我们在小学四年级奥数已经学过抽屉原理

合集下载

小学奥数之抽屉原理

小学奥数之抽屉原理

小学奥数之抽屉原理在小学奥数中,抽屉原理是一个非常重要的概念。

它是数学中的一种思维方法,能够帮助我们解决一些看似很难的问题。

抽屉原理也被称为鸽巢原理,它的具体含义是:如果有n+1个物体放进n个抽屉,那么必定有一个抽屉里会放至少两个物体。

抽屉原理常常在解决一些排列组合和概率问题中应用。

下面我们一起来了解一下抽屉原理在小学奥数中的具体应用吧。

首先,我们来看一个经典的例子。

假设有10个苹果放在9个抽屉里,那么根据抽屉原理,必定有一个抽屉里会放至少两个苹果。

为什么会这样呢?我们可以这样来理解,假设每个抽屉最多只放一个苹果,那么最多只能放9个苹果,而实际上有10个苹果,所以必定会有一个抽屉里放至少两个苹果。

接下来,我们来看一个稍微复杂一些的例子。

假设有5个红球和4个蓝球,需要将它们放进4个抽屉里。

根据抽屉原理,必定有一个抽屉里会放至少两个球。

为什么会这样呢?我们可以这样来理解,在最坏的情况下,每个抽屉最多只能放一个球,那么最多只能放4个球,而实际上有9个球,所以必定会有一个抽屉里放至少两个球。

抽屉原理的应用并不仅限于上面两个例子,它在解决一些看似很难的问题时往往能起到关键的作用。

比如,我们可以用抽屉原理解决下面的问题:假设有9个整数,它们的和是10,那么必定存在至少一对数的和是2、我们可以将这个问题转化成将9个整数放进8个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是2除了上述的应用外,抽屉原理还可以帮助我们解决一些类似的问题。

比如,假设有12个整数,它们的和是31,那么必定存在至少一对数的和是7、我们可以将这个问题转化成将12个整数放进11个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是7从以上的例子可以看出,抽屉原理在解决一些看似很难的问题时可以起到非常关键的作用。

通过运用抽屉原理,我们能够将一个复杂的问题简化为一个更简单的问题,从而更好地解决问题。

四年级奥数抽屉原理

四年级奥数抽屉原理

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是组合数学中一个重要的原理。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.四、应用抽屉原理解题的具体步骤知识框架抽屉原理 发现不同第二步:构造抽屉。

这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。

观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。

例题精讲【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。

2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

小学奥数专题—抽屉原理(一)

小学奥数专题—抽屉原理(一)

⼩学奥数专题—抽屉原理(⼀)⼩学奥数专题—抽屉原理(⼀)[专题介绍] 把4只苹果放到3个抽屉⾥去,共有4种放法(请⼩朋友们⾃⼰列举),不论如何放,必有⼀个抽屉⾥⾄少放进两个苹果。

同样,把5只苹果放到4个抽屉⾥去,必有⼀个抽屉⾥⾄少放进两个苹果。

……更进⼀步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉⾥去,那么必定有⼀个抽屉⾥⾄少放进两个苹果。

这个结论,通常被称为抽屉原理。

利⽤抽屉原理,可以说明(证明)许多有趣的现象或结论。

不过,抽屉原理不是拿来就能⽤的,关键是要应⽤所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

[经典例题]【例1】⼀个⼩组共有13名同学,其中⾄少有2名同学同⼀个⽉过⽣⽇。

为什么?【分析与解答】每年⾥共有12个⽉,任何⼀个⼈的⽣⽇,⼀定在其中的某⼀个⽉。

如果把这12个⽉看成12个“抽屉”,把13名同学的⽣⽇看成13只“苹果”,把13只苹果放进12个抽屉⾥,⼀定有⼀个抽屉⾥⾄少放2个苹果,也就是说,⾄少有2名同学在同⼀个⽉过⽣⽇。

【例 2】任意4个⾃然数,其中⾄少有两个数的差是3的倍数。

这是为什么?【分析与解答】⾸先我们要弄清这样⼀条规律:如果两个⾃然数除以3的余数相同,那么这两个⾃然数的差是3的倍数。

⽽任何⼀个⾃然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把⾃然数分成3类,这3种类型就是我们要制造的3个“抽屉”。

我们把4个数看作“苹果”,根据抽屉原理,必定有⼀个抽屉⾥⾄少有2个数。

换句话说,4个⾃然数分成3类,⾄少有两个是同⼀类。

既然是同⼀类,那么这两个数被3除的余数就⼀定相同。

所以,任意4个⾃然数,⾄少有2个⾃然数的差是3的倍数。

想⼀想,例2中4改为7,3改为6,结论成⽴吗?【例3】有规格尺⼨相同的5种颜⾊的袜⼦各15只混装在箱内,试问不论如何取,从箱中⾄少取出多少只就能保证有3双袜⼦(袜⼦⽆左、右之分)?【分析与解答】试想⼀下,从箱中取出6只、9只袜⼦,能配成3双袜⼦吗?回答是否定的。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。

首先,我们来看一个简单的例子。

假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。

这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。

抽屉原理在解决实际问题时非常有用。

比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。

这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。

除了生日问题,抽屉原理还可以应用在许多其它实际问题中。

比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。

这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。

在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。

通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。

同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。

总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。

通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。

希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。

四年级奥数-抽屉原理与最不利原理(二)

四年级奥数-抽屉原理与最不利原理(二)

【例2】(★★) 在一个盒子里装着形状相同的三种口味的果冻,分别是苹果口味、巧 克力 味和香芋 味的,每种果冻都有20个,现在闭着眼睛从盒子里 克力口味和香芋口味的,每种果冻都有20个,现在闭着眼睛从盒子里 拿果冻。请问: ⑴至少要从中拿出多少个,才能保证拿出的果冻中有香芋口味的? ⑵至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味?
【例7】(★★★) 口袋中有红、黄、蓝3种颜色的玻璃球各50个,闭着眼睛最少要摸出多 少个球,才能保证红球数与黄球数的和比蓝球数多,黄球数与蓝球数 的和比红球数多,红球数与蓝球数的和比黄球数多?
【例6】(★★★) 口袋里有红、绿、蓝、黄、白5种颜色的袜子各50只,为确保从口袋取 出10双袜子(两只袜子颜色相同即为 双),那么应从 袋里取出袜 出10双袜子(两只袜子颜色相同即为一双),那么应从口袋里取出袜 子的最少只数是多少?
【例4】(★★★) 一个布袋里有大小相同的颜色色的有3个,绿色的有1个。那么一次最 少取出多少个球 才能保证有4个颜色相同的球? 少取出多少个球,才能保证有4个颜色相同的球?
【例5】(★★★) 将1只白手套、2只黑手套、3只红手套、8只黄手套和9只绿手套放入一 个布袋 个布袋里,请问: 请问 ⑴一次至少要摸出多少只手套才能保证一定有颜色相同的两双手套? ⑵一次至少要摸出多少只手套才能保证一定有颜色不同的两双手套? (两只手套颜色相同即为一双)
【例8】(★★★★) 口袋里放有3种不同颜色的球共20个 其中红球7个 黄球5个 绿球8 口袋里放有3种不同颜色的球共20个,其中红球7个,黄球5个,绿球8 个。如果闭上眼睛从袋中取球,最多可以取出________个球,仍能够 保证余下的球中至少还有 个同色球, 及至少还有 个另 种颜色的 保证余下的球中至少还有4个同色球,以及至少还有3个另一种颜色的 同色球。 1

四年级奥数抽屉原理

四年级奥数抽屉原理

抽屉原理知识框架一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接利用公式进行解题【例 1】 数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【考点】抽屉原理 【难度】1星 【题型】解答【解析】 略.【答案】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同【例 3】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,1n-.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见1n-个熟人,所以共有n个“抽屉”.下面分两种情况来讨论:⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上2n-个熟人,这样熟人数目只有1n-种n-种可能:0,1,2,……,2n-.这样,“苹果”数(n个小朋友)超过“抽屉”数(1熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1n-种可能:1,2,3,……,n-种熟人数目),根据抽屉原理,至少有两个小朋1n-.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(1友,他们遇到的熟人数目相等.总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多【例 4】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】两位数除以11的余数有11种:0,1,2,3,4,5,6,7,8,9,10,按余数情况把所有两位数分成11种.12个不同的两位数放入11个抽屉,必定有至少2个数在同一个抽屉里,这2个数除以11的余数相同,两者的差一定能整除11.两个不同的两位数,差能被11整除,这个差也一定是两位数(如11,22……),并且个位与十位相同.所以,任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34【例 5】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【考点】抽屉原理【难度】2星【题型】解答【解析】 本题需要求抽屉的数量,需要反用抽屉原理和最“坏”情况的结合,最坏的情况是只有1个人分到4本书,而其他同学都只分到3本书,则()12543401-÷=,因此这个班最多有:40141+=(人)(处理余数很关键,如果有42人则不能保证至少有一个人分到4本书).【答案】41【巩固】 某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则()11231091236-÷=,因此最多有:1231124+=个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)【答案】124【例 6】 班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 把50名小朋友当作50个“抽屉”,书作为物品.把书放在50个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于50,而大于50的最小整数是50151+=,所以至少要拿51本书.【答案】51本书【巩固】 三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 把43名同学看作43个抽屉,根据抽屉原理,要使至少有一个抽屉里有两个苹果,那么就要使苹果的个数大于抽屉的数量.因此,“图书角”至少要准备44本课外书.【答案】44本课外书二、构造抽屉【例 7】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样【例 8】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?【考点】抽屉原理【难度】2星【题型】解答【解析】从四种玩具中挑选不同的两件,所有的搭配有以下6组:牛、马;牛、羊;牛、狗;马、羊;马、狗;羊、狗.把每一组搭配看作一个“抽屉”,共6个抽屉.根据抽屉原理,至少要有7个小朋友去拿,才能保证有两人所拿玩具相同.【答案】7个【巩固】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【考点】抽屉原理【难度】2星【题型】解答【解析】以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【答案】8名三、最不利原则【例 9】黑、白、黄三种颜色的筷子各有很多根,在黑暗处至少拿出几根筷子就能保证有一双是相同颜色的筷子?【考点】抽屉原理【难度】3星【题型】解答【解析】问题问的是要有一双相同颜色的筷子.把黑、白、黄三种颜色的筷子当作3个抽屉,根据抽屉原理,至少有4根筷子,才能使其中一个抽屉里至少有两根筷子.所以,至少拿4根筷子,才能保证有一双是相同颜色的筷子.最“倒霉”原则:它们每样各取一根,都凑不成双.教师可以拿其他东西做类似练习.【答案】至少拿4根筷子【巩固】一个口袋中装有500粒珠子,共有5种颜色,每种颜色各100粒。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

四年级下册数学讲义奥数导引 第4讲:抽屉原理一

四年级下册数学讲义奥数导引 第4讲:抽屉原理一

一、 抽屉原理I :把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么一定能找到一个抽屉,里面至少有2个苹果.二、 抽屉原理II :把m 个苹果放入n 个抽屉(m 大于n ),结果有两种可能:如果m n ÷没有余数,那么就一定有抽屉至少放了“m n ÷”个苹果.如果m n ÷有余数,那么就一定有抽屉至少放了“m n ÷的商再加1”个苹果.三、 抽屉原理的基本思想就是最不利原则.所谓最不利原则,概括的讲,就是通过满足“最坏”的情况,来保证满足所有的情况.四、 某些时候,“抽屉”不太明显,需要构造抽屉来解决问题.知识精讲第四讲抽屉原理一例题解析【例1】 体育馆里有足球,篮球和排球3种球.一个班的50名学生去借球,每人最少借1个,最多可以借2个.请问:最少有多少名学生借到球的数量和种类完全一样?【例2】 把31个桃子分给若干只猴子,每只猴子分得的桃子不超过3个,那么至少有几只猴子得到的桃子一样多?【例3】 有37个数,每个数为0或1.要求:当把这些数以任意的方式排列在圆周上时,总能找到6个1连排在一起.问:其中最少有多少个数是1?【例4】 有一个大口袋,里面装着许多球,每个球上写着一个数字.其中写0的有1个,写1的有2个,写2的有3个,……,写9的有10个.如果闭着眼睛从袋中取球,那么至少要取出多少个球,才能保证取出的球中必有3个,它们上面的数字恰好组成678?(考虑“9”倒过来看是“6”)【例5】一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在墨莫闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则至少要取出多少个球?【例6】50个苹果分给8个小朋友,那么分到苹果最多的小朋友至少分到多少个?如果1号小朋友最多给2个,2号最多给4个,3号最多给6个,……,8号最多给16个,那么得到苹果最多的小朋友至少分到多少个?【例7】888名学生站成一个圆圈,如果任意连续32人中,至多有9名男生,那么男生的人数最多有多少人?【例8】新春佳节,商场举办抽奖活动.抽奖箱中有五种不同颜色的奖券,分别有32,30,28,26,24张.每次可以抽出任意多张,但每抽出一张就要付2元钱.奖励方式如下:用15张同色的奖券换一架相同颜色的飞机模型,用11张同色的奖券换一架相同颜色的坦克模型,用4张同色的奖券换一架相同颜色的摩托车模型.请问:至少要付多少钱,才能保证可以换到三种模型,且三种模型之间颜色互不相同?。

四年级奥数之简单抽屉原理与最不利原则(一)

四年级奥数之简单抽屉原理与最不利原则(一)

把3个苹果放进
屉里定会怎样呢?
屉里一定会怎样呢?
结论:一定有一个抽屉里至少有2个苹果.
实例:现在将个苹果放入到9个抽屉中
结论:一定有一个抽屉里面至少有2个苹果.
年出生的学生,那么必定至少有几个同学的生日是
清晨,一只母鸡先向着太阳飞奔了一会儿. 然后回到草堆旁
一只母鸡先向着太阳飞奔了一会儿
右跑了一会儿,然后向左边的同伴跑去,它与左边的同伴在草堆里转了半圈
个蛋请问蛋是朝着什么方向落下的?
后,忽然下了一个蛋. 请问:蛋是朝着什么方向落下的?
抽屉原理Ⅱ:
把m个苹果放入
1.如果m÷n没有余数,那么就一定有抽屉至少放了“
如果有余数,那
2.如果m÷n有余数,那么就一定有抽屉至少放了“
苹果.
抽屉原理Ⅱ:
原(实例
1.如果把8个苹果放到
2.如果把9个苹果放到
如果把
3.如果把10个苹果放到
果.
个抽屉中,一定有一个抽屉里面至少有
,尽量平均分,结果是必有
.抽屉原理本质:“至少”,尽量平均分,结果是必有一个抽屉里的苹果不
某件事情的可能性
__________________________________________________________________.
_________________________________________________________________.。

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。

这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。

抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。

这个原理的证明也很简单。

假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。

但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。

抽屉原理的应用非常广泛,包括组合数学、概率论等领域。

在小学奥数中,它通常用于解决物品分配、排列组合等问题。

以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。

这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。

2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。

这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。

3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。

这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。

总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。

这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。

所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。

希望以上内容对您有所帮助。

小学数学奥数基础教程(四年级)--抽屉原理

小学数学奥数基础教程(四年级)--抽屉原理

小学数学奥数基础教程(四年级)抽屉原理这一讲我们讲抽屉原理的另一种情况。

先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。

道理很简单。

如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。

剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。

假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

这说明一开始的假定不能成立。

所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。

为了使抽屉中的物品不少于(m +1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m ×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。

这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。

即抽屉原理2是抽屉原理1的推广。

例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉。

今有玩具122件,122=3×40+2。

应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

四年级奥数第4讲_抽屉原理

四年级奥数第4讲_抽屉原理

第四讲抽屉原理(一)我们在四年级已经学过抽屉原理,并能够解答一些简单的抽屉原理问题。

这两讲先复习一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。

既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。

除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

小学四年级奥数抽屉原理【三篇】

小学四年级奥数抽屉原理【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《⼩学四年级奥数抽屉原理【三篇】》供您查阅。

【第⼀篇:构造抽屉】构造抽屉最关键的在于找到题⽬中的苹果和抽屉,并确定它们的数量。

对于四年级孩⼦,我们只要求能解决⼀些简单的问题。

例:幼⼉园新购了熊猫、⼤象、长颈⿅3种玩具分给7个⼩朋友,每种玩具都有很多,每个⼩朋友可以选择两个玩具,可以相同也可以不同。

请证明肯定有两个⼩朋友选的玩具是相同的。

分析: 三种玩具选两个,因为可以相同,所以共有六种不同的选择⽅式:[(熊,熊)(象,象)(⿅,⿅)(熊,象)(熊,⿅)(象,⿅)]; 7个⼩朋友可看作7个苹果,6种选择⽅式看作6个抽屉, 7÷6=1(⼈)……1(⼈) 所以肯定⾄少有两个⼩朋友选的玩具是相同的!【第⼆篇:取筷⼦】例:有1根红筷⼦,5根绿筷⼦,7根黄筷⼦,8根蓝筷⼦;问: (1)⾄少取⼏根筷⼦才能保证取到颜⾊相同的⼀双筷⼦? (2)⾄少取⼏根筷⼦才能保证取到颜⾊相同的两双筷⼦? (3)⾄少取⼏根筷⼦才能保证取到颜⾊不同的两双筷⼦? 分析: (1)要取到颜⾊相同的⼀双筷⼦,即是要取到两根颜⾊相同的筷⼦,从最倒霉的⾓度去思考,需要每种颜⾊各取⼀根,再任取1根即可。

1+1+1+1+1=5(根) (2)要取颜⾊相同的两双筷⼦,即是要取颜⾊相同的4根筷⼦,从最倒霉的⾓度去思考,需要每种颜⾊各取3根,再任取1根,⽽红⾊只有1根,取完即可。

1+3+3+3+1=11(根) (3)要取颜⾊不同的两双筷⼦,即是要取颜⾊不同的筷⼦各两根,则先把数量最多的颜⾊先取完,其他颜⾊各取⼀根,再任取⼀根即可。

8+1+1+1+1=12(根) 这类问题中要注意:筷⼦,袜⼦这些东西都是成双成对的,⼀双由两只组成。

【第三篇:最不利原则】这⾥要注意理解两个词的含义, 保证:确定,肯定,万⽆⼀失! 最不利:最倒霉,最繁琐,最糟糕! 最不利原则要求我们从最极端的⾓度去考虑事件。

四年级奥数抽屉原理

四年级奥数抽屉原理

四年级奥数抽屉原理抽屉原理一、知识点介绍抽屉原理,又称鸽笼原理或XXX原则,是德国数学家XXX首先提出的数学原理,用于解决组合数学中的问题。

该原理可以解决许多看似复杂的问题,常常能够起到令人惊奇的作用。

二、抽屉原理的定义1)举例如果将十个苹果放到九个抽屉里,无论怎样放,必定会有至少一个抽屉里面至少放两个苹果。

这种现象被称为抽屉原理,也被称为鸽巢原理。

2)定义将n+1或多于n+1个物品放到n个抽屉里,其中必定至少有一个抽屉里至少有两个物品。

三、抽屉原理的解题方案一)利用公式进行解题将物品数量除以抽屉数量,得到商和余数。

余数为1时,至少有(商+1)个物品在同一个抽屉里;余数为x时,至少有(商+1)个物品在同一个抽屉里;余数为0时,至少有“商”个物品在同一个抽屉里。

二)利用最值原理解题通过极限讨论,将复杂的问题变得简单,利用特殊值方法解决问题。

四、应用抽屉原理解题的具体步骤第一步:分析题意,确定“物品”和“抽屉”。

第二步:构造抽屉,根据题目结论和数学知识,设计和确定解决问题所需的“物品”及其数量。

第三步:运用抽屉原理,结合题设条件,恰当运用原理或综合多个原理,解决问题。

例题精讲例1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子。

解析】将6只鸽子放入5个笼子,至少有一个笼子里有2只鸽子。

因为6只鸽子减去5个笼子最多只能放1只鸽子,所以必定有一个笼子里有2只鸽子。

巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业。

这5名学生中,至少有两个人在做同一科作业。

解析】将5名学生分配到4个科目的作业中,至少有两个人在做同一科作业。

因为5名学生减去4个科目最多只能有1个人没有做作业,所以必定有两个人在做同一科作业。

例2】XXX有730个学生,至少有几个学生的生日是同一天?解析】将730个学生的生日分配到365个天数中,至少有两个学生的生日是同一天。

因为730减去365最多只能有365个不同的生日,所以必定有两个学生的生日是同一天。

四年级奥数之抽屉原理

四年级奥数之抽屉原理

四年级奥数之抽屉原理知识概要:抽屉原理1:把多于n个的物体放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的物体原理2 :把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

一、填空1、四年级2班共有54名学生,他们年龄都相同,至少有()个同学在同一周出生,至少有()个同学在同一月出生。

2、在2007年出生的1000个孩子当中,至少有()个孩子是在同一天出生的。

至少有()个孩子将来不单独过生日。

3、班上有50个学生,老师至少拿()本书,随意分给学生才能保证至少有一个学生分到不少于两本书。

4、黑、白、黄筷子各8根,混杂在一起,黑暗中起从这些筷子中取出颜色不同的两双筷子,问至少要取()根才能保证达到要求。

5、一只鱼缸里有很多条鱼,共有5个品种,问至少要捞出()鱼,才能保证有5条相同品种的鱼。

6、参加元旦文艺演出的合唱队中,最小的队员8岁,最大的队员14岁,从这些队员中任选()位就一定能保证其中有两位队员的年龄相同。

7、有红、黄、蓝三色的球各10个,混在一个布袋中,一次摸出13个球,其中至少有()个球是同色的。

8、学校图书室里有甲乙丙丁四类书,规定每个同学最多可以借2本书,在借书的86名同学中,至少有()个人所借书的类型是完全一样的。

9、第一组有16名学生至少有()个学生在同一个月过生日。

10、某班有个小图书库,有诗歌、童话、小人书三类课外读物。

规定每位同学最多可以借阅两本书,问至少有()位同学来借阅图书才一定有两名同学借阅书的类型相同。

二、论述题1、三位同学在操场上玩,其中必有两位同学都是男的或都是女的,这话对吗2、五(1)班有59名学生,那么至少有两名同学的生日在同一星期,为什么3、数学兴趣小组中有13名同学老师说,你们当中至少有两个人在同一月过生日,为什么4、五年级四个班去春游,活动时,有6个同学聚在一起做游戏,这6个同学中至少有2人是同一个班的,为什么5、在一条长20米的小路一旁种21棵树,请说明,不管怎么种,至少有两棵树间的距离不超过1米作业:1、三只鸽子飞进了两个鸟巢,,则总有一个鸟巢中至少有()只鸽子;2、把三本书放进两个书架,则总有一个书架上至少放着()本书;3、把三封信投进两个邮筒,则总有一个邮筒投进了不止()封信。

小学四年级奥数(抽屉原理)

小学四年级奥数(抽屉原理)

小学四年级奥数第6讲抽屉原理知识方法…………………………………………………桌上有3个苹果,要把这3个革果放到2个抽屉里,无论怎样放,有的抽屉可以方1个,有的可以放2个,也可以把3个苹果放在1个抽屉里,但最终我们会发现至少有一个抽屉里面至少放2个苹果。

这一现象就是我们所说的抽屉原理。

根据题目中的条件设想出“抽屉”,并确定抽屉的准确数目,当然抽屉的种类很多,要我们具体问题具体分析;再把题目中的另一个条件当作“苹果”,从而结合抽屉原理求出最终的结果。

重点点拨…………………………………………………【例1】任意三个自然数,其中至少有两个是偶数或奇数,为什么?分析与解自然数可以分成两类:奇数与偶数。

我们把奇数与偶数看成两个“推屉”,把这三个自然数比作三个“苹果”,把三个“苹果”放入两个抽屉,根据抽屉原则,至少有一个抽屉放有两个或两个以上的“苹果”,也就是说至少有两个数是奇数或偶数。

【例2】试解释400人中至少有2人的生日相同。

分析与解将一年中的366天(间年)视为366个抽屉,400个人看作400个苹果,由抽屉原理可以得知,至少有2人的生日相同。

【例3】五(1)中队第一小队共有14个少先队员,试解释其中至少有2位同学的生肖是相同的。

分析与解生肖有:鼠、牛、虎、兔、龙、蛇、马、羊猴、鸡、狗、猪共12个。

我们把12个生肖看作12个抽屉,把14个少先队员看作14个苹果,把14个苹果放进12个抽屉中去,至少有一个抽屉放了不止一个苹果,也就是14个队员中至少有2位同学的生肖是相同的。

【例4】停车场上有40辆客车,各种车辆的座位数不同,最少的有26座,最多的有44座,那么在这些客车中,至少有几辆客车的座位数是相同的?分析与解已知客车的座位数最少有26座,最多有4座,可知这40辆客车中有26,27,28,…,44座共19种不同座位数的客车。

把19种座位看作19个抽屉,40辆客车当作40个“苹果”,苹果放进抽屉里,根据抽屉原理,因为40=19×2+2,可知,在这些客车中,至少有3辆客车的座位数是相同的。

小学四年级奥数(抽屉原理)

小学四年级奥数(抽屉原理)

小学四年级奥数第6讲抽屉原理知识方法…………………………………………………桌上有3个苹果,要把这3个革果放到2个抽屉里,无论怎样放,有的抽屉可以方1个,有的可以放2个,也可以把3个苹果放在1个抽屉里,但最终我们会发现至少有一个抽屉里面至少放2个苹果。

这一现象就是我们所说的抽屉原理。

根据题目中的条件设想出“抽屉”,并确定抽屉的准确数目,当然抽屉的种类很多,要我们具体问题具体分析;再把题目中的另一个条件当作“苹果”,从而结合抽屉原理求出最终的结果。

重点点拨…………………………………………………【例1】任意三个自然数,其中至少有两个是偶数或奇数,为什么?分析与解自然数可以分成两类:奇数与偶数。

我们把奇数与偶数看成两个“推屉”,把这三个自然数比作三个“苹果”,把三个“苹果”放入两个抽屉,根据抽屉原则,至少有一个抽屉放有两个或两个以上的“苹果”,也就是说至少有两个数是奇数或偶数。

【例2】试解释400人中至少有2人的生日相同。

分析与解将一年中的366天(间年)视为366个抽屉,400个人看作400个苹果,由抽屉原理可以得知,至少有2人的生日相同。

【例3】五(1)中队第一小队共有14个少先队员,试解释其中至少有2位同学的生肖是相同的。

分析与解生肖有:鼠、牛、虎、兔、龙、蛇、马、羊猴、鸡、狗、猪共12个。

我们把12个生肖看作12个抽屉,把14个少先队员看作14个苹果,把14个苹果放进12个抽屉中去,至少有一个抽屉放了不止一个苹果,也就是14个队员中至少有2位同学的生肖是相同的。

【例4】停车场上有40辆客车,各种车辆的座位数不同,最少的有26座,最多的有44座,那么在这些客车中,至少有几辆客车的座位数是相同的?分析与解已知客车的座位数最少有26座,最多有4座,可知这40辆客车中有26,27,28,…,44座共19种不同座位数的客车。

把19种座位看作19个抽屉,40辆客车当作40个“苹果”,苹果放进抽屉里,根据抽屉原理,因为40=19×2+2,可知,在这些客车中,至少有3辆客车的座位数是相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追击问题练习题专题简析追击问题也是行程问题中的一种情况,这类问题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于可与追上。

解答这类问题,关键是明确速度差的含义(即单位时间内快者追上慢者的路程)。

追击问题的解答公式:速度差×追击时间=路程差路程差÷速度差=追击时间路程差÷追击时间=速度差速度差+慢者速度=快者速度快者速度-速度差=慢者速度例题精讲例1、甲乙两车相距90千米,两车同时同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车?分析:从“甲乙两车相距90千米”可知甲乙两车的路程差是90千米,甲与乙的速度差是65-50=15千米,即每小时甲比乙多行14千米,那么相差90千米的路程,甲追上乙的时间就是90÷15=6小时解:90÷(65-50)=6(小时)答:经过6小时甲车能追上乙车。

例2、某港停有甲乙两船,某一天,甲船以每小时24千米,乙船以每小时16千米的速度,同时同地背向出发,2小时后,甲船因事调转船头追乙船,几小时才能追上?分析:甲、乙两船背向而行,2小时后两船相距(24+16)×2=80千米,即为甲船的追击路程,甲乙的速度知道,速度差为24-16=8千米/小时,追击时间也就好算了。

解:甲、乙路程差(24+16)×2=80(千米)甲追上乙的时间80÷(24-16)=10(小时)答:甲10小时才能追上乙。

例3、有快慢两列火车从南京开往天津,慢车上午5时出发,每小时48千米,快车上午9时出发,8小时后追上慢车,快车每小时比慢车多行多少千米?分析:慢车比快车早出发9-5=4小时,慢车每小时行48千米,4小时行48×4=182千米,也就是快车要追192千米才能追上,1小时追192÷8=24千米,也就是快车每小时比慢车多行24千米。

解:快车与慢车的路程差48×4=182(千米)快车1小时比慢车多行192÷8=24(千米)答:快车每小时比慢车多行24千米。

例4、A、B两城之间的路程长240千米,快车从A城、慢车从B城同时相向开出,3小时相遇,如果两车分别在两城同时向同一方向开出,慢车在前,快车在后,那么15小时快车可以追上慢车,求两车的速度?分析:由相遇棵知道速度和是240÷15=16千米/小时,由追击可求出速度差是240÷15=16千米/小时,根据和差公式就能求出两车的速度。

解:快车与慢车的速度和240÷3=80(千米/小时)快车和慢车的速度差240÷15=16(千米/小时)快车速度(80+16)÷2=48(千米/小时)慢车速度(80-16)=32(千米/小时)答:快车速度为48千米每小时,慢车速度为32千米每小时练习题1、A 、B两地相距60千米,一辆快车和一辆慢车同时分别从A、B两地朝一个方向出发,快车每小时120千米,慢车每小时90千米,几小时快车追上慢车?2、两船从甲码头开往乙码头。

客船每小时行30千米,快艇每小时行45千米,客船先出发4小时,多少小时以后快艇能追上客船?3、甲、乙两人分别从吴村到刘村,甲骑摩托车每小时行50千米,乙骑自行车每小时20千米,乙先行3小时,结果两人同时到达。

求两村的距离。

4、两船从北岸开往南岸,第一艘船以每小时45千米的速度先开了6小时,经过4小时后两船还相距190千米,求第二艘船每小时行多少千米?5、甲,乙两人同时从A地出发到B地,甲每分钟行250米,乙每分钟行290米,16分钟后,两人相距多少米?6、甲,乙两车相距180千米,甲在钱,乙在后,两车同时出发,经12小时乙车追上甲车,甲车每小时行60千米,乙车每小时行多少千米?7、一辆自行车以每小时行12千米的速度从甲地开往乙地,5小时后,一辆汽车从甲地开往乙地,经2小时后,还相距20千米,求汽车每小时行多少千米?行程问题----多次相遇、追及问题(收藏题)(5、6年级)行程问题----多次相遇、追及问题(收藏题)1、五年级行程问题:多次相遇、追及问题------难度:中难度甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。

已知甲车的速度是 25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。

求A,B两地的距离?【分析】:多次相遇问题,最好把全程分成分数去考虑甲乙的速度比是25:15=5:3,第一次相遇两车共行了一个全程,其中乙行了。

第三次两车共行了5个全程,乙行了5× = 个全程,第四次相遇两车共行了7个全程,乙行了7× = 个全程,两次路程差是个全程,所以AB两地相距200千米2、六年级行程问题:多次相遇、追及问题------难度:中难度甲、乙二人分别从A﹑B两地同时相向而行,乙的速度是甲的,二人相遇后继续行进,甲到B地,乙到A地后立即返回。

已知二人第二次相遇到地点距第一次相遇的地点是20千米,那么,A﹑B两地相距多少千米?【分析】:第一次相遇,甲乙的路程和是一个全程,甲行的路程是全程的,乙行了全程的,第二次相遇,甲乙的路程和是3个全程,此时甲行了×3=个全程,两次相遇的距离是个全程,即20千米,所以AB的距离是20÷ =50千米。

3、五年级行程问题:多次相遇、追及问题------难度:高难度A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?【分析】:在第一次相遇与第一次追上之间,乙在100-80=20(分钟)内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍(=180÷20),则BF的长为AF的9倍,所以,甲从A到B,共需走80×(1+9)=800(分钟),乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB全程,因此,追及时间也变为200分钟,所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.4、五年级行程问题:多次相遇、追及问题-----难度:高难度快车与慢车分别从甲、乙两地同时开出,相向而行,经过 5小时相遇。

已知慢车从乙地到甲地用12.5小时,慢车到甲地停留1小时后返回,快车到乙地停留2小时后返回,那么两车从第一次相遇到第二次相遇共需多长时间?【分析】:慢车相遇后经过12.5-5=7.5小时到甲地,13.5小时后从甲地返回。

所以甲乙的速度比是7.5:5=3:2。

因为两车第一次相遇时共行甲、乙两地的一个单程,第二次相遇时共行三个单程,所以若两车都不停留,则第一次相遇到第二次相遇需10小时。

现在慢车停留1时,快车停留2小时,所以第一次相遇后11小时两车间的距离还需快车再行1小时。

这段距离两车需行3÷(3+2)=0.6小时。

从第一次相遇到第二次相遇共需11.6小时。

5、六年级行程问题:多次相遇、追及问题------难度:高难度A、B两地间的距离是950米.甲、乙两人同时由A地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第几次迎面相遇时距B地最近,距离是多少米?【分析】:方法一:不用比例甲40分钟行了40×40=1600米,即甲还没有返回到A地,第一次相遇,甲乙行了两个全程,行了950×2÷(150+40)=10分,甲距离B地950-10×40=550米,第二次相遇,乙比甲多行了2个全程,距B地950-950×2÷(150-40)×40≈200米,第三次相遇,甲乙共行了4个全程,距B地950-950×4÷(150+40)×40=150米,第四次相遇,乙比甲多行了4个全程,甲行了950×4÷(159-40)×40=1381.8米,距B地1381.8-950=431.8米。

所以第三次相遇近。

方法二:用比例,把全程分成19份,那么每次相遇的点占全程的积分之几就一目了然了。

(略)追击问题(收藏题)【题目1】解放战争期间的一次战役中,根据我侦查员报告,敌军在我军东面36千米的某地正以每小时15千米的速度向东逃窜,我军立即以快1/5的速度追击敌人。

问多长时间可以追上?路程差/速度差=追及时间速度差为 15x(1/5)=3千米 36/3=12小时【题目2】一辆普通客车以每小时60千米的速度从甲站出发。

2小时后,一辆快客以每小时100千米的速度也从甲站出发追普通客车。

问快客出发几小时能追上普通客车?路程差:60x2=120千米 120/(100-60)=3小时【题目3】两辆卡车为农场送化肥,第一辆卡车以每小时30千米的速度由仓库开往农场;第二辆卡车晚12分钟,以每小时40千米的速度由仓库开往农场,结果两车同时到达农场。

仓库到农场的路程有多远?12分钟=0.2小时 30x.02=6千米 6/(40-30)=0.6小时 40x0.6=24千米【题目4】甲乙丙兄弟三人骑自行车旅行,出发时约好到某地集合。

甲乙两人同时从家中出发,甲每小时行15千米,乙每小时行12千米,丙因早上有事,2小时后才从家里出发,丙出发10小时后与甲同时到达某地。

问丙在出发后几小时追上乙?甲2小时行(即甲丙路程差):15x2=30千米甲丙速度差:30/10=3千米丙速度:15+3=18千米乙2小时行(即乙丙路程差):12x2=24千米乙丙速度差:18-12=6千米 24/6=4小时【题目5】兄妹两人骑车去游玩,早上7点出发计划下午1点到达目的地。

1小时后发现忘带相机,于是哥哥原速回家去取,妹妹继续前进。

到家后哥哥骑摩托车去目的地,中午12点便到达目的地。

哥哥是什么时刻追上妹妹的?把全程看做单位1 ,妹妹速度是1/6 哥哥返回后是9点再出发,11点到达用了3小时,速度为1/3 ,妹妹与哥哥的速度差是1/3-1/6=1/6 路程差是妹妹行的2小时路程1/6x2=1/3追及时间:(1/3)/(1/6)=2 9+2=11点【题目6】大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车。

如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车。

相关文档
最新文档