数列通项、求和方法经典总结
数列求和与求通项公式方法总结
数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。
在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。
首先,我们来讨论数列的求和问题。
数列的求和是指对一个给定的数列中的所有元素进行求和的操作。
数列求和的方法主要有以下几种。
1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。
这个公式适用于等差数列的求和问题,可以更快地求得数列的和。
2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。
这个方法适用于项数较多且公差较小的等差数列。
3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。
4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。
这个方法适用于公比绝对值小于1的等比数列。
其次,我们来讨论数列的求通项公式问题。
数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。
数列求通项公式的方法主要有以下几种。
1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
数列求和、求通项的方法
一.本章知识结构
求前n项和 求通项
一、数列求和常用方法: (1)公式求和法: 直接应用等差数列、等比数列的求和公式.
1.等差数列
2.等比数列
s
n(a 1
a n
)
n
2
na1
n(n 1) 2
d
sn
a1
(1 q 1 q
n
)
,q
1
na1, q 1
• (2)差比数列——错位相减法:
(7) 猜想、归纳法:由已知条件先求出数列的前几 项, 一般是a 1,a 2 ,a 3 ,a 4等,由此归纳猜想出a n ,然后
a1b1q a2b1q2 ... an1b1qn1 anb1qn
(2)
(1 q)Sn a1 db1 (q q 2 ... q n1 ) anb1q n1
பைடு நூலகம்
由(3)解得Sn
(3)
(3)分组求和法: 将{a n}的前n项和Sn分为若干组,将每组利用等差、
等比数列前n项和公式求S n.
(4) 裂项相消法: 若{a n}中通项a n其为分式,其分子为常数其分母为
an
ss1n,
n 1 sn1, n
2
• (2)差、比公式法: • 利用等差、等比数列的通项公式。
1.等差数列:a n=a 1+(n-1)d;
2.等比数列:
a
n=a
qn-1
1
;
• (3)设项转化法: • 利用换元,转化为求等差、等比数列通项。
如预习案p16.3
• ( 4 ) 迭加法 : • 若数列{an}满足a n+1-a n=f(n),其中{f(n)} (n∈N*)
数列的通项与求和例题和知识点总结
数列的通项与求和例题和知识点总结一、数列的通项在数列中,通项公式是指第 n 项 an 与项数 n 之间的关系式。
(一)等差数列的通项公式若一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
其通项公式为:an = a1 +(n 1)d ,其中a1 为首项,d 为公差。
例如:数列 2,5,8,11,14,是一个首项 a1 = 2,公差 d = 3 的等差数列,其通项公式为 an = 2 +(n 1)×3 = 3n 1 。
(二)等比数列的通项公式若一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。
其通项公式为:an = a1×q^(n 1) ,其中 a1 为首项,q 为公比。
例如:数列 2,4,8,16,32,是一个首项 a1 = 2,公比 q = 2 的等比数列,其通项公式为 an = 2×2^(n 1) = 2^n 。
(三)常见的求通项公式的方法1、观察法通过对数列前几项的观察,找出规律,从而推测出通项公式。
例如:数列 1,3,5,7,9,很容易观察出其通项公式为 an = 2n1 。
2、累加法当数列的递推关系为 an an 1 = f(n) 时,可用累加法求通项公式。
例如:已知数列{an} 满足 a1 = 1,an an 1 = n ,求 an 。
因为 an an 1 = n ,所以a2 a1 = 2a3 a2 = 3an an 1 = n将上述式子相加得:an a1 = 2 + 3 ++ n所以 an = a1 + 2 + 3 ++ n = 1 +(2 + 3 ++ n) = 1 + n(n+ 1)/2 。
3、累乘法当数列的递推关系为 an / an 1 = f(n) 时,可用累乘法求通项公式。
例如:已知数列{an} 满足 a1 = 1,an / an 1 = n ,求 an 。
因为 an / an 1 = n ,所以a2 / a1 = 2a3 / a2 = 3an / an 1 = n将上述式子相乘得:an / a1 = 2×3××n所以 an = a1×2×3××n = n! 。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
数列的通项公式与求和公式总结
数列的通项公式与求和公式总结数列是由一系列按照特定规律排列的数字组成的序列,通常用公式表示。
数列的通项公式是指能够根据数列的位置得出该位置上的数值的公式,而求和公式则是指能够计算数列中所有数值的和的公式。
以下是一些常见数列的通项公式与求和公式的总结。
等差数列:等差数列是一个公差为d的数列,其中每一项与前一项之间的差值相等。
其通项公式和求和公式如下:通项公式:an = a1 + (n-1)d其中an表示数列的第n项,a1表示数列的第一项,d表示公差。
求和公式:Sn = (n/2)(a1 + an)其中Sn表示数列前n项的和。
等比数列:等比数列是一个公比为q的数列,其中每一项与前一项之间的比值相等。
其通项公式和求和公式如下:通项公式:an = a1 * q^(n-1)其中an表示数列的第n项,a1表示数列的第一项,q表示公比。
求和公式:Sn = (a1 * (q^n - 1))/(q - 1)其中Sn表示数列前n项的和。
斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,后续每一项是前两项之和。
其通项公式和求和公式如下:通项公式:an = (1/sqrt(5)) * (((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n)其中an表示数列的第n项。
求和公式:Sn = a1 * (1 - ((1 + sqrt(5))/2)^n)/(1 - ((1 + sqrt(5))/2))其中Sn表示数列前n项的和。
这些是常见数列的通项公式与求和公式的总结,通过这些公式,我们可以通过给定的位置计算出数列中的数值,或者计算数列中所有数值的和。
在数学中,数列的通项公式与求和公式是非常重要的工具,能够帮助我们理解数列的规律和特性。
数列的通项与求和计算方法总结
数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列求通项、求和的几种方法
求数列通项公式的几种方法数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面我就谈谈求数列通项公式的几种方法:一、累差法递推式为:a n+1=a n+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……a n-a n-1=f(n-1)将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,a n+1=a n+2,求a n解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……a n-a n-1=2n-1将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故a n=2n-1二、累商法递推式为:a n+1=f(n)a n(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘可得a n/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴a n=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{a n}中,a1=2,a n+1=(n+1)a n/n,求a n解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘后可得a n/a1=2/1×3/24×/3×…×n/(n-1)即a n=2n当n=1时,a n也适合上式∴a n=2n三,构造法1、递推关系式为a n+1=pa n+q (p,q为常数)思路:设递推式可化为a n+1+x=p(a n+x),得a n+1=pa n+(p-1)x,解得x=q/(p-1) 故可将递推式化为a n+1+x=p(a n+x)构造数列{b n},b n=a n+q/(p-1)b n+1=pb n即b n+1/b n=p,{b n}为等比数列.故可求出b n=f(n)再将b n=a n+q/(p-1)代入即可得a n例3、(06重庆)数列{a n}中,对于n>1(n€N)有a n=2a n-1+3,求a n解:设递推式可化为a n+x=2(a n-1+x),得a n=2a n-1+x,解得x=3故可将递推式化为a n+3=2(a n-1+3)构造数列{b n},b n=a n+3b n=2b n-1即b n/b n-1=2,{b n}为等比数列且公比为3b n=b n-1·3,b n=a n+3b n=4×3n-1a n+3=4×3n-1,a n=4×3n-1-12、递推式为a n+1=pa n+q n(p,q为常数)思路:在a n+1=pa n+q n两边同时除以q n+1得a n+1/q n+1=p/qa n/q n+i/q构造数列{b n},b n=a n/q n可得b n+1=p/qb n+1/q故可利用上类型的解法得到b n=f(n)再将代入上式即可得a n例4、数列{a n}中,a1+5/6,a n+1=(1/3)a n+(1/2)n,求a n解:在a n+1=(1/3)a n+(1/2)n两边同时除以(1/2)n+1得2n+1a n+1=(2/3)×2n a n+1构造数列{b n},b n=2n a n可得b n+1=(2/3)b n+1故可利用上类型解法解得b n=3-2×(2/3)n2n a n=3-2×(2/3)na n=3×(1/2)n-2×(1/3)n3、递推式为:a n+2=pa n+1+qa n(p,q为常数)思路:设a n+2=pa n+1+qa n变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=p,xy= -q解得x,y,于是{b n}就是公比为y的等比数列(其中b n=a n+1-xa n)这样就转化为前面讲过的类型了.例5、已知数列{a n}中,a1=1,a2=2,a n+2=(2/3)·a n+1+(1/3)·a n,求a n解:设a n+2=(2/3)a n+1+(1/3)a n可以变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{b n},b n=a n+1-a n故数列{b n}是公比为-1/3的等比数列即b n=b1(-1/3)n-1b1=a2-a1=2-1=1b n=(-1/3)n-1a n+1-a n=(-1/3)n-1故我们可以利用上一类型的解法求得a n=1+3/4×[1-(-1/3)n-1](n€N*)四、利用s n和n、a n的关系求a n1、利用s n和n的关系求a n思路:当n=1 时,a n=s n当n≥2 时, a n=s n-s n-1例6、已知数列前项和s=n2+1,求{a n}的通项公式.解:当n=1 时,a n=s n=2当n≥2 时, a n=s n-s n-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1 时,a n=2当n≥2 时, a n=2n-12、利用s n和a n的关系求a n思路:利用a n=s n-s n-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{a n}中,已知s n=3+2a n,求a n解:即a n=s n-s n-1=3+2a n-(3+2a n-1)a n=2a n-1∴{a n}是以2为公比的等比数列∴a n=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出a n,再用数学归纳法证明例8、(2002全国高考)已知数列{a n}中,a n+1=a2n-na n+1,a1=2,求a n解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想a n=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即a k=k+1则 a k+1=a2k-ka k+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有a n=n+1成立即a n=n+1。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消na。
【注意】漏检验n的值 (如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈,求数列{}n a的通项公式.(二).累加、累乘 型如1()n n a a f n --=,1()nn a f n a -=1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅即1()(1)(2)na f n f n f a =⋅-⋅⋅,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a . (2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n pa c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
数列求和与求通项公式方法总结(已打)
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;
数列求通项公式及求和的方法
数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。
例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。
变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。
2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。
例2:已知数列{an}的前n项和Sn=2n-1,求通项an。
变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。
3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。
例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。
变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。
4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。
例4:a1=0,an+1=an+2(n-1),求通项an。
变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。
5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。
例5:a1=1,an=an-1(n),求通项an。
6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。
例6:已知a1=1,an=2an-1+1(n2),求通项an。
2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。
最全面总结:数列求通项、求和方法总结
数列求通项、求和的方法总结一、定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差or 等比)的题目.例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
特征:已知数列的前n 项和n S 与n a 的关系例.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-三、由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
求数列的通项公式和前N项和的几种类型总结
例题精析
【例题1】在数列{ }中, , ,求通项公式 .
【例题2】已知数列 满足, 前 项和 ,求 的通项公式.
【例题3】数列 满足 ,求 .
【例题4】已知等差数列 满足: , , 的前n项和为 .
(Ⅰ)求 与 ;(Ⅱ)令bn= (n N*),求数列 的前n项和 .
知识讲解
一、求数列的通项公式的方法
1:观察法:此方法适用于小题和大题中的先猜后证;
2:公式法
等差数列通项公式:
等比数列通项公式
3:递推关系
累加法:
累乘法:
构造法:(1) :
令 ,则 为等比数列
(2)
令 ,则 为等差数列
(3)
令 ,则转化为第一类
(4)
令 ,则转化为第一类
(5)
令 ,则用累乘法
4:退位相减法
A.98 B.99C.96D.97
5、各项为正数的等比数列 的公比 ,且 成等差数列,则 的值是()
A. B. C. D. 或
6、数列 ( )
A. B. C. D.
7、数列 满足 ,则
A. B. C. D.
8、数列 中,若 , ,则
A. B. C. D.
9、数列an= ,其前n项之和为 ,则在平面直角坐标系中,直线(1)x+y+n=0在y轴上的截距为______.
10、设函数f(x)=xm+ax的导数为f′(x)=2x+1,则数列{ } (n∈N*)的前n项和是________
11、设数列 的前 项和为 已知
(1)设 ,证明数列 是等比数列;
(2)求数列 的通项公式.
12、设等差数列 的前 项和为 ,且 ,
(1)求数列 的通项公式
数列的通项公式与求和公式知识点总结
数列的通项公式与求和公式知识点总结数列是数学中常见的数值按照一定规律排列形成的序列。
在数列的研究中,通项公式和求和公式是两个重要的概念,它们能够帮助我们对数列进行分析和计算。
本文将对数列的通项公式和求和公式进行总结和说明。
一、通项公式通项公式又称为一般项公式,可以表达数列中第n个数值与n的关系。
通过通项公式,我们可以直接计算出数列中任意位置的数值,从而更好地理解和分析数列的特性。
1.1 等差数列的通项公式等差数列是指数列中相邻两项之间的差值恒定的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an = a1 + (n-1)d。
其中,an表示数列中第n个数值,an-1为前一项的值。
1.2 等比数列的通项公式等比数列是指数列中相邻两项之间的比值恒定的数列。
设等比数列的首项为a1,公比为r,则其通项公式为an = a1 * r^(n-1)。
其中,an表示数列中第n个数值,an-1为前一项的值。
1.3 斐波那契数列的通项公式斐波那契数列是一种特殊的数列,其每一项都是前两项之和。
设斐波那契数列的首项为a1,前一项为a(n-1),当前项为an,则其通项公式为an = a(n-1) + a(n-2)。
其中,a2是斐波那契数列的第二项,一般取1。
二、求和公式求和公式是用来计算数列前n项和的公式。
通过求和公式,我们能够快速计算出数列的和,从而更方便地进行数列求和的操作。
2.1 等差数列的求和公式等差数列前n项和的求和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1为首项,an为第n项。
2.2 等比数列的求和公式等比数列前n项和的求和公式分两种情况,当r=1时,Sn = na1;当r不等于1时,Sn = (a1 * (1 - r^n)) / (1 - r)。
其中,Sn表示前n项的和,a1为首项,r为公比。
2.3 斐波那契数列的求和公式斐波那契数列前n项和的求和公式为Sn = a(n+2) - a2,其中Sn表示前n项的和,a(n+2)为斐波那契数列的第n+2项,a2为第二项。
数列通项公式和求和公式总结
【一】 求数列通项公式的常用方法各个求通项的方法之间并不是相互孤立的,有时同一题目中也可能同时用到几种方法,要具体问题具体分析! 一 公式法数列符合等差数列或等比数列的定义,求通项时,只需求出1a 与d 或1a 与q ,再代入公式()11n a a n d =+-或11n n a a q -=中即可.例1 数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.二 利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用1112n n n S n a S S n -=⎧=⎨-≥⎩求解.注意:应分1n =和2n ≥两种情况考虑,若两种情况能统一则应统一,否则应分段表示!例2 若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.三 累加法形如已知1a 且()1n n a a f n +-= (()f n 为可求和的数列)的形式均可用累加法.例3 数列{}n a 中已知111,2nn n a a a n +=-=-, 求{}n a 的通项公式.四 累乘法形如已知1a 且()1n na f n a += (()f n 为可求积的数列)的形式均可用累乘法.例4数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.五 构造法若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而求出通项.常见的有形如1n n a pa q +=+ (,p q 为常数)且已知1a 的数列可构造{}n a c -为等比数列求出n a c -,进而求出n a .注意用待定系数法求常数c例5 ①数列{}n a 中已知113,33n n a a a +==+, 求{}n a 的通项公式;②数列{}n a 中已知()2*121,2,21nn n S a a n n N S ==≥∈-, 求{}n a 的通项公式.③数列{}n a 中已知0,n n a S >是数列的前n 项和,且12n n na S a +=,求{}n a 的通项公式【二】 数列求和的常用方法数列求和关键入手点为求出通项公式并观察通项公式存在的特点而采取恰当的求和方法,另外各个方法之间并不是相互孤立的,有时同一题目中也可能同时用到几种方法,要具体问题具体分析! 一 利用公式如果可判断出所求数列是等差或等比数列,则可直接利用公式求和.例6 等比数列{}n a 的前n 项和21n n S =-求2222123n n T a a a a =+++⋅⋅⋅+的值.二 分组求和所求和的数列{}n c 的通项公式可化成形如n n n c a b =+可采用分组求和. 例7 求数列39251,,,,,2482n n ⎛⎫⋅⋅⋅+⋅⋅⋅ ⎪⎝⎭的前n 项和.三 错位相减所求和的数列{}n c 的通项公式可化成形如n n n c a b =⋅其中{}n a ,{}n b 分别为等差和等比数列,可采用乘公比, 错位相减. (等比数列的求和公式的推导过程) 例8 求和()23230nn S x x x nxx =+++⋅⋅⋅+≠四 裂项相消常见裂项形式为()11n a n n =+,()()12121n a n n =+-等.例9 求和()()111114477103231n S n n =+++⋅⋅⋅+⨯⨯⨯-+五 倒序相加如果一个数列{}n a ,与其首末两项等距离的两项之和等于首末两项之和,可采用把正着写和倒着写的两个和式相加,就得到一个常数列的和,称为倒序相加.(等差数列的求和公式的推导过程)例10 设()442x x f x =+,求和122001200220022002S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二次课——数列通项公式的求法一、定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差or 等比)的题目.例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
特征:已知数列的前n 项和n S 与n a 的关系例.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-三、由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(n n --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 特征:递推公式为 n n a n f a )(1=+对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法求解。
例2. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数)对策:(利用构造法消去q )把原递推公式转化为由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n nn n a a p a a +--=-构成数列{}1n n a a +-以21a a -为首项,以p 为公比的等比数列.求出{}1n n a a +-的通项再转化为类型1(累加法)便可求出.n a例3. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a .类型4特征:递推公式为1()n n a pa f n +=+(其中p 为常数)对策:(利用构造法消去p )两边同时除以1n p +可得到111()n n n n n a a f n p p p +++=+,令nn na b p =,则11()n n n f n b b p++=+,再转化为类型1(累加法),求出n b 之后得nn n a p b = 例4.设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .解:∵a 1=3, ∴S 1=a 1=3.在S n+1+S n =2a n+1中,设n=1,有S 2+S 1=2a 2.而S 2=a 1+a 2.即a 1+a 2+a 1=2a 2.∴a 2=6. 由S n+1+S n =2a n+1,......(1) S n+2+S n+1=2a n+2, (2)(2)-(1),得S n+2-S n+1=2a n+2-2a n+1,∴a n+1+a n+2=2a n+2-2a n+1 即 a n+2=3a n+1此数列从第2项开始成等比数列,公比q=3.a n 的通项公式a n =⎩⎨⎧≥⨯=-.2,32,1,31时当时当n n n 此数列的前n 项和为S n =3+2×3+2×32+…+2×3n – 1=3+13)13(321--⨯-n =3n.类型5 特征:递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
对策:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面类型3的方法求解。
例5. 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
解:由n n n a a a 313212+=++可转化为)(112n n n n sa a t sa a -=-+++ 即n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 这里不妨选用⎪⎩⎪⎨⎧-==311t s (当然也可选用⎪⎩⎪⎨⎧=-=131t s ,大家可以试一试),则)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即2101)31()31()31(--+⋅⋅⋅⋅⋅⋅+-+-=-n n a a 311)31(11+--=-n 又11=a ,所以1)31(4347---=n n a 。
巩固:例8. 数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
解:由0731=-++n n a a 得37311+-=+n n a a 设a )(311k a k n n +-=++,比较系数得373=--k k 解得47-=k∴{47-n a }是以31-为公比,以43471471-=-=-a 为首项的等比数列∴1)31(4347--⨯-=-n n a 1)31(4347--⨯-=⇒n n a例9. 已知数列{}n a 满足11=a ,且132n n a a +=+,求n a . 解:设)(31t a t a n n +=++,则1231=⇒+=+t t a a n n ,⇒+=++)1(311n n a a {}1+n a 是以)1(1+a 为首项,以3为公比的等比数列⇒⇒⋅=⋅+=+--111323)1(1n n n a a 1321-⋅=-n n a例10.已知数列{}n a 满足11=a ,123-+=n n n a a )2(≥n ,求n a .解:将123-+=n n n a a 两边同除n 3,得nn n n a a 32131-+=⇒1133213--+=n n n n a a 设n n n a b 3=,则1321-+=n n b b .令)(321t b t b n n -=--⇒t b b n n 31321+=-⇒3=t .条件可化成)3(3231-=--n n b b ,数列{}3-n b 是以3833311-=-=-a b 为首项,32为公比的等比数列.1)32(383-⨯-=-n n b .因n n n a b 3=,)3)32(38(331+⨯-==∴-n n n n n b a ⇒2123++-=n n n a .例11. 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;例12. 数列{}n a 满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。
解:由02312=+-++n n n a a a 得0)(2112=---+++n n n n a a a a 即)n n n n a a a a -=-+++112(2,且32512=-=-a a ∴}{1n n a a -+是以2为公比,3为首项的等比数列 ∴1123-+⋅=-n n n a a利用逐差法 ∴1231-⨯=-n n a例13.已知数列{}n a 满足11=a ,22=a ,n n n a a a 313212+=++求n a . 解:设)(112n n n n sa a t sa a -=-+++⇒n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 则条件可以化为)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a .问题转化为利用累加法求数列的通项的问题,解得1)31(4347---=n n a .求n s 的四种方法:①若数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法.②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.例:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。