数学(初高中)综合试题三 推荐
中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题
综合题综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。
前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。
1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。
【答案】4或1192。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。
1. 已知关于x 的方程x 2-(m +2)x +(2m -1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。
【答案】解:∵此方程的一个根是1,∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。
①该直角三角形的两直角边是1、3时,该直角三角形的面积为131322⋅⋅=。
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的面积为112222⋅⋅=。
综上所述,该直角三角形的面积为32或2。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5 答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1eB.1e - C.2e D.2e -答案:A 3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) 答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i -- 答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000 答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11 答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①②B.②④C.①③D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( ) A.12cm/s B.13cm/sC.14 cm/s D.15cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[的函数共有( ) (1)(sin )(cos )y x x ''=+(2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( )A.23 B.43 C.83D.123答案:C 二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 . 答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 . 答案:72m 三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数. 证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+,由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±,故123z z -为实数.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<, 即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 31.8m .19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线. 证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾.所以AB C ,,三点不共线. 20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围. 解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明. 解:满足的不等式为21212111()(2)n nx x x n n x x x ⎛⎫++++++ ⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++ ⎪⎝⎭2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()S a 的最小值. 解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β=,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S aax a dx x a xββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a⎡=-=⎢⎣· (2)()S a =3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x '<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( )(A )1 (B (C (D )54.若函数3()y a x x =-的递减区间为(,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=(B)26.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( ) (A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数 9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
全国高中数学联赛模拟试题(三)
全国高中数学联赛模拟试题(三)第一试一、选择题(共36分)1. 化简cos 2π7+cos 4π7+cos 6π7的值为 ( )A.-1B.1C.-12D.122. S n 和T n 分别是等差数列{a n }和{b n }的前n 项和,且对任意的自然数n 都满足S n T n =7n +44n +27,那么a 11b 11= ( )A.43B.74C.32D.7871 3. 直线xcos θ+y +m =0(式中θ是△ABC 的最大角),则此直线的倾斜角变化范围是( )A.(-arctan 12,π4)B.[0,π4)∪(2π3,π)C.[0,π4]D.[0,π4]∪[π-arctan 12,π]4. 设实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b ,其中a ,b 为正常数且a ≠b ,那么mx+ny 的最大值为 ( )A.a +b 2B.abC.2ab a +bD.a 2+b 225. 如图,平面α中有△ABC 和△A 1B 1C 1分别在直线m 的两侧,它们与m 无公共点,并且关于m 成轴对称,现将α沿m 折成一个直二面角,则A ,B ,C ,A 1,B 1,C 1六个点可以确定的平面个数为 ( ) A.14 B.11 C.17 D.凸n边形的各边为直径作圆,使这个凸n 边形必能被这n个圆面所覆盖,则n 的最大值为( ) A.3 B.4 C.5 D.6二、填空题(共54分)6. 已知0<x <π2,log sinx cosx 与log cosx tanx 的首数均为零,尾数和为1,则x =_________.7. 设=n 21a a a 222+++ ,其中a 1,a 2,……,a n 是两两不等的非负整数,则a 1+a 2+…+a n =___________.8. 已知不等式a ≤34x 2-3x +4≤6的解集为{x|a ≤x ≤b},其中0<a <b,则b =___________.9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x对一切x∈R都成立,则a+b=_____________.10.正四棱台ABCD-A1B1C1D1的高为25,AB=8,A1B1=4,则异面直线A1B与B1C的距离为____.11.方程(x2-x-1)x+2=1的解集为_________________.三、解答题(共计60分)12.(设f(x)=(1+x+x2)n=c0+c1x+c2x2+……+c2n x2n,则c0+c3+c6+……=c1+c4+c7+……=c2+c5+c8+……=3n-1.13.(已知满足不等式lg(x2)>lg(a-x)+1的整数x只有一个,试求常数a的取值范围.14.(设y=f(x)是定义在R上的实函数,而且满足条件:对任意的a,b∈R,有f[af(b)]=ab,试求|f()|.第二试一、(50分)如图,D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B ,又设△AFE ,△BDF 和△DEF 均为锐角三角形,他们的垂心分别为H 1,H 2,H 3.求证:(1)∠H 2DH 3=∠FH 1E ;(2)△H 1H 2H 3≌△DEF.二、(50分)设C 0,C 1,C 2,……是坐标平面上的一族圆(周),其定义如下:(1)C 0是单位圆x 2+y 2=1;(2)任取n ∈Z 且n ≥0,圆C n +1位于上半平面y ≥0内及C n 的上方,与C n 外切并且与双曲线x 2-y 2=1相切于两点,C n 的半径记为r n (n ∈Z 且n ≥0) (1)证明:r n ∈Z ; (2)求r n .三、(50分)称自然数为“完全数”,如果它等于自己的所有(不包括自己)的正约数的和,例如,6=1+2+3,如果大于6的“完全数”可以被3整除,证明,它一定可以被9整除.C全国高中数学联赛模拟试题(三)参考答案 第一试一、选择题 1. Ccos 2π7+cos 4π7+cos 6π7=∑∑==π+π=π61k e 61k )]7k 2sin i 7k 2(cos [R 217k 2cos 21令z =cos 2π7+isin 2π7,于是z 7=1则上式=12(z +z 2+z 3+z 4+z 5+z 6)=……=-122. Aa 11b 11=21a 1121b 11=S 21T 21=7×21+44×21+27=43 3. Dθ∈[π3,π),cos θ∈(-1,12],则斜率k ∈[-12,1)4. B由柯西不等式ab =(m 2+n 2)(x 2+y 2)≥(mx +ny)2,当mx =ny 时取等号,所以mx +ny ≤ab5. B三点确定一个平面,但需除去三组四点共面重复的个数,共确定平面个数为3436C 3C -+3=11个6. B注意到:当且仅当∠C ≥90°时,△ABC 能被以AB 为直径的圆覆盖.从而易证n ≤4,当n =4时,正方形满足条件. 二、填空题 7.arcsin5-12; log sinx cosx +log cosx tanx =1 ⇒ log sinx cosx =12∴ sinx =cos 2x ∴ sin 2+sinx -1=0 ∴ sinx =5-12(负值舍去) 8.44;=210+29+28+27+26+249.4;分情况讨论得:a =43,b =410.110;f(-1)=1+lgb -(2+lga)=-2∴ lga =lgb +1,而(lga)2-4lgb ≤0∴ (lgb -1)2≤0 ∴ lgb =1 ∴ b =10,a =100 11.4105;过B 1作A 1B 的平行线交AB 于E ,转化为求B 点到平面B 1CE 的距离. 12.{-2,-1,0,2}若x 2-x -1=1,则x =2,-1若x 2-x -1=-1且x +2为偶数,得x =0若x +2=0且x 2-x -1≠0得x =-2 三、13.令ω=-12+32i ,则有f ⑴=c 0+c 1+c 2+c 4+c 5+……+c 2n =3n…………………①f(ω)=c 0+ωc 1+ω2c 2+c 3+ωc 4+ω2c 5+……+ω2nc 2n =0…………………②f(ω2)=c 0+ω2c 1+ωc 2+c 3+ω2c 4+ωc 5+……+ω4nc 2n =0…………………③①+②+③得3(c 0+c 3+c 6+……)=3n,∴ c 0+c 3+c 6+……=3n -1.②-①得c 1+c 4+c 7+……=c 2+c 5+c 8+……于是c 1+c 4+c 7+......=c 2+c 5+c 8+......=c 0+c 3+c 6+ (3),14.∵ x 2>0,∴ |x|≤1,∴ x =-1或0或1x =-1时,lg15>lg(a +1)+1,∴ -1<a <12x =0时,lgga +1 ∴ 0<a <2x =1时,lg15>lg(a -1)+l ∴ 0<a <52又因为满足条件的整数x 只有一个,∴ a 的取值范围是(-1,0]∪[12,1]∪[2,52)15.令a =1,则f(f(b))=b ,∴ f(f(x))=x∴ f(f(f 2(x)))=f 2(x)∴ f(f(f 2(a)))=f 2(a)再令a =f(b),则f(f 2(b)=bf(b)∴ f(f(f 2(b)))=f(bf(b))=b 2.∴ f(f(f 2(a)))=a 2.∴ f 2(a)=a 2, ∴ |f(a)|=|a| ∴ f()=第二试一、⑴∵ H 1为△AEF 的垂心,∴ ∠EH 1F =180°-∠A =∠B +∠C∠H 2DH 3=180°-∠H 2DB -∠H 3DC =180°-(90°-∠B)-(90°-∠C)=∠B +∠C ∴ ∠EH 1F =∠H 2DH 3⑵连结FH 2,EH 3,则FH 2⊥BD ,EH 3⊥BC∴ FH 2∥EH 3 由⑴中所证∠EH 1F +∠EOF =180° ⇒ E ,D ,F ,H 1四点共圆.同理,E ,D ,H 1,H 2四点共圆,H 1,D ,F ,H 3四点共圆,E ,D ,F ,H 1,H 2,H 3六点共圆. 二圆内接四边形EH 2H 3F 中,EH 2∥FH 3, ∴ EF =H 2H 3,同理,DE =H 1H 3,DF =H 1H 2, ∴ △H 1H 2H 3≌△DEF.二、⑴由对称性可知r n 的圆心在y 轴上,设r n 的方程为x 2+(y -s n )2=r n 2,其中s n =r 0+2(r 1+r 2+……+r n -1)+r n .将x 2=y 2+1代入其中得 y 2+1+y 2+s n 2-2ys n -r n 2=0△=4s n 28S n 2+8r n 2-8=0 ⇒ 2r n 2=S n 2+2 从而易得r n =6r n -1-r n -2,∵ r 0=1,r 1=3,∴ 对任意n ∈N ,有r n ∈N (2)由特征根方程可得r n =A(3+22)n+B(3-22)n,将r 0=1,r 1=3代入其中,得r n =12[(3+22)n +(3-22)n]三、设“完全数”等于3n ,其中n 不是3的倍数,于是3n 的所有正约数(包括它自己)可以分为若干个形如d 和3d 的“数对”,其中d 不可被3整除,从而3n 的所有正约数的和(它等于6n)是4的倍数,因此是2的倍数.我们注意到,此时32n ,n ,12n 和1是3n的互不相同的正约数,但它们的和等于3n +1>3n ,从而3n 不可能是“完全数”,得到矛盾.。
2023年河南省郑州市河南省实验中学中考三模数学试题
2023年河南省郑州市河南省实验中学中考三模数学试题学校:___________姓名:___________班级:___________考号:___________6.已知1x =是一元二次方程220x ax +-=的一个实数根,则a 的值是( ) A .1 B .1- C .2 D .2-7.下列选项中,最适宜采用全面调查(普查)方式的是( )A .调查一批节能灯的使用寿命B .调查东风渠的水质状况C .调查河南省中学生的体育运动情况D .检测长征二号F 遥17火箭的零部件 8.作为中原大省,河南省是我国的人口大省、农业大省、经济大省,2022年,河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学计数法表示为( )A .86.1310⨯B .106.1310⨯C .126.1310⨯D .146.1310⨯ 9.如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是( )A .0ac <B .240b ac ->C .20a b -=D .0a b c -+= 10.正方形ABCD 与正方形BEFG 按照如图所示的位置摆放,其中点E 在AB 上,点G 、B 、C 在同一直线上,且4AB =,2BE =,正方形BEFG 沿直线BC 向右平移得到正方形B EFG '''',当点G '与点C 重合时停止运动,设平移的距离为x ,正方形B E F G ''''与正方形ABCD 的重合部分面积为S ,则S 与x 之间的函数图象可以表示为( )A .B .C .D .二、填空题11.请写出一个与x 轴有公共点的函数表达式:______.12.不等式14x +<的非负整数解为______.13.第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合三、解答题20.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的2倍,用40 元购进的卫龙辣条比用10元购进的普通辣条多10包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用1000元购进卫龙辣条、普通辣条,并分别按3.5元/包、2元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的3倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.21.足球比赛中,当守门员远离球门时,进攻队员常常使用吊射战术(把球高高地挑过守门员的头顶,射入球门).一般来说,吊射战术中足球的轨迹往往是一条抛物线.摩洛哥与葡萄牙比赛进行中,摩洛哥一位球员在离对方球门30米的点O 处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.以点O 为坐标原点,建立如图所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)此时,葡萄牙队的守门员在球门前方距离球门线1米处,原地起跳后双手能达到的最大高度为2.8米,在没有摩洛哥队员干扰的情况下,那么他能否在空中截住这次吊射?请说明理由.22.水车又称孔明车,是中国最古老的农业灌溉工具,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产.相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,已有1700余年历史.小明对水车进行了研究,如图,水渠CD 与水车O e 相切于点D ,连接DO ,已知O e 的半径为1.2米,支柱OA 、BC 与水面AB 垂直,支柱OA 的高度为3.5米,点A 与点B 之间的距离为3.6米,点O ,A ,B ,C ,D 在同一平面内.。
2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学模拟测试题(三)
2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学模拟测试题(三)一、单选题1. 2.5-的倒数是( )A .25-B .-2.5C .25D .522.天府绿道位于四川省成都市境内,规划总长约16900000m ,建成后将是世界上规模最大的绿道系统,也是天府文化底蕴的现代展示.将数据“16900000”用科学记数法表示为( )A .51.6910⨯B .71.6910⨯C .81.6910⨯D .516910⨯ 3.下列运算中,正确的是( )A .3243a a a -=B .()222a b a b +=+ C .321a a ÷= D .()2224ab a b = 4.如图,在四边形ABCD 中,AD BC ∥,若添加一个条件,使四边形ABCD 为平行四边形,则下列正确的是( )A .AB CD = B .AB =ADC .ADB DBC ∠=∠D .ABC ADC ∠=∠ 5.为了解学生的体质健康水平,国家每年都会进行中小学生体质健康测试和抽测复核.在某次抽测复核中,某校九(1)班10名男生引体向上测试的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.这组数据的众数和中位数分别是( )A .11,10.5B .10.5,11C .10,10.5D .11,96.在平面直角坐标系中,点()3,2A -,(),B m n 关于x 轴对称,将点B 向左平移3个单位长度得到点C ,则点C 的坐标为( )A .()3,2-B .()3,2C .()0,2-D .()0,27.《九章算术》中有一题:“今有大器五、小器一,容三斛;大器一、小器五,容二斛.问大、小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问:大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组为( )A .5352x y x y +=⎧⎨+=⎩B .5352x y x y =+⎧⎨=+⎩C .5352x y x y +=⎧⎨+=⎩D .5253x y x y =+⎧⎨=+⎩8.如图,抛物线2y ax bx c =++与x 轴交于点()3,0A -,()1,0B ,与y 轴交于点C .有下列说法:①0abc >;②抛物线的对称轴为直线=1x -;③当30x -<<时,20ax bx c ++>;④当1x >时,y 的值随x 值的增大而减小;⑤2am bm a b +≥-(m 为任意实数).其中正确的有( )A .1个B .2个C .3个D .4个二、填空题9.计算:()()33x x x +-=.10.点()11,A y ,()22,B y 都在反比例函数6y x=的图象上,则1y 2y .(填“>”或“<”) 11.如图,在平面直角坐标系中,OAB V 的顶点A ,B 的坐标分别为()1,3,()4,3,以原点O为位似中心将OAB V进行放缩.若放缩后点A 的对应点的坐标为()2,6,则点B 的对应点的坐标为.12.分式方程32311x x x -=-++的解为.13.如图,在ABCD Y 中,按下列步骤作图:①以点D 为圆心、适当的长为半径作弧,分别交DA DC ,于点M ,N ;②分别以点M ,N 为圆心、大于12MN 的长为半径作弧,两弧在ADC ∠内交于点O ;③作射线,交AB 于点E .若2BE =,6BC =,则ABCD Y 的周长为.三、解答题14.(1)计算:()1012sin 604π13-⎛⎫-︒+- ⎪⎝⎭; (2)解不等式组:()61023143233x x x x ⎧+≥+⎪⎨--<⎪⎩. 15.6月5日是世界环境日,为提高学生的环保意识,某校举行了环保知识竞赛.该校随机抽取部分学生的答题成绩进行统计,将成绩分为四个等级:A (优秀),B (良好),C (一般),D (不合格),并根据结果绘制了如下两幅不完整的统计图.根据以上信息,解答下列问题.(1)这次抽样调查共抽取______人,并将条形统计图补充完整;(2)该校有1500名学生,估计该校学生答题成绩为A 等级和B 等级的总人数;(3)学校要从答题成绩为A 等级的甲、乙、丙、丁四名学生中,随机抽出两名学生去做“环境知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁的概率. 16.某风景区观景缆车路线如图所示,缆车从点A 出发,途经点B 后到达山顶P ,其中600m AB =,300m BP =,且AB 段的运行路线与水平方向的夹角为15︒,BP 段的运行路线与水平方向的夹角为30︒,求垂直高度PC .(结果精确到1m .参考数据:sin150.259︒≈,cos150.966︒≈,tan150.268︒≈)17.如图,在O e 中,AB 是一条不过圆心O 的弦,C ,D 是»AB 的三等分点,直径CE 交AB 于点F ,连接BD 交CF 于点G ,连接AC DC ,,过点C 的切线交AB 的延长线于点H .(1)求:FG CG =;(2)若O e 的半径为6,2OF =,求AH 的长.18.如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于点()1,4A -,(),1B n -.将直线AB 绕点A 顺时针旋转()045αα︒<<︒交y 轴于点M ,连接BM .(1)求反比例函数和一次函数的表达式;(2)若10ABM S =△,求点M 的坐标;(3)当ABM V 是以AM 为腰的等腰三角形时,求tan α的值.四、填空题19.若a 61a -的值为. 20.已知m ,n 是一元二次方程2310x x k ---=的两根,且满足2314m mn n -+=,则k 的值为.21.如图,在Rt ABC △中,AC BC ==,90ACB ∠=︒,D 是AB 的中点,以点D 为圆心,作圆心角为90︒的扇形DEF ,点C 恰好在»EF 上(点E ,F 不与点C 重合),半径DE ,DF 分别与AC ,BC 相交于点G ,H ,则阴影部分的面积为.22.如图,在菱形ABCD 中,45B ∠=︒,将菱形折叠,使得点D 落在边AB 的中点M 处,折痕为EF ,则DE DF的值为.23.定义:若一个正整数M 能表示成两个相邻偶数a ,b ()0a b >≥的平方差,即22M a b =-,且M 的算术平方根是一个正整数,则称正整数M 是“双方数”.例如:2236108=-6=,36就是一个“双方数”.若将“双方数”从小到大排列,前3个“双方数”的和为;第100个“双方数”为.五、解答题24.龙泉驿水蜜桃有果大质优、色泽艳丽、汁多味甜三大特点,素有“天下第一桃”的美誉.某商家在龙泉驿以8元/kg 的价格收购了一批水蜜桃后出售,售价不低于10元/kg ,不超过30元/kg .该商家对销售情况进行统计后发现,日销售量()kg y 与售价x (元/kg )之间的函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)设日销售利润为w 元,当销售价格定为多少时,日销售利润最大?最大是多少? 25.如图1,在平面直角坐标系中,抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且满足44BO OC OA ===.(1)求抛物线的函数表达式;(2)如图2,直线2y x b =-+与抛物线交于点M ,N ,设点D 是线段MN 的中点 ①连接OD ,CD ,当OD CD +取最小值时,求b 的值;②在坐标平面内,以线段MN 为边向左侧作正方形MNQP ,当正方形MNQP 有三个顶点在抛物线上时,求正方形MNQP 的面积.26.如1,在正方形ABCD 中,4AB =,P 是边AD 上的一点,连接CP ,过点D 作DH PC ⊥于点H ,在边DC 上有一点E ,连接HE ,过点H 作HF HE ⊥,交边BC 于点F .(1)求证:DH FH EH CH ⋅=⋅;(2)如图2,连接EF ,交线段PC 于点G ,当FGC △为等边三角形时,求DE 的长;(3)如图3,设M 是DC 的中点,连接BM ,分别交线段HF ,EF 于点K ,N ,当P 是AD 的?若存在,求此时DE的长;若不存在,中点时,在边DC上是否存在点E,使得BK KN请说明理由.。
高中数学必修1综合测试题之三
高中数学必修1综合测试题之三一、选择题【共15道小题】(有答案)1、集合P={x||x|<2},Q={x+x<2}则()A.P∩Q=(0,2)B.P∩Q=[0,2]C.P QD.P Q2、设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3、已知集合A={x|x2-5x+6≤0},集合B={x||2x-1|>3},则集合A∩B=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}4、设f是从集合A到集合B的映射,下列四个说法,其中正确的是()①集合A中的每一个元素在集合B中都有元素与之对应②集合B中的每一个元素在集合A中也都有元素与之对应③集合A中不同的元素在集合B中的对应元素也不同④集合B中不同的元素在集合A中的对应元素也不同A.①和②B.②和③C.③和④D.①和④5、下列各图中,可表示函数y=f(x)的图象的只可能是()6、下列各等式中,正确的是()A.=|a|B.C.a0=1D.7、已知二次函数图象的对称轴是x=2,又经过点(2,3),且与一次函数y=3x+b的图象交于点(0,-1),则过一次函数与二次函数的图象的另一个交点的坐标是()A.(1,2)B.(2,1)C.(-1,2)D.(1,-2)8、某一种商品降价10%后,欲恢复原价,则应提价()A.10%B.9%C.11%D.1119%9、函数y=的值域是()A.{x|0<x<1}B.{x|0<x≤1}C.{x|x>0}D.{x|x≥0}10、以下命题正确的是()①幂函数的图象都经过(1,1)②幂函数的图象不可能出现在第四象限③当n=0时,函数y=x n 的图象是一条直线④若y=x n(n<0)是奇函数,则y=x n在定义域内为减函数A.②③B.①②C.②④D.①③11、甲乙二人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只能是()A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④12、已知集合A={m1,m2},B={n1,n2,n3},则从A到B的不同映射共有…()A.3个B.6个C.9个D.12个13、设函数f(x)=的定义域为{x|x≥-2},则实数a的值为()A. B.0 C. D.不存在14、已知对不同的a值,函数f(x)=2+a x-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是()A.(0,3)B.(0,2)C.(1,3)D.(1,2)15、已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是()A.(0,1)B.(0,)C.[,)D.[,1)二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的身高当函数值,如下列表,画出它的图象来.2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?一、答案:1B2B3C4D5D6D7A8D9A10B11B12C13C14C15A二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.参考答案与解析:解析:本题考查求一个函数的定义域以及在全集基础上的集合间的求“补”运算和集合间的求“交”运算,所以要分别求出集合F和G以及G的补集,最后求F∩G.解:∵1-x2>0,∴-1<x<1,∴F=(-1,1).∵2+x-6x2>0,∴-<x<,∴G=(-,),∴ G=(-∞,-)∪[,+∞],∴F∩G=(-1,-)∩[,1].主要考察知识点:集合,函数2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.参考答案与解析:解析:两题乍一看似乎一样,但若仔细分析,其设问角度不同,解题方法也有区别.①对x∈R,x2-2x+a>0恒成立,②由于当t∈(0,+∞)时,t∈R故要求x2-2x+a取遍每一个正实数,换言之,若x2-2x+a的取值范围为D,则(0,+∞)∈D.①x2-2x+a=(x-1)2+a-1≥a-1,故只要a-1>0则x∈R时,x2-2x+a>0恒成立.因此,填a>1;②x2-2x+a=(x-1)2+a-1≥a-1,故x2-2x+a的取值范围为[a-1, +∞),要求(0,+∞)[a-1, +∞)只要a-1≤0.因此,填a≤1.答案:a>1 a≤1主要考察知识点:对数与对数函数3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.参考答案与解析:解析:本题是与物理学有关系的一道给定函数关系式的题目,关键是理解所给公式中的各个量的含义,尤其是是“9000”对应的字母要准确.根据题意,得P=1 000=0.343.因此,填0.343.答案:0.343主要考察知识点:函数的应用4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.参考答案与解析:解析:本题是函数单调性知识的逆向应用,即已知函数单调性,确定函数解析式或解析式中的待定系数.此题用到函数的导数的性质,即增区间内函数的导数非负,减区间内的函数导数非正.∴对函数进行求导后便可建立关于a的不等式.解:f′(x)=≥0对x∈[1,+∞)恒成立,∴a≥对x∈[1,+∞)恒成立,又≤1,∴a≥1为所求.答案:a≥1主要考察知识点:函数三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的参考答案与解析:解析:(1)要分情况表示.分成6斤以下,以上两种情况,这种函数叫分段函数.(2)这个问题中的自变量(学号)与变量(身高)有明确的对应关系,但这个对应关系无法用一个等式表示出来,我们采用列表法或图象法就比较简单.解:(1)这个函数的解析表示应分两种情况:y=如图:(2)图象法:主要考察知识点:函数的应用2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.参考答案与解析:解析:此题把y+用含x的式子表示出来并不难,复杂的地方在于化简,由于在化简时涉及指数式的变换和分类讨论的使用.因此分类要细致,讨论要全面.解:由y=,可知y2=(a2x+a-2x+2),y2-1=(a2x+a-2x-2)=(ax-a-x)2,∴y+=+|ax-a-x|.当x>0时,若a>1,则ax>a-x,此时y+=ax,若0<a<1,则ax<a-x,此时y+=a-x.当x=0时,y+=1.当x<0时,若a>1,则ax<a-x,此时y+=a-x,若0<a<1,则ax>a-x,此时y+=ax.主要考察知识点:指数与指数函数3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.参考答案与解析:解析:本题的解题关键是如何使用已知条件f()>f(2a-1),即如何把这个已知条件转化成关于a的不等式,也就是把自变量“部分”要化到一个单调区间内,才能根据函数的单调性达到转化的目的.这时我们想到了“若f(x)是偶函数,那么f(x)=f(-x)=f(|x|).”于是f(2a-1)=f(|2a-1|).解:由f(x)是偶函数,且f()>f(2a-1)等价于f()>f(|2a-1|),又f(x)在[0,+∞)上是减函数,∴解得a≤-1或a≥2.主要考察知识点:函数4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.参考答案与解析:解析:本题综合考查一元二次方程、一元二次不等式和二次函数的关系及其性质,重点是互相之间的转化.在(1)中,通过不等式f(x)<-2x的解集为(1,3),用二次函数的标根式把不等式转化成函数,再根据韦达定理将问题转化成关于a的方程.在(2)中,既可以根据二次函数的最值公式将题意转化成不等式,也可以用配方法求最值.解:(1)Qf(x)+2x<0的解集为(1,3).∴设f(x)+2x=a(x-1)(x-3),则a>0.因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a ①由方程f(x)|+6a=0得ax2-(2+4a)x+9a=0 ②∵方程②有两个相等的根,∴Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0.解得a=1或a=-.由于a>0,舍去a=-.将a=1代入①得f(x)的解析式f(x)=x2-6x+3.(2)由f(x)=ax2-2(1+2a)x+3a=a(x-)2-及a>0,可得f(x)的最小值为-.由题意可得,解得a>0.故当f(x)的最小值为负数时,实数a的取值范围是a>0.主要考察知识点:函数5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.参考答案与解析:解析:4x2-9y2=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?看看y的值是否是唯一确定的.解:xy<0或因为4x2-9y2=36,故y2=x2-4.又x>3;或x<-3.∴y=f(x)=因此能确定一个函数关系y=f(x).其解析式为y=f(x)=其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).主要考察知识点:函数6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?参考答案与解析:解析:以上的这个遗嘱就是美国著名的科学家,一生为科学和民主革命而工作的富兰克林所写的.很显然作为一个科学家是不会在遗嘱中开玩笑的.从富兰克林的遗嘱中我们可以深刻地感受到“指数爆炸”的效应,微薄的资金,低廉的利率,在神秘的“指数爆炸”效应下,可以变得令人瞠目结舌,这就是富兰克林的故事给人的启示.增加到131 000英镑,这笔款增加到4 061 000英镑,解:让我们按富兰克林非凡的设想实际计算一下,故事中实际上是指数函数y=1 000(1+5%)x值的变化,不难算得,当x=1时,y=1 050,当x=3时y=1 158,当x=100时,y=1 000(1+5%)100≈131 501,这意味着上面的故事中在头一个100年末富兰克林的财产应当增加到131 501英镑,用100 000英镑建立一所公共建筑物后,还剩31 501英镑,在第二个100年末,他拥有的财产为y=31 501(1+5%)100≈4 142 421,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理,还剩81 421英镑.可见富兰克林的遗嘱在科学上是站得住脚的.遗嘱是能够实现的.主要考察知识点:函数的应用。
2022年福建省中考数学真题(含答案)
2022年福建省初中毕业和高中阶段学校招生考试数学试题一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1. -11的相反数是( )A. -11B. 111-C. 111D. 112. 如图所示的圆柱,其俯视图是( )A. B. C. D.3. 5G 应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G 终端用户达1397.6万户.数据13976000用科学记数法表示为( )A. 31397610⨯B. 41397.610⨯C. 71.397610⨯D. 80.1397610⨯4. 美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A. B. C. D.5. 如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A. B. C. D. π 6. 不等式组1030x x ->⎧⎨-≤⎩的解集是( ) A. 1x >B. 13x <<C. 13x <≤D. 3x ≤ 7. 化简()223a的结果是( ) A. 29a B. 26a C. 49a D. 43a 8. 2021年福建省的环境空气质量达标天数位居全国前列.下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A. 1FB. 6FC. 7FD. 10F 9. 如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB AC =,27ABC ∠=︒,44cm BC =,则高AD 约为( )(参考数据:sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A. 9.90cmB. 11.22cmC. 19.58cmD. 22.44cm10. 如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,8AB =,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得ABC △移动到'''A B C △,点'A 对应直尺的刻度为0,则四边形''ACC A 的面积是( )A. 96B.C. 192D.二、填空题:本题共6小题,每小题4分,共24分。
人教A版高中数学必修五必修五 综合测试题 (第三套).docx
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
2024年四川省宜宾市中考数学试题(真题)
宜宾市2024年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)注意事项:1.答题前,务必将自己的姓名、座位号、准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求.1.2的绝对值是()A.12- B.12 C.2- D.22.下列计算正确的是()A.2a a a += B.532a a -= C.2326x x x ⋅= D.32()()x x x-÷-=3.某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是()A.方差为0 B.众数为75 C.中位数为77.5 D.平均数为754.如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于()A.30︒B.45︒C.60︒D.90︒5.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,问快马几天可追上慢马?则快马追上慢马的天数是()A .5天 B.10天 C.15天D.20天6.如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1、2、3,且6123=++,则称6为完美数.下列数中为完美数的是()A.8 B.18 C.28 D.327.如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是()A.B 点B.C 点C.D 点D.E 点8.某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为()A.8箱B.9箱C.10箱D.11箱9.如图,ABC 内接于O ,BC 为O 的直径,AD 平分BAC ∠交O 于D .则AB AC AD +的值为()A. B.C. D.10.如图,等腰三角形ABC 中,AB AC =,反比例函数()0k y k x =≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则AN AB的值为()A.13 B.14 C.15 D.2511.如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为()A.2+B.6+C.5D.812.如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A -、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +的最小值为3.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:222m -=_________________________.14.分式方程1301x x +-=-的解为___________.15.如图,正五边形ABCDE 的边长为4,则这个正五边形的对角线AC 的长是___________.16.如图,在平行四边形ABCD 中,24AB AD ==,,E 、F 分别是边CD AD 、上的动点,且CE DF =.当AE CF +的值最小时,则CE =_____________.17.如图,一个圆柱体容器,其底部有三个完全相同的小孔槽,分别命名为甲槽、乙槽、丙槽.有大小质地完全相同的三个小球,每个小球标有从1至9中选取的一个数字,且每个小球所标数字互不相同.作如下操作:将这三个小球放入容器中,摇动容器使这三个小球全部落入不同的小孔槽(每个小孔槽只能容下一个小球),取出小球记录下各小孔槽的计分(分数为落入该小孔槽小球上所标的数字),完成第一次操作.再重复以上操作两次.已知甲槽、乙槽、丙槽三次操作计分之和分别为20分、10分、9分,其中第一次操作计分最高的是乙槽,则第二次操作计分最低的是___________(从“甲槽”、“乙槽”、“丙槽”中选填).18.如图,正方形ABCD 的边长为1,M 、N 是边BC 、CD 上的动点.若45MAN ∠=︒,则MN 的最小值为___________.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(1)计算:()022sin3023︒-+--(2)计算:2211111a a a ⎫⎛÷- ⎪--+⎝⎭.20.某校为了落实“五育并举”,提升学生的综合素养.在课外活动中开设了四个兴趣小组:A .插花组:B .跳绳组;C .话剧组;D .书法组.为了解学生对每个兴趣小组的参与情况,随机抽取了部分学生进行调查,并将调查结果绘制成不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了___________名学生,并将条形统计图补充完整;(2)话剧组所对应扇形的圆心角为___________度;(3)书法组成绩最好的4名学生由3名男生和1名女生构成.从中随机抽取2名参加比赛,请用列表或画树状图的方法,求刚好抽到1名男生与1名女生的概率.21.如图,点D 、E 分别是等边三角形ABC 边BC 、AC 上的点,且BD CE =,BE 与AD 交于点F .求证:AD BE =.22.宜宾地标广场位于三江汇合口(如图1,左侧是岷江,右侧是金沙江,正面是长江).某同学在数学实践中测量长江口的宽度,他在长江口的两岸选择两个标点C 、D ,在地标广场上选择两个观测点A 、B(点A 、B 、C 、D 在同一水平面,且AB CD ).如图2所示,在点A 处测得点C 在北偏西18.17︒方向上,测得点D 在北偏东21.34︒方向上;在B 处测得点C 在北偏西21.34︒方向上,测得点D 在北偏东18.17︒方向上,测得100AB =米.求长江口的宽度CD 的值(结果精确到1米).(参考数据:sin18.170.31︒≈,cos18.170.95︒≈,tan18.170.33︒≈,sin21.340.36︒≈,cos21.340.93︒≈,tan21.340.39︒≈)23.如图,一次函数.()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于点()()1,4,1A B n -、.(1)求反比例函数和一次函数的表达式;(2)利用图象,直接写出不等式k ax b x+<的解集;(3)已知点D 在x 轴上,点C 在反比例函数图象上.若以A 、B 、C 、D 为顶点的四边形是平行四边形,求点C 的坐标.24.如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E ,连接CD .(1)求证:AE 是O 的切线;(2)若1tan 2ABE ∠=,求CD 和DE 的长.25.如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.。
2019年人教版高中数学必修三综合测试题(含答案)
必修3综合模拟测试卷A(含答案)一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是A、最大数B、最小数C、既不最大也不最小D、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16B、12C、13D、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A、6,12,18B、7,11,19C、6,13,17D、7,12,174、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A、16B、C、13D、6、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1;End 输出T开始 S :=0 i :=3 i :=i +1S :=S +ii >5 输出S结束是 否A 、10B 、11C 、55D 、56 10、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。
高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( ) A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++ 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nn n n n x C C x C x C x +=++++ , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++ 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ30a - 30100- 30P136 536 3036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x yC C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
2024年河南省普通高中招生考试《数学》试卷(附答案)
2024年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分 120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点 P 表示的数是A. -1B.0C.1D.22. 据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为 A.5784×10⁸ B.5.784×10¹⁰ C.5.784×10′′ D.0.5784×10¹² 3.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为 A.60° B.50° C.40° D.30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为(第4题)A. x>2B. x<0C. x<-2D. x>-36. 如图,在▱ABCD 中,对角线AC,BD 相交于点O,点E 为OC 的中点,EF∥AB 交BC 于点 F.若AB = 4,则EF 的长为 A. 12 B.1 C. 43 D.2 7. 计算 (a ⋅a ,⋯⋅a )3的结果是a 个A. a ⁵B. a ⁶C. a ⁴⁺³D. a³a数学试卷 第1页(共6页)8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为A. 19B. 16C. 15D. 139. 如图,⊙O 是边长为4 √3的等边三角形ABC 的外接圆,点D 是BC 的中点,连接BD,CD.以点 D为圆心,BD 的长为半径在⊙O 内画弧,则阴影部分的面积为 A.8π3 B.4π C.16π3 D.16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误..的是A. 当P =440 W 时, I =2 AB. Q 随I 的增大而增大C. I 每增加 1 A,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项: .12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.数学试卷 第 2页(共6页)13. 若关于x的方程12x2−x+c=0有两个相等的实数根,则c的值为 .14. 如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(-2,0),点 E在边 CD 上. 将△BCE沿BE折叠,点C落在点F 处. 若点 F的坐标为(0,6),则点 E 的坐标为 .15. 如图,在Rt△ABC 中,∠ACB =90°,CA = CB =3,线段 CD 绕点 C 在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为 .三、解答题(本大题共8个小题,共75分)16. (10分)(1) 计算:√2×√50−(1−√3)0; (2) 化简:(3a−2+1)÷a+1a2−4.17.(9分)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.比赛得分统计图队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是 (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.数学试卷第 3 页(共6页)18.(9分)如图,矩形ABCD的四个顶点都在格点(网格线的交点)上,对角线AC,BD相交(x⟩0)的图象经过点 A.于点 E,反比例函数y=kx(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为 .19.(9分)如图,在Rt△ABC中,CD是斜边AB上的中线,BE‖DC交AC的延长线于点 E.(1)请用无刻度的直尺和圆规作∠ECM,使∠ECM=∠A,且射线 CM交 BE 于点 F(保留作图痕迹,不写作法).(2) 证明(1) 中得到的四边形 CDBF是菱形.20.(9分)如图1,塑像AB在底座BC上,点D 是人眼所在的位置.当点 B 高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时∠APB为最大视角.(1)请仅就图2的情形证明∠APB>∠ADB.(2) 经测量,最大视角∠APB为30°,在点P处看塑像顶部点A 的仰角∠APE为60°,点P到塑像的水平距离PH为6m . 求塑像AB的高(结果精确到0.1m.参考数据:√3≈1.73).数学试卷第4页(共6页)21.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1) 若要从这两种食品中摄入4600 kJ热量和70g蛋白质,应选用A,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?22.(10分)从地面竖直向上发射的物体离地面的高度h(m)满足关系式ℎ=−5t²+v₀t,其中t(s)是物体运动的时间,v₀(m/s)是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后 s时离地面的高度最大(用含v₀的式子表示).(2)若小球离地面的最大高度为20m,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s.”已知实验楼高15 m,请判断他的说法是否正确,并说明理由.数学试卷第5页(共6页)23. (10分) 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验.请运用已有经验,对“邻等对补四边形”进行研究.定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有 (填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD是邻等对补四边形,AB=AD,,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若.BC=m,DC=n,∠BCD=2θ,,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt△ABC中,∠B=90°,AB=3,BC=4,,分别在边BC,AC上取点M,N,使四边形ABMN是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出 BN的长.数学试卷第6页(共6页)2024年河南省普通高中招生考试数学试题参考答案(注:第15题只填对1空得2分)三、解答题(本大题共8个小题,共75分)16.(1)原式=10-1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=9.……………………………………………………………………5分(2) 原式=a+1a−2⋅(a+2)(a−2)a+1…4分=a+2.………………………………………………………………………5分17.(1)甲29⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(注:答案不唯一,合理即可)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分(3) 甲的综合得分为:26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为:26×1+10×1.5+3×(-1)= 38.因为38>36.5,所以乙队员表现更好.…………………………………………9分18.(1)∵ 反比例函数y=kx(x⟩0)的图象经过点A(3,2),∴2=k3.∴ k = 6.∴ 这个反比例函数的表达式为y=6x.………………3分数学试题参考答案第1页(共4页)(2) 如图.7分(3)92………………………………………………………9分19.(1) 如图.……………………… ……… 4分(2) 由(1),得∠ECF =∠A.∴ CF∥AB.∵ BE∥DC,∴四边形CDBF是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∵ CD 是Rt△ABC斜边AB上的中线,∴ CD =BD.∴□CDBF是菱形.…………………………………………………………9分20.(1) 如图,连接BM.则∠AMB=∠APB.∵ ∠AMB>∠ADB,∴∠APB>∠ADB.…………………………3分(2) 在Rt△AHP 中,∠APH = 60°,PH = 6.,∵tan∠APH=AHPH∴ AH = PH·tan 60°=6×√₃ =6√₃. …… 6分∵ ∠APB = 30°,∴ ∠BPH =∠APH--∠APB =60°-30°=30°.数学试题参考答案第2页(共4页)在Rt△BHP 中, tan∠BPH =BHPH ,∴BH =PH ⋅tan30∘=6×√33=2√3. … …8分∴AB =AH −BH =6√3−2√3=4√3≈4×1.73≈6.9(m).答:塑像AB 的高约为6.9m.……………………………………………………9分21.(1) 设选用A 种食品x 包,B 种食品y 包,根据题意,得{700x +900y =4600,10x +15y =70.…3分解方程组,得 {x =4,y =2.答:选用A 种食品4包,B 种食品2包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)设选用A 种食品a 包,则选用B 种食品(7-a)包,根据题意,得10a+15(7-a)≥90.∴a≤3.…………………………………………………………………………7分设总热量为wkJ ,则w=700a+900(7-a)=-200a+6300.∵ -200<0,∴ w 随a 的增大而减小. ∴ 当a=3时,w 最小.∴ 7-a=7-3 =4.答:选用A 种食品3包,B 种食品4包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分22.(1)ⁿ₀…………………………………3分(2)根据题意,得当 t =v10时,h=20.∴−5×(v 010)2+v 0×v 010=20.∴v₀=20(m s ⁄). …………………………………………………6分 (3)小明的说法不正确.(注:若没写出结果,但后续说理正确,不扣分)⋯7分理由如下:由(2),得 ℎ=−5t²+20t.当h = 15时, 15=−5t²+20t.解方程,得 l₁=1,t₂=3.……………………………………………9分 ∵ 3-1=2(s),∴小明的说法不正确.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分数学试题参考答案 第3 页(共4页)23.(1)②④(注:全部填对的得2分,对但不全的得1分,有错的得0分)⋯⋯⋯2分(2)①∠ACD=∠ACB.(注:若没写出结果,但后续说理正确,不扣分)………4分理由如下:延长CB至点 E,使 BE = DC. 连接AE.∵ 四边形ABCD 是邻等对补四边形,∴∠ABC+∠D=180°.∵∠ABC+∠ABE=180°,∴ ∠ABE =∠D.∵AB=AD,∴△ABE≅△ADC.∴∠E=∠ACD,AE=AC.∴ ∠E =∠ACB.∴∠ACD=∠ACB.………………………………………………………6分②过点A作AF⊥EC,垂足为点 F.∵ AE=AC,∴CF=12CE=12(BC+BE)=12(BC+DC)=m+n2.∵ ∠BCD =2θ,∴ ∠ACB =∠ACD=θ.在Rt△AFC中,cosθ=CFAC,∴AC=CFcosθ=m+n2cosθ.…8分(3)12√25或12√27.…10分数学试题参考答案第4页(共4页)。
【学生卷】初中数学高中化学必修一第一章《物质及其变化》经典测试卷(培优)(3)
一、选择题1.做实验时不小心粘了一些高锰酸钾,皮肤上的斑很久才能消除,如果用草酸的稀溶液洗涤马上可以复原,其离子方程式为:MnO 4-+C 2O 24-+H +→CO 2↑+Mn 2++□,关于此反应的叙述正确的是A .该反应的氧化剂是C 2O 24-B .该反应右边方框内的产物是OH -C .该反应中生成1molCO 2电子转移总数是5N AD .配平该反应式后,H +的系数是162.某工厂排放的工业废水中可能含有K +、Ag +、Na +、Mg 2+、SO 24-、Cl -、NO 3-、HCO 3-等离子。
经检测废水呈明显的碱性,则可确定该厂废水中可能含有的离子组合是 A .Ag +、K +、NO 3-、HCO 3-B .K +、Mg 2+、SO 24-、Cl - C .Ag +、Na +、Mg 2+、Cl - D .K +、Na +、NO 3-、SO 24-3.下列物质的分类正确的一组是4.汽车剧烈碰撞时,安全气囊中发生反应10NaN 3+2KNO 3=K 2O+5X+16N 2↑,下列说法不正确的是A .X 的化学式为Na 2OB .每生成1.6molN 2,则转移的电子为1molC .上述反应中NaN 3被氧化,KNO 3发生还原反应D .若被氧化的N 原子的物质的量为3mol ,则氧化产物比还原产物少1.4mol 5.水热法制备Fe 3O 4纳米颗粒的总反应为:3Fe 2++2223S O -+O 2+xOH -=Fe 3O 4+246S O -+2H 2O ,下列说法正确的是 A .x=2B .Fe 2+、223S O -都是还原剂C .硫元素被氧化,铁元素被还原D .每生成1molFe 3O 4则转移电子的物质的量为3mol6.2ClO 是一种消毒杀菌效率高、二次污染小的水处理剂。
实验室可通过以下反应制得232242422422=ClO 2KClO H C O H SO 2ClO K SO 2CO 2H O ++↑++↑+:。
高中数学综合测试题
综合测试题一、选择题1.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上述2项调查应采用的抽样方法是( ) A.①用随机抽样法,②用系统抽样法 B.①用分层抽样法,②用随机抽样法 C.①用系统抽样法,②用分层抽样法 D.①用分层抽样法,②用系统抽样法2.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( ) A.5,10,15,20,25,30 B.3,13,23,33,43,53 C.1,2,3,4,5,6 D.2,4,8,16,32,483.数据70,71,72,73的标准差是( )A.2B.45 C.2 D.254.数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n的方差为( )A.22B.σ2C.2σ25. 右面的伪代码输出的结果是( ).A 3B 5C 9D 136.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为( ) A.203B.101 C.21 D.417.设有一个直线回归方程为y =2-1.5x ,则变量x 增加一个单位时( )A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位8.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )(A )49 (B )29 (C )2 (D)319. 某班30名同学,一年按365天计算,至少有两人生日在同一天的概率是( )A .3030365365A 1-B .3030365365AC .3036511-D .30365110.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为( )A.60%B.30%C.10%D.50%11.将数字1、2、3填入标号为1,2,3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是( ) A.61B.31 C.21 D.3212. 3名老师随机从3男3女共6人中各带2名学生进行实验,其中每名老师各带1名男生和1名女生的概率为( ) A.52 B.53 C.54 D.109二、填空题13.掷两颗骰子,出现点数之和等于8的概率等于__________.14.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 .①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等15. 某公司有1000名员工,其中:高层管理人员占5%,中层管理人员占15%,一般员工占80%,为了了解该公司的某种情况,现用分层抽样的方法抽取120名进行调查,则一般员工应抽取 人. 16. 从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则mn等于 。
2022年福建省中考数学真题(解析版)
【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义. 5. 如图,数轴上的点 P 表示下列四个无理数中的一个,这个无理数是 ( )
A.
B.
C.
【答案】B 【解析】
【分析】先根据数轴确定点 P 对应的数的大小,再结合选项进行判断即可. 【详解】解: 由数轴可得,点 P 对应的数在 1 与 2 之间,
则不等式组的解集为1<x 3,
故选:C.
【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解题的基础,熟知“同大取大;
同 小 取 小 ; 大 小 小 大 中 间 找 , 大 大 小 小 找 不 到 ” 的 原 则 是 解 题 的关键.
( ) 7.
化简
2
3a
2
的结果是
(
)
A. 9a2
6. 不等式组〈 x
3
的解集是 (
0
)
A. x > 1
【答案】C
B. 1 < x < 3
C. 1 < x 3
D. x 3
【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大;同小取小;大小小大中间找,大大小 小找
不到,确定不等式组的解集.
【详解】解: 由 x 1>0 ,得: x>1 , 由 x 3 0 ,得: x 3 ,
A. 9.90cm 【答案】B 【解析】
B. 11.22cm
C. 19.58cm
D. 22.44cm
【分析】根据等腰三角形的性质及 BC=44cm ,可得DC = BC = 22 cm ,根据等腰三角形的性质及 三ABC = 27O ,可得 三ACB = 三ABC = 27O ,在 Rt ADC 中, 由 AD = tan 27O CD ,求得 AD 的长度.
高中数学基本不等式综合测试题(附答案)
高中数学基本不等式综合测试题(附答案)基本不等式的最大最小值问题随堂练习1、在下列函数中,最小值是的是且)2、已知正数满足,则的最小值为3、若,则的最大值。
4、设时,则函数的最小值。
三、解答题5、为迎接北京奥运会,北京市决定在首都国际机场粘贴一幅“福娃”宣传画,要求画面面积为,左、右各留米,上、下各留米,问怎样设计画面的长和宽才能使宣传画所用纸张面积最小?6、函数的值域7、若是正数,且,则有最值=8、已知,则的最小值是。
9、已知,求的最值及相应的的值。
10、正数、满足则的最小值是11、已知函数f(x) 满足 2f(x) - f( 1x ) = 1| x |,则f(x)的最小值是12、函数若恒成立,则 b 的最小值为_13、函数的图象恒过定点,若点在直线上,其中,则的最小值为14、已知,,成等差数列,成等比数列,则的最小值是15、若的最大值是.16、已知、,且,则的最小值是17、若直线始终平分圆的周长,则的最小值是18、求使 a (x> 0, y> 0)恒成立的a 的最小值19、若 a 是 1+2b 与 1-2b 的等比中项,则的最大值为20、已知两正数x,y 满足 x+y=1, 则 z= 的最小值为21、已知 a0,求的最小值22、已知 a, b, c 为正实数, a+b+c=1 求证(1)a2+b2+c2(2) 6参考答案1、 2、 3、 4、5、解:设宣传画的长、宽分别为、米,则,设纸张面积为,则:由,即代入上式得,当且仅当,即时,。
所以宣传画的长为米,宽为米,所用纸张面积最小。
参考答案1、 2、 3、观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
初中数学精品试题:初中数学原创题 3
初中数学原创题一、选择题10.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是:()A.316+B.216+C.339+D.336+(1)考点分析:此题主要考查了正方形的性质以及解直角三角形的知识。
(2)命题的思路意图:近些年来,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。
在众多几何图形中,最基本的图形是三角形,许多复杂的图形都是通过添加辅助线转化为三角形进行求解的,其中最特殊的要数直角三角形,它的边和角都具有特殊的性质。
而本题就是寻找正方形的图形规律和直接三角形特点相结合的题型。
(3)解答过程:解:如图,∵B1C1∥B2C2∥B3C3,∴∠B3C3O=∠B2C2O=∠B1C1O=60°,∵正方形A1B1C1D1的边长为1,∴OC1=12×1=12C1E=32×1=32E1E2=12×1=12E2C2=12×33=36C2E3=E2B2=1 2E3E4=12×33=36E4C3=36×33=16∴B3C3=2E4C3=2×16=13过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,则A3M=13+13×33=339+A3N=339+×32=136+∴点A3到x轴的距离是:31 6 +故答案为:A二、填空题16.如图,直线l:y=-x-2与坐标轴交于A,C两点,过A,O,C三点作⊙O1,点E为劣弧AO上一点,连接EC,EA,EO,当点E在劣弧AO上运动时(不与A,O两点重合),ECEO-EA=_________。
数学:《综合测试题》(新人教A版选修2-3)
高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{}123013412a b R ∈-∈∈,,,,,,,,,则方程222()()x a y b R -++=所表示的不同的圆的个数有( )A.3×4×2=24 B.3×4+2=14 C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人的不同分组方法有( )A.48种 B.36种 C.6种 D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭的展开式中,第3项的二项式系数比第2项的二项式系数大44,则展开式中的常数项是( )A.第3项 B.第4项 C.第7项 D.第8项答案:B4.从标有1,2,3,…,9的9张纸片中任取2张,数字之积为偶数的概率为( ) A.12 B.718 C.1318 D.1118答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( ) A.35 B.25 C.110 D.59答案:D6.正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2答案:D7.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( )A.1y x=+B.2y x=+C.21y x=+D.1y x=-答案:A8.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η的分布列如下:0 1 2 30 .1.2.2.3.1.1则当()0.8P xη<=时,实数x的取值范围是()A.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李的40名同事中,给其发短信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年短信数为()A.27 B.37 C.38 D.8答案:A11.在4次独立重复试验中事件A出现的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中出现的概率为()A.13B.25C.56D.23答案:A12.已知随机变量1~95Bξ⎛⎫⎪⎝⎭,则使()P kξ=取得最大值的k值为()A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有种.答案:8014.已知平面上有20个不同的点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中的每两个点可以连 条直线.答案:17015.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是41(0.1)-.其中正确结论的序号是 (写出所有正确结论的序号).答案:①③16.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 (以数值作答). 答案:1363三、解答题17.有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法? 解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44256=种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有24C 种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A =···种. (3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C +=·种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:241484C =·种.18.求25(1)(1)x x +-的展开式中3x 的系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内的1与第二括号内的3x -的相乘和第一个括号内的22x -与第二个括号内的3x -相乘后再相加而得到,故3x 的系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +的通项公式为12rr r T C x +=·, 5(1)x -的通项公式为15(1)k k k k T C x +=-·, 其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,.故3x 的系数为112352555C C C C -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上的人的调查结果如下:患胃病 未患胃病 合计 生活不规律 60 260 320 生活有规律 20 200 220 合计80460540根据以上数据比较这两种情况,40岁以上的人患胃病与生活规律有关吗?解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯ 2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%的把握认为40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.20.一个医生已知某种病患者的痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认的概率; (2)新药完全无效,但通过实验被认为有效的概率.解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次的概率公式知,实验被否定(即新药无效)的概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效的概率为: 10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈.即新药有效,但被否定的概率约为0.514; 新药无效,但被认为有效的概率约为0.224.21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为ξη,. (1)求ξη,的概率分布列; (2)求E ξ,E η.解:(1)ξη,的可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=, 所以8(0)(3)75P P ηξ====; 28(1)(2)75P P ηξ====; 2(2)(1)5P P ηξ====; 3(3)(0)P P ηξ====.ξ的分布列为3218752875325η的分布列为1238752875325(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽选了个企业作样本,有如下资料:产量(千件)x 生产费用 (千元)y79 162 88 185 100 165 120 190 140185完成下列要求:(1)计算x 与y 的相关系数;(2)对这两个变量之间是否线性相关进行相关性检验; (3)设回归直线方程为y bx a =+,求系数a ,b .解:利用回归分析检验的步骤,先求相关系数,再确定0.05r . (1)制表ii y 2i x 2i y i i x y1 40 150 1600 22500 60002 42 140 1764 19600 5880 3481602304256007680产量(千件)x 生产费用 (千元)y40 150 42 140 48 160 55 170 651504 55 170 3025 28900 9350 5 65 150 4225 22500 97506 79 162 6241 26244 127987 88 185774434225 16280 8 100165 10000 27225 16500 9 120190 14400 36100 22800 10140185 1960034225 25900 合计 777 1657 7090327711913293877777.710x ==,1657165.710y == 270903ix =∑,2277119i y =∑,132938iix y=∑220.808(709031077.7)(2771910165.7)r =≈-⨯-⨯.即x 与Y 的相关关系0.808r ≈. (2)因为0.75r >.所以x 与Y 之间具有很强的线性相关关系. (3)1329381077.7165.70.398709031077.7b -⨯⨯=≈-⨯,165.70.39877.7134.9a =-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( ) A.225()AB.225()CC.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个答案:C4.342(1)(1)(1)n x x x +++++++的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-答案:D5.200620052008+被2006除,所得余数是( ) A.2009 B.3 C.2 D.1答案:B6.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285答案:A7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.19答案:C8.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样答案:B9.已知ξ的分布列如下:4并且23ηξ=+,则方差D η=( ) A.17936B.14336C.29972D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3D.0.4答案:A11.已知x ,y 之间的一组数据:则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5)答案:C12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90%答案:D二、填空题13.912xx⎛⎫-⎪⎝⎭的展开式中,常数项为(用数字作答).答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为(结果用分数表示).答案:119 19015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是.答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A种方法;(2)2张2一起出,3张A一起出,有25A种方法;(3)2张2一起出,3张A分开出,有45A种方法;(4)2张2一起出,3张A分两次出,有2335C A种方法;(5)2张2分开出,3张A一起出,有35A种方法;(6)2张2分开出,3张A分两次出,有2435C A种方法;因此共有不同的出牌方法5242332455535535860A A A C A A C A+++++=种.18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .解:按(1)n x +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)n x +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++,132120242213212222222222(1)()()n nn nn nnnnnnnx C C x C x C x C x C x Cx--+=++++++++可得00122422222()()()()n nn n n n n n n n n a C C C C C C C C =++++++++01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223n nnnn S =++++++++=-+⨯-122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.(1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12的概率为11116636P =+=; 抽两次得标号之和为11或10的概率为2536P =, 故各会员获奖的概率为1215136366P P P =+=+=. (2)30a-30100-31365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元.20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数死亡数 合计未用新药 101 38 139用新药 129 20 149合计23058288试分析新药对防治猪白痢是否有效?解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是 11246x yC C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xy P =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大.(2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxA x x x m =--+,其中x ∈R ,m 为正整数,且01x A =,这是排列数m n A (n ,m 是正整数,且m ≤n )的一种推广.(1)求315A -的值;(2)排列数的两个性质:①11m m n n A nA --=,②11m m mn n n A mA A -++= (其中m ,n 是正整数).是否都能推广到m x A (x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数3x A 的单调区间.解:(1)315(15)(16)(17)4080A -=-⨯-⨯-=-;(2)性质①、②均可推广,推广的形式分别是①11m m x x A xA --=,②11()m m m x x x A mA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1x A x ==,右边01x xA x -==,等式成立;在②中,当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+=(1)(2)(2)[(1)]x x x x m x m m ---+-++1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==右边,因此②11()m m m x x x A mA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA x x '=-+.令23620x x -+>,解得x <x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数,当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620x x -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3x A 的增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。
2024年四川省德阳市中考数学试题
德阳市2024年初中学业水平考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. 下列四个数中,比2-小数是( )A. 0B. 1- C. 12-D. 3-2. 下列计算正确的是( )A 236a a a ⋅= B. ()ab a b--=-+C ()211a a a +=+ D. 222()a b a b +=+3. 如图是某机械加工厂加工的一种零件的示意图,其中AB CD ,,70DE BC ABC ⊥∠=︒,则EDC ∠等于( )A. 10︒B. 20︒C. 30︒D. 40︒4. 正比例函数()0y kx k =≠的图象如图所示,则k 的值可能是( )A.12B. 12-C. 1-D. 13-的..5. 分式方程153x x=+的解是()A. 3B. 2C. 32D.346. 为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A. 平均数B. 中位数C. 众数D. 方差7. 走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A. 吉如意B. 意吉如C. 吉意如D. 意如吉8. 已知,正六边形ABCDEF的面积为)A. 1B.C. 2D. 49. ,按以下方式进行排列:则第八行左起第1个数是()A. B. C. D.10. 某校学生开展综合实践活动,测量一建筑物CD的高度,在建筑物旁边有一高度为10米的小楼房AB,小李同学在小楼房楼底B处测得C处的仰角为60︒,在小楼房楼顶A处测得C处的仰角为30︒.(AB CD、在同一平面内,B D、在同一水平面上),则建筑物CD的高为()米A. 20B. 15C. 12D. 10+11. 的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A. 3B. 2C. 1D. 012. 一次折纸实践活动中,小王同学准备了一张边长为4(单位:dm )的正方形纸片ABCD ,他在边AB 和AD 上分别取点E 和点M ,使,1AE BE AM ==,又在线段MD 上任取一点N (点N 可与端点重合),再将EAN 沿NE 所在直线折叠得到1EA N △,随后连接1DA .小王同学通过多次实践得到以下结论:①当点N 在线段MD 上运动时,点1A 在以E 为圆心的圆弧上运动;②当1DA 达到最大值时,1A 到直线AD 的距离达到最大;③1DA 的最小值为2;④1DA 达到最小值时,5MN =.你认为小王同学得到的结论正确的个数是( )A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. __________.14. 若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为______.15. 某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为______分.16. 如图,四边形ABCD 是矩形,ADG △是正三角形,点F 是GD 的中点,点P 是矩形ABCD 内一点,且PBC 是以BC 为底的等腰三角形,则PCD 的面积与FCD 的面积的比值是______.17. 数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a 、b ,你认为a 可以是______(填上一个数字即可).18. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫- ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y -,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是______(请填写序号).三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或推演步骤)19. (1212cos602-⎛⎫+-︒ ⎪⎝⎭;(2)解不等式组:2351124x x x-+≤-⎧⎪⎨-<+⎪⎩①②20. 2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A :100米直道竞速赛,B :200米直道竟速赛,C :500米直道竞速赛,D :3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):市民最关注的比赛项目人数统计表比赛项目A B C D 关注人数4230ab(1)直接写出a 、b 的值和D 所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率.21. 如图,一次函数22y x =-+与反比例函数(0)ky x x=<的图象交于点()1,A m -.(1)求m 的值和反比例函数ky x=的解析式;(2)将直线22y x =-+向下平移h 个单位长度(0)h >后得直线y ax b =+,若直线y ax b =+与反比例函数(0)ky x x =<的图象的交点为(),2B n ,求h 的值,并结合图象求不等式k ax b x<+的解集.22. 如图,在菱形ABCD 中,60ABC ∠=︒,对角线AC 与BD 相交于点O ,点F 为BC 的中点,连接AF与BD 相交于点E ,连接CE 并延长交AB 于点G .(1)证明:BEF BCO ∽;(2)证明:BEG AEG △≌△.23. 罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A 、B 两种组合方式,其中A 组合有4枚糯米咸鹅蛋和6个肉粽,B 组合有6枚糯米咸鹅蛋和10个肉粽.A 、B 两种组合的进价和售价如下表:价格AB进价(元/件)94146售价(元/件)120188(1)求每枚糯米咸鹅蛋和每个肉粽的进价分别为多少?(2)根据市场需求,超市准备的B 种组合数量是A 种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A 种组合?最大利润为多少?24. 如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求PA PM +的最小值.25. 已知O 的半径为5,B C 、是O 上两定点,点A 是O 上一动点,且60,BAC BAC ∠=︒∠的平分线交O 于点D .(1)证明:点D BC上一定点;(2)过点D 作BC 的平行线交AB 的延长线于点F .①判断DF与O 的位置关系,并说明理由;②若ABC 为锐角三角形,求DF 的取值范围.为德阳市2024年初中学业水平考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】C【10题答案】【答案】B【11题答案】【答案】D【答案】C第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)【13题答案】【答案】3【14题答案】【答案】21-y 【15题答案】【答案】85.8【16题答案】【答案】2【17题答案】【答案】1##8【18题答案】【答案】①②④三、解答题(本大题共790分.解答应写出文字说明、证明过程或推演步骤)【19题答案】【答案】(1)1,(2)46x ≤<【20题答案】【答案】(1)18a =,60b =,144︒ (2)D ,4000 (3)13【21题答案】【答案】(1)4m =;反比例函数的解析式为4y x=-(2)4h =;不等式kax b x<+的解集为<2x -【22题答案】【答案】(1)证明见解析 (2)证明见解析【答案】(1)16元, 6元 (2)25件, 3590元【24题答案】【答案】(1)2y x x 2=-- (2)904y -≤≤(3)PA +【25题答案】【答案】(1)证明见解析(2)①DF 与O 相切,理由见解析;②DF DF <<.的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题考生注意:本试卷分第I 卷(初中部分60分)和第II 卷(高中部分60分)两部分,共120分,考试时间120分钟。
第I 卷(初中部分60分)一.选择题(共5小题,每小题3分,计15分.每小题只有一个选项是符合题意的) 1.对于函数y =-k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(1k,-k ) C .经过一、三象限或二、四象限 D .y 随着x 增大而减小2.已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是( )A .16厘米B .10厘米C .6厘米D .4厘米 3.如图,是反比例函数1k y x =和2ky x=(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A .1 B .2 C .4 D .84.如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC=∠DCE, 则下列结论不正确...的是( ) A .S △AFD =2S △EFB B .BF=21DF C .四边形AECD 是等腰梯形 D .∠AEB=∠ADC5.若二次函数2()1y x m =--,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是( ) A .m=1 B .m >1C .m ≥1D .m ≤1二.填空题(共5小题,每小题2分,计10分)6.不等式2x+1>0的解集是 .7.把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式: .8.某种商品的标价为200元,为了吸引顾客,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 元.9.已知一次函数y =kx +b ,当0≤x ≤2时,对应的函数值y 的取值范围是-4≤y ≤8,则kb 的值为10.已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为 .三.解答题(共9小题,计35分) 11. (本题满分3分)化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3.12. (本题满分5分)如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF .2 3 5 第16题图2011年,陕西西安被教育部列为“减负”工作改革试点地区。
学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?14. (本题满分5分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.如图所示,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,32==DODC DP DB .(1)求证:直线PB 是⊙O 的切线;(2)求cos ∠BCA 的值16. (本题满分10分)如图所示,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1.(1)当a =-1 , b =1时,求抛物线n 的解析式;(2)四边形AC 1A 1C 是什么特殊四边形,请写出结果并说明理由; (3)若四边形AC 1A 1C 为矩形,请求出a 和b 应满足的关系式.第Ⅱ卷(高中部分60分)一、选择题:本大题共5小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1 )已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ∙=( ) A.14 B.12C.1D.2 (2)曲线2xy x =+在点(-1,-1)处的切线方程为(A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2 (3)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A) 12-(B)12(C) 2 (D) -2(4)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(5)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C)22163x y -= (D)22154x y -= 二、填空题:本大题共3小题,每小题3分。
(6)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,Nx x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为 。
(7)过点A(4,1)的圆C 与直线x-y=0相切于点B (2,1),则圆C 的方程为____(8)在△ABC 中,D 为边BC 上一点,BD=12DC ,∠ADB=120°,AD=2,若△ADC 的面积为33-,则∠BAC=_______三,解答题:共36分,解答应写出文字说明,正明过程和演算步骤 (9)(本小题满分5分)设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S(10)(本小题满分6分)如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值(11)(本小题满分7分)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程(12)(本小题满分8分)设函数2()1xf x e x ax =---。
(1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围(13)(本小题满分10分)选修4-4:坐标系与参数方程 已知直线C 1x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2x cos sin y θθ=⎧⎨=⎩(θ为参数),(Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。
2010年普通高等学校招生全国统一考试 理科数学试题参考答案 一、 选择题(1)D (2)A (3)A (4)C (5)C (6)B (7)D (8)B (9)A (10)B (11)C (12)B 二、填空题 (13)1N N(14)三棱锥、三棱柱、圆锥(其他正确答案同样给分) (15)22(3)2x y -+= (16)60° 三、解答题 (17)解:(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+21233(222)2n n --=++++2(1)12n +-=。
而 12,a =所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅ ①从而2357221222322n n S n +⋅=⋅+⋅+⋅++⋅② ①-②得2352121(12)22222n n n S n -+-⋅=++++-⋅ 。
即 211[(31)22]9n n S n +=-+ (18)解:以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B(Ⅰ)设 (,0,0),(0,0,)(0,0)C m P n m n则 1(0,,0),(,,0).22mD mE可得 1(,,),(,1,0).22m PE n BC m =-=- 因为0022m mPE BC ⋅=-+=所以 P E B C ⊥(Ⅱ)由已知条件可得 33,1,33m n C =-=-故 (,0,0) 313(0,,0),(,,0),(0,0,1)326D E P -- 设 (,,)n x y x =为平面PEH 的法向量则 ,,n H E o n H P o ⎧⋅=⎪⎨⋅=⎪⎩ 即130260x y z -=⎧⎪⎨⎪=⎩因此可以取(1,3,0)n =,由(1,0,1)PA =-,可得 2c o s ,4P A n =所以直线PA 与平面PEH 所成角的正弦值为24(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500= (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯。