;0 0 0 2 2 0];第二步:实现Dijkstra算法在Matlab中,我们可以使用一些循环和条件语句来实现Dijkstra算法。
下面是一个基本的Dijkstra算法的实现流程:1. 创建一个数组dist,用于存储从起始节点到其他节点的最短距离。
初始时,将起始节点到自身的距离设置为0,其他节点的距离设置为无穷大。
dijkstra算法代码实现
Dijkstra算法是一种用于解决单源最短路径问题的经典算法,由荷兰计算机科学家艾兹赫尔·迪克斯特拉在1956年提出。
该算法主要用于计算一个顶点到其余各个顶点的最短路径。
Dijkstra算法的基本思想是:假设图G中顶点集合为V,边集合为E,从源点s开始,初始时只有s的已知最短路径,用集合S记录已找到最短路径的顶点。
利用S中顶点的最短路径来更新其余顶点的最短路径,直到找到从s到其余所有顶点的最短路径。
Dijkstra算法具体实现过程如下:1. 创建两个集合,一个用来保存已找到最短路径的顶点集合S,另一个用来保存未找到最短路径的顶点集合V-S。
2. 初始化距离数组dist[],将源点到各个顶点的距离初始化为无穷大,源点到自身的距离初始化为0。
3. 从源点s开始,将s加入S集合,更新源点到其余各个顶点的距离,如果存在边(u,v),使得dist[v] > dist[u] + w(u,v),则更新dist[v] = dist[u] + w(u,v),其中w(u,v)表示边(u,v)的权值。
4. 重复第3步,直到将所有顶点加入S集合为止,此时dist数组即为源点到各个顶点的最短路径。
根据以上实现思路,我们可以使用代码来实现Dijkstra算法。
以下是Python语言的Dijkstra算法实现示例:```pythondef dijkstra(graph, src):dist = [float('inf')] * len(graph)dist[src] = 0visited = [False] * len(graph)for _ in range(len(graph)):u = min_distance(dist, visited)visited[u] = Truefor v in range(len(graph)):if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]:dist[v] = dist[u] + graph[u][v]print_solution(dist)def min_distance(dist, visited):min_dist = float('inf')min_index = -1for v in range(len(dist)):if dist[v] < min_dist and not visited[v]:min_dist = dist[v]min_index = vreturn min_indexdef print_solution(dist):print("顶点\t最短距离")for i in range(len(dist)):print(f"{i}\t{dist[i]}")```在上面的示例代码中,我们首先定义了一个dijkstra函数,该函数接受图的邻接矩阵表示和源点的索引作为参数。
java实现dijkstra算法
java实现dijkstra算法Dijkstra算法是一种用于解决最短路径问题的经典算法。
它可以在一个加权有向图中找到从起点到终点的最短路径。
在本文中,我们将使用Java语言来实现Dijkstra算法。
首先,我们需要定义一个Graph类来表示图。
该类包含一个节点列表和一个边列表。
节点列表用于存储图中的所有节点,边列表用于存储节点之间的连接关系以及对应的权重。
```javaimport java.util.*;class Graph {private List<Node> nodes;private List<Edge> edges;public Graph() {nodes = new ArrayList<>();edges = new ArrayList<>();}public void addNode(Node node) {nodes.add(node);}public void addEdge(Node source, Node destination, int weight) { Edge edge = new Edge(source, destination, weight);edges.add(edge);}// 省略其他方法}```接下来,我们需要定义一个Node类来表示图中的节点。
每个节点包含一个唯一的标识符和一个距离值,用于表示从起点到该节点的最短路径的长度。
```javaclass Node {private String id;private int distance;public Node(String id) {this.id = id;this.distance = Integer.MAX_VALUE;}public String getId() {return id;}public int getDistance() {return distance;}public void setDistance(int distance) {this.distance = distance;}}```最后,我们需要定义一个Edge类来表示图中的边。
路由算法中的Dijkstra算法实现原理
路由算法中的Dijkstra算法实现原理路由算法是计算机网络中的一项重要技术,它指导着数据在网络中的传输过程。
路由算法中的Dijkstra算法是其中一种比较常用的算法,它通过计算最短路径来选择数据传输方案,进而实现高效稳定的数据传输。
本文将详细介绍Dijkstra算法的实现原理。
一、Dijkstra算法的概述Dijkstra算法是一种用于计算带权图最短路径的算法。
它的基本思想是:维护一个当前已知的最短路径集合S和距离源点最短的节点v,然后以v为基础扩展出一些新的节点,并计算这些节点到源点的距离并更新路径集合S。
重复这一过程,一直到源点到所有节点的最短路径集合已经确定为止。
该算法求解的是一个有向带权图中一个节点到其他所有节点的最短路径问题,其中「带权」表示图的边权值是一个非负实数。
二、Dijkstra算法的实现Dijkstra算法可以使用多种数据结构的实现,常见的有数组、链表、堆等。
这里我们以使用优先队列为例进行实现。
首先,定义一个数组distance用于存储源点至所有节点的最短距离。
初始状态下,将源点与其它节点的距离初始化为正无穷大。
同时,构建一个优先队列,用于维护已经遍历过的节点。
具体实现过程如下:1. 初始化distance数组和优先队列。
将源点源加入优先队列中,与源点相邻的节点按照距离增序加入队列中。
2. 从队列中取出距离源点最短的节点u,然后遍历所有与节点u相邻的节点v。
通过计算distance[u] + w(u,v)可得到源点到节点v的距离。
如果这个距离比已经存储在distance[v]中的距离更短,则更新distance[v]的值,同时将节点v加入到优先队列中。
3. 重复步骤2,直到所有节点都已经加入到队列中,并且所有节点的最短路径都已经被确定。
三、Dijkstra算法的时间复杂度分析Dijkstra算法的时间复杂度主要取决于寻找当前距离源点最短的节点的过程。
如果使用数组实现,该过程的时间复杂度为O(n^2),n为节点数量。
dijkstra算法 java最短路径
dijkstra算法java最短路径Dijkstra算法是一种用于寻找图中两个节点之间最短路径的算法。
它采用的是贪心策略,将图中的节点分为两个集合:已访问节点集S和未访问节点集T。
算法从源节点开始,每次从T中选择到源节点距离最短的节点加入S集合,并更新S集合中各节点到源节点的最短路径。
直到T集合中的节点全部加入S集合,算法结束。
Dijkstra算法的Java实现如下:●public class Dijkstra{●public static void main(String[]args){●创建图●Graph graph=new Graph();●graph.addVertex("A");●graph.addVertex("B");●graph.addVertex("C");●graph.addEdge("A","B",10);●graph.addEdge("A","C",20);●graph.addEdge("B","C",30);●计算最短路径●dijkstra(graph,"A");}●private static void dijkstra(Graph graph,String startVertex){●初始化●Set<String>visited=new HashSet<>();●Map<String,Integer>distances=new HashMap<>();●for(String vertex:graph.getVertices()){●distances.put(vertex,Integer.MAX_VALUE);}●distances.put(startVertex,0);●遍历所有节点●for(String vertex:graph.getVertices()){●找到未访问节点中距离源节点最小的节点●String nearestVertex=findNearestVertex(distances,visited);●将该节点加入已访问节点集合●visited.add(nearestVertex);●更新该节点到其他节点的最短路径●for(String neighbor:graph.getAdjacentVertices(nearestVertex)){●intnewDistance=distances.get(nearestVertex)+graph.getEdgeWeight(nearestVertex,neighbor ●if(newDistance<distances.get(neighbor)){●distances.put(neighbor,newDistance);}}}●输出结果●System.out.println("从"+startVertex+"到其他节点的最短路径:");●for(String vertex:graph.getVertices()){●System.out.println(vertex+"的最短路径是:"+distances.get(vertex));}}●private static String findNearestVertex(Map<String,Integer>distances,Set<String>visited){●int minDistance=Integer.MAX_VALUE;●String nearestVertex=null;●for(String vertex:distances.keySet()){●if(!visited.contains(vertex)&&distances.get(vertex)<minDistance){●minDistance=distances.get(vertex);●nearestVertex=vertex;}}●return nearestVertex;}}该算法的工作原理如下:1.初始化距离表,将所有节点的距离初始化为无穷大。
dijkstra算法代码
dijkstra算法代码性。
Dijkstra算法是一种用于计算从一个节点到其他所有节点的最短路径的算法。
它是由荷兰计算机科学家Edsger Dijkstra在1959年提出的,是一种贪心算法。
它的基本思想是,从源节点开始,每次选择距离源节点最近的节点,并将其加入到已经访问的节点集合中,然后更新其他节点的距离,直到所有节点都被访问到。
Dijkstra算法的代码实现非常简单,可以用任何编程语言实现。
下面是一个用C语言实现的Dijkstra算法的代码:#include <stdio.h>#include <stdlib.h>#include <limits.h>#define MAX_VERTEX_NUM 20#define INFINITY INT_MAXtypedef int Vertex;typedef int WeightType;typedef struct GNode *PtrToGNode;struct GNode {int Nv;int Ne;WeightType G[MAX_VERTEX_NUM][MAX_VERTEX_NUM];};typedef PtrToGNode MGraph;MGraph CreateGraph(int VertexNum){Vertex V, W;MGraph Graph;Graph = (MGraph)malloc(sizeof(struct GNode));Graph->Nv = VertexNum;Graph->Ne = 0;for (V=0; V<Graph->Nv; V++)for (W=0; W<Graph->Nv; W++)Graph->G[V][W] = INFINITY;return Graph;}void InsertEdge(MGraph Graph, Vertex V, Vertex W, WeightType Weight){Graph->G[V][W] = Weight;}MGraph BuildGraph(){MGraph Graph;Vertex V;int Nv, i;scanf("%d", &Nv);Graph = CreateGraph(Nv);scanf("%d", &(Graph->Ne));if (Graph->Ne != 0) {for (i=0; i<Graph->Ne; i++) {scanf("%d %d %d", &V, &W, &Weight);InsertEdge(Graph, V, W, Weight);}}return Graph;}int FindMinDist(MGraph Graph, WeightType dist[], int collected[]){WeightType MinDist = INFINITY;Vertex V, MinV;for (V=0; V<Graph->Nv; V++) {if (collected[V] == 0 && dist[V]<MinDist) { MinDist = dist[V];MinV = V;}}if (MinDist < INFINITY)return MinV;elsereturn -1;}void Dijkstra(MGraph Graph, Vertex S, WeightType dist[], int path[]){int collected[MAX_VERTEX_NUM];Vertex V, W;for (V=0; V<Graph->Nv; V++) {dist[V] = Graph->G[S][V];if (dist[V] < INFINITY)path[V] = S;elsepath[V] = -1;collected[V] = 0;}dist[S] = 0;collected[S] = 1;while (1) {V = FindMinDist(Graph, dist, collected);if (V == -1)break;collected[V] = 1;for (W=0; W<Graph->Nv; W++) {if (collected[W] == 0 && Graph->G[V][W]<INFINITY) {if (dist[V]+Graph->G[V][W] < dist[W]) {dist[W] = dist[V]+Graph->G[V][W];path[W] = V;}}}}}void PrintPath(MGraph Graph, Vertex S, Vertex V, int path[]) {int i, j, k;int tmp[MAX_VERTEX_NUM];int d = 0;i = V;while (i != S) {tmp[d++] = i;i = path[i];}tmp[d++] = S;for (i=d-1; i>0; i--)printf("%d ", tmp[i]);printf("%d\n", tmp[0]);}int main(){int dist[MAX_VERTEX_NUM], path[MAX_VERTEX_NUM];Vertex S, V;MGraph Graph;Graph = BuildGraph();scanf("%d %d", &S, &V);Dijkstra(Graph, S, dist, path);PrintPath(Graph, S, V, path);return 0;}。
Dijkstra算法步骤详述
Dijkstra算法步骤详述Dijkstra算法是一种经典的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
本文将详细介绍Dijkstra算法的步骤和实现。
1. 初始化首先,我们需要将算法的输入进行初始化。
假设我们有一个带权重的有向图,其中节点集合为V,边的集合为E。
对于每个节点v ∈ V,我们设置初始距离d[v]为正无穷大(INF),表示从起点到节点v的距离为无穷大;同时,我们设置起点s的初始距离d[s]为0,表示从起点到自身的距离为0。
2. 确定最短路径接下来,我们将在图中逐步确定起点到其他节点的最短路径。
首先,我们从起点s开始,将s标记为当前节点。
然后,对于s的所有邻居节点v,我们更新其当前最短路径,并标记v为下一个当前节点。
这一步骤可以通过以下过程实现:a. 对于节点s的所有邻居节点v,计算通过s到达v的距离。
如果该距离小于d[v],则将d[v]更新为该距离,并将s作为节点v的前驱节点(即最短路径上v的前一个节点)。
b. 从剩余的未标记节点中选择一个距离最短的节点作为下一个当前节点。
具体而言,从未标记节点中选择一个节点u,使得d[u]最小,并将其标记为当前节点。
3. 更新最短路径在上一步中,我们确定了起点到一个节点的最短路径。
现在,我们将以已选择的当前节点继续执行第2步,直到所有节点都被标记为止。
具体而言,重复进行以下步骤:a. 在当前节点的所有邻居节点中,更新其最短路径并选择下一个当前节点,过程与第2步相同。
b. 如果不存在未标记节点,则算法终止。
4. 输出最短路径当算法终止时,我们可以得到从起点到达所有节点的最短路径。
对于每个节点v,最短路径可以通过回溯每个节点的前驱节点得到。
具体而言,从目标节点开始,通过前驱节点一直回溯到起点,即可得到最短路径。
总结:Dijkstra算法通过逐步确定起点到其他节点的最短路径,从而找到整个图中的最短路径。
它的步骤包括初始化、确定最短路径和更新最短路径。
最短路径算法―Dijkstra(迪杰斯特拉)算法分析与实现(
Dijkstra( 迪杰斯特拉算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra 算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。
设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。
Dijkstra 算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S 中,同时对数组dist作必要的修改。
一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra 算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。
Dijkstra 算法的迭代过程:主题好好理解上图!以下是具体的实现(C/C++:A ]***************************************2.* About: 有向图的Dijkstra 算法实现3. * Author: Tanky Woo4. * Blog: 6.7. #i nclude8. using n amespace std;9.9. con st i nt maxnum = 100;10. con st i nt maxi nt = 999999;12.13.11. void Dijkstra(i nt n, int v, int *dist, int *prev, int c[max nu m][max num]12. {13. bool s[maxnum]; // 判断是否已存入该点到 S 集合中14. for(i nt i=1; i<=n; ++i15. {16. dist[i] = c[v][i];17. s[i] = 0; // 初始都未用过该点18. if(dist[i] == maxi nt19. prev[i] = 0;20. else21. prev[i] = v;22. }23. dist[v] = 0;24. s[v] = 1;28.29. // 依次将未放入S 集合的结点中,取 dist[] 最小值的结点,放入结合 S 中5. *************************************30. // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度31.for(i nt i=2; i<=n; ++i32.{33.i nt tmp = maxi nt;34.i nt u = v;35.// 找出当前未使用的点j的dist[j] 最小值36.for(int j=1; j<=n; ++j37.if((!s[j] && dist[j]38.{39.u = j; // u 保存当前邻接点中距离最小的点的号码40.tmp = dist[j];41.}42.s[u] = 1; // 表示u点已存入S集合中43.43.// 更新dist44.for(i nt j=1; j<=n; ++j45.if((!s[j] && c[u][j]46.{47.int newdist = dist[u] + c[u][j];48.if( newdist < dist[j]49.{50.dist[j] = n ewdist;51.prev[j] = u;52.}53.}54.}55.}58.void searchPath(i nt *prev,i nt v, int u59.{60.int que[max nu m];61.i nt tot = 1;62.que[tot] = u;63.tot++;64.int tmp = prev[u];65.while(tmp != v66.{67.que[tot] = tmp;68.tot++;69.tmp = prev[tmp];70.}71.que[tot] = v;72.for(int i=tot; i>=1; --i73.if(i != 174.cout << que[i] << "-> ";75.else76.cout << que[i] << en dl;77.}78.78.int main(79.{80.freopen("input.txt", "r", stdin;81.II各数组都从下标1开始82.i nt dist[max num]; II 表示当前点到源点的最短路径长度83.i nt prev[max nu m]; II 记录当前点的前一个结点记录图的两点间路径长度84.i nt c[max nu m][max nu m]; II87.88. II输入结点数89. cin >> n;90. II输入路径数91. cin >> line;92. i nt p, q, le n; II 输入p, q93.94. II 初始化c[][] 为maxi nt95. for(i nt i=1; i<=n; ++i96. for(i nt j=1; j<=n; ++j97. c[i][j] = maxi nt;98.99. for(i nt i=1; i<=li ne; ++i100. {101. cin >> p >> q >> len;102. if(len < c[p][q] II 有重边103. {104. c[p][q] = le n; II p 指向q 105. c[q][p] = le n; II q指向p,106. }107. }108.109. for(int i=1; i<=n; ++i110. dist[i] = maxi nt;111. for(i nt i=1; i<=n; ++i112. {113. for(i nt j=1; j<=n; ++j 两点及其路径长度这样表示无向图114.printf("%8d", c[i][j];115.prin tf("\n";116.}117.117.Dijkstra(n, 1, dist, prev, c;119.118.// 最短路径长度119.cout << " 源点到最后一个顶点的最短路径长度:"<< dist[ n] << endl;122.120.// 路径121.cout << " 源点到最后一个顶点的路径为:";122.searchPath(prev, 1, n;123.}复制代码输入数据:571 2 101 4 301 5 1002 3 503 5 104 3 204 5 60输出数据:999999 10 999999 30 10010 999999 50 999999 999999 999999 50 999999 20 1030 999999 20 999999 60100 999999 10 60 999999源点到最后一个顶点的最短路径长度: 60 源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5。
dijkstra算法代码c语言
dijkstra算法代码c语言Dijkstra算法代码C语言简介Dijkstra算法是一种用于寻找带权有向图中最短路径的经典算法。
它由荷兰计算机科学家Edsger Dijkstra于1956年发明。
本文将介绍Dijkstra算法的基本原理和用C语言实现的代码。
算法原理1.初始化:设定一个起始点,将起始点到其他所有点的距离初始为无穷大,将起始点到自身的距离设为0,创建一个空的集合用于存放已找到最短路径的点。
2.选取最短路径:从未找到最短路径的点中选择一个距离起始点最近的点,将其加入到已找到最短路径的点的集合中。
3.更新距离:对于新加入的点,更新它周围点到起始点的最短距离。
如果通过新加入的点到达某个点的距离比当前已知最短距离小,则更新该点的最短距离。
4.重复步骤2和步骤3,直到所有点都找到最短路径。
C语言实现下面是用C语言实现Dijkstra算法的代码:#include <>#include <>#define SIZE 10#define INFINITY 9999void dijkstra(int graph[SIZE][SIZE], int startNode) {int distance[SIZE];bool visited[SIZE];for (int i = 0; i < SIZE; i++) {distance[i] = INFINITY;visited[i] = false;}distance[startNode] = 0;for (int count = 0; count < SIZE - 1; count++) {int minDistance = INFINITY;int minIndex;for (int i = 0; i < SIZE; i++) {if (!visited[i] && distance[i] <= minDistanc e) {minDistance = distance[i];minIndex = i;}}visited[minIndex] = true;for (int i = 0; i < SIZE; i++) {if (!visited[i] && graph[minIndex][i] && dis tance[minIndex] != INFINITY &&distance[minIndex] + graph[minIndex][i] < distance[i]) {distance[i] = distance[minIndex] + graph [minIndex][i];}}}printf("最短路径为:\n");for (int i = 0; i < SIZE; i++) {printf("%d 到 %d 的距离: %d\n", startNode, i, di stance[i]);}}int main() {int graph[SIZE][SIZE] = {{0, 6, 0, 1, 0},{6, 0, 5, 2, 2},{0, 5, 0, 0, 5},{1, 2, 0, 0, 1},{0, 2, 5, 1, 0}};int startNode = 0; // 起始点的索引dijkstra(graph, startNode);return 0;}总结Dijkstra算法是解决最短路径问题的一种有效方法。
dijkstra算法代码python
dijkstra算法代码pythonDijkstra算法是一种基于贪心策略的最短路径算法,可用于计算有权图中两个节点之间的最短路径。
以下是使用Python编写的Dijkstra算法代码。
```pythonimport sysdef dijkstra(graph, start, end):# 初始化距离字典distances = {vertex: sys.maxsize for vertex in graph} distances[start] = 0# 初始化路径字典path = {}# 初始化未访问节点集合unvisited = graph.copy()while unvisited:# 选择当前距离最小的节点current_vertex = min(unvisited, key=lambda vertex: distances[vertex])# 如果当前节点是终点,则返回最短路径和距离if current_vertex == end:shortest_path = []while end != start:shortest_path.append(end)end = path[end]shortest_path.append(start)shortest_path.reverse()return shortest_path, distances[current_vertex]# 更新当前节点相邻节点的距离for neighbor, cost in graph[current_vertex].items():if neighbor in unvisited:new_distance = distances[current_vertex] + costif new_distance < distances[neighbor]:distances[neighbor] = new_distancepath[neighbor] = current_vertex# 标记当前节点为已访问unvisited.pop(current_vertex)# 如果未找到路径,则返回空路径和无穷大的距离return [], sys.maxsize```该代码接受一个有权图、起点和终点作为输入,并返回最短路径和距离。
dijkstra算法代码python
dijkstra算法代码pythonDijkstra算法是一种贪心算法,用于计算图中单源最短路径。
该算法基于贪心算法的原则,每次选择一个距离源点最近的顶点,然后更新这个顶点的邻元素的距离。
算法步骤:1. 初始化距离数组,设置源点的距离为0,其余点的距离为无穷大(表示没有到达该点的路径)。
2. 创建一个空的集合S,用于存放已经求出的最短路径的结点。
3. 循环执行以下步骤,直到所有点都被添加到集合S中:- 在未确定最短路径的结点中,选择距离源点最近的结点,并将该结点添加到S集合中。
- 更新该结点的邻元素的距离,如果新路径的距离小于目前已知的最短路径,则更新最短路径。
在实现Dijkstra算法时,需要使用图的邻接矩阵或邻接表来表示图。
下面是使用邻接矩阵实现Dijkstra算法的Python代码:def dijkstra(graph, src):# 初始化距离数组dist = [float('inf')] * len(graph)# 设置源点的距离为0dist[src] = 0# 用于存放最短路径的结点s = []# 循环执行直到所有点都被添加到集合S中while len(s) < len(graph):# 在未确定最短路径的结点中,选择距离源点最近的结点,并将该结点添加到集合S 中min_dist = float('inf')min_index = -1for i in range(len(graph)):if i not in s and dist[i] < min_dist:min_dist = dist[i]min_index = is.append(min_index)return dist# 示例graph = [[0, 2, 4, 0, 0],[2, 0, 1, 3, 0],[4, 1, 0, 5, 6],[0, 3, 5, 0, 2],[0, 0, 6, 2, 0]]上述代码通过邻接矩阵表示图,其中0表示两点之间没有边,其他数字表示该边的边权。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算最短路径的Dijkstra算法的编程实现
实验环境: C++
为了进行网络最短路径路径分析,需将网络转换成有向图。
如果要计算最短路径,则权重设置为两个节点的实际距离,Dijkstra算法可以用于计算从有向图中任意一个节点到其他节点的最短路径。
算法描述:
1)用带权的邻接矩阵来表示带权的n个节点的有向图,road[i][j]表示弧< vertex i, vertex j>的权值,如果从vertex i到vertex j不连通,则road road[i][j]=无穷大=9999。
引进一个辅助向量Distance,每个Distance[i]表示从起始点到终点vertex i的最短路径长度。
设起始点为first,则Distance[i]= road[first][i]。
令S为已经找到的从起点出发的最短路径的终点的集合。
2)选择vertex j使得Distance[j]=Min{ Distance[i]| vertexi∈V-S},vertex j就是当前求得的一条从起始点出的的最短路径的终点的,令S=S∪{ vertex j}
3)修改从起始点到集合V-S中任意一个顶点vertex k的最短路径长度。
如果Distance[j]+ road[j][k]< Distance[k],则修改Distance[k]为:Distance[k]= Distance[j]+ road[j][k]。
4)重复2,3步骤操作共n-1次,由此求得从起始点出发到图上各个顶点的最短路径长度递增的序列。
算法复杂度为O(n2)。
程序代码如下:
#include <stdio.h>
#include "Dijkstra.h"
int main()
{
int Graph_list_search[max][max]={{0,3,2,5,9999,9999},
{9999,0,9999,2,9999,9999},
{9999,9999,0,1,9999,9999},
{9999,9999,9999,0,9999,5},
{9999,9999,5,3,0,1},
{9999,9999,9999,9999,9999,0}};
printf_edge(Graph_list_search);
Dijkstra(Graph_list_search,0,5);
return 0;
}
以上部分粘贴到记事本以Dijkstra.cpp保存
#define max 6
int find_minimum_route(int route[100],int visit[100],int *position,int vertex_number)
{
int i;
int tag=0;
int temp;
i=0;
temp=9999;
while(i<vertex_number)//route[i]!='\0'
{
if((temp>route[i])&&visit[i]==0)
{
temp=route[i];
*position=i;
tag=1;
}
i++;
}
if(tag=1)return temp;
else
{
*position=vertex_number;
return 9999;
}
}
void Dijkstra(int Graph_list_search[max][max],int first,int end){ int i;
int Graph_minimum_Distance[max];
int Graph_visit[max];
int Graph_minimum_road[max][max];
for(i=0;i<max;i++)
{
Graph_minimum_Distance[i]=Graph_list_search[first][i];
Graph_visit[i]=0;
for(int w=0;w<max;++w)
Graph_minimum_road[i][w]=0;//store the road
if(Graph_minimum_Distance[i]<9999){
Graph_minimum_road[i][first]=1;
Graph_minimum_road[i][i]=1;
}
}
int position;
int minimum_Distance;
Graph_minimum_Distance[first]=0;
Graph_visit[first]=1;
for(int h=1;h<max;h++){
minimum_Distance=find_minimum_route(Graph_minimum_Distance,Graph_visi t,&position,max);
Graph_visit[position]=1;
for(i=0;i<max;i++){
if(Graph_visit[i]==0){
if(Graph_minimum_Distance[i]>minimum_Distance+Graph_list_search[posit ion][i]){
Graph_minimum_Distance[i]=minimum_Distance+Graph_list_search[position ][i];
for(int j=0;j<max;j++)
Graph_minimum_road[i][j]=Graph_minimum_road[position][j]; Graph_minimum_road[i][i]=1;
}
}
}//while(i<max)
}
printf("The minimum road is(vertex%d->vertex%d):\n",first,end); for(i=0;i<max&&printf("->");i++){
if(Graph_minimum_road[end][i]==1)printf("vertex%d",i);
}
printf("\n");
}
void printf_edge(int Graph_list_search[max][max])
{
printf("The example edge is:\n");
for(int i=0;i<max;i++){
for(int j=0;j<max;j++)
printf("%d ",Graph_list_search[i][j]);
printf("\n");
}
}
以上部分粘贴到记事本以Dijkstra.h保存在同一文件夹
运行结果:。