奥数专题之抽屉原理4

合集下载

三年级奥数之抽屉原理

三年级奥数之抽屉原理

抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。

下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。

一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。

这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。

抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。

二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。

它常常用来解决组合问题、分配问题以及概率问题等。

1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。

2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。

这对于资源的合理分配具有指导意义。

3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。

三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。

1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。

2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。

3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。

这个例子非常形象地展示了抽屉原理。

总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。

四年级奥数抽屉原理

四年级奥数抽屉原理

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是组合数学中一个重要的原理。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.四、应用抽屉原理解题的具体步骤知识框架抽屉原理 发现不同第二步:构造抽屉。

这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。

观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。

例题精讲【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理
小学奥数中的抽屉原理是指在一组物品中,如果物品的数量大于抽屉的数量,那么至少会有一个抽屉中放置了两个或以上的物品。

这个原理可以用一个简单的例子来解释。

假设有4只袜子和3
个抽屉,我们要将袜子放入这些抽屉中。

因为袜子的数量大于抽屉的数量,根据抽屉原理,至少有一个抽屉中会放置两只袜子。

我们可以用鸽巢原理(抽屉原理的另一种说法)来帮助我们理解。

想象一下,如果有4只鸽子要放在3个巢里,根据鸽巢原理,至少有一个巢会有两只鸽子。

在小学奥数中,经常会用到抽屉原理来解决问题。

例如,假设有10个苹果,我们要将它们放入9个抽屉中。

我们可以确定
至少有一个抽屉中会放置两个或以上的苹果。

通过理解抽屉原理,我们可以更好地解决一些有关数量关系的问题。

这个简单而重要的数学原理在日常生活中也有很多应用。

例如,在一个大班级中,如果学生的数量超过了座位的数量,必然会有至少两个学生坐在同一个座位上。

总之,小学奥数中的抽屉原理告诉我们,当物品的数量大于抽屉的数量时,一定会有至少一个抽屉中放置了两个或以上的物品。

这个原理可以帮助我们更好地理解数量关系,解决数学问题。

六年级奥数抽屉原理含答案

六年级奥数抽屉原理含答案

抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

奥数知识点解析之抽屉原理

奥数知识点解析之抽屉原理

奥数知识点解析之抽屉原理第一步:初步理解该知识点的定理及性质1、提出疑问:什么是抽屉原理?2、抽屉原理有哪些内容呢?【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。

【抽屉原理2】:将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

第二步:学习最具有代表性的题目【例1】证明:任取8个自然数,必有两个数的差是7的倍数。

【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除。

【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。

以上的题目我们都是运用抽屉原理一来解决的。

第三步:找出解决此类问题的关键【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

{1,2,4,8,16}{3,6,12},{5,10,20}{7,14},{9,18}{11},{13},{15},{17},{19}。

【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。

第四步:重点解决该类型的拓展难题我们先来做一个简单的铺垫题:【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。

【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。

【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。

什么是抽屉原理?(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。

首先,我们来看一个简单的例子。

假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。

这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。

抽屉原理在解决实际问题时非常有用。

比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。

这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。

除了生日问题,抽屉原理还可以应用在许多其它实际问题中。

比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。

这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。

在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。

通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。

同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。

总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。

通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。

希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。

这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。

抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。

这个原理的证明也很简单。

假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。

但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。

抽屉原理的应用非常广泛,包括组合数学、概率论等领域。

在小学奥数中,它通常用于解决物品分配、排列组合等问题。

以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。

这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。

2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。

这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。

3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。

这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。

总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。

这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。

所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。

希望以上内容对您有所帮助。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

五年级下册数学试题-奥数能力训练:第4讲 抽屉原理(无答案)全国通用

五年级下册数学试题-奥数能力训练:第4讲 抽屉原理(无答案)全国通用

第4讲抽屉原理学习目标:1、学会如何构建抽屉,分清“至多”、“最少”、“保证”等词语的意思。

2、能较灵活地找到构建抽屉的方法,并较熟练地运用。

精典例题【1】:把4个苹果放到3个盒子里(当然:每个盒子都要放),放得最多的盒子中至少要放()个。

精典例题【2】:一个口袋里装有红球10颗,黄球3颗,绿球12颗。

从中至少摸出()颗球,才能保证摸出的球中3种球都有。

精典例题【3】:一个口袋中有10个黑球,7个白球和4个红球,这些球大小相同,问至少一次摸出()个球就能保证有2个颜色相同的球。

试一试:1.在一个盒子中装有大小相同重量相等的10颗白棋子和14颗黑棋子,至少从盒子中一次摸出()颗棋子,才能保证有9颗是同一种颜色的棋子。

精典例题【4】:英才小学五年级学生的身高厘米数都是整数,且都不大于160厘米,不小于150厘米,那么最少从()个五年级学生中,保证能找到有4个人的身高相同。

试一试:1.某校五年级共有学生172人,在一次数学测试中,最少的得了60分,最多的得了满分100分,这次考试至少有()人分数相同。

精典例题【5】:某校五年级75名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有()个学生是同年同月出生的。

试一试:1.某校五年级共有学生172人,其中年龄最大的是12岁,最小的是10岁,那么这些同学中保证有()人是同年同月出生的。

【综合练习4】1.袋子中装有12个白钮扣、14个蓝钮扣和17个黑钮扣,至少从盒子中一次摸出()个钮扣,才能保证三种颜色的钮扣都至少有一个。

2.一个口袋里装有红球14颗,黄球11颗,白球9颗,绿球6颗。

从中至少摸出()颗球,才能保证摸出的球中有6颗相同颜色的球。

3.一个口袋中有14个红球,8个白球,17个绿球和13个黄球,至少摸出()个球才能保证有8个颜色相同的球。

4.嘉祥小学五年级学生的身高都是整厘米数,已知最高的为160厘米,最低的为135厘米,那么最少从()个同学中,才能保证找到有4个人的身高相同。

小学六年级奥数-抽屉原理(含答案)

小学六年级奥数-抽屉原理(含答案)

抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。

假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。

点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。

解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。

(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。

小学奥数:抽屉原理

小学奥数:抽屉原理

抽屉原理一、用“数的分组法”构造抽屉例1:从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。

随堂练习1:从1,2,3,…,49,50这,50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取个数。

例2:问在1,3,5,7,…,97,99这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数。

随堂练习2:从1,2,3,4,…,1988,1989这些自然数中,最多可以取个数,其中每两个数的差不等于4。

二、用“图形分割法”构造抽屉例3:在一个边长为1的正方形内(含边界),任意给定9个点(其中没有三点共线),证明:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积不大于18。

随堂练习3:在一个边长为1的等边三角形内随意放置10个点。

试说明:至少有两个点之间的距离不超过13。

三、用“染色法”分类例4:如图是一个3行10列共30个小正方形的长方形,现在把每个小方格涂上随堂练习4:给出一个3行9列共27个小方格的长方形,将每个小方格随意涂四、用“剩下类法”构造抽屉例5:一副扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?例6:将全体自然数按照它们的个位数字,分为10类:个位数字是1的为第1类,个位数字为2的为第2类……个位数字为9的为第9类,个位数字为0的为第10类。

(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定请举出一个反例。

随堂练习5:现有64个乒乓球,18个乒乓球盒,每个盒子最多可以放6个乒乓球,如果把这些球全部装入盒内,不许有空盒。

那么,至少有个乒乓球盒里的乒乓球数目相同。

小学奥数抽屉原理简介__(定稿)

小学奥数抽屉原理简介__(定稿)

小学奥数抽屉原理简介__(定稿)第一篇:小学奥数抽屉原理简介__(定稿)小学奥数之-----抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

这一现象就是我们所说的抽屉原理。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

一.抽屉原理最常见的形式原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1 个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原理1 2都是第一抽屉原理的表述第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。

许多有关存在性的证明都可用它来解决。

例1:400人中至少有两个人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.“从任意5双手套中任取6只,其中至少有2只恰为一双手套。

小学奥数题:抽屉原理

小学奥数题:抽屉原理

知识点:抽屉原理
抽屉原理
一、知识点
1.把27个苹果放进4个抽屉,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中苹果数大于等于几?
2.把25个苹果放进5个抽屉中,能否使每个抽屉中的苹果数小于等于4?那么至少有一个抽屉中苹果数大于等于几?
规律:用苹果数除以抽屉数,若余数不为0,则“答案”为商加1;若余数为0,则“答案”为商。

抽屉原则1:把n个以上的苹果放到n个抽屉里,无论怎样放,一定有一个抽屉,它里面至少有两个苹果。

抽屉原则2:把多于m×n个苹果放在n个抽屉里面,无论怎样放,一定有一个抽屉里面至少有(m+1)个苹果。

二、基础训练
1.把98个苹果放进10个抽屉,无论怎样放,我们一定能找到一个苹果最多的抽屉,里面至少含有个苹果。

2.1000只鸽子飞近50个巢,我们一定能发现一个含鸽子最多的巢穴里,它里面至少含有只鸽子。

3.从个抽屉里面(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉中,从它当中至少拿了3个苹果。

思路点拨:在抽屉原理问题中,难在有些题目抽屉没有直接给出,要求我们自己根据题意去构造抽屉。

但我们也不要因此感到困难,往往题目里有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。

抽屉原理奥数例题

抽屉原理奥数例题

奥赛专题 -- 抽屉原理[专题介绍]把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。

……更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。

这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。

不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

[经典例题]【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。

为什么?【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。

如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。

这是为什么?【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。

而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。

我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。

换句话说,4个自然数分成3类,至少有两个是同一类。

既然是同一类,那么这两个数被3除的余数就一定相同。

所以,任意4个自然数,至少有2个自然数的差是3的倍数。

想一想,例2中4改为7,3改为6,结论成立吗?【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理抽屉原理是四年级的学生非常头疼的奥数题目,多做多练多学,这样对于有这类型的题目就轻而易举了,快来看看吧!习题一构造抽屉最关键的在于找到题目中的苹果和抽屉,并确定它们的数量。

对于四年级孩子,我们只要求能解决一些简单的问题。

例:幼儿园新购了熊猫、大象、长颈鹿3种玩具分给7个小朋友,每种玩具都有很多,每个小朋友可以选择两个玩具,可以相同也可以不同。

请证明肯定有两个小朋友选的玩具是相同的。

分析:三种玩具选两个,因为可以相同,所以共有六种不同的选择方式:[(熊,熊)(象,象)(鹿,鹿)(熊,象)(熊,鹿)(象,鹿)];7个小朋友可看作7个苹果,6种选择方式看作6个抽屉,7÷6=1(人)……1(人)所以肯定至少有两个小朋友选的玩具是相同的!习题二例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问:(1)至少取几根筷子才能保证取到颜色相同的一双筷子?(2)至少取几根筷子才能保证取到颜色相同的两双筷子?(3)至少取几根筷子才能保证取到颜色不同的两双筷子?分析:(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。

1+1+1+1+1=5(根)(2)要取颜色相同的两双筷子,即是要取颜色相同的4根筷子,从最倒霉的角度去思考,需要每种颜色各取3根,再任取1根,而红色只有1根,取完即可。

1+3+3+3+1=11(根)(3)要取颜色不同的两双筷子,即是要取颜色不同的筷子各两根,则先把数量最多的颜色先取完,其他颜色各取一根,再任取一根即可。

8+1+1+1+1=12(根)这类问题中要注意:筷子,袜子这些东西都是成双成对的,一双由两只组成。

习题三这里要注意理解两个词的含义,保证:确定,肯定,万无一失!最不利:最倒霉,最繁琐,最糟糕!最不利原则要求我们从最极端的角度去考虑事件。

我们分两类去讨论:例:口袋里共有5个红球,4个黄球,3个绿球;问:(1)至少取几个球才能保证取到一个红球?(2)至少取几个球才能保证取到三种颜色的球各一个?分析:(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,所以共计4+3+1=8(个)(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取到5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10(个) (这里要注意下顺序,从最多数量的颜色开始取)。

小升初数学奥数知识点 抽屉原理素材

小升初数学奥数知识点 抽屉原理素材

抽屉原理
抽屉原那么一:如果把〔n+1〕个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原那么二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原那么进展运算。

1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数专题之抽屉原理4
1、有语文、数学、外语、政治四门课,最少需要几个老师能保证有一个教两门课?
2、红、白、黑、黄、绿五种颜色的球各若干个,最少一次拿多少个就能保证有2个球是同一种颜色的?
3、“六一”儿童节布置会场,学校把48朵鲜花插在9个花瓶里,其中至少有一个花瓶里插了6朵或6朵以上的鲜花,这是什么道理?
4、“六一”儿童节布置会场,学校把鲜花插在9个花瓶里,最少要有多少朵鲜花才能保证至少有一个花瓶里有6朵或6朵以上的鲜花?
5、三年级有90人,图书馆里最少要拿出多少本书就能保证至少有一个同学能借到5本或5本以上的图书?
6、手中有1分、2分、5分三种硬分布,最少要拿出几枚后才能保证至少有三枚的币值是相同的?
7、幼儿园大班的老师把61件玩具分给小朋友玩,要使其中至少有一个小朋友分到了3个玩具或3个以上的玩具,那么最多应有几个小朋友?
8、有黑、白、黄三种颜色的筷子各4根,最少拿出几根就能保证有2双颜色各不相同的筷子?(提示:可以设黑、白、黄3个抽屉,再
实践一下)
(1)在一个学校里,任意挑选出25个人,请你证明在这25人中,至少有个人属相相同。

(2)三(2)班图书柜里有图书100本,借给班上35名同学,请你说明一定有一名同学借到3本或3本以上的图书。

(3)幼儿园有50个小朋友,现有玩具240件,把这些玩具分给小朋友,是否一定有人能得到6件或6件以上的玩具?
9、在一米长的线段上任意点六个点。

试证明:这六个点中至少有两个点的距离不大于20厘米。

10、在今年入学的一年级新生中有370多人是在同一年出生的。

请你证明:他们中至少有两个人是在同一天出生的。

11、夏令营有400个小朋友参加,问:在这些小朋友中,
(1)至少有多少人在同一天过生日?
(2)至少有多少人单独过生日?
(3)至少有多少人不单独过生日?
12、学校举行开学典礼,要沿操场的400米跑道插40面彩旗。

试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。

13、在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米?
14、在一付扑克牌中,最少要拿多少张,才能保证四种花色都有?
15、在一个口袋中有10个黑球、6个白球、4个红球。

问:至少从中取出多少个球,才能保证其中有白球?。

相关文档
最新文档