2.2电位法

合集下载

T70全自动电位滴定仪操作手册及方式大全

T70全自动电位滴定仪操作手册及方式大全

梅特勒-托利多Mettler-ToledoT70全自动电位滴定仪操作手册及方式大全编写:马兵兵单位:中国铝业重庆分公司Email:mabing1986310@qq目录第一章仪器概述 (1)1.1 技术数据 (1)1.1.1 滴定仪 (1)1.1.2 终端设备 (3)1.1.3 pH 插卡(Analog Board) (4)1.1.4 电导插口(Conductivity Board) (5)1.2 滴定仪构造 (6)1.2.1 主机组成 (6)1.2.2 背面接口 (7)1.3 滴定仪安装 (9)1.4 电极 (11)第二章原理介绍 (13)2.1 电位 (13)2.1.1 电极电位的产生 (13)2.1.2 能斯特公式 (13)2.1.3 电极电位的测量 (15)2.1.4 电极的极化 (17)2.2 电位分析法原理及应用 (18)2.2.1 能斯特方程--电位分析法的依据 (18)2.2.2 电位法测定溶液的PH值 (19)2.2.3 离子选择性电极 (22)2.2.4 测量离子浓(活)度的方法 (28)2.2.5 影响测定的因素 (30)2.2.6 电极的发展现状及趋势 (31)2.3 电位滴定法 (32)2.3.1 电位滴定法的原理 (32)2.3.2电位滴定终点的确定 (33)2.4电位滴定法的应用和指示电极的选择 (34)第三章操作与维护 (35)3.1 操作步骤 (35)3.1.1 方法编辑 (35)3.1.2 运行方法 (35)3.2 主机维护 (36)3.3 电极维护 (36)3.3.1 DGi111-SC玻璃电极 (36)3.2.2 DMi140-SC铂电极 (38)3.3.3 DMi140-SC铂电极 (40)3.3.4 InLab TM 74X电导率电极 (41)第四章常用名词与符号 (43)4.1 常用名词解释 (43)4.2 常用符号 (48)第五章方法大全 (50)5.1 液碱的分析 (50)5.1.1 液碱中NaOH%分析 (50)5.2 盐酸的分析 (52)5.2.1 盐酸中HCl%的分析 (52)5.3 碱粉的分析 (53)5.3.1 碱粉中Na2CO3%的分析 (53)5.4 石灰的分析 (54)5.4.1 石灰中全钙(CaO T%)的分析 (54)5.4.2 石灰中有效氧化钙(CaO f%)分析 (56)5.5 石灰石分析 (57)5.5.1 石灰石中钙镁含量分析 (57)5.6 水质分析 (60)5.6.1 电导率测定 (60)5.6.2 pH值测定 (62)5.6.3 碱度的测定 (63)5.6.4 总硬度的测定 (65)5.6.5 氯离子的测定 (67)第一章仪器概述1.1 技术数据1.1.1 滴定仪电源输入电压100-240V(交流电)±10%输入频率50-60Hz初级连接插口3芯,IEC C14功率消耗46V A装接容量24V 1.5A/5V 2A二级连接插头5芯,DC插头CPU处理器XScaleSDRAM64MB闪存256MB(工业CF卡)外形尺寸宽210mm深246mm高250mm重量 4.3kg(不带插卡)材料滴定仪外壳Crastin○R PBT滴定臂Crastin○R PBT隔圈Crastin○R PBT夹紧环Crastin○R PBT螺纹圈Crastin○R PBT支架不锈钢环境条件环境温度+5℃— +40℃相对空气湿度31℃时最大80%(不凝结)应用室内过电压分类Ⅱ污染级2COM1/COM2插口9针D-Sub 公头配置全双工波特率1200-19200握手方式X-On/X-Off电流分离否EDS 稳定性最小1000V短路保护是USB1Host USB 全速/低速最大电流负荷400mAUSB2Client USB1.1Ethernet插口RJ45速度10/100MBits/sTTL/IO插口9针D-Sub 母头输入端2输出端4电压最大24V(直流电)电流最大20mACAN_OUT插口RJ12速度500kBit/s泵1/2插口Mini DIN 6针搅拌器1/2泵识别是搅拌器识别是泵电压24V(直流电)±5%(最大400mA)搅拌器电压范围0-18V(直流电)±10%(最大300mA)终端设备插口20 针(LVDS)可更换滴定管体积1、5、10和20mL驱动和滴定管误差范围按照ISO 8655-3与滴定剂接触的材料氟塑料、硼硅酸盐玻璃、陶瓷滴定管驱动器驱动器步进电机精度滴定管体积的1/20000误差范围相应容量的0.2%灌注时间100%填充速度时最少20秒排放时间最少20秒滴定管识别是(RFID)螺纹长度50mm螺距1mm分解器(磁性)32个脉冲/360°分解器的精度滴定管体积的0.0625%磁力搅拌器驱动器直流电机最大转速1050rpm小型搅拌器驱动器直流电机最大转速3800rpm功率消耗6W1.1.2 终端设备外形尺寸宽195mm深133mm高58mm重量 2.1kg材料外壳上部件镀铬锌压铸件外壳下部件强化聚酰胺玻璃纤维覆盖膜PET防护罩共聚物显示技术彩色TFT尺寸 5.7″精度320×240像素照明荧光灯亮度控制50-100%,通过软件输入技术全平面触摸屏连接电缆80cm硬布线插头20针(LVDS)角度调整机械式3级1.1.3 pH 插卡(Analog Board)SENSOR1插口双重屏蔽pH/mV 电极接口技术带参比输入的差动放大器输入阻抗>1012Ω补偿电流<1pA测量范围±2000mV精度0.1mV误差范围0.2mVpH参比输入端插口4mmSENSOR2插口双重屏蔽pH/mV 电极接口技术差动放大器输入阻抗>1012Ω补偿电流<1pA测量范围±2000mV精度0.1mV误差范围0.2mV极化电极接口:极化电压电压源:范围0-2000mV(交流电)电压源:精度0.1mV电压源:误差范围12mV测量范围0-200μA精度0.1μA误差范围0.2μA极化电极接口:电流源:范围0-24μA(交流电)极化电流电流源:精度0.1μA电流源:误差范围 1.2μA测量范围0-2000mV精度0.1mV误差范围0.2mV通用PT1000插口LEMO 4针电极Pt1000测量范围-20~130℃精度0.1℃误差范围0.2℃COM插口9针D-Sub 公头配置全双工波特率1200~4800握手方式X-On/X-Off电流分离否ESD稳定性最小1000V短路保护是泵/搅拌器插口Mini DIN 5针泵识别是搅拌器识别是泵电压直流电24V(最大400mA)搅拌器电压范围直流电0~18V(最大300mA)1.1.4 电导插口(Conductivity Board)电导输入端CONDUCTIVITY (带集成式温度输入端)插口Mini DIN 8针测量范围0~1000mS(7个测量范围,自动转换测量范围)分辨率,μS范围0.01μS分辨率,mS范围0.001mS误差范围显示值的0.5%温度电极NTC 30k温度范围-20~130℃精度0.1℃误差范围0.2℃1.2 滴定仪构造1.2.1 主机组成部件说明部件说明a馈液管b小型搅拌器c电极d滴定台e滴定杯f内部磁力搅拌器g带指示灯的开关按钮h终端设备连接电缆i终端设备j加液单元指示灯k加液单元l滴定管取出位置m滴定管制动钮n滴定剂瓶o滴定管p吸液管1.2.2 背面接口编号插卡类型接口应用示例E为未来用途准备———3未配置———2ConductivityBoard(CB)/电导插卡电极pH电极DG111-SC PT1000Pt1000温度电极DT1000 CONDUCTIVITY电导电极InLab○R717 COM天平/辅助设备XS分析天平1Analog Board(AB)/pH插卡STIRRER PUMP搅拌器/泵小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆SENSOR1pH/ISE电极DX223REF SENSOR1参比输入端DX200PT1000Pt1000温度电极DT1000SENSOR2组合式极化pH电极DM143-SCCOM天平/辅助设备XS分析天平M主板(MB)STIRRER1PUMP1搅拌器1/泵1小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆STIRRER2 PUMP2搅拌器2/泵2小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆TTL-I/O TTL输入输出端/自动进样器/辅助设备T-Box/RondolinoTTL/ 样品移液器/StromboliCOM1天平/自动进样器/辅助设备RondoCOM2天平/自动进样器/辅助设备RondoUSB1打印机/条形码扫描器/记忆棒/USB HUBUSB-P25/条形码扫描器USB2PC LabXETHERNET网络LabX POWERSUPPL Y电源设备电源设备CAN OUT CAN 接口加液单元TERMINAL终端设备终端设备1.3 滴定仪安装1.4 电极DGi111-SC编号名称DGi140-SCDGi141-SC 编号名称1玻璃膜1铂丝信号线2Ag/AgCl信号线2金属铂(银)环:测量信号的敏感元件3内填充液4陶瓷芯3陶瓷芯5Ag/AgCl参比系统4Ag/AgCl参比系统6参比电解液:含饱和AgCl的3mol/LKCl溶液5参比电解液:AgCl饱和的3mol/L KCl;1mol/L KNO3溶液7带橡皮帽的填充开口处6带橡皮帽的填充开口处8橡皮帽的突起7橡皮帽的突起DGi111-SC玻璃电极:即插即用(PnP)复合玻璃pH智能电极,陶瓷液络部的复合玻璃pH智能电极,用于直接测量pH值和水溶液中的酸碱滴定。

电位器型号命名方法

电位器型号命名方法

电位器型号命名方法和主要参数1.电位器型号命名方法电位器型号命名方法见表3-6。

2.电位器主要参数电位器的参数比较少,识别也较为方便。

(1)标称阻值。

标称阻值指两个定片引脚之间的阻值,电位器按标称系列分为线绕和非线绕电位器两种。

常用的非线绕电位器标称系列是1.0、1.5、2.2、3.2、4.7、6.8,再乘上10的胛次方(门为正整数或负整数),单位为Q。

(2)允许偏差。

非线绕电位器允许偏差分为3个等级,l级为±5%,I|级为±l0%,Ⅲ级为±20%。

(3)额定功率,它是指电位器在交流或直流电路中,当大气压力为650~800mmHg(1mmHg=1.3332×l02Pa)、在规定环境温度下所能承受的最大允许功耗。

非线绕电位器的额定功率系列为0.05W、O.lW、0.25W、0.5W、1W、2W、3W。

(4)噪声。

这是衡量电位器性能的一个重要参数,电位器的噪声有3种。

①热噪声。

②电流噪声。

热噪声和电流噪声是动片触点不滑动时两个定片之间的噪声,又称静噪声。

静噪声是电位器的固定噪声,很小。

⑧动噪声。

动噪声是电位器的特有噪声,是主要噪声。

产生动噪声的原因很多,主要原因是电阻体的结构不均匀,以及动片触点与电阻体的接触噪声,后者随着电位器使用时间的延长而变得越来越大。

3.电位器参数识别方法电位器的参数表示方法采用直标法,LG-JT02通常将标称阻值及允许偏差、额定功率和类型标注在电位器的外壳上,一些小型电位器上只标出标称阻值。

举例说明:某电位器外壳上标出51k-0.25/X,其中“51k”表示标称阻值为51k(l,“0.25”表示额定功率为0.25W,“X”表示是X型电位器。

T70全自动电位滴定仪操作手册及方法大全

T70全自动电位滴定仪操作手册及方法大全

梅特勒-托利多Mettler-ToledoT70全自动电位滴定仪操作手册及方法大全编写:马兵兵单位:中国铝业重庆分公司Email:********************目录第一章仪器概述 (1)1.1 技术数据 (1)1.1.1 滴定仪 (1)1.1.2 终端设备 (3)1.1.3 pH 插卡(Analog Board) (4)1.1.4 电导插口(Conductivity Board) (5)1.2 滴定仪构造 (6)1.2.1 主机组成 (6)1.2.2 背面接口 (7)1.3 滴定仪安装 (9)1.4 电极 (11)第二章原理介绍 (13)2.1 电位 (13)2.1.1 电极电位的产生 (13)2.1.2 能斯特公式 (13)2.1.3 电极电位的测量 (15)2.1.4 电极的极化 (17)2.2 电位分析法原理及应用 (18)2.2.1 能斯特方程--电位分析法的依据 (18)2.2.2 电位法测定溶液的PH值 (19)2.2.3 离子选择性电极 (22)2.2.4 测量离子浓(活)度的方法 (28)2.2.5 影响测定的因素 (30)2.2.6 电极的发展现状及趋势 (31)2.3 电位滴定法 (32)2.3.1 电位滴定法的原理 (32)2.3.2电位滴定终点的确定 (33)2.4电位滴定法的应用和指示电极的选择 (34)第三章操作与维护 (35)3.1 操作步骤 (35)3.1.1 方法编辑 (35)3.1.2 运行方法 (35)3.2 主机维护 (36)3.3 电极维护 (36)3.3.1 DGi111-SC玻璃电极 (36)3.2.2 DMi140-SC铂电极 (38)3.3.3 DMi140-SC铂电极 (40)3.3.4 InLab TM 74X电导率电极 (41)第四章常用名词与符号 (43)4.1 常用名词解释 (43)4.2 常用符号 (48)第五章方法大全 (50)5.1 液碱的分析 (50)5.1.1 液碱中NaOH%分析 (50)5.2 盐酸的分析 (52)5.2.1 盐酸中HCl%的分析 (52)5.3 碱粉的分析 (53)5.3.1 碱粉中Na2CO3%的分析 (53)5.4 石灰的分析 (54)5.4.1 石灰中全钙(CaO T%)的分析 (54)5.4.2 石灰中有效氧化钙(CaO f%)分析 (56)5.5 石灰石分析 (57)5.5.1 石灰石中钙镁含量分析 (57)5.6 水质分析 (60)5.6.1 电导率测定 (60)5.6.2 pH值测定 (62)5.6.3 碱度的测定 (64)5.6.4 总硬度的测定 (65)5.6.5 氯离子的测定 (67)第一章仪器概述1.1 技术数据1.1.1 滴定仪电源输入电压100-240V(交流电)±10%输入频率50-60Hz初级连接插口3芯,IEC C14功率消耗46V A装接容量24V 1.5A/5V 2A二级连接插头5芯,DC插头CPU 处理器XScaleSDRAM 64MB闪存256MB(工业CF卡)外形尺寸宽210mm深246mm高250mm重量 4.3kg(不带插卡)材料滴定仪外壳Crastin○R PBT滴定臂Crastin○R PBT隔圈Crastin○R PBT夹紧环Crastin○R PBT螺纹圈Crastin○R PBT支架不锈钢环境条件环境温度+5℃— +40℃相对空气湿度31℃时最大80%(不凝结)应用室内过电压分类Ⅱ污染级 2COM1/COM2 插口9针D-Sub 公头配置全双工波特率1200-19200握手方式X-On/X-Off电流分离否EDS 稳定性最小1000V短路保护是USB1 Host USB 全速/低速最大电流负荷400mAUSB2 Client USB1.1Ethernet 插口RJ45速度10/100MBits/sTTL/IO 插口9针D-Sub 母头输入端 2输出端 4电压最大24V(直流电)电流最大20mACAN_OUT 插口RJ12速度500kBit/s泵1/2 插口Mini DIN 6针搅拌器1/2 泵识别是搅拌器识别是泵电压24V(直流电)±5%(最大400mA)搅拌器电压范围0-18V(直流电)±10%(最大300mA)终端设备插口20 针(LVDS)可更换滴定管体积1、5、10和20mL驱动和滴定管误差范围按照ISO 8655-3与滴定剂接触的材料氟塑料、硼硅酸盐玻璃、陶瓷滴定管驱动器驱动器步进电机精度滴定管体积的1/20000误差范围相应容量的0.2%灌注时间100%填充速度时最少20秒排放时间最少20秒滴定管识别是(RFID)螺纹长度50mm螺距1mm分解器(磁性)32个脉冲/360°分解器的精度滴定管体积的0.0625%磁力搅拌器驱动器直流电机最大转速1050rpm小型搅拌器驱动器直流电机最大转速3800rpm功率消耗6W1.1.2 终端设备外形尺寸宽195mm深133mm高58mm重量 2.1kg材料外壳上部件镀铬锌压铸件外壳下部件强化聚酰胺玻璃纤维覆盖膜PET防护罩共聚物显示技术彩色TFT尺寸 5.7″精度320×240像素照明荧光灯亮度控制50-100%,通过软件输入技术全平面触摸屏连接电缆80cm硬布线插头20针(LVDS)角度调整机械式3级1.1.3 pH 插卡(Analog Board)SENSOR1 插口双重屏蔽pH/mV 电极接口技术带参比输入的差动放大器输入阻抗>1012Ω补偿电流<1pA测量范围±2000mV精度0.1mV误差范围0.2mVpH参比输入端插口4mmSENSOR2 插口双重屏蔽pH/mV 电极接口技术差动放大器输入阻抗>1012Ω补偿电流<1pA测量范围±2000mV精度0.1mV误差范围0.2mV极化电极接口:极化电压电压源:范围0-2000mV(交流电)电压源:精度0.1mV电压源:误差范围12mV测量范围0-200μA精度0.1μA误差范围0.2μA极化电极接口:电流源:范围0-24μA(交流电)极化电流电流源:精度0.1μA电流源:误差范围 1.2μA测量范围0-2000mV精度0.1mV误差范围0.2mV通用PT1000 插口LEMO 4针电极Pt1000测量范围-20~130℃精度0.1℃误差范围0.2℃COM 插口9针D-Sub 公头配置全双工波特率1200~4800握手方式X-On/X-Off电流分离否ESD稳定性最小1000V短路保护是泵/搅拌器插口Mini DIN 5针泵识别是搅拌器识别是泵电压直流电24V(最大400mA)搅拌器电压范围直流电0~18V(最大300mA)1.1.4 电导插口(Conductivity Board)电导输入端CONDUCTIVITY (带集成式温度输入端) 插口Mini DIN 8针测量范围0~1000mS(7个测量范围,自动转换测量范围)分辨率,μS范围0.01μS分辨率,mS范围0.001mS误差范围显示值的0.5%温度电极NTC 30k温度范围-20~130℃精度0.1℃误差范围0.2℃1.2 滴定仪构造1.2.1 主机组成部件说明部件说明a 馈液管b 小型搅拌器c 电极d 滴定台e 滴定杯f 内部磁力搅拌器g 带指示灯的开关按钮h 终端设备连接电缆i 终端设备j 加液单元指示灯k 加液单元l 滴定管取出位置m 滴定管制动钮n 滴定剂瓶o 滴定管p 吸液管1.2.2 背面接口编号插卡类型接口应用示例E 为未来用途准备———3 未配置———2 ConductivityBoard(CB)/电导插卡电极pH电极DG111-SC PT1000 Pt1000温度电极DT1000 CONDUCTIVITY 电导电极InLab○R717 COM 天平/辅助设备XS分析天平1 Analog Board(AB)/pH插卡STIRRER PUMP 搅拌器/泵小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆SENSOR1 pH/ISE电极DX223REF SENSOR1参比输入端DX200PT1000 Pt1000温度电极DT1000SENSOR2 组合式极化pH电极DM143-SCCOM 天平/辅助设备XS分析天平M 主板(MB)STIRRER1PUMP1 搅拌器1/泵1 小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆STIRRER2 PUMP2 搅拌器2/泵2 小型搅拌器/滴定台DV705/泵SP205/输出扩展器OE06/Y型电缆TTL-I/O TTL输入输出端/自动进样器/辅助设备T-Box/RondolinoTTL/ 样品移液器/StromboliCOM1 天平/自动进样器/辅助设备RondoCOM2 天平/自动进样器/辅助设备RondoUSB1 打印机/条形码扫描器/记忆棒/USB HUBUSB-P25/条形码扫描器USB2 PC LabXETHERNET 网络LabX POWERSUPPL Y 电源设备电源设备CAN OUT CAN 接口加液单元TERMINAL 终端设备终端设备1.3 滴定仪安装1.4 电极DGi111-SC 编号名称DGi140-SCDGi141-SC 编号名称1 玻璃膜 1 铂丝信号线2 Ag/AgCl信号线 2 金属铂(银)环:测量信号的敏感元件3 内填充液4 陶瓷芯 3 陶瓷芯5 Ag/AgCl参比系统 4 Ag/AgCl参比系统6 参比电解液:含饱和AgCl的3mol/LKCl溶液5 参比电解液:AgCl饱和的3mol/L KCl;1mol/L KNO3溶液7 带橡皮帽的填充开口处6 带橡皮帽的填充开口处8 橡皮帽的突起7 橡皮帽的突起DGi111-SC玻璃电极:即插即用(PnP)复合玻璃pH智能电极,陶瓷液络部的复合玻璃pH智能电极,用于直接测量pH值和水溶液中的酸碱滴定。

等电位保护原理

等电位保护原理

等电位保护原理1. 基本概念等电位保护是一种用于保护金属结构免受腐蚀的方法。

它基于一个基本原理:当金属结构与一个外部电源连接在一起时,通过施加适当的电流或电位,可以将金属结构与周围环境维持在相同的电位,从而防止腐蚀。

2. 原理解释等电位保护原理基于电化学反应的基本原理。

金属结构在大气中或水中暴露时,会发生电化学反应,其中金属表面上的阳极和阴极区域形成了一个电偶。

这个电偶会导致金属表面的腐蚀。

等电位保护的目标是通过施加一个外部电源来改变金属结构的电偶,使其保持在一个相对稳定的电位。

这个外部电源通常是一个直流电源,其电流或电位由一个控制系统控制。

当外部电源施加在金属结构上时,它会在金属表面形成一个保护电流或电位。

这个保护电流或电位会抵消金属表面的电偶,从而防止金属腐蚀。

具体来说,等电位保护可以通过两种方式实现:2.1 电流保护电流保护是通过施加一个与金属结构相反方向的电流来实现的。

这个电流会在金属表面形成一个电流密度,使得金属表面的阳极区域变为阴极区域。

这样,金属结构的整个表面都成为了阴极,从而防止了腐蚀。

电流保护的关键是确定适当的电流密度。

如果电流密度过小,金属结构的阴极区域可能不足以保护整个金属表面;如果电流密度过大,可能会导致金属结构的阴极区域过大,造成能量浪费和其他问题。

2.2 电位保护电位保护是通过施加一个与金属结构相同电位的电源来实现的。

这个电位会使金属表面的电偶消失,从而防止腐蚀。

与电流保护不同,电位保护不需要在金属表面形成一个电流密度。

电位保护的关键是确定适当的电位。

如果电位过高,可能会导致金属结构与周围环境之间发生电流,造成能量浪费和其他问题;如果电位过低,可能无法有效防止腐蚀。

3. 等电位保护系统组成一个典型的等电位保护系统由以下组成部分构成:3.1 外部电源外部电源是等电位保护系统的核心部分,它提供了所需的电流或电位。

这个电源通常是一个直流电源,可以通过调节电流或电位来实现等电位保护。

astm d2930-94 电位滴定法测定马来酐中马来酸含量的标准试验方法

astm d2930-94 电位滴定法测定马来酐中马来酸含量的标准试验方法

astm d2930-94 电位滴定法测定马来酐中马来酸含量的标准试验方法1. 引言1.1 概述马来酐是一种广泛应用于化学工业和其他领域的有机化合物,它在制备聚合物、涂料和塑料等方面具有重要作用。

因此,准确测定马来酐中马来酸含量对于产品质量控制和工艺改进至关重要。

ASTM D2930-94是一项标准试验方法,旨在通过电位滴定法测定马来酐中马来酸含量。

该方法已被广泛应用于实验室和工业生产中,并得到了许多研究人员的认可。

本文将详细介绍ASTM D2930-94标准及其原理,并探讨了在马来酐中测定马来酸含量时所需遵循的步骤。

1.2 文章结构本文分为五个部分。

首先是引言部分,对文章进行整体概述;接下来是正文部分,包括ASTM D2930-94标准介绍、电位滴定法原理以及马来酐中马来酸含量测定步骤;然后是应用与实验结果分析部分,包括样品制备与处理方法、实验步骤及条件设置以及结果解读与分析;随后是优缺点及改进方法讨论部分,包括电位滴定法的优点分析、局限性讨论以及改进方法的探讨和展望;最后是结论和建议部分,总结实验结果并提出标准试验方法的应用前景和进一步研究建议。

1.3 目的本文的目的是详细介绍ASTM D2930-94标准中所采用的电位滴定法测定马来酐中马来酸含量的步骤和原理,并通过实验数据和分析结果对该方法进行评估。

此外,我们还将讨论该方法存在的优缺点,并提出改进方案,以便在实际应用中更好地利用该标准试验方法。

通过深入研究ASTM D2930-94标准试验方法,我们可以为化学工业提供可靠且精确的测量马来酐中马来酸含量的技术指导,从而促进产品质量控制和工艺改进。

2. 正文:2.1 ASTM D2930-94标准介绍ASTM D2930-94是由美国材料和试验协会(ASTM)制定的一项标准试验方法,旨在通过电位滴定法测定马来酐中马来酸含量。

该标准方法已被广泛应用于化学工业和相关领域中,以确保产品质量达到预期要求。

电位法井间裂缝监测技术在煤层气井压裂中的应用

电位法井间裂缝监测技术在煤层气井压裂中的应用

050地质勘探DI ZHI KAN TAN1 引言目前,我国煤层气开发面积不断扩大,随着研究程度的深入,不同煤体结构压裂后产气效果差距非常大,随着煤矿开采,原压裂排采井在地下也被煤矿开采,研究人员对于压裂影响半径疑问越来越多。

随着煤层气开发向着低渗、低丰度更深的储层进军,储层压裂对于煤层气开发增产起非常重要的作用。

压裂工艺随着全国煤层气勘探开发程度的不断深入,现场工程师也认识到压裂工艺的改造对于不同煤体结构要有适合的压裂工艺,且压裂的影响半径也会变化,因此,对于煤层气压裂过程中裂缝的方位,延伸长度能够定性判断成为紧迫。

电位法井间监测技术在煤层气压裂中发展较快,在煤层气中也获得较多试验发展,是目前应用比较广泛的人工压裂裂缝测试手段。

为了获取压裂裂缝方位、形态、长度等相关参数,应用电位法、微地震测试方法对CS-01井3﹟煤层压裂裂缝方位进行了监测。

2 电位法压裂裂缝测试原理及成果2.1 电位法测试原理电位法井间监测技术是以传导类电法勘探的基本理论为依据,通过注入目的层位高电电离能量的工作液,测量工作也引起电场变化的形态,通过观察电场变化来解释目的层的裂缝方位及延伸长度等相关参数。

压裂施工中所用的压裂液是与地层导电性差距较大的液体,从测井套管供电向地层提供高稳定的电流。

施工的压裂液在地层中作为一个场源,由于此场源存在,目的层中的电阻率分布形态发生了明显变化,即压裂液集中地区低阻区,压裂液少地方相对高阻。

电阻变化就会导致地面电流密度发生变化,低阻地区电流密度相对较大。

在以上原理的基础上,在压裂井的周边环形布置检测点,检测其电位变化情况。

在压裂过程中实时监测地面的电位变化情况,从而达到推断裂缝开裂方向及延伸长度等相关参数信息。

2.2 电位法测试技术在油气田勘探开发中的应用1)测定人工裂缝方位和裂缝延伸长度,确定区块主应力方向,评价压裂施工效果;2)了解局部应力场的变化规律及影响因素,为井网调整及部署提供依据。

2.2-2.3 电位及其方程

2.2-2.3 电位及其方程
电磁场与电磁波1323两个方程静态场中求电位比求场强方便得多电位标量场强矢量有了电位其负梯度就是场强求电位对于典型电荷分布可直接写出电位对于一般电荷分布需要建立电位的微分方程建立微分方程的依据静态场的基本方程以下静态场的基本方程2阶微分方程拉普拉斯方程poissonsequationlaplacesequation电磁场与电磁波14方程的来源静电场的基本方程poissonsequationlaplacian
(r ) aU / r
思考并验证:Q‐表面电荷密度 电位‐表面电荷密度
Dn n
电磁场与电磁波
24
A
E
B A
B
(1E ) dl
B点到A点,电位差=电场力对单位电荷做的功 只与起点和终点位置有关,与路径无关! 类似物体下落!
电磁场与电磁波
3
4. 电位的参考点——测量的参考点!
B A
A
B
E dl
B
B
参考点
E dl
电磁场与电磁波
E ar Er ?
z
回忆:讲电场强度时所举的例2……
利用:E‐Gauss’s Law
0 V
1 E dS
S
0 V
dV
z
Q
0
球外(r>a): 1 dV ? Q
2 E dS E (4 r )
r r
场点
y
电磁场与电磁波
6
例2. 书P27 例题2.5
半径为a的带电圆盘, 求中心垂直轴线上的场强.
分析:
① 有没有对称性?
——有!
z
② 能否使用E‐Gauss?

控制电位法-概述说明以及解释

控制电位法-概述说明以及解释

控制电位法-概述说明以及解释1.引言1.1 概述控制电位法是一种常见的物理和化学实验方法,用于测量、控制和调节物质的电位。

在各个领域中,控制电位法被广泛应用于实验研究、工业生产和环境监测等方面。

通过控制物质的电位,我们可以实现对化学反应的控制,调节电子传递过程,改变溶液的酸碱性等。

因此,控制电位法在化学、材料、生物等领域具有广阔的应用前景和重要意义。

控制电位法的基本原理是通过在电极间施加外加电势,使电极与电解质溶液之间建立电势差,从而控制物质在电极表面的电位。

以金属电解质溶液为例,控制电位法可通过改变电解质的成分或施加外加电势,使金属电极的电位达到所需的数值。

在这个过程中,通过监测电流和电势的变化,可以对反应过程进行实时监控和调节。

控制电位法在工业中有广泛的应用。

例如,在金属加工工业中,控制电位法可以用于表面处理和电镀过程的控制。

通过控制电位,可实现金属表面的防腐、增加光泽和改变颜色等处理效果。

此外,控制电位法在电化学分析、电池制造和电镀工艺等方面也有着重要的地位。

但是,控制电位法也存在一定的局限性。

首先,它对电极和电解质的性质要求较高,需要精确地控制实验条件。

其次,它在复杂的体系中应用较为困难,例如在生物体系中的应用受到限制。

此外,控制电位法在工业生产中可能存在一定的环境污染风险,需要合理的操作和废物处理措施。

总结而言,控制电位法作为一种重要的实验和工业方法,具有广泛的应用前景。

通过控制物质的电位,我们可以实现对化学反应和电子传递过程的精细控制,进而实现对物质性质的改变。

未来,随着科学技术的发展和实验技术的不断创新,控制电位法将继续发挥重要作用,并为相关领域的研究和应用带来新的突破。

1.2 文章结构文章结构部分内容:2. 正文2.1 控制电位法的基本原理2.2 控制电位法在工业中的应用2.3 控制电位法的优点和局限性在本文中,我将详细介绍控制电位法及其在工业中的应用。

首先,我将阐述控制电位法的基本原理,包括其定义、理论基础和操作方法。

电位法与电流法指示库仑滴定终点的原理

电位法与电流法指示库仑滴定终点的原理

电位法与电流法指示库仑滴定终点的原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!库仑滴定是化学分析中常用的一种定量分析方法,其终点指示方法主要包括电位法和电流法。

pH值测定法标准操作规程(2010年中国药典完整版)

pH值测定法标准操作规程(2010年中国药典完整版)

pH值测定法标准操作规程目的:建立pH值测定法标准操作规程,规范pH值测定的检验操作。

范围:适用于pH值测定的检验操作。

责任:质量部理化检验员负责本规程的实施。

内容:1、操作依据:《中国药典》2010年版二部附录Ⅵ H。

2、简述2.1 p H值测定法是测定水溶液氢离子活度的一种方法,是药品检查项下采用较多和重要的指标之一。

pH值就是水溶液中氢离子活度的负对数。

2.2 原理:电位法测定pH值的基本原理,是基于由水溶液和电极组成的原电池的电动势与pH值的规律,即在25℃时,每当电池的电动势变化0.059V时,pH值就变化一个单位。

3、仪器与装置3.1 酸度计:主要由pH测量电池(由一对电极及溶液组成)和pH指示器(电位计)两部分组成。

3.2 电极:测定时有两个电极。

一个电极作为测定时的比较标准,称为参比电极,它应当有稳定的已知电位;另一个电极的电位随溶液中氢离子浓度改变而变化,称为指示电极。

参比电极有甘汞电极、银-氯化银电极等;指示电极有pH玻璃电极、醌-氢醌电极和锑电极等。

最常用的电极为饱和甘汞电极和玻璃电极,现已广泛使用将指示电极与参比电极组合一体的复合电极。

4、试液与试剂4.1 试剂:草酸三氢钾、邻苯二甲酸氢钾、磷酸二氢钾、无水磷酸氢二钠、硼砂、氢氧化钙。

4.2 标准缓冲溶液4.2.1 标准缓冲溶液配制方法:标准缓冲液必须用pH值基准试剂配制。

4.2.1.1 草酸盐标准缓冲液:精密称取在54℃±3℃干燥4~5小时的草酸三氢钾12.71g,加水使溶解并稀释至1000ml。

4.2.1.2 邻苯二甲酸氢钾标准缓冲液:精密称取在115℃±5℃干燥2~3小时的邻苯二甲酸氢钾10.21g,加水使溶解并稀释至1000ml。

4.2.1.3 磷酸盐标准缓冲液:精密称取在115℃±5℃干燥2~3小时的无水磷酸氢二钠3.55g与磷酸二氢钾3.40g,加水使溶解并稀释至1000ml。

4.2.1.4 硼砂标准缓冲液:精密称取硼砂3.81g(注意避免风化),加水使溶解并稀释至1000ml,置聚乙烯塑料瓶中,密塞,避免与空气中二氧化碳进入。

两种方法测定苹果汁中总酸的含量的比较

两种方法测定苹果汁中总酸的含量的比较

两种方法测定苹果汁中总酸的含量的比较发布时间:2021-03-04T10:51:45.677Z 来源:《科学与技术》2020年10月29期作者:张冰清戚培培董敏王林邰亮刘天左[导读] 目的探究两种方法测定苹果汁中总酸的区别。

方法用滴定法和酸度计法分别测定张冰清戚培培董敏王林邰亮刘天左宝应县产品质量综合检验检测中心江苏宝应 225800摘要:目的探究两种方法测定苹果汁中总酸的区别。

方法用滴定法和酸度计法分别测定,计算得出总酸含量。

结果滴定法和pH计法测得苹果汁总酸含量皆为5.27和2.82,相对偏差为0%。

结论两种方法测得苹果汁总酸含量一致。

关键词:苹果汁;总酸;酸碱滴定法;pH计法 Abstract:Object To explore the differences between two methods for the determination of total acid in apple juice.Methods Titrimetric method and pH meter were used to determine the content then calculated The total acid。

Results The total acid content of apple juice was 5.27 and 2.82 by titration and pH meter. The relative deviation is 0% Conclusion The two methods was consistent. KEY WORDS:Apple Juice;Total acid;Acid base titration;pH meter 1 引言苹果汁中含有人体所需的多种维生素、矿物质、糖、蛋白质、脂肪和氨基酸等成分。

有机酸对人体的主要作用是维持体内酸碱平衡,刺激胃肠道消化液分泌,有利于食物消化吸收。

镍离子的鉴定

镍离子的鉴定

镍离子的鉴定1. 引言镍离子(Ni2+)是一种常见的金属离子,广泛存在于自然界中的土壤、水体和岩石中。

在工业生产中,镍离子也被广泛应用于电池制造、化工和金属加工等领域。

然而,由于镍离子在高浓度下具有毒性,对环境和人体健康造成潜在威胁。

因此,准确、快速地鉴定镍离子的存在与浓度对于环境监测和人类健康至关重要。

本文将探讨镍离子的鉴定方法、鉴定原理以及在实际应用中的一些案例,并介绍常用的仪器设备和实验步骤,旨在帮助读者全面了解镍离子的鉴定技术。

2. 镍离子的鉴定方法2.1 化学法化学法是最常见、直观的鉴定镍离子的方法之一。

其中,最常用的是比色法和络合滴定法。

2.1.1 比色法比色法是基于镍离子与某些指示剂间形成有色络合物的原理进行的鉴定方法。

常用的指示剂有二茂铁、茜素和酞菁等。

下面以二茂铁为例介绍该方法的实验步骤:1.准备一组含不同浓度镍离子的标准溶液;2.将每个标准溶液分别加入含有二茂铁的试剂中;3.观察试剂溶液的颜色变化,并与标准溶液对照;4.根据颜色的深浅,推断未知溶液中镍离子的浓度。

2.1.2 络合滴定法络合滴定法是利用络合剂与镍离子形成络合物,并通过滴定确定络合剂与镍离子的摩尔比例。

一般选择EDTA作为络合剂进行滴定,常用的指示剂为柠檬酸。

实验步骤如下:1.准备一定浓度的络合剂EDTA溶液,并加入适量柠檬酸指示剂;2.将含有未知浓度镍离子的溶液滴定至颜色转变;3.记录滴定滴数,并根据摩尔比例计算镍离子的浓度。

2.2 电化学法电化学法是利用电化学分析的原理进行镍离子的鉴定,常用的电化学方法有极谱法和电位滴定法。

2.2.1 极谱法极谱法是基于镍离子在电化学电极上发生氧化还原反应的原理进行的鉴定方法。

通过测量氧化还原反应所产生的电流或电势变化,可以确定镍离子的存在与浓度。

常用的极谱法有线性扫描伏安法和旋转环电极法。

2.2.2 电位滴定法电位滴定法是利用电极电位的变化确定镍离子浓度的方法。

根据镍离子溶液与参比电极间的电位差,可以推断镍离子的浓度。

混凝土中氯离子含量的三种检测方法

混凝土中氯离子含量的三种检测方法

混凝土中氯离子含量的三种检测方法摘要:本文详细的介绍了混凝土中常用的三种Cl-含量检测方法铬酸钾法、电位滴定法、Cl-选择性电极法。

其中铬酸钾法存在滴定终点时颜色难以辨认、精确度不高人为误差较大电位滴定法与Cl-选择性电极测氯离子测定法同属于电化学方法但Cl-选择性电极不需要贵重试剂AgNO3省去了AgNO3标准溶液的配制和滴定所得数据标准偏差小能够简单、经济、快速、准确地测定混凝土中氯离子的含量值得推广。

关键词:铬酸钾法电位滴定法Cl-选择性电极法Cl-含量检测1前言混凝土中Cl-侵蚀是造成钢筋锈蚀的主要原因特别是在沿海地区《混凝土结构设计规范》GB50010-2002要求混凝土中最大Cl-含量为0.06占水泥用量的百分率。

原因是Cl-半径小、活性大很容易穿透混凝土钝化膜造成钢筋锈蚀生成的FeOH2分解为H2O和带结晶水的FeO致使体积膨胀耐久性降低。

所以检测混凝土中Cl-含量是保证结构耐久性的重要措施。

2检测方法2.1铬酸钾法在中性至弱碱性范围内PH6.510.5以铬酸钾为指示剂用硝酸银作标准溶液滴定氯化物由于氯化银的溶解度小于铬酸银的溶解度Cl-首先被完全沉淀出来为白色。

然后铬酸盐以铬酸银的形式被沉淀产生砖红色沉淀表明银离子已稍过量指示达到终点。

缺点是随着滴定剂加入量的增大被测溶液中氯化银量增多溶液变得浑浊同时其中作为指示剂的铬酸钾本身颜色也较深颜色突变不是很明显时终点不易准确观察由肉眼判断可能会造成很大的人为误差样品量较大时容易造成眼睛疲劳。

并且有时还会出现滴定终点反复等不利因素这都给滴定终点的判断带来不便而且由于沉淀的吸附作用易使结果偏低且待测溶液颜色变化较慢时误差更大。

2.2电位滴定法电位滴定法是通过测量滴定过程中电池电动势的变化来确定滴定终点的滴定方法。

电位滴定法靠电极电位的突跃来指示滴定终点在滴定到达终点前后滴液中的待测离子浓度往往连续变化n个数量级引起电位的突跃被测成分的含量通过消耗AgNO3量来计算。

T全自动电位滴定仪操作手册及方法大全

T全自动电位滴定仪操作手册及方法大全

2.2.4 测量离子浓(活)度的方法 .................错误!未指定书签。 2.2.5 影响测定的因素 ...........................错误!未指定书签。 2.2.6 电极的发展现状及趋势 .....................错误!未指定书签。 2.3 电位滴定法 ................................错误!未指定书签。 2.3.1 电位滴定法的原理 .........................错误!未指定书签。 2.3.2 电位滴定终点的确定 .......................错误!未指定书签。 2.4 电位滴定法的应用和指示电极的选择...........错误!未指定书签。 第三章操作与维护 错误!未指定书签。 3.1 操作步骤 ..................................错误!未指定书签。 3.1.1 方法编辑 .................................错误!未指定书签。 3.1.2 运行方法 .................................错误!未指定书签。 3.2 主机维护 ..................................错误!未指定书签。 3.3 电极维护 ..................................错误!未指定书签。 3.3.1DGi111-SC 玻璃电极 .......................错误!未指定书签。 3.2.2DMi140-SC 铂电极 .........................错误!未指定书签。 3.3.3DMi140-SC 铂电极 .........................错误!未指定书签。 3.3.4InLabTM74X 电导率电极 .....................错误!未指定书签。 第四章常用名词与符号 错误!未指定书签。 4.1 常用名词解释 ..............................错误!未指定书签。 4.2 常用符号 ..................................错误!未指定书签。 第五章方法大全 错误!未指定书签。 5.1 液碱的分析 ................................错误!未指定书签。

常见的化学成分分析方法及其原理

常见的化学成分分析方法及其原理

常见的化学成分分析方法一、化学分析方法化学分析从大类分是指经典的重量分析和容量分析。

重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。

容量法是指根据试样在反应中所需要消耗的标准试液的体积。

容量法即可以测定式样的主要成分,也可以测定试样的次要成分。

1.1重量分析指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。

1.2容量分析滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。

酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。

络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。

如EDTA与金属离子发生显色反应来确定金属离子的含量等。

络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。

氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。

氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。

通常借助指示剂来判断。

有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。

而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。

沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。

虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。

土壤理化性质分析

土壤理化性质分析

二、土壤pH的测定
2.1 概述
测定pH的方法最常用的是电位法和比色法。 (1)电位法:用于室内测定,精度较高,误差在
0.02左右。 (2)比色法,用于野外速测,有时在室内做定性
检查用。有两种:
混合指示剂比色法,pH误差在0.5左右; 永久色阶比色法,pH误差在0.2左右。
pH测定 示意图
(电位法)
电把细小的植株残体吸除,要反复进行。
1.2 土壤样品的处理
1.2.2 土样的研磨及过筛
1.2.2.2 分析土壤化学样品的研磨与过筛
(2)将通过10目的土样用“四分法”的方法取出约 该50步g土研样磨需,要进注行意研:磨,并全部通过 0.25mm筛(60 (目1)过,筛混时匀:后不,能装把留瓶在备筛用子。上的土样倒掉,必须全部
1.2 土壤样品的处理
1.2.1 样品风干
具体方法:将土壤样品弄成碎块,平铺在干 净的纸上(严禁用旧报纸衬垫),摊成薄层, 放于室内阴凉通风处晾干,经常加以翻动, 加速干燥。当土样半干时将大土块锤碎(尤 其是水稻土)。切忌阳光直接暴晒,风干场 所要防止酸、碱等气体及灰尘污染。测微量 元素的土样最好放在塑料板上。
二、土壤pH的测定
2.1 概述
根据“中国土壤”一书将土壤的酸碱度分为5级: 即强酸性pH<5.0,酸性pH5.0-6.5,中性pH6.57.5,碱性pH7.5-8.5,强碱性pH>8.5。
了解我国各大类土壤的pH情况,对我们分析人 员审查结果有好处,例如:红壤、砖红壤pH在 4.5-6,石灰性土壤pH7.5-8.5,潮土pH在8左右, 紫色土pH在7.5-8,棕色土pH在6左右等。
二、土壤pH的测定
2.2.3 注意事项
水土比一般为1:2.5,如果更换,应该在结果特 别注明。

仪器分析电子教案(全)

仪器分析电子教案(全)

仪器分析电子教案(一)一、教学目标1. 了解仪器分析的基本概念和分类2. 掌握常见仪器分析方法的基本原理及应用3. 培养学生的实验技能和分析问题的能力二、教学内容1. 仪器分析的基本概念1.1 仪器分析的定义1.2 仪器分析的特点2. 仪器分析的分类2.1 光学分析法2.2 电化学分析法2.3 色谱分析法2.4 质谱分析法2.5 其他分析法三、教学重点与难点1. 教学重点:1. 仪器分析的基本概念2. 常见仪器分析方法的基本原理及应用2. 教学难点:1. 各种仪器分析方法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解基本概念、原理及方法2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:各种仪器分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(二)一、教学目标1. 掌握光谱分析法的基本原理及应用2. 了解光谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 光谱分析法的基本原理1.1 紫外-可见光谱分析法1.2 红外光谱分析法1.3 拉曼光谱分析法2. 光谱分析法的分类及特点2.1 紫外-可见光谱分析法2.2 红外光谱分析法2.3 拉曼光谱分析法3. 光谱分析法的应用3.1 有机化合物结构的鉴定3.2 生物大分子的结构分析3.3 环境监测及药物分析三、教学重点与难点1. 教学重点:1. 光谱分析法的基本原理2. 光谱分析法的分类及特点3. 光谱分析法的应用2. 教学难点:1. 各种光谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解光谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:光谱分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(三)一、教学目标1. 掌握色谱分析法的基本原理及应用2. 了解色谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 色谱分析法的基本原理1.1 气相色谱分析法1.2 液相色谱分析法1.3 色谱-质谱联用分析法2. 色谱分析法的分类及特点2.1 气相色谱分析法2.2 液相色谱分析法2.3 色谱-质谱联用分析法3. 色谱分析法的应用3.1 生物大分子的分析3.2 环境监测及药物分析3.3 食品工业中的应用三、教学重点与难点1. 教学重点:1. 色谱分析法的基本原理2. 色谱分析法的分类及特点3. 色谱分析法的应用2. 教学难点:1. 各种色谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解色谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析电子教案(四)六、教学目标1. 理解电化学分析法的基本原理及应用2. 熟悉电化学分析法的分类和特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 电化学分析法的基本原理1.1 直流电位滴定法1.2 电位分析法1.3 电化学发光分析法2. 电化学分析法的分类及特点2.1 直流电位滴定法2.2 电位分析法2.3 电化学发光分析法3. 电化学分析法的应用3.1 药物分析3.2 环境监测3.3 生物医学分析七、教学重点与难点1. 教学重点:1. 电化学分析法的基本原理2. 电化学分析法的分类及特点3. 电化学分析法的应用2. 教学难点:1. 各种电化学分析法的原理及应用2. 实验操作技能的培养八、教学方法1. 讲授法:讲解电化学分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解九、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:电化学分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果十、教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(五)十一、教学目标1. 理解质谱分析法的基本原理及应用2. 熟悉质谱分析法的分类和特点3. 提高学生的实验技能和问题解决能力十二、教学内容1. 质谱分析法的基本原理1.1 静态质谱法1.2 动态质谱法1.3 串联质谱法2. 质谱分析法的分类及特点2.1 静态质谱法2.2 动态质谱法2.3 串联质谱法3. 质谱分析法的应用3.1 蛋白质组学3.2 代谢组学3.3 药物分析与食品安全十三、教学重点与难点1. 教学重点:1. 质谱分析法的基本原理2. 质谱分析法的分类及特点3. 质谱分析法的应用2. 教学难点:1. 各种质谱分析法的原理及应用2. 实验操作技能的培养十四、教学方法1. 讲授法:讲解质谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解十五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:质谱分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果教学评估:1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(六)十一、教学目标1. 理解其他分析方法的基本原理及应用2. 熟悉其他分析方法的特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 其他分析方法的基本原理1.1 原子吸收光谱分析法1.2 原子荧光光谱分析法1.3 X射线荧光光谱分析法2. 其他分析方法的特点2.1 原子吸收光谱分析法2.2 原子荧光光谱分析法2.3 X射线荧光光谱分析法3. 其他分析法的应用3.1 环境监测3.2 材料分析3.3 生物医学分析教学重点与难点1. 教学重点:1. 其他分析方法的基本原理2. 其他分析方法的特点3. 其他分析法的应用2. 教学难点:1. 各种其他分析方法的原理及应用2. 实验操作技能的培养教学方法1. 讲授法:讲解其他分析方法的基本原理、特点及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(七)十二、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,教师指导教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 实验操作考核:评估学生在实验中的操作技能2. 实验报告:评估学生在实验中的数据处理和分析能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(八)十三、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,重点和难点解析本文主要介绍了仪器分析的教学目标、内容、重点和难点,以及相应的教学方法和评估方式。

EP8.0附录2.2.3. pH值电位测定法 中英文

EP8.0附录2.2.3. pH值电位测定法 中英文

2.2.3. POTENTIOMETRIC DETERMINATION OF pH2.2.3. pH值电位测定法The pH is a number which represents conventionally the hydrogen ion concentration of an aqueous solution.For practical purposes, its definition is an experimental one.The pH of a solution to be examined is related to that of a reference solution (pHs) by the following equation:in which E is the potential, expressed in volts, of the cell containing the solution to be examined and Es is the potential, expressed in volts, of the cell containing the solution of known pH (pHs), k is the change in potential per unit change in pH expressed in volts, and calculated from the Nernst equation.其中,E是待测溶液电势,单位伏特;Es是已知pH溶液的标准电势, 单位伏特;k表示pH每变化一个单位的电势变化,从能斯特方程计算得来,单位伏特。

Table 2.2.3.-1. – Values of k at different temperatures表2.2.3.-1:不同温度下的k值The potentiometric determination of pH is made by measuring the potential difference between 2 appropriate electrodes immersed in the solution to be examined: 1 of these electrodes is sensitive to hydrogen ions (usually a glass electrode) and the other is the reference electrode (for example, a saturated calomel electrode).pH的电势测定是测定沉浸在待测溶液中的2个适当电极之间的电位差:其中一个是氢离子敏感电极(通常是玻璃电极),另一个是参比电极(例如饱和甘汞电极)。

电位法测定溶液的ph值的原理

电位法测定溶液的ph值的原理

电位法测定溶液的ph值的原理1. 什么是电位法?电位法?简单来说,就是通过测量电压来确定溶液的 pH 值。

听起来是不是有点复杂?别担心,咱们慢慢来,解释得清楚明了。

1.1 电位法的基本概念电位法是利用电极的电位变化来测量溶液的酸碱度。

酸碱度,也就是我们说的 pH 值,实际上是溶液中氢离子的浓度。

电位法就是通过测量电极上的电压变化来推测这些氢离子的浓度,从而得到 pH 值。

1.2 电极的作用电极在电位法中扮演了关键角色。

你可以把电极想象成一位“电量探测器”,它能感觉到溶液中的电压变化。

最常见的就是玻璃电极和参比电极。

玻璃电极用来感应溶液的氢离子浓度,而参比电极则保持一个稳定的电位作为对比。

2. 如何测量 pH 值?测量 pH 值的过程其实蛮简单的,主要分为以下几个步骤。

2.1 准备电极首先,要保证你的电极状态良好。

电极像是精密仪器,需要清洗干净,保持在正确的存储液中。

这样,它才能准确测量溶液中的 pH 值。

用过的电极一定要用纯水冲洗,不然会影响测量结果哦。

2.2 测量步骤然后,把电极放进待测溶液中,待它的电位稳定后,仪器会显示出pH 值。

这时候,我们可以记录下这个值了。

一般来说,仪器会给出一个电压值,仪器内部会把这个电压值转换成 pH 值展示出来。

3. 为什么电位法这么重要?电位法测 pH 值有很多优点,比如准确、快捷,适合各种实验室使用。

我们可以在很多领域中见到它的身影,比如化学分析、环境监测以及制药工业。

3.1 实验室中的应用在化学实验中,我们需要精确地知道溶液的 pH 值。

电位法能够迅速给出准确的结果,帮我们节省大量时间,让实验更高效。

比如说,当我们需要调节一个溶液的酸碱度时,电位法能让我们快速知道调节的效果如何。

3.2 其他领域的应用此外,环境监测中,电位法也常常派上用场。

我们可以用它来检测水体的酸碱度,这对保护环境非常重要。

而在制药工业中,确保药品的 pH 值在合适的范围也是至关重要的,这直接关系到药品的质量和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产生的原因: 玻璃膜内、外表面含钠量、表面张力以 及机械 和化学损伤的细微差异所引起的。长时间浸泡后 (24h)恒定(1~30mV)。
2.玻璃膜(非晶体膜)电极
非晶体膜电极,玻璃膜的组成不同可 制成对不同阳离子响应的玻璃电极。
H+响应的玻璃膜电极:敏感膜厚度约 为0.05mm。
SiO2基质中加入Na2O,Li2O和CaO烧 结而成的特殊玻璃膜。
水 浸 泡 后 , 表 面 的 Na+ 与 水 中 的 H+ 交换, 表面形成水合硅胶层 。
第二章 基本电化学分析法
Basic electrochemical analysis
第二节 电位法
Potentiometry
2.2.1 电位分析 基本原理
2.2.2 离子选择 电极的原理
2.2.3 离子选择 电极的特性
2.2.4 电位分析 方法的应用
07:26:11
2.1.1 电位法基本原理
电位分析是通过在零电流条件下测 定两电极间的电位差(电池电动势) 所进行的分析测定。
07:26:11
讨论:
(1) 玻璃膜电位与试样溶液中的pH呈线性关系。式中K´ 是由玻璃膜电极本身性质决定的常数。
(2) 电极电位应是内参比电极电位和玻璃膜电位之和。
(3) 不对称电位(25℃):
膜 = 外 - 内 = 0.059 lg( a1 / a2) 如果 a1= a2 ,则理论上膜=0,但实际上膜≠0。
敏化电极(sensitized electrodes) 气敏电极(gas sensing electrodes) 酶电极(enzyme electrodes)
07:26:11
1.晶体膜电极
(1)氟离子单晶膜电极
敏感膜:(氟化镧单晶) 掺有EuF2 的LaF3单晶切片; 内参比电极:Ag-AgCl电极(管内)。
Ag2S粉末压片制成,电极的导电性较高,膜内的Ag+为 电荷的传递者。25℃时,电极电位为
S2
k
0.0592 lg 2
aS2
(3)X- 阴离子多晶膜电极
分别由Ag2S-AgCl,Ag2S-AgBr,Ag2S-AgI,Ag2SAgSCN 等粉末压片的敏感膜可制成对相应阴离子响应的
X-阴离子选择性电极,在25℃时的电极电位为:
X- = k - 0.0592 lgaX-
07:26:11
(4)阳离子膜电极
由Ag2S-CuS,Ag2S-PbS,Ag2S-CdS等粉末压片的敏感 膜可制成分别对相应Cu2+,Pd2+,Cd2+等二价阳离子响应的 膜电极,在25℃时的电极电位为
M 2
k
0.0592 lg 2
aM2
固态型膜电极:
07:26:11
玻璃电极使用前,必须在水溶液中 浸泡。
07:26:11
玻璃膜电极
07:26:11
玻璃膜电位的形成
水化硅胶层厚度:0.01~10 μm。在水化层,玻璃上 的Na+与溶液中H+发生离子交换而产生相界电位。
水化层表面可视作阳离子交换剂。溶液中H+经水化 层扩散至干玻璃层,干玻璃层的阳离子向外扩散以补偿 溶出的离子,离子的相对移动产生扩散电位。 两者之和 构成膜电位。
07:26:11
玻璃膜电位的形成
07:26:11
玻璃膜电位
玻璃电极放入待测溶液, 25℃平衡后:
H+溶液== H+硅胶
内 = k1 + 0.059 lg( a2 / a2’ ) 外 = k2 + 0.059 lg(a1 / a1’ )
a1 , a2 :外部试液和电极内参比溶液的H+活度;
a’1 , a’2 :玻璃膜外、内水合硅胶层表面的H+活度;
当氟电极插入到F-溶液中时,F-在晶 体膜表面进行交换。25℃时
膜 = k - 0.059 lgaF- = k + 0.059 pF
具有较高的选择性,需要在pH5~7之间使用,pH高 时,溶液中的OH-与氟化镧晶体膜中的F-交换,pH较低时, 溶液中的F -生成HF或HF2 - 。
07:26:11
(2)硫离子单晶膜电极
ΔE = + - - + 液接电位
装置:参比电极、指示电极、电位 差计。
当测定时,参比电极的电极电位保 持不变,电池电动势随指示电极的电 极电位而变,而指示电极的电极电位 随溶液中待测离子活度而变。
07:26:11
2.2.2 离子选择性电极的原理
指示电极:离子选择性电极(膜电极)。 特点:仅对溶液中特定离子有选择性响应。 敏感元件:单晶、混晶、液膜、功能膜及生物膜等构成。 膜电位:膜内外被测离子活度的不同而产生电位差。 将膜电极和参比电极一起插到被测溶液中,则电池结构为
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
(敏感膜)
内外参比电极的电位值固定,且内充溶液中离子的活度
也一定,则电池电动势为
E
E
RT nF
ln ai
07:26:11
离子选择性电Leabharlann 类别1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
原电极(primary electrodes) 晶体膜电极(crystalline membrane electrodes) 均相膜电极(homogeneous membrane electrodes) 非均相膜电极(heterogeneous membrane electrodes) 非晶体膜电极(crystalline membrane electrodes) 刚性基质电极(rigid matrix electrodes) 流动载体电极(electrodes with a mobile carrier)
k1 , k2 则是由玻璃膜外、内表面性质决定的常数。
玻璃膜内、外表面的性质基本相同,则k1=k2 , a’1 = a’2
膜 = 外 - 内 = 0.059 lg( a1 / a2)
由于内参比溶液中的H+活度( a2)是固定的,则
膜 = K´ + 0.059 lg a1 = K´ - 0.059 pH试液
内参比溶液:0.1 mol·L-1的NaCl和0.01 mol ·L-1的NaF 混合溶液(F-用来控制膜内表面的电位,Cl-用以固定内参 比电极的电位)。
07:26:11
原理:
LaF3的晶格中有空穴,在晶格上的F可以移入晶格邻近的空穴而导电。对于 一定的晶体膜,离子的大小、形状和电 荷决定其是否能够进入晶体膜内,故膜 电极一般都具有较高的离子选择性。
相关文档
最新文档