高一数学练习及答案

合集下载

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|在x=0处的极限值?A. 1B. 0C. 2D. 不存在2. 已知函数f(x) = 3x^2 - 2x + 1,求f(2)的值。

A. 10B. 11C. 12D. 133. 若a、b为等差数列的连续项,且a+b=10,而a与b的倒数之和为\(\frac{2}{5}\),则a的值为:A. 1B. 2C. 3D. 44. 一个圆的半径为5cm,求该圆的面积(圆周率取3.14)。

A. 78.5平方厘米B. 85平方厘米C. 90平方厘米D. 95平方厘米5. 已知一个等比数列的前三项分别为2, 6, 18,求该数列的公比。

A. 2B. 3C. 4D. 66. 若x满足方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 4C. 1, 6D. 3, 47. 直线y = 2x + 3与x轴的交点坐标为:A. (-1.5, 0)B. (1.5, 0)C. (-3, 0)D. (3, 0)8. 已知一个三角形的三边长分别为3cm, 4cm, 5cm,该三角形的面积是多少?A. 6平方厘米B. 7.5平方厘米C. 9平方厘米D. 12平方厘米9. 函数y = |2x - 3|与x轴所围成的图形面积为:A. 2B. 3C. 4D. 610. 若a, b, c是等差数列,且a + c = 2b,若b = 5,则a + c的值为:A. 5B. 10C. 15D. 20二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2) = ______。

12. 一个圆的直径为10cm,求该圆的周长(圆周率取3.14)为______。

13. 已知等比数列的前两项为3和9,求该数列的第四项为______。

14. 若x和y满足方程组\(\begin{cases} 2x + y = 8 \\ x - y = 2 \end{cases}\),求x的值为______。

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇习题1:已知∠ABC=60°,AB=4,BC=6,求AC的长度。

解答:通过画图可知,△ABC为一个等边三角形,因此AC=AB=4。

习题2:已知一条直线l1:x-2y+3=0,求平行于l1且过点P(1,2)的直线l2的方程式。

解答:l1的斜率为2,因此l2的斜率也为2。

同时,由于l2过点P(1,2),因此可得l2的方程式为y-2=2(x-1),即y=2x。

习题3:已知函数f(x)=2x-1,求f(3)的值和f(-2)的值。

解答:将3代入f(x)=2x-1,可得f(3)=2(3)-1=5。

将-2代入f(x)=2x-1,可得f(-2)=2(-2)-1=-5。

习题4:已知弧AB所对的圆心角为60°,AB的弧长为π,求该圆的半径。

解答:圆心角60°所对的弧长为圆的1/6,即π/6。

因此可知该圆的周长为2π,因此半径为1。

习题5:已知平面直角坐标系中两点A(2,5)和B(-3,-4),求线段AB的长度。

解答:通过勾股定理可知,线段AB的长度为√(2-(-3))^2+(5-(-4))^2=√25+81=√106。

以上是数学必修1的5道典型习题及解答,这些题目涵盖了数学必修1的不同知识点,包括三角函数、直线方程、函数、圆和勾股定理等。

对于高一学生来说,这些内容都是必须掌握的基础知识。

在学习数学时,不仅要了解知识点本身的定义和公式,还要学会思考如何运用所学知识解决问题。

因此,在学习习题时,除了知晓解答方法和答案外,还需深入思考,理解其背后的思维过程和逻辑。

在解答习题时,需要注意的是细节问题。

比如在第三道题中,如果没有注意到f(x)的定义式中有-1这一项,就会出现计算错误。

因此,在解答问题时,不仅需要整体考虑,还需要对计算细节进行仔细检查。

在学习数学时,还需要注重实践操作和分类整理。

对于复杂的习题和知识点,可以多练习相关问题,通过不断反复联系和思考,形成自己的解题思路和方法。

高一数学题目及答案100道计算题必修一

高一数学题目及答案100道计算题必修一

高一数学题目及答案100道计算题必修一题目1:求下列各组数的最大公因数和最小公倍数:18,24。

解:18 = 2 x 3^224 = 2^3 x 3最大公因数 = 2 x 3 = 6最小公倍数 = 2^3 x 3^2 = 72题目2:计算:(2 + √3)(2 - √3)。

解:(2 + √3)(2 - √3) = 2^2 - √3^2 = 4 - 3 = 1题目3:化简:√75。

解:√75 = √(3 x 5^2) = 5√3题目4:求解下列方程:2x + 5 = 7。

解:2x + 5 = 72x = 7 - 52x = 2x = 1题目5:计算:√(-16)。

解:√(-16) = 4i题目6:求解下列方程组:3x + 2y = 74x - y = 5解:通过消元法可得:首先将第二个式子乘以2,得到:8x - 2y = 10相加得到:11x = 17解得:x = 17/11带入第一个方程得到:3 * (17/11) + 2y = 7解得:y = 5/11题目7:计算:sin^2(30°) + cos^2(30°)。

解:sin^2(30°) + cos^2(30°) = (1/2)^2 + (√3/2)^2 = 1/4 + 3/4 = 1题目8:若三角形的两条边长分别为5cm和12cm,夹角为30°,求第三边的长。

解:根据余弦定理,第三边长为√(5^2 + 12^2 - 2 * 5 * 12 * cos(30°)) = 5√3 cm题目9:计算:log(1000) - log(10)。

解:log(1000) - log(10) = log(1000/10) = log(100) = 2题目10:求下列数列的通项公式:1, 3, 5, 7, 9, …解:通项公式为a_n = 2n - 1(后续内容省略,继续提供计算题目和答案)。

数学题高一试题及答案

数学题高一试题及答案

数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。

A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。

答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。

答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。

证明:首先求导数f'(x) = 3x^2 - 6x。

令f'(x) = 0,解得x = 0 或x = 2。

验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。

7. 解不等式:x^2 - 4x + 4 > 0。

解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。

因此,解集为{x|x ≠ 2}。

四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。

解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。

计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。

答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。

解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案高一数学练习题及答案数学是一门重要的学科,对于高中生来说,数学的学习尤为关键。

高一学年是数学知识的基础阶段,掌握好这个阶段的知识对于后续学习的顺利进行至关重要。

为了帮助同学们更好地复习和巩固高一数学知识,下面将给出一些高一数学练习题及答案。

一、函数与方程1. 已知函数 f(x) = 2x + 3,求 f(5) 的值。

答案:f(5) = 2(5) + 3 = 13。

2. 解方程 2x + 5 = 17。

答案:2x + 5 = 172x = 17 - 52x = 12x = 6。

二、平面几何1. 已知三角形 ABC,其中∠ABC = 90°,AB = 5 cm,BC = 12 cm,求 AC 的长度。

答案:根据勾股定理,AC² = AB² + BC²AC² = 5² + 12²AC² = 25 + 144AC² = 169AC = √169AC = 13 cm。

2. 已知正方形 ABCD,边长为 6 cm,求对角线 AC 的长度。

答案:对角线 AC 的长度等于正方形边长的平方根的两倍。

AC = 6√2 cm。

三、概率与统计1. 一枚硬币抛掷十次,求正面朝上的次数。

答案:由于硬币只有正反两面,所以正面朝上的次数只能是 0 到 10 之间的整数。

可以用组合数学的方法计算正面朝上的次数:正面朝上的次数 = C(10, 0) + C(10, 1) + C(10, 2) + C(10, 3) + C(10, 4) + C(10, 5) + C(10, 6) + C(10, 7) + C(10, 8) + C(10, 9) + C(10, 10)正面朝上的次数 = 1 + 10 + 45 + 120 + 210 + 252 + 210 + 120 + 45 + 10 + 1正面朝上的次数 = 1024。

(高一)高一数学必修1习题及答案5篇

(高一)高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。

高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。

高一数学必修试题及答案

高一数学必修试题及答案

高一数学必修试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x) = 3x^2 - 5x + 2,求f(-1)的值。

A. 10B. 8C. 6D. 42. 计算下列集合的交集:A = {1, 2, 3, 4},B = {3, 4, 5, 6}。

A. {1, 2}B. {3, 4}C. {5, 6}D. {1, 2, 5, 6}3. 已知等差数列的首项a1 = 2,公差d = 3,求第5项a5的值。

A. 17B. 14C. 11D. 84. 求函数y = x^3 - 6x^2 + 9x + 1在x = 2时的导数值。

A. -3B. 3C. 9D. -95. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。

B. (-2, -3)C. (0, 0)D. (3, 2)6. 计算复数z = 2 + 3i与z' = 1 - 2i的乘积。

A. 5 + 7iB. 5 - 7iC. 7 - 5iD. 7 + 5i7. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。

A. 3x^2 - 6xB. x^2 - 3xC. 3x - 6D. x^3 - 3x^28. 计算向量a = (3, 4)与向量b = (-1, 2)的点积。

A. 10B. -2C. 2D. 149. 已知函数y = ln(x),求y'。

A. 1/xB. xC. ln(x)D. x^210. 计算方程x^2 - 5x + 6 = 0的根。

A. 2, 3C. 1, 2D. 3, 6二、填空题(每题4分,共20分)1. 已知等比数列的首项a1 = 4,公比q = 2,求第3项a3的值。

2. 求函数y = sin(x)在x = π/4时的值。

3. 已知向量a = (1, 2),b = (3, 4),求向量a与向量b的夹角。

4. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。

高一数学课本必修一试题及答案

高一数学课本必修一试题及答案

高一数学课本必修一试题及答案
一、课本必修一测试题
一、选择题
1. 下列四个运算中,不能使两个数的乘积增大的是( )
A. 交换运算
B. 加减运算
C. 利用积律减少步骤
D. 乘法运算
2. 下列不同类运算形式,利用乘积律最简换算的是( )
A. 3 ÷ 2
B. (3×2-2)÷2
C. (3+2)×2
D. (3-2)×2
3. 已知有以下等式成立:2m - 6 = 3(2n+2),则 m= ( )
A. 2n+6
B. 8-2n
C. 5+2n
D. 4n+3
二、填空题
1. 若两个正数的乘积为60,则其中一个数为_____________。

2. 三个数的乘积为24,已知其中一个数为4,则其余两个数的和为_____________。

3. 乘法运算的记号是_____________。

三、判断题
1. 在加减运算中,两个数的和和每个数的大小无关。

( )
2. 按积律,(3a)×2 = 3(a+a)。

( )
3. 乘积中,若两个数符号不同,则乘积一定是负数。

( )
四、解答题
1. 计算 (7×4-3)×5
解:先用括号内乘积律求出(7×4-3)=29,再用乘法运算得:
29×5=145
2. 若 a×b=25,求出 a+b 的可能值
解:假定a=x,则根据乘法公式:b=25/x,则代入 a+b=x+25/x,可得 x 的可能值为±5,
所以 a+b 可能的答案为:-2 和 10。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。

A. 6B. 4C. 2D. -22. 若\( a \)和\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,则\( a + b \)的值为:A. 3B. 5C. 6D. 83. 已知\( \sin 45^\circ = \frac{\sqrt{2}}{2} \),求\( \cos 45^\circ \)的值。

A. \( \frac{\sqrt{2}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( \frac{\sqrt{6}}{3} \)4. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 包含5. 已知等差数列的首项是2,公差是3,求第5项的值。

A. 17B. 14C. 11D. 86. 函数\( y = \log_2 x \)的定义域是:A. \( x > 1 \)B. \( x < 1 \)C. \( x \geq 1 \)D. \( x \geq 0 \)二、填空题(每题4分,共20分)1. 若\( a \),\( b \),\( c \)是三角形的三边,且\( a^2 + b^2= c^2 \),则此三角形是________。

2. 已知\( \tan \theta = 3 \),求\( \sin \theta \)的值。

3. 函数\( y = x^3 - 3x^2 + 2 \)的导数是________。

4. 已知\( \cos \alpha = \frac{4}{5} \),\( \alpha \)在第一象限,求\( \sin \alpha \)的值。

5. 等比数列\( 2, 4, 8, \ldots \)的第6项是________。

高一数学练习题加答案

高一数学练习题加答案

高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。

以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。

练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。

3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。

答案一:1. A∪B = {1, 2, 3, 4}。

2. C∩D = {x | 5 < x < 10}。

3. E = {1, 3}。

练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。

2. 求函数g(x) = 3x + 2的反函数。

3. 已知f(x) = 2x + 1,求f(-1)。

答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。

2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。

3. f(-1) = 2*(-1) + 1 = -1。

练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。

2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。

3. 解绝对值不等式:|x - 2| < 4。

答案三:1. 解得:x < 7。

2. 解集为:1 ≤ x ≤ 5,y ≥ -2。

3. 解得:-2 < x < 6。

练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。

2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇高一数学必修1习题及答案1一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合,则m∩p= ( )a. b. c. d.2.下列函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在下列各图中,能表示从集合a到集合b的映射的是( )4设,,,则,,的大小关系为( ). . . . .5.定义为与中值的较小者,则函数的值是( )6.若,则的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8若则的值为( )a.8b.c.2d.9若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是( )a.若,不存在实数使得;b.若,存在且只存在一个实数使得;c.若,有可能存在实数使得;d.若,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.已知定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )a.f(-1)f(9)f(13) p=""b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=""d.f(13)f(-1)f(9)12.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每小题4分,共24分.把答案直接填在题中横线上.13、,则的取值范围是14.已知实数满足等式,下列五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购买这种商品千克(不考虑运输费等其他费用).三、解答题:.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知全集u=r,集合,,求,,。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案第一题:线性方程组已知线性方程组如下:2x + 3y = 74x - y = 11求解该方程组。

解答:首先,我们可以先观察这个线性方程组,注意到第二个方程的系数y的系数是-1,可以将整个方程乘以-1来消除y的系数。

这样得到的新方程是:2x + 3y = 7-4x + y = -11现在我们可以使用消元法来求解这个方程组。

首先,将第二个方程的3倍加到第一个方程上,消去y的系数。

2x + 3y + 3(-4x + y) = 7 + 3(-11)2x + 3y - 12x + 3y = 7 - 33得到:-10x + 6y = -26这样,我们就将该线性方程组转化成同样含有两个未知数的方程,可以继续使用消元法。

接下来,我们可以用数学方法来解这个方程组。

首先,我们可以将第二个方程的系数y的系数由正数改为负数,得到:2x + 3y = 7-4x - y = 11然后,我们可以通过消元法解这个方程组。

将第二个方程的3倍加到第一个方程上,得到:2x + 3y + 3(-4x - y) = 7 + 3(11)2x + 3y - 12x - 3y = 7 + 33化简得:-10x = 40将方程两边同时除以-10,得到:x = -4将x的值代入第一个方程,得到:2(-4) + 3y = 7-8 + 3y = 73y = 7 + 83y = 15y = 5所以,该线性方程组的解是x = -4,y = 5。

第二题:函数的性质已知函数f(x) = x^3 - 2x^2 + x - 3。

1. 计算f(1)的值。

2. 计算函数f(x)在x = 2处的导数。

3. 判断函数f(x)是否为偶函数、奇函数或者既非偶函数也非奇函数。

解答:1. 首先,我们需要计算f(1)的值。

将x = 1代入函数表达式中,得到:f(1) = (1)^3 - 2(1)^2 + 1 - 3= 1 - 2 + 1 - 3= -3所以,f(1)的值为-3。

高一数学考试题及答案

高一数学考试题及答案

高一数学考试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|的定义域?A. (-∞, 0)B. (-∞, 0) ∪ (0, +∞)C. (-1, 1)D. 全实数集2. 若a、b、c是等差数列,且a+b+c=6,b+c-a=2,则a的值为:A. 1B. 2C. 3D. 43. 已知一个等比数列的前三项分别为a, b, c,且abc=16,b-c=2,求a的值。

A. 1B. 2C. 4D. 84. 在直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是:A. 2√5B. √20C. 3√5D. 55. 若f(x) = 2x^2 + 3x - 4,求f(-2)的值。

A. -11B. -5C. 5D. 116. 已知一个圆的半径为5,圆心在坐标轴上,且圆上有一点P(3,4),则这个圆的方程是:A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + y^2 = 25C. (x-4)^2 + (y-3)^2 = 25D. x^2 + (y-4)^2 = 257. 函数y = 3^x的反函数是:A. y = log3xB. y = 3^(-x)C. y = -log3xD. y = logx/38. 已知一个等差数列的前n项和为Sn = n^2 + 2n,当n=5时,Sn的值是:A. 35B. 40C. 45D. 509. 在复数z1 = 3 + 4i 和 z2 = 2 - i中,|z1 - z2|的模长是:A. 2√2B. √10C. 5D. √2110. 若a:b = 3:4,b:c = 5:6,则a:b:c的比例是:A. 15:20:24B. 15:20:25C. 3:4:5D. 5:6:8二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2)的值。

12. 一个等比数列的前三项分别是2, 6, 18,该数列的公比是。

高一数学练习题带答案

高一数学练习题带答案

高一数学练习题带答案高一数学是高中数学学习的重要基础阶段,涵盖了代数、几何、函数等多个领域。

以下是一些高一数学练习题及答案,供同学们练习和参考。

练习题一:代数基础1. 解不等式:\( 2x - 5 < 3x + 1 \)2. 化简表达式:\( \frac{3x^2 - 7x + 2}{x - 1} \)3. 求多项式\( 4x^3 - 3x^2 + 2x - 1 \)的因式分解。

答案一:1. 解不等式:首先将不等式两边的\( x \)项合并,得到\( -x < 6 \),然后两边同时除以-1,注意不等号方向要改变,得到\( x > -6 \)。

2. 化简表达式:通过长除法或多项式除法,可以得到\( 3x - 5 \)。

3. 因式分解:首先提取公因式\( x - 1 \),得到\( x - 1 (4x^2 - 4x + 2) \),然后对余下的二次多项式继续分解,得到\( x - 1 (2x - 1)(2x - 2) \)。

练习题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。

2. 已知圆的半径为7,求圆的面积。

3. 已知点P(1,2),求点P到直线\( x - 2y + 3 = 0 \)的距离。

答案二:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,即\( BC^2 = AB^2 - AC^2 = 5^2 - 3^2 = 25 - 9 = 16 \),所以BC=4。

2. 圆的面积公式为\( A = \pi r^2 \),代入半径r=7,得到\( A =49\pi \)。

3. 点到直线的距离公式为\( d = \frac{|Ax + By + C|}{\sqrt{A^2+ B^2}} \),代入点P(1,2)和直线方程\( x - 2y + 3 = 0 \),得到\( d = \frac{|1 - 4 + 3|}{\sqrt{1^2 + (-2)^2}} =\frac{0}{\sqrt{5}} = 0 \)。

高一数学试题及解析答案

高一数学试题及解析答案

高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。

由于题目要求零点,所以正确选项是B。

2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。

3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。

4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。

二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。

答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。

2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。

答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。

3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。

答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是正整数?A. 0B. 1C. 2D. 32. 若a > 0,b < 0,且|a| < |b|,下列哪个不等式成立?A. a + b > 0B. a + b < 0C. a + b = 0D. a - b > 03. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 2C. 3D. 44. 已知等差数列的首项a1=2,公差d=3,第10项a10的值是:A. 29B. 32C. 35D. 385. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切6. 若sinθ + cosθ = √2,那么sinθ - cosθ的值是:A. 0B. -√2C. √2D. -17. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B的结果:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 函数y = x^3 - 6x^2 + 9x + 2的极值点是:A. x = 1B. x = 2C. x = 3D. x = 49. 已知等比数列的首项a1=3,公比q=2,第5项a5的值是:A. 48B. 96C. 192D. 38410. 直线y = 2x + 1与x轴的交点坐标是:A. (0, 1)B. (-1, 0)C. (1, 0)D. (0, 0)二、填空题(每题4分,共20分)11. 计算(2x - 3)(3x + 2)的结果是______。

12. 若f(x) = x^2 - 4x + 4,求f(2)的值是______。

13. 已知三角形ABC的三边长分别为a=3,b=4,c=5,根据余弦定理,角A的余弦值是______。

14. 圆的方程为(x - 3)^2 + (y - 4)^2 = 16,求圆心坐标是______。

高一数学练习及答案

高一数学练习及答案

高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赣县才子学校高一入学考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是( C ).A. 0.1B. 0.11C.0.02D.0.122.根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为( A ).A. 1.043×108人B. 1.043×107人C.1.043×104人D. 1043×105人3.如图,是一个实物在某种状态下的三视图,与它对应的实物图应是(A ).4.下列运算不.正确的是( B ).A.-(a-b)=-a + bB. a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a5.已知一次函数y =-x+b的图象经过第一、二、四象限,则b的值可以是( D ).A .-2 B.-1 C. 0 D. 26.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是(C ).A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)7. 一组数据:2,3,4,x中若中位数与平均数相等,则数x不.可能是( B )A.1B.2C.3D.58. 如图,将矩形ABCD对折,得折痕PQ,再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点.连接AC′,BC′,则图中共有等腰三角形的个数是( C ).A .1 B.2 C.3 D.4一、选择题(本大题共8个小题,每小题3分,共24分)1.C 2.A 3.A 4.B 5.D 6.C 7.B 8.C二、填空题(本大题共8小题,每小题3分,共24分)9. 计算:(-2)2-1=__________. ABD′PCDMNEC′QF第8题10. 分式方程xx 112=-的解是__________.11. 在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为 . 12. 试写一个..有两个不相等实根的一元二次方程: 13. 因式分解:3a+12a 2+12a 3= .14.如图,在△A BC 中,A B =AC ,∠A =80°,E ,F ,P 分别是A B ,A C ,BC 边上一点,且BE =BP ,CP =CF ,则∠EPF =______度.15.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=___________度.16. 在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是.(填序号,多填或填错得0分,少填酌情给分) ①(-2,0) ②(0,-4) ③(4,0) ④(1,-4) .二、填空题(本大题共8个小题,每小题3分,共24分)9.3 10.1x =- 11.512.如:2450x x +-=13. ()2312a a +14.50 15.90° 16.①②③三、解答题(本大题共3小题,每小题6分,共18分) 17.(本题满分6分)计算:2o(1)(3)2cos60-+π-- 17.(本题满分6分)第11题第15题解:原式=21211⨯-+ (cos60o占2分) ………………………4分 =1 ………………………6分18.解不等式组:{215,3 5.x x ->-+<-18.解:由①得 3x >, ………………2分由②得 8x >, ………………4分 ∴原不等式组的解集是8x >. ………………6分19.如图,在△ABO 中,已知A (0,4),B (-2,0), D 为线段AB 的中点. (1)求点D 的坐标;(2)求经过点D 的反比例函数解析式.19.解:(1) ∵(0,4),(2,0)A B -, ∴2,4OB OA ==. 过点D 作D E ⊥x 轴于点E ,则122DE OA ==,112BE OB ==, ∴OE =1, ∴()1,2D -. …………3分 (2)设经过点D 的反比例函数解析式为k y x=. 把()1,2-代入k y x=中,得:21k =-, ∴2k =-,∴2y x =-. ……6分四、解答题(本大题共2小题,每小题8分,共16分)20.(本题满分8分)先化简,再求值:11()()-==++,其中,x yx y y x y x x y .20.(本题满分6分)原式=()()y x xy y y x xy x +-+22 ………………………1分 =()y x xy y x +-22 ………………………2分=()y x xy y x y x ++-))(( ………………………4分=xyyx - ………………………6分 当 12,12-=+=y x 时,xy y x -=212)12)(12()12()12(==-+--+ ………………………8分21.(本题满分8分)我市某经济开发区去年总产值100亿元,计划两年后总产值达到121亿元,求平均年增长率. 21.(本题满分8分)解: 设平均年增长率为x ……………………1分依题意得: 121)1(1002=+x ……………………4分解得:舍去)(1.2,1.021-==x x ……………………7分 答:平均每年增长的百分率为10﹪ ……………………8分五、解答题(本大题共2小题,每小题9分,共18分) 22.(本题满分9分)为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y (米)与离家时间x (分钟)的关系表示如下图: (1)李明从家出发到出现故障时的速度为 米/分钟; (2)李明修车用时 分钟;(3)求线段BC 所对应的函数关系式(不要求写出自变量的取值范围).y(米)X(分钟)22.(本题满分9分)解:(1)200 ………………………3分 (2)5………………………6分(3)设线段BC 解析式为:y=kx+b , ………………………7分依题意得:{300020k b400025k b =+=+ ………………………8分22题图解得:k=200,b=﹣1000所以解析式为y=200x ﹣1000 ………………………9分23. (本题满分9分)如图,将△ABC 的顶点A 放在⊙O 上,现从AC 与⊙O 相切于点A (如图1)的位置开始,将△ABC 绕着点A 顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC ,AB 分别与⊙O 交于点E ,F ,连接EF (如图2). 已知∠BAC =60°,∠C =90°,AC =8,⊙O 的直径为8.(1)在旋转过程中,有以下几个量:①弦EF 的长 ② EF的长 ③∠AFE 的度数 ④点O 到EF 的距离.其中不变的量是 (填序号);(2)当BC 与⊙O 相切时,请直接写出α的值,并求此时△AEF 的面积.23.解:(1)①,②,③.(多填或填错得0分,少填酌情给分) …………3分 (2)α=90°. …………5分 依题意可知,△ACB 旋转90°后AC 为⊙O 直径,且点C 与点E 重合,因此∠AFE =90°. …………6分 ∵AC =8,∠BAC =60°,∴AF =142AC =,EF= …………8分∴S △AEF=142⨯⨯ …………9分六、解答题(本大题共2小题,每小题10分,共20分) 24.(本题满分10分).已知一次函数1y ax b =+的图象与反比例函数2ky x=的图象相交于备用图B图1图2A 、B 两点,坐标分别为(-2,4)、(4,-2)。

(1)求两个函数的解析式; (2)结合图象写出......y 1<y 2时,x 的取值范围; (3)求△AOB 的面积; 24.解:(1由题意可知:一次函数1y ax b =+的图象经过A 、B 两点,将A 、B 两点的坐标代入1y ax b=+得:4224a b a b +-=+=-解得:12a b =-= …………2分所以一次函数的解析式为2y x =-+ …………3分将两点的坐标代入2ky x=得 42k=- 解得 8k =- …………5分所以反比例函数2k y x=的解析式为8y x =- …………6分(2)20x x -<<或 >4 …………8分(3)设直线AB 与y 轴交于点C ,则点C 坐标是(0,2) …………9分246AOB AOC BOC S S S ∴=+=+= …………10分25. (本题满分10分)在平面直角坐标系中,直线y kx b =+(k 为常数且k ≠0)分别交x 轴、y 轴于点A 、B ,⊙O 半径A 在x 轴正半轴上,点B 在y 轴正半轴上,且OA=OB .①求k 的值; ②若b =4,点P 为直线y kx b =+上的动点,过点P 作⊙O 的切线PC 、PD ,切点分别为C 、D ,当PC ⊥PD 时,求点P 的坐标.解:⑴①根据题意得:B的坐标为(0,b),∴OA=OB=b,…………2分∴A的坐标为(b,0),代入y=kx+b得k=-1. …………4分②过P作x轴的垂线,垂足为F,连结OD. …………5分∵PC、PD是⊙O的两条切线,∠CPD=90°,∴∠OPD=∠OPC=12∠CPD=45°,…………6分∵∠PDO=90°,,∠POD=∠OPD=45°,∴OD=PD=OP…………7分∵P在直线y=-x+4上,设P(m,-m+4),则OF=m,PF=-m+4,∵∠PFO=90°,OF2+PF2=PO2,∴m2+(-m+4)22,…………8分解得m=1或3,…………9分∴P的坐标为(1,3)或(3,1)…………10分。

相关文档
最新文档