一轮复习第五章-3等比数列及其前n项和

合集下载

2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案

2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案

第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
[解析]
由题意知aa11>+0a,1q+q>a10q,2+a1q3=15, a1q4=3a1q2+4a1,
解得aq1==21,,∴a3=a1q2=4.故选 C.
[答案] C
(2)(2019·高考全国卷Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1=13,a24=a6,则 S5 =________.
[解析] 由 a24=a6 得(a1q3)2=a1q5,
整理得 q=a11=3.∴S5=13(11--335)=1231.
[答案]
121 3
(3)(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式; ②记 Sn 为{an}的前 n 项和.若 Sm=63,求 m. [解析] ①设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1.
[解析] (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8, 即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1. 所以{an-bn}是首项为 1,公差为 2 的等差数列.
A.4
B.8
C.16
D.32
答案:C
2.(基础点:等比数列的前 n 项和)设{an}是公比为正数的等比数列,若 a1=1,a5

高考数学一轮总复习 第五章 第3节 等比数列及其前n项和课件

高考数学一轮总复习 第五章 第3节 等比数列及其前n项和课件
(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),{a1n},
{a2n},{an·bn},{abnn}仍是等比数列.
5.等比数列的前 n 项和公式
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn,
当 q=1 时,Sn=na1; 当 q≠1 时,Sn=a111--qqn=a11--aqnq. • 6.等比数列前n项和的性质 • 公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn, S3n-S2n仍成等比数列,其公比为__q_n.
(2)设数列{an}的公比为 q,S9-S3=S6-S9,显然 q≠1, ∴a4qq-6-1 1=-a4qq-3q13-1,∴q3=-12,
∴q= 3 -12,又 a2+a5=2am,则 a2(1+q3)=2a2qm-2, 即12=(-1)m-3 2·(12)m-3 5,∴m=8. • [答案] (1)C (2)8
第五章 数 列
第3节 等比数列及其前n项和
• 1.理解等比数列的概念. • 2.掌握等比数列的通项公式与前n项和公式. • 3.能在具体的问题情境中识别数列的等比关系,并能用有
关知识解决相应的问题.
• 4.了解等比数列与指数函数的关系.
• [要点梳理]
• 1.等比数列的定义 • 如果一个数列从第2项起,每一项与它的前一项的比等于同
[解析] 设等比数列的公比为 q,由 a2+a4=20,a3+a5= 40.
得 20q=40,且 a1q+a1q3=20,解之得 q=2,且 a1=2. 因此 Sn=a111--qqn=2n+1-2. [答案] 2 2n+1-2
• 考向一 等比数列基本量的计算
• 例1 (1)(2013·新课标高考全国卷)等比数列{an}的前n项和 为Sn,已知S3=a2+10a1,a5=9,则a1=( )

高考数学(文)一轮复习 5-3等比数列及其前n项和

高考数学(文)一轮复习 5-3等比数列及其前n项和
B.-13 D.-19
解析 由 S3=a2+10a1,得 a1+a2+a3=a2+10a1,即 a3=9a1,即aa31=q2=9,又因为 a5=9,所以 a1q4 =9,解得 a1=19.
18
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
(2)在等比数列{an}中,Sn 是它的前 n 项和,若 q=2,且 a2 与 2a4 的等差中项为 18,则 S5=( )
可以通过构造方程或方程组求另外两个变量,在求公比 q 时,要注意应用 q≠0 验证求得的结果.
17
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
【变式训练 1】 =( )
1 A.3
1 C.9
(1)[2016·海南调研]等比数列{an}的前 n 项和为 Sn,已知 S3=a2+10a1,a5=9,则 a1
板块二
板块三
板块四
板块五
高考一总复习 ·数学(文)
2.[2016·湖北黄冈调研]设等比数列{an}中,公比q=2,前n项和为Sn,则Sa43的值(
)
15
15
A. 4
B. 2
7
7
C.4
D.2
解析 S4=a111--qq4=15a1,a3=a1q2=4a1, ∴Sa43=145,选 A 项.
10
板块一
为正数,故 q=
2.又因为
a2=1,所以
a1=aq2=
1= 2
2 2.
12
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
5.[2015·课标全国卷Ⅰ]在数列{an}中,a1=2,an+1=2an,Sn 为{an}的前 n 项和.若 Sn=126,则 n=__6______.

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。

一轮复习等比数列及其前n项和

一轮复习等比数列及其前n项和

5.等比数列的前 n 项和公式
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn, 当 q=1 时,Sn=na1; 当 q≠1 时,Sn=a1(11--qqn)=a11--aqnq.
6.等比数列前 n 项和的性质
公比不为-1 的等比数列{an}的前 n 项和为 Sn,则 Sn, S2n-Sn,S3n-S2n 仍成等比数列,其公比为_q_n__.
题型分类 深度剖析
题型一 等比数列的基本量的运算
例 1 已知等比数列{an}中,a1+a2+a3=7,a1a2a3=8, 求 an. 思维启迪:利用等比数列的基本量的关系式,根据条
件列方程,进而求出 a1 和 q.
解 设{an}的公比为 q,由题意知
a1+a1q+a1q2=7, a1·a1q·a1q2=8,
=a4-2,3S2=a3-2,则公比 q 等于 ( B )
A.3
B.4
C.5
D.6
解析 由已知得 3S3=a4-2,3S2=a3-2,两式作差得
3(S3-S2)=a4-a3,化简整理得 a4=4a3,故公比 q=4.
5.在等比数列{an}中,前 n 项和为 Sn,若 S3=7,S6=63,
则公比 q 的值是( A )
[难点正本 疑点清源] 1.等比数列的特征
从等比数列的定义看,等比数列的任意项都是非零的, 公比 q 也是非零常数. 2.等比数列中的函数观点 利用函数、方程的观点和方法,揭示等比数列的特征及 基本量之间的关系.在借用指数函数讨论单调性时,要 特别注意首项和公比的大小.
3.等比数列的前 n 项和 Sn (1)等比数列的前 n 项和 Sn 是用错位相减法求得的,注意 这种思想方法在数列求和中的运用. (2)等比数列的通项公式 an=a1qn-1 及前 n 项和公式 Sn= a1(11--qqn)=a11--aqnq (q≠1)共涉及五个量 a1,an,q,n, Sn,知三求二,体现了方程的思想的应用. (3)在使用等比数列的前 n 项和公式时,如果不确定 q 与 1 的关系,一般要用分类讨论的思想,分公比 q=1 和 q≠1 两种情况.

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

因为 q<1,解得 q=-1 或 q=-2. 当 q=-1 时,代入①得 a1=2, - 通项公式 an=2×(-1)n 1; 1 当 q=-2 时,代入①得 a1=2, 1 通项公式 an=2×(-2)n-1.
点评:等比数列基本量的运算是等比数列中的一类基本问 题,解决这类问题的关键在于熟练掌握等比数列的有关公式, 并能灵活运用.尤其需要注意的是,在使用等比数列的前 n 项 和公式时,应根据公比的取值情况进行分类讨论,此外在运算 过程中,还应善于运用整体代换思想简化运算过程.
高中数学
5.3 等比数列及其前n项和
考纲点击 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用 有关知识解决相应的问题. 4.了解等比数列与指数函数的关系
说基础
课前预习读教材
考点梳理 1.等比数列的定义 如果一个数列从第二项起,①____________等于同一个常 数,这个数列叫做等比数列,这个常数叫做等比数列的 ② ______.公比通常用字母 q 表示(q≠0). 2.通项公式与前 n 项和公式. (1)通项公式:③__________,a1 为首项,q 为公比. (2)前 n 项和公式: 当 q=1 时, ④__________; 当 q≠1 时, ⑤______________.
解析:由等比数列的性质知:a1· a19=16=a8· a12=a2 10,∴ a10=4,则 a8· a10· a12=a3 10=64,故选 B. 答案:B
1n 3. 若等比数列{an}的前 n 项和为 Sn=3( ) +m(n∈N*), 则 2 实数 m 的取值为( ) 3 A.- B.-1 2 C.-3 D.一切实数n-1 Nhomakorabea1 -2

高考数学一轮复习 第五章 第三节 等比数列及其前n项和

高考数学一轮复习 第五章 第三节 等比数列及其前n项和

第三节 等比数列及其前n 项和考点一 等比数列的判定与证明[例1] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.[自主解答] a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n . b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n =2, ∵S 2=a 1+a 2=4a 1+2,∴a 2=5. ∴b 1=a 2-2a 1=3.∴数列{b n }是首项为3,公比为2的等比数列. 【互动探究】保持本例条件不变,若c n =a n3n -1,证明:{c n }是等比数列. 证明:由例题知,b n =3·2n -1=a n +1-2a n , ∴a n +12n -1-a n2n -2=3. ∴数列⎩⎨⎧⎭⎬⎫a n 2n -2是首项为2,公差为3的等差数列.∴a n2n -2=2+(n -1)×3=3n -1,∴a n =(3n -1)·2n -2,∴c n =2n -2. ∴c n +1c n =2n -12n -2=2. ∴数列{c n }为等比数列. 【方法规律】等比数列的判定方法证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n-1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m解析:选C b n =a m (n -1)+1·(1+q +q 2+…+q m -1),b n +1b n =a mn +1a mn +1-m=q m,故数列{b n }为等比数列,公比为q m ,选项A 、B 均错误;c n =a m mn -1+1·q 1+2+…+(m -1),c n +1c n =a m mn +1a m mn +1-m =⎝ ⎛⎭⎪⎫a mn +1a mn +1-m m =(q m )m=22高频考点 考点二 等比数列的基本运算[例2] (1)(2013·新课标全国卷Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19(2)(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.(3)(2013·湖北高考)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.①求数列{a n }的通项公式;②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.[自主解答] (1)由已知条件及S 3=a 1+a 2+a 3,得a 3=9a 1,设数列{a n }的公比为q ,则q 2=9.所以a 5=9=a 1·q 4=81a 1,得a 1=19.(2)由S 2=3a 2+2,S 4=3a 4+2作差,可得a 3+a 4=3a 4-3a 2,即2a 4-a 3-3a 2=0,所以2q 2-q -3=0,解得q =32或q =-1(舍).(3)①设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q 1+q +q 2=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. ②由①有S n =3×[1--2n]1--2=1-(-2)n.若存在n ,使得S n ≥2 013,则1-(-2)n≥2 013,即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立;当n 为奇数时,(-2)n =-2n≤-2 012,即2n≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.[答案] (1)C (2)32等比数列基本量运算问题的常见类型及解题策略(1)化基本量求通项.求等比数列的两个基本元素a 1和q ,通项便可求出,或利用知三求二,用方程求解.(2)化基本量求特定项.利用通项公式或者等比数列的性质求解. (3)化基本量求公比.利用等比数列的定义和性质,建立方程组求解.(4)化基本量求和.直接将基本量代入前n 项和公式求解或利用等比数列的性质求解.1.(2013·新课标全国卷Ⅰ)设首项为1,公比23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:选D 因为a 1=1,公比q =23,所以a n =⎝ ⎛⎭⎪⎫23n -1,S n =a 11-q n 1-q =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n =3-2⎝ ⎛⎭⎪⎫23n -1=3-2a n .2.(2014·宁波模拟)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设数列{a n }的首项为a 1,公比为q , ∵a 25=a 10,2(a n +a n +2)=5a n +1,∴⎩⎪⎨⎪⎧ a 21·q 8=a 1·q 9,21+q 2=5q ,①②由①得a 1=q ,由②知q =2或q =12,又数列{a n }为递增数列,∴a 1=q =2,从而a n =2n.答案:2n3.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .解:(1)∵S 1,S 3,S 2成等差数列,∴a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12.(2)由已知可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3,故a 1=4,从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1- ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .考点三 等比数列的性质[例3] n 1234569项之和等于( )A .50B .70C .80D .90(2)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 [自主解答] (1)∵S 3,S 6-S 3,S 9-S 6成等比数列,∴S 3·(S 9-S 6)=(S 6-S 3)2, 又S 3=40,S 6=40+20=60,∴40(S 9-60)=202,故S 9=70.(2)由已知得⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4.当a 4=4,a 7=-2时,易得a 1=-8,a 10=1,从而a 1+a 10=-7; 当a 4=-2,a 7=4时,易得a 10=-8,a 1=1,从而a 1+a 10=-7. [答案] (1)B (2)D 【方法规律】等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m 的值为( )解析:选A 因为{a n }是等比数列,所以a m -1a m +1=a 2m , 又由a m -1a m +1-2a m =0,可知a m =2.由等比数列的性质可知前(2m -1)项积T 2m -1=a 2m -1m ,即22m -1=128,故m =4.2.在等比数列{a n }中,若a 1·a 2·a 3·a 4=1,a 13·a 14·a 15·a 16=8,则a 41·a 42·a 43·a 44=________.解析:法一:a 1·a 2·a 3·a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,①a 13·a 14·a 15·a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②由②÷①,得a 41·q 54a 41·q6=q 48=8⇒q 16=2,又a 41·a 42·a 43·a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1×210=1 024.法二:由性质可知,依次4项的积为等比数列, 设公比为q ,T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·q 3=1·q 3=8,即q =2.∴T 11=a 41·a 42·a 43·a 44=T 1·q 10=210=1 024. 答案:1 024——————————[课堂归纳——通法领悟]———————————————— 2个注意点——应用等比数列的公比应注意的问题(1)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0.(2)在应用等比数列的前n 项和公式时,必须注意对q =1和q ≠1分类讨论,防止因忽略q =1这一特殊情况而导致错误.4种方法——等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零 常数且n ≥2),则{a n }是等比数列;(2)等比中项法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列;(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列;(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法也可用来证明一个数列为等比数列.。

高考数学一轮复习第五章数列第3节等比数列及其前n项和课件

高考数学一轮复习第五章数列第3节等比数列及其前n项和课件
【答案】 (1)× (2)× (3)× (4)×
2.等比数列 x,3x+3,6x+6,…的第四项等于( )
A.-24
B.0
C.12
D.24
【解析】 由题意可知(3x+3)2=x(6x+6),即 x2+4x+3=0, 解得 x=-3 或 x=-1(舍去),所以等比数列的前 3 项是-3,-6,-12, 则第四项为-24. 【答案】 A
二、等比数列的性质 1.对任意的正整数 m、n、p、q,若 m+n=p+q=2k,则 am·an= ap·a=q a2k. 2.通项公式的推广:an=am qn-m(m,n∈N*). 3.公比不为-1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n-Sn,S3n-S2n 仍成等比数列,其公比为 qn ;当公比为-1 时,Sn,S2n-Sn,S3n-S2n 不一定构 成等比数列.
则数列{an}的前 n 项和等于

【解析】 (1)显然公比 q≠1,设首项为 a1,则由 S3+3S2=0,得a111--qq3= -3×a111--qq2,即 q3+3q2-4=0,即 q3-q2+4q2-4=q2(q-1)+4(q2-1)=0, 即(q-1)(q2+4q+4)=0,所以 q2+4q+4=(q+2)2=0,解得 q=-2.
[规律总结] 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别 是性质“若 m+n=p+q,则 am·an=ap·aq”,可以减少运算量,提高解题速度. 2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适 当变形.此外,解题时注意设而不求思想的运用.
[变式训练]
1.在等比数列{an}中,若 a2+a3=2,a12+a13=3,则 a22+a23 的值是( )

高考数学一轮复习配套讲义:第5篇 第3讲 等比数列及其前n项和

高考数学一轮复习配套讲义:第5篇 第3讲 等比数列及其前n项和

第3讲等比数列及其前n项和[最新考纲]1.理解等比数列的概念,掌握等比数列的通项公式及前n项和公式.2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.3.了解等比数列与指数函数的关系.知识梳理1.等比数列的有关概念(1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.数学语言表达式:a na n-1=q(n≥2),q为常数.(2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 若等比数列{a n }的第m 项为a m ,公比是q ,则其第n 项a n 可以表示为a n =a m q n -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q. 3.等比数列及前n 项和的性质(1)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .(4)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.辨 析 感 悟1.对等比数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×) (3)若三个数成等比数列,那么这三个数可以设为aq ,a ,aq .(√) 2.通项公式与前n 项和的关系(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n)1-a.(×)(5)(·新课标全国Ⅰ卷改编)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则S n=3-2a n.(√)3.等比数列性质的活用(6)如果数列{a n}为等比数列,则数列{ln a n}是等差数列.(×)(7)(·兰州模拟改编)在等比数列{a n}中,已知a7·a12=5,则a8a9a10a11=25.(√)(8)(·江西卷改编)等比数列x,3x+3,6x+6,…的第四项等于-2或0.(×)[感悟·提升]1.一个区别等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值.如(1)中的“常数”,应为“同一非零常数”;(2)中,若b2=ac,则不能推出a,b,c成等比数列,因为a,b,c为0时,不成立.2.两个防范一是在运用等比数列的前n项和公式时,必须注意对q=1或q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误,如(4).二是运用等比数列的性质时,注意条件的限制,如(6)中当a n+1a n=q<0时,ln a n+1-ln a n=ln q无意义.学生用书第85页考点一等比数列的判定与证明【例1】(·济宁测试)设数列{a n}的前n项和为S n,若对于任意的正整数n都有S n=2a n-3n,设b n=a n+3.求证:数列{b n}是等比数列,并求a n.证明由S n=2a n-3n对于任意的正整数都成立,得S n+1=2a n+1-3(n+1),两式相减,得S n+1-S n=2a n+1-3(n+1)-2a n+3n,所以a n+1=2a n+1-2a n-3,即a n+1=2a n+3,所以a n+1+3=2(a n+3),即b n+1b n=a n+1+3a n+3=2对一切正整数都成立,所以数列{b n}是等比数列.由已知得:S 1=2a 1-3,即a 1=2a 1-3,所以a 1=3, 所以b 1=a 1+3=6,即b n =6·2n -1. 故a n =6·2n -1-3=3·2n -3.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【训练1】 (·陕西卷)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. ∴假设不成立,∴{a n +1}不是等比数列.考点二 等比数列基本量的求解【例2】 (·湖北卷)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.审题路线 (1)建立关于a 1与q 的方程组可求解.(2)分两种情况,由a n ⇒1a n ⇒再用等比数列求和求∑n =1m 1a n⇒得到结论.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎨⎧a 31q 3=125,|a 1q -a 1q 2|=10, 解得⎩⎪⎨⎪⎧a 1=53,q =3或⎩⎨⎧a 1=-5,q =-1.故a n =53·3n -1或a n =-5·(-1)n -1. (2)若a n =53·3n -1,则1a n=35⎝ ⎛⎭⎪⎫13n -1,则⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列. 从而∑n =1m 1a n =35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m 1-13=910·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m <910<1. 若a n =-5·(-1)n -1,则1a n=-15(-1)n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列, 从而∑n =1m1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N *),0,m =2k (k ∈N *),故∑n =1m 1a n<1.综上,对任何正整数m ,总有∑n =1m 1a n<1.故不存在正整数m ,使得1a 1+1a 2+…+1a n≥1成立.规律方法 等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.【训练2】 (1)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.解析 (1)显然公比q ≠1,由题意可知9(1-q 3)1-q =1-q 61-q,解得q =2,则数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得数列⎩⎨⎧⎭⎬⎫1a n 的前5项和T 5=3116.(2)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎨⎧a 1=4,q =12或⎩⎨⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝ ⎛⎭⎪⎫1-1251-12=314.答案 (1)3116 (2)314考点三 等比数列性质的应用【例3】 (1)(·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ).A .7B .5C .-5D .-7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析 (1)由已知得⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4.当a 4=4,a 7=-2时,易得a 1=-8,a 10=1,从而a 1+a 10=-7; 当a 4=-2,a 7=4时,易得a 10=-8,a 1=1,从而a 1+a 10=-7. (2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12. 答案 (1)D (2)-12规律方法 熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多,主要是考查“等积性”,题目“小而巧”且背景不断更新.解题时要善于类比并且要能正确区分等差、等比数列的性质,不要把两者的性质搞混.【训练3】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为 ( ). A .-3 B .±3 C .-3 3D .±3 3(2)(·昆明模拟)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( ).A .4B .6C .8D .8-4 2解析(1)由等比中项知y2=3,∴y=±3,又∵y与-1,-3符号相同,∴y=-3,y2=xz,所以xyz=y3=-3 3.(2)由等比数列性质,得a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8.答案(1)C(2)C1.等比数列的判定方法有以下几种:(1)定义:a n+1a n=q(q是不为零的常数,n∈N*)⇔{an}是等比数列.(2)通项公式:a n=cq n-1(c、q均是不为零的常数,n∈N*)⇔{a n}是等比数列.(3)等比中项法:a2n+1=a n·a n+2(a n·a n+1·a n+2≠0,n∈N*)⇔{a n}是等比数列.2.方程观点以及基本量(首项a1和公比q)思想仍然是求解等比数列问题的基本方法:在a1,q,n,a n,S n五个量中,知三求二.3.在求解与等比数列有关的问题时,除了要灵活地运用定义和公式外,还要注意等比数列性质的应用,以减少运算量而提高解题速度.教你审题6——如何确定数列中的项【典例】(·山东卷)在等差数列{a n}(1)求数列{a n}的通项公式;(2)对任意m∈N*列{b m}的前m项和S m.[审题]一审条件❶:根据性质转化为先求a4,再结合a9求a1和d.二审条件❷:转化为求{b m}的通项公式,尽而再求S m.三审结构:由9m <a n <92m 得9m -1+1≤n ≤92m -1.解 (1)由a 3+a 4+a 5=84,可得3a 4=84,即a 4=28,而a 9=73,则5d =a 9-a 4=45,即d =9.又a 1=a 4-3d =28-27=1,所以a n =1+(n -1)×9=9n -8,即a n =9n -8(n ∈N *).(2)对任意m ∈N *,9m <9n -8<92m ,则9m +8<9n <92m +8, 即9m -1+89<n <92m -1+89,而n ∈N *,所以9m -1+1≤n ≤92m -1. 由题意,可知b m =92m -1-9m -1.于是S m =b 1+b 2+…+b m =91+93+…+92m -1-(90+91+…+9m -1)=9-92m +11-92-1-9m 1-9=92m +1-980-9m -18=92m +1-10×9m +180,即S m =92m +1-10×9m +180.[反思感悟] 本题第(2)问设置了落入区间内的项构成新数列,这是对考生数学能力的挑战,由通项公式及已知区间建立不等式求项数,进而得到所求数列{b m }的通项公式是解答该问题的核心与关键. 【自主体验】(·许昌模拟)已知点(1,2)是函数f (x )=a x (a >0,且a ≠1)的图象上一点,数列{a n }的前n 项和S n =f (n )-1. (1)求数列{a n }的通项公式;(2)求数列{a n }前2 013项中的第3项,第6项,…,第3k 项删去,求数列{a n }前2 013项中剩余项的和.解 (1)把点(1,2)代入函数f (x )=a x ,得a =2. ∴S n =f (n )-1=2n -1,当n =1时,a 1=S 1=21-1=1,当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1,经验证可知n =1时,也适合上式,∴a n =2n -1.(2)由(1)知数列{a n }为等比数列,公比为2,故其第3项,第6项,…,第2 013项也为等比数列,首项a 3=23-1=4,公比23=8,a 2 013=22 102=4×8671-1为其第671项,∴此数列的和为4(1-8671)1-8=4(22 013-1)7,又数列{a n }的前2 013项和为S 2 103=1×(1-22 013)1-2=22 013-1,∴所求剩余项的和为(22 013-1)-4(22 013-1)7=3(22 013-1)7.基础巩固题组(建议用时:40分钟)一、选择题1.(·六安二模)已知数列{a n }的前n 项和S n =3n -2,n ∈N *,则 ( ).A .{a n }是递增的等比数列B .{a n }是递增数列,但不是等比数列C .{a n }是递减的等比数列D .{a n }不是等比数列,也不单调 解析 ∵S n =3n -2,∴S n -1=3n -1-2,∴a n =S n -S n -1=3n -2-(3n -1-2)=2×3n -1(n ≥2), 当n =1时,a 1=S 1=1不适合上式,但a 1<a 2<a 3<…. 答案 B2.(·广州模拟)已知等比数列{a n }的公比q =2,前n 项和为S n .若S 3=72,则S 6等于( ). A.312 B.632 C .63D.1272解析 S 3=a 1(1-23)1-2=7a 1=72,所以a 1=12.所以S 6=a 1(1-26)1-2=63a 1=632.答案 B3.(·新课标全国Ⅱ卷)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A.13 B .-13 C.19D .-19解析 由题知q ≠1,则S 3=a 1(1-q 3)1-q =a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19. 答案 C4.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为 ( ). A .1 B .-12 C .1或-12 D .-1或12解析 根据已知条件⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21.得1+q +q 2q 2=3.整理得2q 2-q -1=0,解得q =1或-12. 答案 C5.(·浙江十校联考)若方程x 2-5x +m =0与x 2-10x +n =0的四个根适当排列后,恰好组成一个首项为1的等比数列,则m ∶n 值为 ( ).A.14B.12 C .2D .4解析 设方程x 2-5x +m =0的两根为x 1,x 2,方程x 2-10x +n =0的两根为x 3,x 4.则⎩⎪⎨⎪⎧x 1+x 2=5,x 1·x 2=m ,⎩⎪⎨⎪⎧x 3+x 4=10,x 3·x 4=n ,由题意知x 1=1,x 2=4,x 3=2,x 4=8,∴m =4,n =16,∴m ∶n =14. 答案 A 二、填空题6.(·江西九校联考)实数项等比数列{a n }的前n 项的和为S n ,若S 10S 5=3132,则公比q 等于________.解析 首先q ≠1,因为若q =1,则S 10S 5=2,当q ≠1时,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q=1-q 101-q 5=(1-q 5)(1+q 5)1-q 5=3132,q 5=-132,q =-12. 答案 -127.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析 ∵a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,∴q 2=2,∴a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240. 答案 2408.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析 由已知条件,得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=-2.答案 -2 三、解答题9.在数列{a n }中,已知a 1=-1,且a n +1=2a n +3n -4(n ∈N *). (1)求证:数列{a n +1-a n +3}是等比数列; (2)求数列{a n }的通项公式及前n 项和S n .(1)证明 令b n =a n +1-a n +3,则b n +1=a n +2-a n +1+3=2a n +1+3(n +1)-4-2a n -3n +4+3=2(a n +1-a n +3)=2b n ,即b n +1=2b n .由已知得a 2=-3,于是b 1=a 2-a 1+3=1≠0.所以数列{a n +1-a n +3}是以1为首项,2为公比的等比数列. (2)解 由(1)可知b n =a n +1-a n +3=2n -1, 即2a n +3n -4-a n +3=2n -1, ∴a n =2n -1-3n +1(n ∈N *), 于是S n =(1+2+22+…+2n -1)-3(1+2+3+…+n )+n =1-2n 1-2-3×n (n +1)2+n=2n-3n 2+n 2-1.10.(·济南期末)已知等差数列{a n }的前n 项和为S n ,且满足a 2=4,a 3+a 4=17. (1)求{a n }的通项公式;(2)设b n =2a n +2,证明数列{b n }是等比数列并求其前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .由题意知⎩⎨⎧a 3+a 4=a 1+2d +a 1+3d =17,a 2=a 1+d =4, 解得a 1=1,d =3, ∴a n =3n -2(n ∈N *).(2)证明:由题意知,b n =2a n +2=23n (n ∈N *), b n -1=23(n -1)=23n -3(n ∈N *,n ≥2),∴b n b n -1=23n 23n -3=23=8(n ∈N *,n ≥2),又b 1=8, ∴{b n }是以b 1=8,公比为8的等比数列, T n =8(1-8n )1-8=87(8n -1).能力提升题组 (建议用时:25分钟)一、选择题1.(·兰州模拟)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( ). A .-15 B .-5 C .5D.15解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1an =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5. 答案 B2.(·山东省实验中学诊断)在各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值是( ).A .16B .8C .2 2D .4解析 由题意知a 4·a 14=(22)2=a 29,即a 9=2 2.设公比为q (q >0),所以2a 7+a 11=2a 9q 2+a 9q 2=42q 2+22q 2≥ 242q 2×22q 2=8,当且仅当42q2=22q 2,即q =42时取等号,其最小值为8. 答案 B 二、填空题3.(·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2或q =-3(舍去), a n =a 5qn -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 12 三、解答题4.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为 a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N*,总有-712≤S n-1S n≤56.所以数列{T n}最大项的值为56,最小项的值为-712.。

高三一轮复习第五章 第三节等比数列及其前n项和

高三一轮复习第五章 第三节等比数列及其前n项和

课时作业1.(2022·三明月考)若S n为数列{a n}的前n项和,且S n=2a n-2,则S8等于( ) A.255 B.256C.510 D.511【解析】 当n=1时,a1=2a1-2,据此可得:a1=2,当n≥2时:S n=2a n-2,S n-1=2a n-1-2,两式作差可得:a n=2a n-2a n-1,则:a n=2a n-1,据此可得数列{a n}是首项为2,公比为2的等比数列,其前8项和为:S8=2×(1-28)1-2=29-2=512-2=510.故选C.【答案】 C2.等比数列{a n}中,其公比q<0,且a2=1-a1,a4=4-a3,则a4+a5等于( ) A.8 B.-8C.16 D.-16【解析】 q2=a3+a4a1+a2=4,q=-2.a4+a5=(a3+a4)q=-8.【答案】 B3.(2022·湛江二模)已知递增的等比数列{a n}中,a2=6,a1+1、a2+2、a3成等差数列,则该数列的前6项和S6=( )A.93 B.189C.18916D.378【解析】 设数列的公比为q,由题意可知:q>1,且:2(a2+2)=a1+1+a3,即:2×(6+2)=6q+1+6q,整理可得:2q2-5q+2=0,则q=2,(q=12舍去).则:a1=62=3,该数列的前6项和S6=3×(1-26)1-2=189.故选B.【答案】 B4.(2022·贵阳一中模拟考试)已知各项均为正数的等比数列{a n},前3项和为13,a3=a2·a4,则a4=( )A.13B.19C.1 D.3 【解析】 ∵a3=a2a4,又a n>0,∴a3=1,S3=a3q2+a3q+1=13,又q>0,∴q=13,∴a4=a3q=13,【答案】 A5.(2022·贵州模拟)已知等比数列{a n}的前n项和为S n,若a2=32,S3=214,则数列{a n}的公比为( )A.2或12B.-2或-12C.-12或2 D.12或-2【解析】 设等比数列{a n}的公比为q,则a2=a1q=32,S3=a1(1+q+q2)=214,两式相除得(1+q+q2)q=72,即2q2-5q+2=0,解得q=12或2.故选A.【答案】 A6.(2022·安徽淮北模拟)5个数依次组成等比数列,且公比为-2,则其中奇数项和与偶数项和的比值为( )A.-2120B.-2C.-2110D.-215【解析】 由题意可知设这5个数分别为a,-2a,4a,-8a,16a,a≠0,故奇数项和与偶数项和的比值为a+4a+16a-2a-8a=-2110.【答案】 C7.(2022·大庆二模)已知各项均不为0的等差数列{a n},满足2a3-a27+2a11=0,数列{b n}为等比数列,且b7=a7,则b1·b13=( )A.16 B.8C.4 D.2【解析】 各项均不为0的等差数列{a n},2a3-a27+2a11=0∴4a7-a27=0,∴a7=4b1·b13=b27=a27=16.故选A【答案】 A8.(2022·山西晋中一模)已知等比数列{a n}的各项均为正数,且2a1+3a2=16,2a2+a3=a4,则log2a1+log2a2+log2a3+…+log2a100等于( )A.11 000 B.5 050C.5 000 D.10 000【解析】 设等比数列{a n}的公比为q,因为等比数列{a n}的各项均为正数,所以q>0,因为2a2+a3=a4,所以2a2+a2q=a2q2,即q2-q-2=0,解得q=2或q=-1(舍去),因为2a1+3a2=16,即2a1+3a1q=16,解得a1=2,所以通项公式为a n=a1q n-1=2×2n-1=2n,所以log2a n=log22n=n,所以log2a1+log2a2+log2a3+…+log2a100=1+2+3+…+100=(1+100)×1002=5050.故选B.【答案】 B9.(多选)(2022·广东肇庆模拟)已知数列{a n}是等比数列,公比为q,前n项和为S n,下列判断错误的有( )A.{1a n}为等比数列B.{log2a n}为等差数列C.{a n+a n+1}为等比数列D.若S n=3n-1+r,则r=-1 3【解析】 令b n=1a n,则b n+1b n=a na n+1=1q(n∈N+),所以{1a n}是等比数列,选项A正确;若a n<0,则log2a n无意义,所以选项B错误;当q =-1时,a n +a n +1=0,此时{a n +a n +1}不是等比数列,所以选项C 错误;若S n =3n -1+r ,则a 1=S 1=1+r ,a 2=S 2-S 1=3+r -(1+r )=2, a 3=S 3-S 2=9+r -(3+r )=6, 由{a n }是等比数列,得a 2=a 1a 3,即4=6(1+r ),解得r =-13,所以选项D 正确.故选BC .【答案】 BC10.(多选)(2022·浙江镇海中学模拟)设{a n }为等比数列,设S n 和T n 分别为{a n }的前n 项和与前n 项积,则下列选项正确的是( )A .若S 2023≥S 2 022,则{S n }不一定是递增数列B .若T 2 024≥T 2 023,则{T n }不一定是递增数列C .若{S n }为递增数列,则可能存在a 2 022<a 2 021D .若{T n }是递增数列,则a 2 022>a 2 021一定成立【解析】 对于选项A ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,S 2 023=1,S 2 022=0,S 2 021=1,满足S 2 023≥S 2 022,但S 2 021>S 2 022, 所以{S n }不是递增数列,故选项A 正确;对于选项B ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,T 2 023=-1,T 2 024=1,T 2 026=-1,满足T 2 024≥T 2 023,但{T n }不是递增数列,故选项B 正确;对于选项C ,当{a n }为:1,12,14,18,…,时,S n =1-12n1-12=2(1-12n ),满足{S n }为递增数列,此时a 2 022=122 021<a 2 021=122 020,故选项C 正确; 对于选项D ,当{a n }为:2,2,2,…,时, T n =2n ,满足{T n }是递增数列,但是a 2 022=a 2 021=2,故选项D 不正确. 【答案】 ABC11.(2022·北京海淀高三上期末)设等比数列{a n }的前n 项和为S n .若-S 1、S 2、a 3 成等差数列,则数列{a n }的公比为________.【解析】 设等比数列{a n }的公比为q ,因为等比数列{a n }的前n 项和为S n ,-S 1、S 2、a 3成等差数列,所以2S 2=-S 1+a 3,则2(a 1+a 2)=-a 1+a 3,因此3a 1+2a 2=a 3,所以q 2-2q -3=0,解得q =3或q =-1. 【答案】 3或-112.(2022·新乡三模)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).【解析】 很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-qa 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.【答案】 -1213.(2022·石家庄二模)已知前n 项和为S n 的等比数列{a n }中,8a 2=a 3a 4,S 5=a 6-4. (1)求数列{a n }的通项公式; (2)求证:14≤1a 1+1a 2+…+1a n <12.【解】 (1)设等比数列{a n }的公比为q ,首项为a 1, 由8a 2=a 3a 4有q 3=a 3a 4a=8,可得q =2, 又由S 5=a 6-4,有a 1(1-25)1-2=32a 1-4,解得a 1=4,有a n =4×2n -1=2n +1.故数列{a n }的通项公式为a n =2n +1. (2)证明:由1an =(12)n +1,可得1a1+1a2+…+1a n=14[1-(12)n]1-12=12-12n+1,又n∈N*,所以12-12n+1<12;而12-12n+1显然随n的增大而增大,所以12-12n+1≥14,因此14≤1a1+1a2+…+1a n<12.14.(2022·威海市高三模拟)已知正项等差数列{a n}的前n项和为S n,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{a n}的通项公式;(2)设b n=a n3n,记数列{b n}的前n项和为T n,求T n.【解】 (1)∵S3=12,即a1+a2+a3=12,∴3a2=12,所以a2=4.又∵2a1,a2,a3+1成等比数列,∴a2=2a1·(a3+1),即a2=2(a2-d)·(a2+d+1),解得,d=3或d=-4(舍去),∴a1=a2-d=1,故a n=3n-2.(2)b n=a n3n=3n-23n=(3n-2)·13n,∴T n=1×13+4×132+7×133+…+(3n-2)×13n,①①×13得13T n=1×132+4×133+7×134+…+(3n-5)×13n+(3n-2)×13n+1.②①-②得2 3 T n=13+3×132+3×133+3×134+ (3)13n-(3n-2)×13n+1=13+3×132(1-13n-1)1-13-(3n-2)×13n+1=56-12×13n-1-(3n-2)×13n+1,∴T n=54-14×13n-2-3n-22×13n=54-6n+54×13n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节等比数列及其前n项和对应学生用书P76基础盘查一等比数列的有关概念(一)循纲忆知理解等比数列的概念(定义、公比、等比中项).(二)小题查验1.判断正误(1)常数列一定是等比数列( )(2)等比数列中不存在数值为0的项( )(3)满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列( )(4)G为a,b的等比中项⇔G2=ab( )2.已知数列a,a(1-a),a(1-a)2,…是等比数列,则实数a的取值范围是( )A.a≠1 B.a≠0或a≠1C.a≠0 D.a≠0且a≠1基础盘查二等比数列的有关公式(一)循纲忆知1.掌握等比数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.(二)小题查验1.判断正误(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=a1q n( )(2)数列{a n}的通项公式是a n=a n,则其前n项和为S n=a(1-a n)1-a( )2.(人教A版教材习题改编)在等比数列{a n}中,已知a1=-1,a4=64,则q=________,S4=________. 基础盘查三等比数列的性质(一)循纲忆知掌握等比数列的性质及应用.(二)小题查验1.判断正误(1)q>1时,等比数列{a n}是递增数列( )(2)在等比数列{a n}中,若a m·a n=a p·a q,则m+n=p+q( )(3)在等比数列{a n}中,如果m+n=2k(m,n,k∈N*),那么a m·a n=a2k( )(4)若数列{a n }是等比数列,则数列⎩⎨⎧⎭⎬⎫1a n 是等比数列( )(5)如果数列{a n }为等比数列,则数列{ln a n }是等差数列( )2.(北师大版教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列 C .公比为q 3的等比数列 D .不一定是等比数列对应学生用书P76考点一 等比数列的基本运算(基础送分型考点——自主练透)[必备知识]等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.[提醒] 运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论.[题组练透]1.(2015·东北三校联考)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为( ) A.43(210-1) B.43(210+1)C.43(2-10-1) D.43(2-10+1) 2.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或123.(2015·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n -1C .2n -1D .2n-14.设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }前n 项和T n .[类题通法]解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n=na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.考点二 等比数列的判定与证明(题点多变型考点——全面发掘)[必备知识]1.定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.定义的表达式为a n +1a n=q . 2.等比中项G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .[提醒] 在等比数列中每项与公比都不为0.[一题多变][典型母题][题点发散1] 在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2), 证明:{b n }是等比数列.[题点发散2] 本例条件变为:已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).试判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列.[类题通法]等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列. (2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列. [提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明,而后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.考点三 等比数列的性质(重点保分型考点——师生共研)[必备知识](1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n,当公比为-1时,S n ,S 2n -S n ,S 3n -S 4n 不一定构成等比数列.[典题例析]1.(2015·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.2.(2014·广东高考)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.[类题通法]等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[演练冲关]1.(2014·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.2.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.对应A 本课时跟踪检测 三十一[A 卷——夯基保分]一、选择题1.(2014·重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列2.(2015·昆明、玉溪统考)等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝ ⎛⎭⎪⎫1-12n 3.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 014,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 014×1010B .2 014×1011C .2 015×1010D .2 015×10114.(2015·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n(n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)25.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A .-2 B .2 C .-3D .36.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同 二、填空题7.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________. 8.(2015·兰州模拟)已知等比数列{a n }的前n 项和为S n ,且S n =m ·2n -1-3,则m =________.9.(2015·兰州、张掖联考)已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________.10.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2 014积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为________.三、解答题11.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.12.(2014·重庆高考)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .[B 卷——增分提能]1.已知等比数列{a n }的前n 项和为S n ,若S 1,2S 2,3S 3成等差数列,且S 4=4027.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .2.(2015·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.3.已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ;(2)设c n =3b n -λ·2a n3,若数列{c n }是递增数列,求λ的取值范围.。

相关文档
最新文档