【新北师大版】八年级数学下册:1.1《等腰三角形(1)》ppt课件
北师大版八年级数学(下)第一章 等腰三角形
1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。
2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。
北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法
图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,
∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC 是等腰三角形;
能判定△ABC 是等腰三角形的有 4 个,故选:C.
例 2:如图,在△ABC 中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为( )
CBE 是等腰三角形.∴图中的等腰三角形有 8 个.故选:D.
B.6
C.7
D.8
例 3:已知:如图△ABC 中,∠B=50°,∠C=90°,在射线 BA 上找一点 D,使△ACD 为等腰三角
形,则∠ACD 的度数为
.
解:如图,有三种情形:
①当 AC=AD 时,∠ACD=70°. ②当 CD′=AD′时,∠ACD′=40°. ③当 AC=AD″时,∠ACD″=20°, 故答案为 70°或 40°或 20°
C.50°、60°
D.100°、30°
解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为 180°﹣30°﹣60°=90°,
∴这个三角形是直角三角形,不是等腰三角形,故选项 A 不符合题意;
B、∵三角形中已知两个内角为 40°、70°,∴第三个内角为 180°﹣40°﹣70°=70°,
∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项 B 符合题意;
反证法
在证明时,先假设命题的结论不成立,然后 由此推导出与定义、基本事实、已有定理或已知 条件相矛盾的结果,从而证明命题的结论一定成 立.这种证明方法称为反证法.
用反证法证题的一般步骤:
1. 假设: 先假设命题的结论不成立; 2. 归谬: 从这个假设出发进行推理,得出与定义、基本事实、 已有定理或已知条件相矛盾的结果;
新北师大八年级数学下册全册ppt课件
已知: 如图,在△ABC中,AB=AC. 求证: ∠B= ∠C.
证明: 作底边的中线AD, 则BD=CD. 在△BAD和△CAD中 AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边), B
A
D
C
还有其他的 证法吗?
最新北师大版(BS)八年级数学下册
内含大量动画全真演绎教学内容 打造中学数学高效课堂的首选教学课件
可效课堂首选课件
八年级数学下(BS) 教学课件
第一章 三角形的证明
1.1 等腰三角形
第1课时 三角形的全等和等腰三角形的性质
导入新课 讲授新课 当堂练习 课堂小结
二 等腰三角形的性质及其推论
问题引入 问题1:你还记得我们探索过的等腰三角形的性质吗?
定理:等腰三角形的两个底角相等. 推论:等腰三角形顶角的平分线,底边上的中线 底边 上的高互相重合(三线合一). 问题2:你能利用已有的公理和定理证明这些结论吗?首发 打造中学高效课堂首选课件
定理:等腰三角形的两个底角相等(等边对等角). A 等腰三角形的两个底角相等. 已知:△ABC中,AB=AC, B C 求证:∠B=C.
如何证明两个 角相等呢?
可以运用全等三 角形的性质“对 应角相等”来证
思考:如何构造两个全等的三角形?首发 打造中学高效课堂首选课件
议一议:在七下学习轴对称时,我们利用折叠的方
法说明了等腰三角形是轴对称图形,且两个底角相
等,如下图,实际上,折痕将等腰三角形分成了两
个全等的三角形.由此,你得到了什么解题的启发?首发 打造中学高效课堂首选课件
问题3 在八上的―平行线的证明‖这一章中,我们学 了哪8条基本事实?
1.两点确定一条直线;
北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件
新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.
新北师大版八年级数学下册1.1等腰三角形(第四课时)课件
证明:有一个角等于600的等腰三角形是等
边三角形.
已知:如图,在 ABC中,AB AC,A 60 .
o
你 行 吗 ?
求证:ABC是等边三角形 .
情况二
2014年3月14日星期五 22:59:40
证明: A 60o B C 120o (三角形内角和为 180o ) AB AC C B 60o (等边对等角 ) A B (等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形(等边三角形的定义 ).
C B 60o (等边对等角 ) A 60o (三角形内角和为 180o ) A B(等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
定理
在直角三角形中, 300角
所对的直角边等于斜边的一半.
如图,在RtABC中, A 30o 1 BC AB.(在直角三角形中, 2 30o 角所对的直角边等于斜 边的 一半)
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
证明: A B BC AC(等角对等边) A C BC AB(等角对等边) BC AB AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
2014年3月14日星期五 22:59:40
北师大版八年级数学下册第一章《等腰三角形》优质公开课课件
达标检测二:
1、如图,CD是等腰直角三角形ABC斜边 上的高,找出图中有哪些等腰直角三角形。
C
A
B
答:图中的等腰直角三角形有: 等腰Rt△ABC、等腰Rt△ADC和 等腰Rt△ CDB
2、已知:如图,AD∥BC,BD 平分∠ABC
求证:AB=AD
A
D
B
C
证明:∵AD ∥BC(已知) ∴∠ADB= ∠CBD(两直线平行,内错 角相等)
证法二:作AD⊥BC,垂足为D
在 △BAD和△CAD中,
∠ADB= ∠ADC,
B
D
∠B=∠C, C AD=AD(公共边),
∵△BAD≌△CAD(AAS)
∴AB=AC(全等三角形的对应边 相等)
请同学们想一想:作等腰三角形底边上的 中线可以证明吗?为什么?
已知:在△ABC中,∠A=∠B=∠C 求证:AB=AC=BC A
例 如图,求证:如果三角形一个
外角的平分线平行于三角形的一边,
那么这个三角形是等腰三角形.
E
1
A2
B
已知:如图, D ∠CAE是△ABC
的外角, ∠1=∠2, AD∥BC C 求证:AB=AC
解:∵AD∥BC, ∴∠1= ∠B (两直线平行,同位角相等), ∠ 2 = ∠C(两直线平行,内错角相等), ∴ ∠1= ∠2 ∵ ∠1= ∠2 ∴ ∠B = ∠C ∴AB=AC (等角对等边)
1 等腰三角形
请同学们回答下面的问题:
1、等腰三角形的性质是什么?
①有两个相等的角. ②有两条相等的边. ③底边上的中线、高和顶角的平分线重合.
2、什么叫互逆命题,什么叫互逆定理?
答:在两个命题中,如果第一个命题的题设是 第二个命题的结论,而第一个命题的结论 又是第二个命题的题设,那么这两个命题 叫做互逆命题.如果一个定理的逆命题经过 证明是真命题,那么它是一个定理,这两 个定理叫做互逆定理.
北师大版八年级下等腰三角形的性质课件
解:(1)∵AB=AC,∴∠B=∠C. ∵∠A+∠B+∠C=180°, ∴50°+2∠B=180°,解得∠B=65°.
(2)由题意可知,70°的角可以为顶角或底角,当底角
等腰三角形的“三线合一”性质
知识点
想一想 在图1 -3中,线段AD还具有怎样的性质?为什么?由 此你能得到什么结论?
归纳
推论 等腰三角形的顶角平分线、底边上的中线、 底边上的高相互重合(简写成“三线合一”)
中考链接,小试牛刀
1 【中考】如图,在△ABC中,AB=AC,D为BC的 中点,∠BAD=38°,则∠C的度数为( A) A.52° B.53° C.55° D.56°
E为CD上一点,且∠BAE=45°,若CD=4,则
△ABE的面积为( D )
A. 12 7
C. 48 7
B. 24 7
D. 50 7
等腰三角形的边、角性质
பைடு நூலகம்
1.等腰三角形的相关概念回顾:
顶
腰
角
腰
底角 底角 底边
2.议一议 (1)还记得我们探索过的等腰三角形的性质吗? (2)请你选择等腰三角形的一条性质进行证明,并与
知识总结
(1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角 形顶角的平分线、底边上的中线及底边上的高线互相 重合.
2 如图,在△ABC中,AB=AC,AD是角平分线, BE=CF,则下列说法正确的有( D ) ①DA平分∠EDF;②△EBD≌△FCD; ③BD=CD;④AD⊥BC. A.1个 B.2个 C.3个 D.4个
等腰三角形 第三课时-八年级数学下册课件(北师大版)
2 在下列三角形中,若AB=AC,则不能被一条直线分
成两个小等腰三角形的是( B )
3 在平面直角坐标系中,已知A (2,2),B (4,0).若在坐 标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C
的个数是( B )
A.5
B.6
C.7
D.8
4 如图,已知在△ABC 中,AB=AC,BD,CE 是高,BD 与CE 相交于点O. (1)求证:OB=OC; (2)若∠ABC=50°,求∠BOC 的度数.
2.等腰三角形的判定与性质的异同
相同点:都是在一个三角形中;
区别:判定是由角到边,性质是由边到角.
即: 等边
性质 判定
等角
.
例1 已知:如图,AB=DC,BD=CA,BD 与CA 相交于点E. 求证:△AED 是等腰三角形.
A
D
E
B
C
证明:∵AB=DC,BD=CA,AD=DA, ∴△ABD ≌ △DCA ( SSS ). ∴ ∠ADB=DAC (全等三角形的对应角相等). ∴AE=DE (等角对等边). ∴△AED 是等腰三角形.
故△BDE 为等腰三角形.
B
C
2 在△ABC 中,∠A 和∠B 的度数如下,能判定△ABC 是等腰三角
形的是( B )
A.∠A=50°,∠B=70° B.∠A=70°,∠B=40° C.∠A=30°,∠B=90° D.∠A=80°,∠B=60°
3 如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等 腰三角形有( D ) A.3个 B.4个 C.5个 D.6个
∴∠DAB 是一个直角或钝角的假设不成立. ∴∠DAB 是一个锐角.
1 如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上, 轮船沿正东方向航行30 n mile到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( B )
新北师大版八年级数学下册1.1等腰三角形(第二课时)课件
你 能 吗 ?
证明: AB AC ACB ABC (等边对等角) 1 1 ABD ABC,ACE ACB 4 4 ABD ACE(等量代换) 在ABD和ACE中
你 能 吗 ?
你能得到什么结论?
ABD ACE AB AC A A ABD ACE( ASA) BD CE (全等三角形的对应边相等)
公理.
两边及其夹角 对应相等的两个
三角形全等(SAS).
知 识 回 顾
公理. 两角及其夹边 对应相等的两个
三角形全等(ASA).
公理.
三边
对应相等的两个
三角形全等(SSS). 定理 两角及其中一角的对边 对应相等 的两个三角形全等(AAS).
2014年3月10日星期一 00:27:50
全等三角形的 对应角 相等.
2014年3月10日星期一 00:27:50
请作出等腰三角形各角的平分线,
你发现了什么?
探 索 新 等腰三角形两底角的平分线相等 . 知
你能证明这个结论吗?
2014年3月10日星期一 00:27:50
证明:等腰三角形两底角的平分线相 等.
已知:如图,在ABC中,AB AC, BD、CE是ABC的角平分线. 求证:BD CE.
2014年3月10日星期一 00:27:50
你 能 吗 ?
1 1 证明: AD AC,AE AB 2 2 AD AE (等量代换) 在ADB和AEC中 AD AE A A AB AC ADB AEC ( SAS ) BD CE (全等三角形的对应边相等)
你 行 吗 ?
2014年3月10日星期么?试证明你的结论.
北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义
第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。
北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件
由题得AB=15×2=30(海里)
N B 72° 36° C
∵ ∠A= ∠C
∴ BC=AB=30 (海里)
36°
A
2、如图, △ABC中, ∠A=36°,AB=AC, BD平分 ∠ABC, DE∥BC, EF平分∠AED,问在这个图形中,有 那几个等腰三角形?请分别写出来.
A
△ABC、 △BCD 、△EBD、 △EDF 、△FAE 、△ADE、 △ABD
的形式.而已知中的角平分线和平 行线告诉我们图形中有等腰三角形
M
D
出现,因此,找到问题的突破口. B
N C
4、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
36°
F
E 36°72°D
73263°°6°
B
72°
C
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
A
B
C
你认为这个结论成立吗? 如果成立, 你能证明它吗?
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与AC要
B
C
在△ABD和 △ACD中
D
∵∠B=∠C. ∠ADB=∠ADC.AD=AD
1.1第3课时等腰三角形-北师大版八年级数学下册课件
第3课时 等腰三角形的判定与反证法
一、复习旧知,引入新课
1、等腰三角形的性质定理是什么? 等腰三角形的两个底角相等。 (可以简称:等边对等角)
二、情境导入
某地质专家为估测一条东西流向河流的宽度,选择河 流北岸上一棵树(A点)为目标,然后在这棵树的正南方南 岸B点插一小旗作标志,沿南偏东60度方向走一段距离到 C处时,测得∠ACB为30度,这时,地质专家测得BC的 长度是50米,就可知河流宽度是50米.
这与三角形的内角和为180°矛盾, 所以假设不成立, 因此原命题正确,即△ABC中不能有两个钝角.
四、 巩固运用、深化拓展
1.等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的 角的度数是( )(A)35° (B)20° (C)35 °或 20°(D) 无法确定
2.已知:如图,AD ∥BC,BD平分∠ABC.求证:AB=AD
五、课堂小结
1.等腰三角形的判定定理:有两个角相等的三 角形是等腰三角形(等角对等边). 2.反证法 (1) 假设结论不成立; (2)从假设出发推出矛盾; (3) 假设不成立,则结论成立.
谢谢!
∴∠B+∠BAC=90°. ∵CD是AB边上的高, ∴∠ACD+∠BAC=90°, ∴∠B=∠ACD. ∵AE是∠BAC的角平分线, ∴∠BAE=∠EAC, ∵∠B+∠BAE=∠AEC,∠ACD+∠EAC=∠CFE, ∴∠CEF=∠CFE, ∴CE=CF, ∴△CEF是等腰三角形.
探究点二:反证法
A 12
B
C
D
∴AB=AC(全等三角形的对应边相等) 思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定方法
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
初中数学北师大版八年级下册《等腰三角形的性质》课件
谢谢大家
7.如图,在△ABC 中,AB=AC,AD 是角平分线,BE=CF, 则下列说法正确的有( ) ①DA 平分∠EDF;②△EBD≌△FCD; ③BD=CD;④AD⊥BC. A.1 个 B.2 个 C.3 个 D.4 个
【点拨】∵AB=AC,AD 平分∠BAC, ∴BD=CD,AD⊥BC.故③④正确.∵AB=AC,∴∠B=∠C. 又∵BD=CD,BE=CF,∴△EBD≌△FCD.故②正确. ∵AB=AC,EB=CF,∴AE=AF. 又∵∠BAD=∠CAD,AD=AD,∴△AED≌△AFD. ∴∠EDA=∠FDA,即 DA 平分∠EDF.故①正确. 【答案】D
4.【2019·衢州】“三等分角”大约是在公元前五世纪由古希腊人 提出来的.借助如图所示的“三等分角仪”能三等分任一 角.这个三等分角仪由两根有槽的棒 OA,OB 组成,两根棒 在 O 点相连并可绕 O 转动,C 点固定,OC=CD=DE,点 D, E 可在槽中滑动,若∠BDE=75°,则∠CDE 的度数是( D ) A.60° B.65° C.75° D.80°
(1)请你解答以上的变式题.
解:若∠A 为顶角,则∠B=(180°-80°)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或 20°或 80°.
(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数 也可能不同.如果在等腰三角形 ABC 中,设∠A=x°,当∠ B 有三个不同的度数时,请你探索 x 的取值范围.
10.【2019·杭州】如图,在△ABC 中,AC<AB<BC. (1)已知线段 AB 的垂直平分线与 BC. 证明:∵点 P 在 AB 的垂直平分线上, ∴PA=PB,∴∠PAB=∠B. ∵∠APC=∠PAB+∠B,∴∠APC=2∠B.
北师大八年级下册 -第1讲-等腰三角形与直角三角形 讲义
等腰三角形与直角三角形【知识梳理】1、等腰三角形及其性质(1)有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.2、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.一般地,两条直角边相等的直角三角形叫做等腰直角三角形.等腰直角三角形的两个底角相等,都等于45°.4、直角三角形的性质:直角三角形ABC可以表示为Rt△ABC.(1)直角三角形中,如果两条直角边为a、b,斜边为 c,斜边上的高为h,那么它们存在这样的关系:或h=.(2)定理:直角三角形的两个锐角互余.推理过程:在△ABC中,∵∠C=90°,∴∠A+∠B=90°(或∠A=90°-∠B,∠B=90°-∠A).说明:这一定理应用的前提是Rt△,已知一个锐角,求另一个角.反过来,有两个角互余的三角形是直角三角形,可以作为判定三角形是直角三角形的方法.(3) 定理:在直角三角形中,如果一个锐角为30°,那么它所对的直角边等于斜边的一半.推理格式:∵在△ABC中,∠C=90°,∠A=30°,∴BC=AB.(4)定理:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.推理格式:∵在△ABC中,∠C=90°,BC=AB,∴∠A=30°【典型例题】知识点一:等腰三角形考点一:等腰三角形的判断与证明例1、如图,△ABC中,D、E分别是AC,AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠ODC;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形).(2)选择第(1)题中的一种情形,证明△ABC是等腰三角形.分析:这是一道开放型的题目,考虑分析各种情形,从中选出适合题意的情形.解:(1)①③,①④,②③,②④.(2)选择①④来证明结论成立.已知:∠EBO=∠DCO,OB=OC.求证:△ABC是等腰三角形.证明:∵OB=OC,∴∠OBC=∠OCB.又∵∠EBO=∠DCO,∴∠ABC=∠ACB,∴AB=AC.∴△ABC为等腰三角形.例2、如图,在△ABC中,AB=AC,O为△ABC内一点,且OB=OC.求证:AO⊥BC.证明:延长AO交BC于D在△ABO与△ACO中,∴△ABO≌△ACO,∴∠BAO=∠CAO,即∠BAD=∠CAD,∴AO⊥BC.考点二:利用等腰三角形求度数例3、如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE.求∠A的度数.分析:本题中没有给出一个角的度数,而要求∠A的度数,必然是运用三角形内角和定理,其解题思路是设某一个角的度数为x,其他各角都能用x的代数式表示,列出代数方程求解.解:设∠A=x.∵AD=DE=EB∴∠DEA=∠A=x,∠EBD=∠EDB.又∵∠DEA=∠EBD+∠EDB,∴∠EBD=∠EDB=.∴BDC=∠A+∠ABD=x.∵BD=BC,AB=AC,∴∠BDC=∠BCD=∠ABC=x.在△ABC中,∠A+∠ABC+∠ACB=180°,即x+x+x=180,∴x=45°,即∠A=45°.例4、AD和BE是△ABC的高,H是AD与BE或是AD、EB延长线的交点,BH=AC,求∠ABC的度数.(1)当H是AD与BE的交点时,∵BE、AD是△ABC的高,∴∠4=∠3=∠5=90°,∴∠1+∠C=∠2+∠C=90°,∴∠2=∠1.又∵BH=AC,∴△BHD≌△ACD,∴BD=AD,∴∠DBA=∠6.又∵∠6+∠DBA=90°,∴∠DBA=45°,即∠ABC=45°.(2)当H是AD、EB延长线的交点时,∵BE、AD是△ABC的高,∴∠3=∠2=90°,∠4=90°,∴∠1+∠H=90°,∴∠CAD+∠H=90°,∴∠1=∠CAD.又∵BH=AC,∴△DBH≌△DAC,∴DB=DA,∴∠5=∠6.又∵∠5+∠6=90°,∴∠6=45°,∴∠ABC=180°-45°=135°.故∠ABC的度数为45°或135°.考点三:几种辅助线作法:证明线段的和、差、倍、分问题时,常采用“截长”、“补短”等方法.例5、如图,已知AD是△ABC的角平分线,∠B=2∠C,求证:AC=AB+BD.(你可以用不同的方法证明吗)方法一:(截长法)在AC上截取AE=AB,连接DE.因为AD平分∠BAC,所以∠2=∠1.又因为AD=AD,所以△BAD≌△EAD(SAS).所以BD=ED.所以∠3=∠B=2∠C.因为∠3=∠C+∠4,所以2∠C=∠C+∠4,所以∠C=∠4,所以DE=CE.所以CE=BD.所以AC=AE+EC=AB+DB.方法二:(补短法)如图,延长AB到E,使BE=BD,连接DE,所以∠E=∠1.因为∠2=∠E+∠1=2∠E,又因为∠2=2∠C(已知),所以∠C=∠E.因为∠4=∠3,AD=AD,所以△ADC≌△ADE(AAS),所以AC=AE.因为AE=AB+BD,所以AC=AB+BD.例6、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.方法一:解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.方法二:接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.方法三:小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.方法四:小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.方法五:小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.方法六:大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.例7、如图,在△ABC中,AB=2AC,AD平分∠BAC,AD=BD.求证:CD⊥AC.证明:取AB的中点E,连结DE.∵AD=BD,∴DE⊥AB,∴∠3=90°.又∵AB=2AC,AB=2AE,∴AE=AC.又∵∠1=∠2,AD=AD,∴△AED≌△ACD,∴∠3=∠ACD,∴∠ACD=90°,∴CD⊥AC.例8、△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,连结DE交BC于F.求证:DF=EF.过E作EG//AB交BC的延长线于G,则∠G=∠B.又∵AB=AC,∴∠B=∠1.又∵∠1=∠ECG,∴∠G=∠ECG,∴CE=GE.又∵BD=CE,∴BD=GE.又∵∠BFD=∠GFE,∴△BDF≌△GEF,∴DF=EF.知识点二:直角三角形思路分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.例2.如图,∠ACB = ∠ADB = 90°,AC = AD,E是AB上的一点。
北师大版八年级数学下册课件:等腰三角形(1)
6.【例3】(人教8上P76改编)如图,在△ABC中,AB=AC,点D 在线段BC上,AD=BD. (1)求证:∠BAD=∠C; (2)若CA=CD,求△ABC三个内角的度数.
(1)证明:∵AB=AC,∴∠B=∠C. ∵AD=BD,∴∠B=∠BAD. ∴∠BAD=∠C.
(2)解:∵CA=CD,∴∠CAD=∠CDA, 由(1)得∠B=∠C=∠BAD, 设∠B=x,则∠CDA=∠B+∠BAD=2x, ∴∠CAD=∠CDA=2x, ∠BAC=∠CAD+∠BAD=3x,
∴在△ABC中,有∠B+∠C+∠BAC=x+x+3x=180°, 解得x=36°, ∴在△ABC中,∠BAC=108°,∠B=∠C=36°.
★9.(创新题)如图,在△ABC中,AB=AC. (1)如果∠BAD=30°,AD是BC上的高,AD=AE, 则∠EDC= 15° ; (2)如果∠BAD=40°,AD是BC上的高,AD=AE, 则∠EDC= 20° ; (3)通过以上两题,你发现在AD=AE的条件下, ∠BAD与∠EDC之间有什么关系?并给予证明.
5.【例2】如图,在△ABC中,AB=AC,AD是BC边上的中 线,BE⊥AC于点E.求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是BC边上的中 线,BE⊥AC, ∴AD⊥BC,∠BAD=∠CAD. ∴∠CBE+∠C=∠CAD+∠C=90°. ∴∠CBE=∠CAD. ∴∠CBE=∠BAD.
8.(核心教材母题:北师8下P5、)如图,已知AB=AC,AD=AE. 求证:BD=CE.
证明:如图,过A点作AF⊥BC于点F. ∵AB=AC,∴BF=CF. 又∵AD=AE,∴DF=EF. ∴BF-DF=CF-EF, ∴BD=CE.
答案图
核心教材母题:教材是新中考命题的依据,近年来广东省中考 数学卷中都有较多题的素材来源于北师大版和人教版教材. 本书将两个版本重合的教材母题进行汇总,作为课堂例习题 呈现.
北师大版八年级数学下1.1 等腰三角形的性质课件
3.下列各图中,已知AB=AC,写出x的值. x=___7_0____ x=___3_0____ x=___3_5____
4.(例2)如图,点D,E在△ABC的边BC上,AB=AC,
BD=CE.求证:AD=AE. 证明:∵AB=AC, ∴∠B=∠C(等边对等角).
AB AC(已知) 在△ABD与△ACE中,B C(已证)
第3关 12.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线
上一点,点E在BC上,且BE=BF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数. (1)证明:∵∠ABC=90°,F为AB延长线上一点
∴∠CBF=∠ABE=90°在△ABE与△CBF中 AB CB ABE CBF BE BF
11.如图,在△ABC中,AB=AC,点D是BC边上的中点, DE⊥AB,DF⊥AC,垂足分别为E、F. 求证:DE=DF. 证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC= 90°∵AB=AC,∴∠B=∠C∵D是BC边上的中点,∴BD =CD在△BDE与△CDF中
DEB DFC B C ∴△BDE≌△CDF(AASB)D, C∴DDE=DF
2
2
中,
AE AF
∴△AEC≌△AFC(SAS)∴1EC=2FC,∴这两根彩线
的长相等;
AC AC
AB=DE,AC=DF,BE=CF.求证:∠A=∠D.
证明:∵BE=CF,∴BE+EC=CF+EC,
即BC=EF.
AB DE(已知)
在△ABC与△DEF中,
BC AC
EF DF(已知)
∴△ABC≌△DEF(SSS).∴∠A=∠D.
2.如图,AB平分∠CAD,∠1=∠2. 求证:△ABC≌△ABD. 证明:∵AB平分∠CAD,∴∠CAB= ∠DAB∵∠1=∠2∴∠CBA=∠DBA(等 角的补角相等)在△ABC与△ABD中,
北师大版数学八年级下册1.1第2课时等边三角形的性质课件
探究新知
1 等腰三角形的重要线段的性质
在等腰三角形中画出一些线段(如角平分线、中线、
高等),你能发现其中一些相等的线段吗? 能证明你的
结论吗? A
A
A
ED
B
C
猜想1:底角的两
条平分线相等
NM
B
C
猜想2:两条腰
上的中线相等
Q
P
B
C
猜想3:两条腰 上的高线相等
例1 证明:等腰三角形两底角的平分线相等.
这是由特殊结论归纳出一般结论的一种数学思想方法.
2 等边三角形的性质
想一想:等边三角形是特殊的等腰三角形,那么等边三
角形的内角有什么特征呢?
定理:等边三角形的三个内角都相等,并且每个角都
等于 60°.
可以利用等腰 三角形的性质 进行证明.
怎样证明这 一定理呢?
证一证
已知:如图,在△ABC 中,AB = AC = BC.
当堂小结 等腰三角形两底角上的角平分线、两腰上的高、两 腰上的中线的相关性质:
底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等. 定理: 等边三角形的三个内角都相等,并且每个角都 等于 60°.
课堂练习 1.如图,△ABC 和△ADE 都是等边三角形,若△ABC
的周长为 18 cm,EC = 2 cm,则△ADE 的周长是
八年级下册数学(北师版)
第一章 三角形的证明
1.1 等腰三角形
第2课时 等边三角形的性质
情景导入 在七下我们已经知道了“三边相等的三角形是等边 三角形”,生活中有很多等边三角形,如交通图标、台 球室的三角架等,它们都是等边三角形.
思考:在上一节课我们证明了等腰三角形的两底角相等, 那等边三角形的各角之间有什么关系呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题的证明
议一议P3
3
几何的三种语言
A
1 2
推论: 等腰三角形顶角的平分线,底边上的 中线,底边上的高互相重合(三线合一 ). 如图,在△ABC中,
∵AB=AC, ∠1=∠2(已知). ∴BD=CD,AD⊥BC(三线合一). 如图,在△ABC中, ∵AB=AC, BD=CD (已知). ∴∠1=∠2,AD⊥BC(三线合一). 如图,在△ABC中, ∵AB=AC, AD⊥BC(已知). ∴BD=CD, ∠1=∠2 (三线合一).
1
等腰三角形
第1课时
回顾与思考 1
学好几何标志是会 “证明”
证明命题的一般步骤:
(1)理解题意:分清命题的条件(已知),结论(求证); (2)根据题意,画出图形; (3)结合图形,用符号语言写出“已知”和“求证”; (4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”); (5)依据思路,运用数学符号和数学语言条理 清晰地写出证明过程; (6)检查表达过程是否正确,完善.
与同伴交流你在探索思路的过程中的具体做法.
回顾与思考 2
几何的三种语言
B
基本事实: 三边对应相等的两个三 角形全等(SSS).
在△ABC与△A′B′C′中 ∵AB=A′B′(已知), A′ BC=B′C′ (已知), AC=A′C′ (已知), ∴△ABC≌△A′B′C′(SSS).
A
B′
C
回顾与思考 4
几何的三种语言
B
●●
基本事实: 两角及其夹边对应相等的 两个三角形全等(ASA). A
在△ABC与△A′B′C′中 A′ ∵∠A=∠A′ (已知), AB=A′B′ (已知), ∠B=∠B′ (已知), ∴△ABC≌△A′B′C′(ASA).
●
B′
●●
C
●
C′
驶向胜利 的彼岸
回顾与思考 5
B
D
C
轮换条件 ∠1=∠2, BD=CD,AD⊥BC 可得三线合一 的三种不同形 式的运用.
证明后的结论,以后可以直接运用.
随堂练习P4 1
成功者的摇篮
1. 如图,在△ABD中, C是BD上的一点,且 AC⊥BD,AC=BC=CD. (1)求证:△ABD是等腰三角形; (2)求∠BAD的度数.
B
D
C
你还有其 他证法吗? 胜利属于 敢想敢干 的人.
议一议P2
3
几何的三种语言
定理: 等腰三角形的两个底角相等 (等边对等角). 如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
证明后的结论,以后可以直接运用.
想一想P4 1 推论: 等腰三角形顶角的平分线,底边上的中线,底边上的高互相 重合(三线合一). A 已知:如图,在△ABC中, AB=AC, ∠1=∠2. 求证:BD=CD,AD⊥BC. 1 2 分析: 要证明BD=CD,AD⊥BC,只要能证明 B C △ABD≌△ACD即可.由基本事实(SAS)易证. D 证明: 在△ABD与△ACD中 ∵ AB=AC (已知), ∠1=∠2 (已知) AD=AD(公共边), ∴ △ABD≌△ACD(SAS). ∴ BD=CD,∠ADB=∠ADC=900 (全等三角形的对应边,对应角相等). ∴ AD⊥BC(垂直意义).
●●
B′
C
●●
ห้องสมุดไป่ตู้
C′
驶向胜利 的彼岸
回顾与思考 7
几何的三种语言
B
推论: 两角及其中一角的 对边对应相等的两个 三角形全等(AAS).
在△ABC与△A′B′C′中 ∵∠A=∠A′ (已知), A′ ∠C=∠C′ (已知), AB=A′B′ (已知), ∴△ABC≌△A′B′C′(AAS).
A
●
●●
B′
●●
C
A′
●
●● ●
C′
驶向胜利 的彼岸
回顾与思考 6
命题的证明
B
推论:两角及其中一角的对边对应相等的两个三角 形全等(AAS). 已知:如图,在△ABC和△A′B′C′中, ∠A=∠A′, ∠C=∠C′, AB=A′B′. 求证:△ABC≌△A′B′C′. ● A 分析: 要证明△ABC≌△A′B′C′ ,只要能满足基本事实 (SSS)、(SAS)、(ASA)中的一个即可.根 据三角形内角和定理易知,第三个角必对应相 等. A′ ● 证明: ∵ ∠A=∠A′,∠C=∠C′(已知) ∴∠B=∠B′(三角形内角和定理). 在△ABC与△A′B′C′中 ∵ ∠A=∠A′ (已知), AB=A′B′(已知), ∠B=∠B′ (已证), ∴ △ABC≌△A′B′C′(ASA).
C′
驶向胜利 的彼岸
回顾与思考 3
几何的三种语言
B
基本事实: 两边及其夹角对应相等的 两个三角形全等(SAS). A
在△ABC与△A′B′C′中 A′ ∵AB=A′B′(已知), ∠A=∠A′ (已知), AC=A′C′ (已知), ∴△ABC≌△A′B′C′(SAS).
●
B′
C
●
C′
驶向胜利 的彼岸
B′
C
●
●●
C′
证明后的结论,以后可以直接运用.
议一议P2
1
等腰三角形的性质
A
你还记得我们探索过的等腰三角形 的性质吗? 定理: B1 等腰三角形的两个底角相等(等边对等角).
推论: 等腰三角形顶角的平分线,底边上的中线, 底边上的高互相重合(三线合一). 你能利用已有的基本事实和定理 证明这些结论吗?
几何的三种语言
B
●●
基本事实: 全等三角形的对应边相等、 对应角相等.
在△ABC与△A′B′C′中 ∵ △ABC≌△A′B′C′(已知) ∴ AB=A′B′,BC=B′C′,AC=A′C′ (全等三角形的对应边相等); ∠A=∠A′ ,∠B=∠B′,∠C=∠C′ (全等三角形的对应角相等).
A
●
●● ●
A
B
C
D
小结
拓展
回味无穷
B
2
C
A
D
C
议一议P2
2
命题的证明
A
定理: 等腰三角形的两个底角相等(等边对等角). 已知: 如图,在△ABC中, AB=AC. 求证: ∠B=∠C. 分析: 要证明∠B=∠C,只要能使∠B、∠C为两 个全等三角形的一对对应角即可.因此, 需要作辅助线“过点A作高线AD”. 证明: 过点A作AD⊥BC,交BC于点D. 在Rt△ABD与Rt△ACD中 ∵ AB=AC (已知), AD=AD(公共边), ∴ △ABD≌△ACD(HL). ∴ ∠B=∠C(全等三角形的对应角相等).