高中物理机械能及机械能守恒问题(含解析)
高一物理机械能及其守恒条件试题答案及解析
高一物理机械能及其守恒条件试题答案及解析1.在下列所述实例中,若不计空气阻力,机械能守恒的是A.石块自由下落的过程B.在竖直面内做匀速圆周运动的物体C.电梯加速上升的过程D.木箱沿粗糙斜面匀速下滑的过程【答案】A【解析】物体机械能守恒的条件是只有重力或者是弹力做功,根据机械能守恒的条件逐个分析物体的受力的情况,即可判断物体是否是机械能守恒.石块自由下落的过程,只受重力,所以石块机械能守恒,故A正确。
在竖直面内做匀速圆周运动过程中动能不变,重力势能在变化,所以机械能不守恒,B错误。
电梯加速上升的过程,动能增加,重力势能增加,故机械能增加,故C错误。
木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,所以机械能减小,故D错误。
【考点】考查了机械能守恒2.下列说法正确的是()A.物体机械能守恒时,一定只受重力作用B.物体处于平衡状态时机械能一定守恒C.若物体除受重力外还受到其他力作用,物体的机械能也可能守恒D.物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功【答案】CD【解析】物体机械能守恒的条件是受重力与弹力,故A中说一定只受重力作用是不对的;物体处于平衡状态时也可能是竖直向上或向下做匀速直线运动,我们知道此时的机械能是不守恒的,故B也不对;物体除受重力外,如果还受弹力的作用,则它的机械能也是守恒的,故C是正确的;如果物体的动能与重力势能的和增大,则必定有重力以外的其他力对物体做功是正确的,故D也对。
【考点】机械能守恒的条件。
3.神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段【答案】BC【解析】根据机械能守恒的条件,只有重力(或引力)做功时机械能守恒。
飞船升空的阶段,燃料要对火箭产生动力,对火箭做正功,火箭的机械能增加;飞船在椭圆轨道上绕地球运行的阶段,只有地球引力做功所以机械能守恒;返回舱在大气层外向着地球做无动力飞行阶段,也是只有地球引力做功,机械能守恒;降落伞张开后,返回舱下降的阶段,除重力做功外还有空气阻力做功,所以机械能减少。
高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)
一、机械能守恒定律在连接体问题中的应用
机械能守恒定律的研究对象是几个相互作用的物体组成的系统时,在应用机械能守恒定律解决系统的运动状态的变化及能量的变化时,经常出现下面三种情况:
1.系统内两个物体直接接触或通过弹簧连接。
这类连接体问题应注意各物体间不同能
量形式的转化关系。
2.系统内两个物体通过轻绳连接。
如果和外界不存在摩擦力做功等问题时,只有机械
能在两物体之间相互转移,两物体组成的系统机械能守恒。
解决此类问题的关键是在绳的方
向上两物体速度大小相等。
3.系统内两个物体通过轻杆连接。
轻杆连接的两物体绕固定转轴转动时,两物体的角
速度相等。
【典例1】如图所示,质量均为m的物体A和B,通过轻绳跨过定滑轮相连.斜面光滑,倾角为θ,不计绳子和滑轮之间的摩擦.开始时A物体离地的高度为h,B物体位于斜面的底端,用手托住A物体,使A、B两物体均静止。
现将手撤去。
(1) 求A 物体将要落地时的速度为多大?
(2) A 物体落地后, B 物体由于惯性将继续沿斜面向上运动,则 B 物体在斜面上到达的最高点离地的高度为多大?。
物理机械能守恒定律题及解析
物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。
物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。
解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。
在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。
根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。
根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。
高中物理机械能守恒定律专题练习(带详解)
高中物理机械能守恒定律专题练习(带详解)一、多选题1.如图所示,轻杆一端固定一小球,绕另一端O 点在竖直面内做匀速圆周运动,则( )A .轻杆对小球的作用力方向始终沿杆指向O 点B .小球在最高点处,轻杆对小球的作用力可能为0C .小球在最低点处,小球所受重力的瞬时功率为0D .小球从最高点到最低点的过程中,轻杆对小球一直做负功2.如图甲所示,在距离地面高为0.18h m =的平台上有一轻质弹簧,其左端固定在竖直挡板上,右端与质量1m kg =的小物块相接触(不粘连),平台与物块间动摩擦因数040μ=.,OA 长度等于弹原长,A 点为BM 中点.物块开始静止于A 点,现对物块施加一个水平向左的外方F ,大小随位移x 变化关系如图乙所示.物块向左运动050x m =.到达B 点,到达B 点时速度为零,随即撤去外力F ,物块被弹回,最终从M 点离开平台,落到地面上N 点,取210/g m s =,则( )A .弹簧被压缩过程中外力F 做的功为78J .B .弹簧被压缩过程中具有的最大弹性势能为60J .C .整个运动过程中克服摩擦力做功为60J .D .MN 的水平距离为036m .3.如图所示,轻弹簧的一端悬挂在天花板上,另一端固定一质量为m 的小物块,小物块放在水平面上,弹簧与竖直方向夹角为θ=30o 。
开始时弹簧处于伸长状态,长度为L ,现在小物块上加一水平向右的恒力F 使小物块向右运动距离L ,小物块与地面的动摩擦因数为μ,重力加速度为g ,弹簧始终在弹性限度内,则此过程中分析正确的是( )A .小物块和弹簧系统机械能改变了(F-μmg )LB .弹簧的弹性势能可能先减小后增大接着又减小再增大C .小物块在弹簧悬点正下方时速度最大D .小物块动能的改变量等于拉力F 和摩擦力做功之和4.一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变B .物体的动能减少13mghC .物体的机械能增加23mgh D .物体的重力势能增加mgh5.下列说法中正确的是( )A .某种形式的能减少,一定存在其他形式的能增加B .因为能量守恒,所以“能源危机”是不可能的C .能量耗散表明,在能源的利用过程中,能量在数量上并未减少,但在可利用的品质上降低了D .能源的利用受能量耗散的制约,所以能源的利用是有条件的,也是有代价的 6.如图所示,由电动机带动着倾角θ=37°的足够长的传送带以速率v=4m/s 顺时针匀速转动,一质量m=2kg 的小滑块以平行于传送带向下'2v m s =/的速率滑上传送带,已知小滑块与传送带间的动摩擦因数78μ=,取210/g m s =,sin370.60cos370.80︒=︒=,,则小滑块从接触传送带到与传送带相对静止静止的时间内下列说法正确的是A .重力势能增加了72JB .摩擦力对小物块做功为72JC .小滑块与传送带因摩擦产生的内能为252JD.电动机多消耗的电能为386J7.在高台跳水比赛中,质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降h的过程中,下列说法正确的是(g为当地的重力加速度)()A.他的重力势能减少了mghB.他的动能减少了FhC.他的机械能减少了(F﹣mg)hD.他的机械能减少了Fh8.如图所示,斜面固定在水平面上,轻质弹簧一端固定在斜面顶端,另一端与物块相连,弹簧处于自然长度时物块位于O点,物块与斜面间有摩擦.现将物块从O点拉至A点,撤去拉力后物块由静止向上运动,经O点到达B点时速度为零,则物块从A运动到B的过程中()A.经过位置O点时,物块的动能最大B.物块动能最大的位置与AO的距离无关C.物块从A向O运动过程中,弹性势能的减少量等于动能与重力势能的增加量D.物块从O向B运动过程中,动能的减少量大于弹性势能的增加量9.航空母舰可提供飞机起降,一飞机在航空母舰的水平甲板上着陆可简化为如图所示模型,飞机钩住阻拦索减速并沿甲板滑行过程中A.阻拦索对飞机做正功,飞机动能增加B.阻拦索对飞机做负功,飞机动能减小C.空气及摩擦阻力对飞机做正功,飞机机械能增加D.空气及摩擦阻力对飞机做负功,飞机机械能减少10.如图所示,质量相等、材料相同的两个小球A、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A.撤去外力F 的瞬间,弹簧的伸长量为F2kB.撤去外力F 后,球A、B 和弹簧构成的系统机械能守恒C.系统克服摩擦力所做的功等于系统机械能的减少量D.A 克服外力所做的总功等于2E k二、单选题11.长为L的轻绳悬挂一个质量为m的小球,开始时绳竖直,小球与一个倾角θ=45°的静止三角形物块刚好接触,如图所示.现在用水平恒力F向左推动三角形物块,直至轻绳与斜面平行,此时小球的速度速度大小为v,重力加速度为g,不计所有的摩擦.则下列说法中正确的是( )A.上述过程中,斜面对小球做的功等于小球增加的动能B.上述过程中,推力F做的功为FLC.上述过程中,推力F做的功等于小球增加的机械能D.轻绳与斜面平行时,绳对小球的拉力大小为mgsin45°12.市面上出售一种装有太阳能电扇的帽子(如图所示).在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽.该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能13.自动充电式电动车的前轮装有发电机,发电机与蓄电池连接.骑车者用力蹬车或电动车自动滑行时,发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现使车以500J的初动能在粗糙的水平路面上自由滑行,第一次关闭自充电装置,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是()A.500J B.300J C.250J D.200J14.如图所示,一小孩从公园中粗糙的滑梯上自由加速滑下,其能量的变化情况是()A.重力势能减少,动能不变,机械能减少B.重力势能减少,动能增加,机械能减少C.重力势能减少,动能增加,机械能增加D.重力势能减少,动能增加,机械能守恒15.有关功和能,下列说法正确的是( )A.力对物体做了多少功,物体就具有多少能B.物体具有多少能,就一定能做多少功C.物体做了多少功,就有多少能量消失D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少16.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,Av,C的初速度方向沿斜面水平,大由静止释放,B的初速度方向沿斜面向下,大小为v。
高一物理知识讲解-机械能守恒定律--提高-专题含答案解析
机械能守恒定律【学习目标】1.明确机械能守恒定律的含义和适用条件.2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题.4.知道验证机械能守恒定律实验的原理方法和过程.5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 #要点一、机械能 要点诠释:(1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。
(2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统.(3)机械能是标量,但有正、负(因重力势能有正、负).(4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义.(5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. ~(6)重力做功的特点:①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W =mgh .③重力做功与重力势能的关系:P G W E =-△.要点二、机械能守恒定律 要点诠释:(1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式.#当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①1122k P k P E E E E +=+,即初状态的动能与势能之和等于末状态的动能与势能之和. ②P k E E =-△△或P k E E =-△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A =-△E B ,即A 物体机械能的增加量等于B 物体机械能的减少量.后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解.①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在: ~a .只有重力做功的物体,如:所有做抛体运动的物体(不计空气阻力),机械能守恒.b .只有重力和系统内的弹力做功.如图(a)、(b)、右图所示.图(a)中小球在摆动过程中线的拉力不做功,如不计空气阻力,只有重力做功,小球的机械能守恒.图(b)中A、B间,B与地面间摩擦不计,A自B上自由下滑过程中,只有重力和A、B间的弹力做功,A、B 组成的系统机械能守恒.但对B来说,A对B的弹力做功,但这个力对B来说是外力,B的机械能不守恒.如下图,不计空气阻力,球在摆动过程中,只有重力和弹簧与球间的弹力做功,球与弹簧组成的系统机械能守恒,但对球来说,机械能不守恒.要点三、运用机械能守恒定律解题的步骤!要点诠释:(1)根据题意选取研究对象(物体或系统).(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.(3)恰当地选取零势能面,确定研究对象在过程中的始态和末态的机械能.(4)根据机械能守恒定律的不同表达式列方程,并求解结果.4.机械能守恒定律与动能定理的区别(1)机械能守恒定律和动能定理都是从做功和能量转化的角度来研究物体在力的作用下运动状态的改变,表达这两个规律的方程都是标量方程,这是它们的共同点.~(2)机械能守恒定律的研究对象是物体组成的系统,动能定理的研究对象是一个物体(质点).(3)机械能守恒定律是有条件的,就是只允许重力和弹力做功;而动能定理的成立没有条件的限制,它不但允许重力和弹力做功,还允许其他力做功.(4)机械能守恒定律着眼于系统初、末状态的机械能的表达式,动能定理着眼于过程中合外力做的功及初、末状态的动能的变化.要点四、如何判断机械能是否守恒要点诠释:(1)对某一物体,若只有重力做功,其他力不做功,则该物体的机械能守恒.(2)对某一系统,物体间只有动能和势能的转化,系统跟外界没有发生机械能的传递,也没有转化成其他形式的能(如内能),则系统的机械能守恒.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力做功,其他力不做功或者其他力做的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化、(3)机械能守恒的条件绝不是合外力做的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(4)一些绳子突然绷紧,物体间碰撞后合在一起等,除非题目特别说明,机械能一般不守恒. 要点五、实验:验证机械能守恒定律 要点诠释:1.实验原理通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量.若二者相等,说明机械能守恒,从而验证机械能守恒定律:△E P =△E k .2.实验器材打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线. 》3.实验步骤(1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器.(2)用手握着纸带,让重物静止在靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点.(3)从打出的几条纸带中挑选打的点呈一条直线且点迹清晰的纸带进行测量,记下第一个点的位置O ,并在纸带上从任意点开始依次选取几个计数点1、2、3、4、…,并量出各点到O 点的距离h 1、h 2、h 3、…,计算相应的重力势能减少量mgh n ,如图所示.(4)依步骤(3)所测的各计数点到O 点的距离h 1、h 2、h 3、…,根据公式1102n n h h v T+--=计算物体在打下点1、2、…时的即时速度v 1、v 2、….计算相应的动能212n mv . (5)比较212n mv 与n mgh 是否相等. 【4.实验结论在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒. 5.误差分析重物和纸带下落过程中要克服阻力,主要是纸带与计时器之间的摩擦力,计时器平面不在竖直方向,纸带平面与计时器平面不平行是阻力增大的原因,电磁打点计时器的阻力大于电火花计时器,交流电的频率f 不是50 Hz 也会带来误差,f <50Hz ,使动能E k <E P 的误差进一步加大f >50 Hz ,则可能出现E k >E P 的结果.本实验中的重力加速度g必须是当地的重力加速度,而不是纸带的加速度a.【典型例题】类型一、对守恒条件的理解【例1、下列说法中正确的是( )A.用绳子拉着物体匀速上升,只有重力和绳的拉力对物体做功,机械能守恒B.做竖直上抛运动的物体,只有重力对它做功,机械能守恒C.沿光滑斜面自由下滑的物体,只有重力对物体做功,机械能守恒D.用水平拉力使物体沿光滑水平面做匀加速直线运动,机械能守恒【思路点拨】本题考察机械能守恒的条件。
高中物理机械能守恒定律(解析版)
机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。
故A正确。
2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。
乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。
丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。
丁图中动能不变,势能不变,机械能守恒,D正确。
3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。
选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。
高三物理机械能守恒定律试题答案及解析
高三物理机械能守恒定律试题答案及解析1.(10分)光滑水平面上静置两个小木块A和B,其质量分别为mA =150g、mB=200g,它们中间用一根轻质弹簧相连,弹簧处于原长状态。
一颗水平飞行的子弹质量为m=50g,以v=400m/s的速度在极短时间内打入木块A并镶嵌在其中,求系统运动过程中弹簧的最大弹性势能。
【答案】500J【解析】取子弹和木块A为研究对象,根据动量守恒定律得出取子弹和木块A、B为研究对象,根据动量守恒定律得出根据能量守恒可得【考点】本题考查了动量守恒定律和能量守恒定律2.关于动能,下列说法中正确的是()A.动能是机械能中的一种基本形式,凡是运动的物体都有动能B.公式Ek=中,速度v是物体相对地面的速度,且动能总是正值C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态【答案】AC【解析】动能的计算式为EK=mV2,物体的质量和速度的大小都可以引起物体动能的变化,它是没有方向的,它是标量解:A、动能就是物体由于运动而具有的能量,是普遍存在的机械能中的一种基本形式,凡是运动的物体都有动能,所以A正确.B、物体的动能是没有方向的,它是标量,速度v是物体相对参考平面的速度,所以B错误.C、对于一定质量的物体,动能变化时,速度一定变化的,但速度变化时,动能不一定变化,所以C正确D、动能不变的物体,可以是物体速度的大小不变,但速度的方向可以变化,比如匀速圆周运动,此时的物体并不一定是受力平衡状态,所以D错误.故选:AC【点评】本题考查的是学生对动能的理解,由于动能的计算式中是速度的平方,所以速度变化时,物体的动能不一定变化3.斜面倾角为60°,长为3L,其中AC段、CD段、DB段长均为L,一长为L,质量均匀分布的长铁链,其总质量为M,用轻绳拉住刚好使上端位于D点,下端位于B点,铁链与CD段斜面的动摩擦因数,斜面其余部分均可视为光滑,现用轻绳把铁链沿斜面全部拉到水平面上,人至少要做的功为A.B.C.D.【答案】D【解析】试题分析: 拉力做功最小时,铁链重心到达水平面时的速度刚好为零,从开始拉铁链到铁链的重心到达水平面的过程中运用动能定理得:,解得:,故D 正确.故选D 。
2024高考物理复习专题06 机械能守恒定律 能量守恒定律(讲义)(解析版)
知积建构
机械能· 机械能是否守恒的三种判断方法
机械能与图象结合的问题, 应用机械能守恒定律解题的一般步骤
系统机械能守恒的三种表示方式· 多物体系统的机械能守恒问题
机械能及守恒的判断
机械能守恒定律
能量守恒定律
机械能守恒 定律的应用
能量守恒定律
及其应用
涉及弹簧的能量问题 摩擦力做功的能量问题
可知铅球速度变大,则动能越来越大,CD错误。 故选B。
2.(2021·全国·高考真题)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端 与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底 板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()
A.弹性绳刚伸直时,运动员开始减速
B.整个下落过程中,运动员的机械能保持不变 C.整个下落过程中,重力对运动员所做的功大于运动员克服弹性绳弹力所做的功
D.弹性绳从伸直到最低点的过程中,运动员的重力势能与弹性绳的弹性势能之和先减小后增大
【答案】D 【详解】A.弹性绳刚伸直时,此时运动员的重力大于弹性绳的弹力,加速度向下,运动员仍加速运动,故 A错误;B.整个下落过程中,运动员连同弹性绳的机械能总和不变,但是整个下落过程中随着弹性绳的弹 性势能增大,运动员的机械能在减小,故B错误;C.整个下落过程中,初末状态运动员的速度均为零,重
3.板块问题……………………………………20
4.传送带问题……………………………………21 题型特训·命题预测…21 考向一 能量转化及守恒定律的综合应用………21
考向二 涉及弹簧的能量问题……………………22
考向三 涉及板块、传送带的能量问题…………24
高二物理机械能守恒综合应用试题答案及解析
高二物理机械能守恒综合应用试题答案及解析1. 如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是( )A .开始运动时B .A 的速度等于v 时C .弹簧压缩至最短时D .B 的速度最小时 【答案】C【解析】A 、B 和弹簧看作糸统只有弹簧弹力做功,所有糸统机械能守恒。
,所以当最达时,A 、B 组成的糸统动能最小。
【考点】机械能守恒定律2. 在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在某时刻发生正碰,两球在碰撞前后的速度图象如图所示.则下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【答案】B【解析】由图可知b 球碰前静止,设a 球碰后速度为v 1,b 球速度为v 2,物体碰撞过程中动量守恒,机械能守恒所以有:m a v 0=m a (-v 1)+m b v 2 ① m a v 02=m a v 12+m b v 22 ② 联立①②得:v 1=,v 2=由图可知,a 球碰后速度反向,故m a <m b ,故ACD 错误,B 正确. 【考点】本题考查碰撞中的动量守恒和机械能守恒。
3. 如图所示,质量为m 1、带有正电荷q 的金属小球和质量为m 2、不带电的小木球之间用绝缘细线相连,置于竖直向上、场强为E 、范围足够大的匀强电场中,两球恰能以速度v 匀速竖直上升.当小木球运动到A 点时细线突然断开,小木球运动到B 点时速度为零,重力加速度为g ,则( )A .小木球的速度为零时,金属小球的速度大小为B .小木球从点A 到点B 的过程中,A 、B 组成的系统,机械能在增加C .A 、B 两点之间的电势差为D .小木球从点A 到点B 的过程中,小木球动能的减少量等于两球重力势能的增量,而电场力对金属小球所做的功等于金属小球的机械能增加量 【答案】BC【解析】取向上为正方向,将AB看成一系统,由于系统匀速上升,所以系统在竖直方向合外力为零,系统的动量守恒,有:,解得:,故选项A错误;此系统受重力之外,还有电场力做正功,所以系统的机械能增加,故选项B正确;剪断细线后,小木球向上做匀减速直线运动,由可知:,由可知,故选项C正确;从A到B运动过程中,对小木球仅受重力,故机械能守恒,即减少的动能转为重力势能,故选项D错误.【考点】本题综合考查了动量守恒定律、机械能守恒定律和运动学规律的应用.4.一根用绝缘材料制成劲度系数为k的轻弹簧,左端固定,右端与质量为m、电荷量为+q的小球相连,静止在光滑绝缘水平面上,当施加一个场强为E水平向右的匀强电场后,小球开始做往复运动。
高一物理机械能守恒综合应用试题答案及解析
高一物理机械能守恒综合应用试题答案及解析1.如图所示,用长为l的绳子一端系着一个质量为m的小球,另一端固定在O点,拉小球至A点,此时绳偏离竖直方向θ,空气阻力不计,松手后小球经过最低点时的速率为()A.B.C.D.【答案】B【解析】松手后小球下摆的运动满足机械能守恒,,解得小球经过最低点时的速率为,故B选项正确。
【考点】机械能守恒定律2.有三个质量都是m的小球a、b、c,以相同的速度v在空中分别竖直向上、水平和竖直向下抛出,三球落地时相同的物理量是(不计空气阻力)A.速度B.动量C.动能D.机械能【答案】CD【解析】根据机械能守恒定律,小球落到地面的速度大小相等,方向不同,所以速度和动量不同,而动能和机械能相同。
选项CD正确。
【考点】机械能守恒定律及动量的概念。
3.如图所示,一物体以初速度v冲上光滑的足够长斜面AB能沿斜面升高h,不计空气阻力。
则下列说法中正确的是A.若把斜面的倾角变大,物体沿斜面将不能冲到h高B.若把斜面的倾角变小,物体沿斜面将冲到比h更高的上方C.若斜面从C处锯掉,物体冲出C点后能升到h高D.若斜面从C处锯掉,物体冲出C点后不能升到h高【答案】D【解析】物体冲上斜面的过程中机械能守恒,到达最高点的速度为零,所以根据,不管斜面的倾角如何,物体都能沿斜面到达高h的地方,选项AB错误;若斜面从C处锯掉,则物,根据,则<h。
体离开斜面将做斜上抛运动,到达最高点时仍然有水平速度v1【考点】机械能守恒定律。
4.如图所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且轻弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点的过程中:A.重物的重力势能增加B.重力对重物一直做正功C.弹簧的弹性势能增加D.系统的机械能增加【答案】BC【解析】整个过程中,球和弹簧的系统,机械能守恒,因此在下落过程中,小球减小的重力势能转化为弹簧势能和球的动能之和,因此BC正确。
高一物理机械能守恒试题答案及解析
高一物理机械能守恒试题答案及解析,不计空气阻力,取地面为零势能1.从地面以仰角θ斜向上抛一质量为m的物体,初速度为V面,重力加速度为g。
当物体的重力势能是其动能的3倍时,物体离地面的高度为。
【答案】【解析】设物体离地面的高度为H,且速度为v,由题意知:,再由机械能守恒定律得:,联立解得:。
【考点】考查了机械能守恒平抛的运动轨迹2.如图所示,放置在竖直平面内的光滑杆AB,是按照从高度为h处以初速度v制成的,A端为抛出点,B端为落地点。
现将一小球套于其上,由静止开始从轨道A端滑下。
已知重力加速度为g,当小球到达轨道B端时()A.小球的速率为B.小球竖直方向的速度大小为C.小球在水平方向的速度大小为D.小球在水平方向的速度大小为【答案】D【解析】由机械能守恒定律,mgh=mv2,解得小球到达轨道B端时速率为v=;AB错误;当小球滑到B点时,设小球的速度与水平方向间的夹角为θ,则tanθ=,cosθ=;cosθ=,D正确。
小球在水平方向的速度v=v【考点】本题考查平抛运动、运动的合成与分解。
3.如图所示,竖立在水平地面上的轻弹簧,下端与地面固定,将一个金属球放置在弹簧顶端(球与弹簧不粘连),并用力向下压球,使弹簧作弹性压缩,稳定后用细线把弹簧拴牢,烧断细线,球将被弹起,脱离弹簧后能继续向上运动,那么该球从细线被烧断到刚脱离弹簧的这一运动过程中A.球所受的合力先增大后减小B.球的动能减小而它的机械能增加C.球刚脱离弹簧时弹簧的弹性势能最小D.球刚脱离弹簧时的动能最大【答案】 C【解析】试题分析: 从细线被烧断到弹簧的弹力等于小球的重力的过程中,小球受重力和弹力,弹力逐渐减小到零;开始时弹力大于重力,小球向上做加速运动,加速度逐渐减小到零;之后做减速运动,加速度反向增加;即加速度先减小后增加,合力先减小后增大,故A正确;、当小球的弹簧的弹力等于小球的重力时速度最大,所以小球的动能先增大后减小,所以球刚脱离弹簧时的动能不是最大,故B、D错误;从细线被烧断到刚脱离弹簧的运动过程中,弹簧的压缩量逐渐减小,弹簧的弹性势能逐渐减小,所以球刚脱离弹簧时弹簧的弹性势能最小.故C正确。
高中物理机械能守恒和动量守恒问题解析
高中物理机械能守恒和动量守恒问题解析在高中物理学习中,机械能守恒和动量守恒是两个重要的概念。
理解这两个概念对于解题非常关键。
本文将通过具体题目的举例,分析和说明机械能守恒和动量守恒的考点,并提供解题技巧,帮助高中学生和家长更好地理解和应用这些知识。
一、机械能守恒问题解析机械能守恒是指在没有外力做功的情况下,系统的机械能保持不变。
在解决机械能守恒问题时,我们需要考虑势能和动能的转化。
例如,一道常见的题目是:一个质量为m的物体从高度为h处自由落下,落地后弹起到高度为h/2。
求物体弹起的最高点离地面的高度。
解题思路:首先,我们可以根据机械能守恒定律,将物体在自由落下和弹起过程中的机械能相加,即势能和动能之和保持不变。
在自由落下过程中,物体的势能转化为动能;在弹起过程中,动能转化为势能。
因此,我们可以列出等式:mgh = mgh/2通过简化计算,得出最高点离地面的高度为h/4。
这道题目的考点是机械能守恒的应用。
学生需要理解机械能的定义和转化过程,并能正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
二、动量守恒问题解析动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。
在解决动量守恒问题时,我们需要考虑物体的质量和速度变化。
例如,一道常见的题目是:一个质量为m1的物体以速度v1向右运动,与一个质量为m2的物体以速度v2向左运动碰撞,碰撞后两个物体分别以v3和v4的速度运动。
求碰撞后两个物体的速度。
解题思路:根据动量守恒定律,我们可以列出等式:m1v1 + m2v2 = m1v3 + m2v4通过化简计算,可以得出碰撞后两个物体的速度。
这道题目的考点是动量守恒的应用。
学生需要理解动量的定义和守恒定律,能够正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
三、解题技巧和应用在解决机械能守恒和动量守恒问题时,有一些常用的解题技巧和应用方法可以帮助学生更好地理解和应用这些知识。
高中物理机械能守恒定律100题(带答案)
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
高中物理必修二第五章机械能守恒 习题及解析
第1讲 功和功率功 (考纲要求 Ⅱ) 1.做功的两个要素(1)作用在物体上的力.(2)物体在力的方向上发生的位移. 2.公式:W =Fl cos α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 3.功的正负夹角 功的正负 α<90° 力对物体做正功α=90° 力对物体不做功α>90°力对物体做负功或说成物体克服这个力做了功判断正误,正确的划“√”,错误的划“×”.(1)只要物体受力的同时又有位移发生,则一定有力对物体做功.( ) (2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.( )(3)滑动摩擦力可能做负功,也可能做正功;静摩擦力对物体一定不做功.( ) (4)作用力做正功时,反作用力一定做负功.( )功率 (考纲要求 Ⅱ)1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)P =Wt,P 为时间t 内的平均功率.(2)P =F v cos_α(α为F 与v 的夹角) ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.4.额定功率:机械正常工作时输出的最大功率.5.实际功率:机械实际工作时输出的功率.要求小于或等于额定功率.判断正误,正确的划“√”,错误的划“×”.(1)以恒定牵引力启动的机车,在加速过程中发动机做的功可用公式W =Pt 计算.( ) (2)据P =F v 可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.( ) (3)汽车上坡的时候,司机必须换挡,其目的是减小速度,得到较小的牵引力.( )基础自测1.(单选)如图5-1-1所示,拖着旧橡胶轮胎跑是身体耐力训练的一种有效方法.如果某受训者拖着轮胎在水平直道上跑了100 m,那么下列说法正确的是().图5-1-1A.轮胎受到地面的摩擦力对轮胎做了负功B.轮胎受到的重力对轮胎做了正功C.轮胎受到的拉力对轮胎不做功D.轮胎受到的地面的支持力对轮胎做了正功2.(2014·遵义四中测试)(多选)关于功率公式P=W/t和P=F v的说法正确的是().A.由P=W/t知,只要知道W和t就可求出任意时刻的功率B.由P=F v既能求某一时刻的瞬时功率,也可以求平均功率C.由P=F v知,随着汽车速度增大,它的功率也可以无限制增大D.由P=F v知,当汽车发动机功率一定时,牵引力与速度成反比3.(2015·深圳二调)(多选)汽车从静止开始沿平直轨道做匀加速运动,所受阻力始终不变,在此过程中,下列说法正确的是().A.汽车牵引力保持不变B.汽车牵引力逐渐增大C.发动机输出功率不变D.发动机输出功率逐渐增大4.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是().A.500 J B.4 500 J C.5 000 J D.5 500 J5.(单选)一质量为m的木块静止在光滑的水平面上,从t=0开始,将一个大小为F的水平恒力作用在该木块上,在t=t1时刻力F的瞬时功率是().A.F22m t1B.F22m t 21C.F2m t1D.F2m t21答案1.解析 根据力做功的条件,轮胎受到的重力和地面的支持力都与位移垂直,这两个力均不做功,B 、D 错误;轮胎受到地面的摩擦力与位移反向,做负功,A 正确;轮胎受到的拉力与位移夹角小于90°,做正功,C 错误.答案 A2.解析 利用公式P =W /t 只能计算平均功率,选项A 错误;当公式P =F v 中的v 为瞬时速度时,求的是瞬时功率,当v 为平均速度时,求的是平均功率,选项B 正确;因为汽车的速度不能无限制增大,汽车的功率也不能无限制增大,选项C 错误;由P =F v 知,当汽车发动机功率一定时,牵引力与速度成反比,选项D 正确.答案 BD3.解析 由于阻力恒定,汽车做匀加速运动,根据F 牵-f =ma ,知合力恒定,牵引力也恒定,A 正确;B 错误;由瞬时功率公式可知,要使牵引力恒定,就要随着速度增大,同步增大发动机的输出功率,使F 牵=Pv 保持不变,C 错误,D 正确.答案 AD4.解析 货物的加速度向上,由牛顿第二定律有:F -mg =ma , 起重机的拉力F =mg +ma =11 000 N.货物的位移是l =12at 2=0.5 m ,做功为W =Fl =5 500 J .故D 正确. 答案 D5.解析 在t =t 1时刻木块的速度为v =at 1=F m t 1,此时刻力F 的瞬时功率P =F v =F 2mt 1,选C.答案 C热点一 正、负功的判断及计算1.判断力是否做功及做功正负的方法(1)看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形. (2)看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.(3)根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W 合=E k 末-E k 初,当动能增加时合外力做正功;当动能减少时,合外力做负功.2.计算功的方法 (1)恒力做的功直接用W =Fl cos α计算. (2)合外力做的功方法一:先求合外力F 合,再用W 合=F 合l cos α求功.方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合外力做的功. (3)变力做的功①应用动能定理求解.②用W =Pt 求解,其中变力的功率P 不变.③常用方法还有转换法、微元法、图象法、平均力法等,求解时根据条件灵活选择.【典例1】 在水平面上运动的物体,从t =0时刻起受到一个水平力F 的作用,力F 和此后物体的速度v 随时间t 的变化图象如图5-1-2所示,则( ).图5-1-2A .在t =0时刻之前物体所受的合外力一定做负功B .从t =0时刻开始的前3 s 内,力F 做的功为零C .除力F 外,其他外力在第1 s 内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍审题指导 (1)物体在0~1 s 、1~2 s 、2~3 s 内受到的水平力F 分别为多少?物体分别做什么运动? (2)恒力做功的表达式为________. (3)在v -t 图象中,怎样求某一段时间内的位移?解析 由v -t 图象知,物体在受到力F 的第1 s 内做匀速运动,且力F 与v 同向,说明之前物体受到的合外力与速度反向,物体所受的合外力一定做负功,A 对;力F 在前3 s 内一直与速度同向,力F 一直做正功,B 错;在第1 s 内,除力F 外,其他力的合力大小为10 N ,方向与速度方向相反,其他外力在第1 s 内做负功,C 错;力F 在第2 s 内和第3 s 内做功分别为W 2=5×12×(1+2)×1 J =7.5 J 、W 3=15×12×(1+2)×1 J =22.5 J ,D 对.反思总结 计算做功的一般思路【跟踪短训】1.如图5-1-3所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是().图5-1-3A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为0解析由做功的条件可知:只要有力,并且物块沿力的方向有位移,那么该力就对物块做功.由受力分析知,支持力F N做正功,但摩擦力F f方向始终和速度方向垂直,所以摩擦力不做功.由动能定理知WF N-mgh=0,故支持力F N做功为mgh.热点二功率及有关计算计算功率的方法1.平均功率的计算(1)利用P=W t.(2)利用P=F v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算(1)利用公式P=F v cos α,其中v为t时刻的瞬时速度.(2)利用公式P=F v F,其中v F为物体的速度v在力F方向上的分速度.(3)利用公式P=F v v,其中F v为物体受的外力F在速度v方向上的分力.【典例2】如图5-1-4所示,质量相同的两物体从同一高度由静止开始运动,A沿着固定在地面上的光滑斜面下滑,B做自由落体运动.两物体分别到达地面时,下列说法正确的是().图5-1-4A.重力的平均功率P A>P BB .重力的平均功率P A =P BC .重力的瞬时功率P A =P BD .重力的瞬时功率P A <P B解析 根据功的定义可知重力对两物体做功相同即W A =W B ,自由落体时间满足h =12gt 2B,斜面下滑时间满足h sin θ=12gt 2A sin θ,其中θ为斜面倾角,故t A >t B ,由P =Wt知P A <P B ,A 、B 均错;由匀变速直线运动公式可知落地时两物体的速度大小相同,方向不同,重力的瞬时功率P A =mg v sin θ,P B =mg v ,显然P A <P B ,故C 错、D 对.反思总结 区别平均功率和瞬时功率对于功率问题,首先要弄清楚是平均功率还是瞬时功率.平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率.瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率.【跟踪短训】2.质量为m 的物体从倾角为α且固定的光滑斜面顶端由静止开始下滑,斜面高为h ,当物体滑至斜面底端时,重力做功的瞬时功率为( ).A .mg 2ghB .12mg 2gh sin α C .mg 2gh sin αD .mg 2gh sin α解析 由于斜面是光滑的,由牛顿定律和运动学公式有:a =g sin α,2a hsin α=v 2,故物体滑至底端时的速度v =2gh ,如图所示可知,重力的方向和v 方向的夹角θ为90°-α.则物体滑至底端时重力的瞬时功率为 P =mg 2gh cos(90°-α)=mg 2gh sin α,故C 选项正确.热点三 机车的两种启动模型的分析以恒定功率启动(1)动态过程(2)这一过程的速度-时间图象如图5-1-5所示:图5-1-5以恒定加速度启动(1)动态过程:(2)这一过程的速度-时间图象如图5-1-6所示:图5-1-6【典例3】 某汽车发动机的额定功率为60 kW ,汽车质量为5 t ,汽车在运动中所受阻力的大小恒为车重的0.1倍.(g 取10 m/s 2)(1)若汽车以额定功率启动,则汽车所能达到的最大速度是多少?当汽车速度达到5 m/s 时,其加速度是多少?(2)若汽车以恒定加速度0.5 m/s 2启动,则其匀加速过程能维持多长时间?解析 (1)当汽车的加速度为零时,汽车的速度v 达到最大值v m ,此时牵引力与阻力相等,故最大速度为v m =P F =PF f =60×1030.1×5 000×10m/s =12 m/s由P =F 1v ,F 1-F f =ma ,得速度v =5 m/s 时的加速度为a =F 1-F f m =P m v -F f m =⎝ ⎛⎭⎪⎫60×1035 000×5-0.1×5 000×105 000m/s 2=1.4 m/s 2 (2)当汽车以a ′=0.5 m/s 2的加速度启动时,匀加速运动所能达到的最大速度为v m ′=P F 1′=PF f +ma ′=60×1030.1×5 000×10+5 000×0.5m/s =8 m/s由于此过程中汽车做匀加速直线运动,满足v m ′=a ′t故匀加速过程能维持的时间t =v m ′a ′=80.5s =16 s.反思总结 三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v =PF<v m=P F 阻. (3)机车以恒定功率运行时,牵引力做的功W =Pt .由动能定理:Pt -F 阻x =ΔE k .此式经常用于求解机车以恒定功率启动过程的位移大小.【跟踪短训】3.在检测某种汽车性能的实验中,质量为3×103kg 的汽车由静止开始沿平直公路行驶,达到的最大速度为40 m/s ,利用传感器测得此过程中不同时刻该汽车的牵引力F 与对应速度v ,并描绘出如图5-1-7所示的F -1v 图象(图线ABC 为汽车由静止到达到最大速度的全过程,AB 、BO 均为直线).假设该汽车行驶中所受的阻力恒定,根据图线ABC :(1)求该汽车的额定功率;(2)该汽车由静止开始运动,经过35 s 达到最大速度40 m/s ,求其在BC 段的位移.图5-1-7解析 (1)由图线分析可知:图线AB 表示牵引力F 不变,即F =8 000 N ,阻力F f 不变,汽车由静止开始做匀加速直线运动;图线BC 的斜率表示汽车的功率P 不变,达到额定功率后,汽车所受牵引力逐渐减小,汽车做加速度减小的变加速直线运动,直至达到最大速度40 m/s ,此后汽车做匀速直线运动.由图可知:当最大速度v max =40 m/s 时, 牵引力为F min =2 000 N由平衡条件F f =F min 可得F f =2 000 N由公式P =F min v max 得额定功率P =8×104W.(2)匀加速运动的末速度v B =PF,代入数据解得v B =10 m/s汽车由A 到B 做匀加速运动的加速度为a =F -F fm=2 m/s 2设汽车由A 到B 所用时间为t 1,由B 到C 所用时间为t 2,位移为x ,则t 1=v Ba=5 s ,t 2=35 s -5 s=30 sB 点之后,对汽车由动能定理可得Pt 2-F f x =12m v 2C -12m v 2B代入数据可得x =75 m.思想方法 7.变力做功的计算方法平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即F =F 1+F 22再利用功的定义式W =F l cos α来求功. 【典例1】 用锤子击打钉子,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击打钉子时锤子对钉子做的功相同.已知第一次击打钉子时,钉子进入的深度为1 cm ,则第二次击打时,钉子进入的深度是多少?解析 设木板对钉子的阻力为F f =kx ,x 为钉子进入木板的深度,第一次击打后钉子进入木板的深度为x 1,第二次击打钉子时,钉子进入木板的总深度为x 2,则有W 1=F f 1x 1=0+kx 12·x 1=12kx 21W 2=F f 2(x 2-x 1)=kx 1+kx 22·(x 2-x 1)=12k (x 22-x 21) 由于W 1=W 2,代入数据解得x 2=2x 1=1.41 cm 所以钉子第二次进入的深度为 Δx =x 2-x 1=0.41 cm.即学即练1 质量是2 g 的子弹,以300 m/s 的速度射入厚度是5 cm 的木板(如图5-1-8所示),射穿后的速度是100 m/s.子弹射穿木板的过程中受到的平均阻力是多大?你对题目中所说的“平均”一词有什么认识?图5-1-8解析 设子弹所受的平均阻力为F f ,根据动能定理W 合=12m v 22-12m v 21得 F f l cos 180°=12m v 22-12m v 21所以F f =-m (v 22-v 21)2l =-2×10-3×(1002-3002)2×5×10-2N =1.6×103N 子弹在木板中运动5 cm 的过程中,所受木板的阻力各处不同,题中所说的平均阻力是相对子弹运动这5 cm 的过程来说的.用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.【典例2】如图5-1-9所示,一个人推磨,其推磨杆的力的大小始终为F,与磨杆始终垂直,作用点到轴心的距离为r,磨盘绕轴缓慢转动.则在转动一周的过程中推力F做的功为().A.0B.2πrF C.2Fr D.-2πrF图5-1-9解析磨盘转动一周,力的作用点的位移为0,但不能直接套用W=Fs cos α求解,因为在转动过程中推力F为变力.我们可以用微元的方法来分析这一过程.由于F的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δs i足够小(Δs i→0)时,F的方向与该小段的位移方向一致,所以有:W F=FΔs1+FΔs2+FΔs3+…+FΔs i=F2πr=2πrF(这等效于把曲线拉直).即学即练2如图5-1-10所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.图5-1-10解析将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W′=F fΔx,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W=ΣW′=F fΣΔx=2πRF f.用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.【典例3】一物体所受的力F随位移x变化的图象如图5-1-11所示,求在这一过程中,力F对物体做的功为多少?图5-1-11审题指导 解答本题时应把握以下两点:(1)F -x 图象中图象与x 轴围成的“面积”表示力F 做的功.(2)x 轴上方的“面积”表示力F 做正功,x 轴下方的“面积”表示力F 做负功.解析 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.S 梯形=12×(3+4)×2=7S 三角形=-12×(5-4)×2=-1所以力F 对物体做的功为W =7 J -1 J =6 J.即学即练3 如图5-1-12甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时F 做的总功为( ).图5-1-12A .0B .12F m x 2C .π4F m x 0D .π4x 20解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12πF 2m =12π·F m ·12x 0=π4F m x 0.利用W =Pt 求变力做功这是一种等效代换的观点,用W =Pt 计算功时,必须满足变力的功率是一定的这一条件. 【典例4】 如图5-1-13所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为F f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.求:(1)小船从A 点运动到B 点的全过程克服阻力做的功WF f ; (2)小船经过B 点时的速度大小v 1.图5-1-13解析 (1)小船从A 点运动到B 点克服阻力做功 WF f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功 W =Pt 1②由动能定理有W -WF f =12m v 21-12m v 20③ 由①②③式解得v 1=v 20+2m (Pt 1-F f d )④即学即练4 汽车的质量为m ,输出功率恒为P ,沿平直公路前进距离s 的过程中,其速度由v 1增至最大速度v 2.假定汽车在运动过程中所受阻力恒定,求汽车通过距离s 所用的时间.解析 当F =F f 时,汽车的速度达到最大速度v 2,由P =F v 可得F f =Pv 2对汽车,根据动能定理,有Pt -F f s =12m v 22-12m v 21 联立以上两式解得t =m (v 22-v 21)2P +sv 2.利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.【典例5】 如图5-1-14所示,AB 为四分之一圆周轨道,半径R =0.8 m ,BC 为水平轨道,长为L =3 m .现有一质量m =1 kg 的物体,从A 点由静止滑下,到C 点刚好停止.已知物体与BC 段轨道间的动摩擦因数为μ=115,求物体在AB 段轨道受到的阻力对物体所做的功.(g 取10 m/s 2)图5-1-14解析 物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,且W G=mgR ,W f BC =-μmgL ,由于物体在AB 段受到的阻力是变力,做的功不能直接求解.设物体在AB 段轨道受到的阻力对物体所做的功为W fAB ,从A 到C ,根据动能定理有mgR +W fAB -μmgL =0,代入数据解得W fAB =-6 J.即学即练5 如图5-1-15甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,(g =10 m/s 2)求:(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功.图5-1-15解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数值得a =2 m/s 2,所以A 与B 间的距离为s =12at 2=4 m.(2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物体回到A 点时速度为v ,则v 2=2as ,由动能定理知W -2μmgs =12m v 2,所以W =2μmg s +mas =24 J.高考对应题组1.(2012·上海卷,18)如图所示,位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动;若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( ).A .F 2=F 1 v 1>v 2B .F 2=F 1 v 1<v 2C .F 2>F 1 v 1>v 2D .F 2<F 1 v 1<v 22.(2012·四川卷,21)如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0.物体与水平面间的动摩擦因数为μ,重力加速度为g .则( ).A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为kx 0m-μgC .物体做匀减速运动的时间为2x 0μgD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg ⎝⎛⎭⎫x 0-μmg k3.(2012·江苏卷,3)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( ).A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大4.(2011·海南卷,9)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( ).A .0~2 s 内外力的平均功率是94WB .第2秒内外力所做的功是54JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是455.(2011·上海卷,15)如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为( ).A .mgLωB .32mgLω C.12mgLω D .36mgLω答案与解析1.解析 水平恒力F 1的作用时有P 1=F 1v 1,斜向上恒力F 2作用时有P 2=F 2v 2cos θ,其中θ为F 2与水平方向的夹角,又F 2cos θ=μ(mg -F 2sin θ),F 1=μmg ,故F 2cos θ<F 1,由于P 1=P 2,所以v 1<v 2,F 1与F 2的关系不确定,故选项B 、D 正确,A 、C 错误.答案 BD2.解析 撤去F 后,物体向左先做加速运动,其加速度大小a 1=kx -μmg m =kxm-μg ,随着物体向左运动,x 逐渐减小,所以加速度a 1逐渐减小,当加速度减小到零时,物体的速度最大,然后物体做减速运动,其加速度大小a 2=μmg -kx m =μg -kxm,a 2随着x 的减小而增大.当物体离开弹簧后做匀减速运动,加速度大小a 3=μmgm =μg ,所以选项A 错误.根据牛顿第二定律,刚撤去F 时,物体的加速度a =kx 0-μmg m=kx 0m -μg ,选项B 正确.物体做匀减速运动的位移为3x 0,则3x 0=12a 3t 2,得物体做匀减速运动的时间t =6x 0a 3=6x 0μg ,选项C 错误.当物体的速度最大时,加速度a ′=0,即kx =μmg ,得x =μmg k,所以物体克服摩擦力做的功W =μmg (x 0-x )=μmg ⎝⎛⎭⎫x 0-μmg k ,选项D 正确. 答案 BD3.解析 小球速率恒定,由动能定理知:拉力做的功与克服重力做的功始终相等,将小球的速度分解,可发现小球在竖直方向分速度逐渐增大,重力的瞬时功率也逐渐增大,则拉力的瞬时功率也逐渐增大,A 项正确.答案 A4.解析 根据牛顿第二定律得,物体在第1 s 内的加速度a 1=F 1m =2 m/s 2,在第2 s 内的加速度a 2=F 2m=11m/s 2=1 m/s 2;第1 s 末的速度v 1=a 1t =2 m/s ,第2 s 末的速度v 2=v 1+a 2t =3 m/s ;0~2 s 内外力做的功W =12m v 22=92 J ,平均功率P =W t =94 W ,故A 正确.第2 s 内外力所做的功W 2=12m v 22-12m v 21=⎝⎛⎭⎫12×1×32-12×1×22J =52J ,故B 错误.第1 s 末的瞬时功率P 1=F 1v 1=4 W .第2 s 末的瞬时功率P 2=F 2v 2=3 W ,故C 错误.第1 s 内动能的增加量ΔE k1=12m v 21=2 J ,第2 s 内动能的增加量ΔE k2=W 2=52J ,所以ΔE k1ΔE k2=45,故D 正确.答案 AD5.解析 由能的转化及守恒可知:拉力的功率等于克服重力的功率.P G =mg v y =mg v cos 60°=12mgωL ,故选C.答案 CA 对点训练——练熟基础知识题组一 正、负功的判断及计算1.(多选)如图5-1-16所示,在皮带传送装置中,皮带把物体P 匀速带至高处,在此过程中,下述说法正确的是( ).图5-1-16A .摩擦力对物体做正功B .摩擦力对物体做负功C .支持力对物体不做功D .合外力对物体做正功2.(多选)质量为50 kg 的某人沿一竖直悬绳匀速向上爬(两手交替抓绳子,手与绳之间不打滑).在爬高3 m 的过程中,手与绳之间均无相对滑动,重力加速度g 取10 m/s 2.则下列说法正确的是( ).A .绳子对人的静摩擦力做功为1 500 JB .绳子对人的拉力做功为1 500 JC .绳子对人的静摩擦力做功为0D .绳子对人的拉力做功为03.(单选)如图5-1-17所示,一个物块在与水平方向成α角的恒力F 作用下,沿水平面向右运动一段距离x ,在此过程中,恒力F 对物块所做的功为( ).图5-1-17A.Fx sin α B .Fx cos α C .Fx sin α D .Fx cos α4.(2013·石家庄二模)(单选)如图5-1-18所示是质量为1 kg 的滑块在水平面上做直线运动的v -t 图象.下列判断正确的是( ).图5-1-18A .在t =1 s 时,滑块的加速度为零B .在4 s ~6 s 时间内,滑块的平均速度为2.5 m/sC .在3 s ~7 s 时间内,合力做功的平均功率为2 WD .在5 s ~6 s 时间内,滑块受到的合力为2 N5.(单选)如图5-1-19所示,质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止.则关于斜面对m 的支持力和摩擦力的下列说法中错误的是( ).图5-1-19A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功6.(多选)如图5-1-20所示,摆球质量为m,悬线的长为L,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力F阻的大小不变,则下列说法正确的是().图5-1-20A.重力做功为mgLB.绳的拉力做功为0C.空气阻力(F阻)做功为-mgLD.空气阻力(F阻)做功为-12F阻πL题组二功率的计算及机车的启动7.(单选)如图5-1-21所示,分别用F1、F2、F3将质量为m的物体由静止沿同一光滑斜面以相同的加速度从斜面底端拉到斜面的顶端,物体到达斜面顶端时,力F1、F2、F3的功率关系为().图5-1-21A.P1=P2=P3B.P1>P2=P3 C.P3>P2>P1D.P1>P2>P38.(单选)把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车.几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等.若1节动车加3节拖车编成的动车组的最大速度为120 km/h;则6节动车加3节拖车编成的动车组的最大速度为().A.120 km/h B.240 km/h C.320 km/h D.480 km/h9.(单选)两辆完全相同的汽车,都拖着完全相同的拖车以相同的速度在平直公路上匀速齐头并进,某一时刻两拖车同时与汽车脱离,之后甲汽车保持原来的牵引力继续前进,乙汽车保持原来的功率继续前进,则一段时间后(假设均未达到最大功率)().A.甲车超前,乙车落后B.乙车超前,甲车落后C.它们仍齐头并进D.甲车先超过乙车,后乙车又超过甲车10.质量为2 000 kg、额定功率为80 kW的汽车,在平直公路上行驶的最大速度为20 m/s.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s2,运动中汽车所受阻力的大小不变.求:(1)汽车所受阻力的大小.(2)3 s末汽车的瞬时功率.(3)汽车做匀加速运动的时间.(4)汽车在匀加速运动中牵引力所做的功.。
高中物理 第七章 机械能守恒定律 第9节 实验:验证机械能守恒定律(含解析)
第9节实验:验证机械能守恒定律一、实验目的1.会用打点计时器打下的纸带计算物体运动的速度。
2.掌握利用自由落体运动验证机械能守恒定律的原理和方法。
二、实验原理让物体自由下落,忽略阻力情况下物体的机械能守恒,有两种方案验证物体的机械能守恒:1.以物体下落的起始点O 为基准,测出物体下落高度h 时的速度大小v ,若12mv 2=mgh 成立,则可验证物体的机械能守恒。
2.测出物体下落高度h 过程的初、末时刻的速度v 1、v 2,若关系式12mv 22-12mv 12=mgh 成立,则物体的机械能守恒。
三、实验器材铁架台(带铁夹)、电磁打点计时器、重锤(带纸带夹子)、纸带、复写纸、导线、毫米刻度尺、低压交流电源。
四、实验步骤1.安装置:按图将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。
先接通电源,后松开纸带,让重物带着纸带自由下落。
更换纸带重复做3次~5次实验。
3.选纸带:选取点迹较为清晰且有两点间的距离约为2 mm 的纸带,把纸带上打出的两点间的距离为2 mm 的第一个点作为起始点,记作O ,在距离O 点较远处再依次选出计数点1、2、3…4.测距离:用刻度尺测出O 点到1、2、3…的距离,即为对应下落的高度h 1、h 2、h 3…五、数据处理1.计算各点对应的瞬时速度:记下第1个点的位置O ,在纸带上从离O 点适当距离开始选取几个计数点1、2、3…并测量出各计数点到O 点的距离h 1、h 2、h 3…再根据公式v n =h n +1-h n -12T,计算出1、2、3、4、…n 点的瞬时速度v 1、v 2、v 3、v 4、…v n 。
2.机械能守恒验证方法一:利用起始点和第n 点。
从起始点到第n 个计数点,重力势能减少量为mgh n ,动能增加量为12mv n 2,计算gh n 和12v n 2,如果在实验误差允许的范围内gh n =12v n 2,则机械能守恒定律得到验证。
高中物理必修二 84 机械能守恒定律 练习(解析版)
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是()A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是()A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水道最高点时的速度超过√gr.否则游客会脱离轨道,故A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
机械能守恒典型例题带详解【范本模板】
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
高中物理机械能守恒定律经典例题及技巧
一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
高一物理机械能守恒综合应用试题答案及解析
高一物理机械能守恒综合应用试题答案及解析1.如图所示,在水平台面上的A点,一个质量为m的物体以初速度v抛出.不计空气阻力,当它达到B点时物体的动能为A.mv02/2+mgH B.mv2/2+mghC.D.mv2/2+mg(H-h)【答案】B【解析】对A到B运用动能定理得,,解得B点的动能,故B 正确。
【考点】考查了动能定理的应用2.如图所示,一根跨越一固定水平光滑细杆的轻绳,两端各系一个小球,球Q置于地面,球P被拉到与细杆同一水平的位置。
在绳刚被拉直时,球P从静止状态向下摆动,当球P摆到竖直位置时,球Q刚要离开地面,则两球质量之比mQ : mP为:A.4B.3C.2D.1【答案】B【解析】球P从静止摆到最低位置的过程中,做圆周运动,绳的拉力始终与速度垂直不做功,仅有重力做功,机械能守恒,设球P摆到竖直位置时的速度为,根据机械能守恒定律得:,解得:球P摆到竖直位置时受有竖直向上的拉力和竖直向下的重力,合力提供向心力,由牛顿第二定律得:,解得:因当球P摆到竖直位置时,球Q刚要离开地面,则有:,于是有:,所以两球质量之比mQ : mP为:,故选B。
【考点】本题考查了机械能守恒定律、牛顿第二定律、圆周运动等知识点,意在考查考生的理解能力、逻辑推理能力和综合应用能力。
3.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b。
a球质量为2m,静置于地面;b球质量为3m,用手托住b球,此时b球离地高度为h,轻绳刚好拉紧,从静止开始释放b后,a可能达到的最大高度为()A.h B.0.2h C.2h D.1.2h【答案】D【解析】b下落a上升的过程中,对ab系统机械能守恒,设b落地的瞬时速度为v,则,则,解得;b球落地后a球做上抛运动,还能上升的高度为h1,解得h=0.2h,所以a可能达到的最大高度为1.2h,选项D正确。
1【考点】此题考查了机械能守恒定律4.如图所示,粗细均匀的U形管内装有同种液体,在管口右端用盖板A密闭,两管内液面的高度差为h,U形管中液柱的总长为3h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能及机械能守恒问题1(2017浙江卷)火箭发射回收是航天技术的一大进步.如图所示,火箭在返回地面前的某段运动,可看成先匀速后减速的直线运动,最后撞落在地面上. 不计火星质量的变化,则()A.火箭在匀速下降过程中机械能守恒B.火箭在减速下降过程中携带的检测仪器处于失重状态C.火箭在减速下降过程中合力做功,等于火箭机械能的变化D.火箭着地时,火箭对地的作用力大于自身的重力答案:D解析:火箭匀速下降过程中.动能不变.重力势能减小,故机械能减小,A错误.火箭在减速下降时,携带的检测仪器受到的支持力大于自身重力力.故处在超重状态.B错误.由功能关系知,合力做功等于火箭动能变化.而除重力外外的其他力做功之和等于机械能变化,故C错误.火箭着地时,加速度向上,所以火箭对地面的作用力大子自身重力,D正确.2 如图所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( )A. 弹簧的弹性势能逐渐减少B. 弹簧的弹性势能逐渐增加C. 弹簧的弹性势能先增加再减少D. 弹簧的弹性势能先减少再增加答案D解析当力F作用在物体上时,弹簧处于压缩状态,具有弹性势能,当撤去力F后,物体向右运动。
随着物体向右运动,弹簧的压缩量逐渐减小,弹性势能减少,当弹簧恢复原长时,弹性势能为零,但物体的运动速度仍然向右,继续向右运动,弹簧被拉长,弹性势能增加,所以选项D正确。
3 如图所示,一轻弹簧一端固定在O点,另一端系一小球,将小球从与悬点O在同一水平面且使弹簧保持原长的A点无初速度地释放,让小球自由摆下,不计空气阻力,在小球由A点摆向最低点B的过程中,下列说法中正确的是( )A.小球的机械能守恒B.小球的机械能增加C.小球的重力势能与弹簧的弹性势能之和不变D.小球与弹簧组成的系统机械能守恒答案D解析小球由A点下摆到B点的过程中,弹簧被拉长,弹簧的弹力对小球做了负功,所以小球的机械能减少,故选项A、B错误;在此过程中,由于有重力和弹簧的弹力做功,所以小球与弹簧组成的系统机械能守恒,即小球减少的重力势能,等于小球获得的动能与弹簧增加的弹性势能之和,故选项C 错误,D正确。
4 如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B. 弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变答案B解析圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A、D错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C错误;圆环重力势能减少了3mgL,由机械能守恒定律知弹簧弹性势能增加了3mgL,故B正确。
5 物体做自由落体运动,E k代表动能,E p代表势能,h代表下落的距离,以水平地面为零势能面(不计一切阻力)。
下列图象能正确反映各物理量之间关系的是( )答案B解析由机械能守恒定律得=E-E k可知,势能与动能关系的图象为倾斜的直线,C错误;由动能定理得E k=mgh,则E p=E-mgh,故势能与h关系的图象也为倾斜的直线,D错误;E p=E-mv2,故势能与速度关系的图象为开口向下的抛物线,B正确;E p=E-12mg2t2,势能与时间关系的图象也为开口向下的抛物线,A错误。
6 一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过A处时对轨道的压力为( )A.2mgB.3mgC.4mgD.5mg答案C7 如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。
若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,已知重力加速度为g,不计空气阻力,则小球B下降h时的速度为( )答案B8 如图是安装在列车车厢之间的摩擦缓冲器结构图.图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中( ) A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能答案:B解析:在车厢相互撞击使弹簧压缩过程中,由于要克服摩擦力做功,因此缓冲器机械能减少,选项A错误,选项B正确;弹簧压缩过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.9如图所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低的海平面上.若以地面为零势能面而且不计空气阻力,则下列说法错误的是()A.物体到海平面时的势能为mghB.重力势能增加了mghC.物体到海平面时的动能为12mv02+mghD .物体到海平面时的机械能为12答案A解:A 、以地面为零势能面,海平面低于地面h ,所以物体在海平面上时的重力势能为-mgh ,故A 错误.B .重力做功与路径无关,只与始末位置的高度差有关,抛出点与海平面的高度差为h ,并且重力做正功,所以从地面到海平面重力对物体做的功为mgh ,故B 正确.C 、从抛出到到达海平面过程中,由动能定理得:mgh =12mv 2-12mv 02,物体到达海平面时的动能12mv 2=12mv 02+mgh ,故C 正确. D 、不计空气阻力,物体运动的过程中机械能守恒,则物体在海平面上的机械能等于抛出时的机械能,为12mv 02.故D 正确. 10 车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k 1和k 2倍,最大速率分别为v 1和v 2,则( )A .v 2=k 1v 1B .v 2=k 1k 2v 1C .v 2=k 2k 1v 1 D .v 2=k 2v 1答案B解:本题考查机车启动过程中功率的相关知识.机车在不同的路面以相同的功 率按最大速度行驶,可推断机车做匀速直线运动,受力平衡,由公式P =Fv ,F =kmg ,可推出P =k 1mgv 1=k 2mgv 2,解得v 2=k 1k 2 v 1,故B 正确,A 、C 、D 错误.11 如图为倾角可调的可移动式皮带输送机,适用于散状物料或成件 物品的短途运输和装卸工作。
在顺时针匀速转动的输送带上端无初速度放一货物,货物从上端运动到下端的过程中,其机械能 E (选择地面所在的水平面为参考平面)与位移 x 的关系图象可能正确的是( )答案B解:货物从上端运动到下端的过程可能一直加速、也可能先加速后匀速或者先做匀加速度较大的加速运动后做加速度较小的加速运动,故只有B 正确. 12质量为1 kg 的物体,放置在动摩擦因数为0.2的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速 度为10 m/s 2 ,则下列说法正确的是( )A .x =3 m 时速度大小为2m/sB .x =9 m 时速度大小为2 m/sC .OA 段加速度大小为3 m/s 2D .AB 段加速度大小为3 m/s 2答案C解析对于前3 m过程,根据动能定理有W1-μmgx=12mv A2,解得v A=32m/s,根据速度、位移公式有2a1x=v A2,解得a1=3 m/s2,故A错误,C正确;对于前9 m过程,根据动能定理有W2-μmgx′=12m v B2,解得v B=32m/s,故B错误;AB段受力恒定,故加速度恒定,而初、末速度相等,故AB段的加速度为零,故D错误.13如图所示,一个物体由静止开始,从A点出发分别经三个粗糙斜面下滑到同一水平面上的C1、C2、C 3处.已知三个斜面的动摩擦因数都相同,则下列说法正确的是( )A.物体到达C3处的动能最大B.物体在C1、C2、C3处的动能相等C.物体在三个斜面上克服摩擦力做功都相同D.物体沿A C3斜面下滑时克服摩擦力做功最多答案A解设斜面倾角为θ,由物体克服摩擦力做功W f=μmg cosθ·x知,沿A C1斜面下滑克服摩擦力做功最多,沿A C3最少,而重力做功W G=mgh相同,故到达C3处动能最大.14如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中()A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功大于A的动能增量C.A对B的摩擦力所做的功与B对A的摩擦力所做的功大小相等D.外力F对B做的功等于B的动能的增量与B 克服摩擦力所做的功之和答案 D解A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,即B错;A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B对地的位移不等,故摩擦力对二者做功大小不等,C 错;对B应用动能定理,W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功,等于B的动能的增量与B克服摩擦力所做的功之和,D对;由前述讨论知B克服摩擦力所做的功与A的动能增量(等于B对A的摩擦力所做的功)不等,故A错.15如图所示,一个弹簧左端固定于墙上,右端连接物块,物块质量为m,它与水平桌面间的动摩擦因数为μ.起初用手按住物块,弹簧的伸长量为x,然后放手,当弹簧的长度回到原长时,物块的速度为v0,则此过程中弹力所做的功为()图2A.12m v 20+μmgxB.12m v 20-μmgxC.12m v 20 D .μmgx -12m v 20 答案 A解 当弹簧恢复到原长时,物块对地的位移为x ,根据动能定理有: W 弹+(-μmgx )=12m 02 -0,得W 弹=12m 02 20+μmgx ,选项A 正确.16物体沿直线运动的v -t 关系图象如图所示,已知在第1秒内合外力对物体做的功为W ,则( )A .从第1秒末到第3秒末合外力做功为4WB .从第3秒末到第5秒末合外力做功为-2WC .从第5秒末到第7秒末合外力做功为-WD .从第3秒末到第4秒末合外力做功为-0.75W 答案 D解 由动能定理W 合=12mv 22-12mv 21 知第1 s 内W =12mv 2.同理可知,D 正确17质量为1 kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图甲所示,外力F 做的功和物体克服摩擦力F f 做的功分别与物体位移x 的关系如图乙中图线所示,重力加速度g 取10 m/s 2.下列分析错误的是( )A .物体与地面之间的动摩擦因数为0.2B .物体运动的最大位移为13 mC .物体在前3 m 运动过程中的加速度大小为3 m/s 2D .x =9 m 时,物体的速度为3 2 m/s 答案 B解析 由W f =F f x 对应题图乙可知,物体与地面之间的滑动摩擦力F f =2 N ,由F f =μmg 可得μ=0.2,A 正确;由W F =Fx 对应题图乙可知,前3 m 内,拉力F 1=5 N ,3~9 m 内拉力F 2=2 N ,物体在前3 m 内的加速度a 1=F 1-F fm =3 m/s 2,C 正确;由动能定理得:W F -F f x =12mv 2,可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;由动能定理知物体运动的最大位移x m =W F mF f=13.5 m ,B 错误.18 如图所示,木盒中固定一质量为m 的砝码,木盒和砝码在水平桌面上一起以一定的初速度滑行一段距离后停止.今拿走砝码,而持续施加一个竖直向下的恒力F (F =mg ,g 为重力加速度),其他条件不变,则两种情况下( )A木盒的加速度相同B木盒滑行的距离相同C木盒滑行的时间相同D木盒滑行时对桌面的压力相同答案 D解:设木盒的质量为M,根据牛顿第二定律得,放砝码时,加速度:a1=)M mg g M mμμ+=+(拿走砝码施加F时,加速度:a2=) Mg FMμ+(可知a2>a 1.根据v2=2ax得,x=22va.知加速度增大,则滑行的距离变小.由v=at知加速度大的用时短.木盒滑行时对桌面的压力相同N=Mg+mg.故选:D.19如图所示,一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平拉力F的作用下,从平衡位置P点很缓慢地移动到Q点,则力F所做的功为( ) A. mgl cosθ B. mgl(1-cos θ) C. Fl sinθ D. Fl答案B解小球从P点移到Q点时,受重力、绳子的拉力和水平拉力F,由受力平衡知F=mg tan θ,随θ的增大,F也增大,故F是变力,因此不能直接用公式W=Fl cos α求解。