推荐【复习专题】中考数学复习:二次根式应用复习

合集下载

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

知识点01:二次根式的基本性质与化简【高频考点精讲】1.二次根式有意义的条件(1)二次根式中的被开方数必须是非负数;(2)如果所给式子中含有分母,那么除了保证被开方数为非负数外,还必须保证分母不为零。

2.二次根式的基本性质(1)≥0;a≥0(双重非负性)。

(2)()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式)。

(3)=a=3.二次根式的化简(1)利用二次根式的基本性质进行化简。

(2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。

=•(a≥0,b≥0)=(a≥0,b>0)知识点02:同类二次根式及分母有理化【高频考点精讲】1.同类二次根式(1)一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,那么把这几个二次根式叫做同类二次根式。

(2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变。

2.分母有理化(1)分母有理化是指把分母中的根号化去,分母有理化是乘二次根式本身(分母只有一项)或与原分母组成平方差公式。

①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式互为有理化因式。

知识点03:二次根式混合运算与化简求值【高频考点精讲】1.二次根式的混合运算顺序:先乘方再乘除,最后加减,有括号的先算括号里面的。

2.在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。

3.二次根式的运算结果要化为最简二次根式。

四、二次根式的应用【高频考点精讲】二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念,性质和运算方法。

检测时间:90分钟试题满分:100分难度系数:0.61一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•烟台)下列二次根式中,与是同类二次根式的是()A.B.C.D.2.(2分)(2023•西宁)下列运算正确的是()A.B.C.D.3.(2分)(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.4.(2分)(2023•巴中)下列运算正确的是()A.x2+x3=x5B.×=C.(a﹣b)2=a2﹣b2D.|m|=m5.(2分)(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1 B.x>﹣1 C.x<﹣1 D.x≤﹣16.(2分)(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x≥0且x≠27.(2分)(2023•内蒙古)不等式x﹣1<的正整数解的个数有()A.3个B.4个C.5个D.6个8.(2分)(2023•内蒙古)下列运算正确的是()A.+2=2B.(﹣a2)3=a6C.+=D.÷=9.(2分)(2021•荆门)下列运算正确的是()A.(﹣x3)2=x5B.=xC.(﹣x)2+x=x3D.(﹣1+x)2=x2﹣2x+110.(2分)(2020•呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•哈尔滨)计算的结果是.12.(2分)(2022•济宁)若二次根式有意义,则x的取值范围是.13.(2分)(2021•哈尔滨)计算﹣2的结果是.14.(2分)(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.15.(2分)(2023•池州模拟)要使式子有意义,则x的取值范围为.16.(2分)(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.17.(2分)(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是.(只需写出一种结果)18.(2分)(2023•临汾模拟)计算:=.19.(2分)(2023•锦江区校级模拟)已知实数m=﹣1,则代数式m2+2m+1的值为.20.(2分)(2023•大同模拟)计算()()的结果等于.三.解答题(共8小题,满分60分)21.(6分)(2023•陕西)计算:.22.(6分)(2023•金昌)计算:÷×2﹣6.23.(8分)(2023•龙岩模拟)(1)计算:;(2)解不等式组:.24.(8分)(2023•晋城模拟)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)25.(8分)(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.26.(8分)(2023•晋城模拟)阅读与思考请仔细阅读下列材料,并完成相应的任务.=,===3+像上述解题过程中,与、﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程被称为分母有理化.任务:(1)的有理化因式;﹣2的有理化因式是.(2)写出下列式子分母有理化的结果:①=;②=.(3)计算:+……+.27.(8分)(2023•晋城模拟)问题:先化简,再求值:2a+,其中a=3.小宇和小颖在解答该问题时产生了不同意见,具体如下.小宇的解答过程如下:解:2a+=2a+……(第一步)=2a+a﹣5……(第二步)=3a﹣5.……(第三步)当a=3时,原式=3×3﹣5=4.……(第四步)小颖为验证小宇的做法是否正确,她将a=3直接代入原式中:2a+=6+=6+2=8.由此,小颖认为小宇的解答有错误,你认为小宇的解答错在哪一步?并给出完整正确的解答过程.28.(8分)(2023•天山区校级模拟)计算:(1);(2).。

中考数学复习指导:二次根式的加减复习及典例分析

中考数学复习指导:二次根式的加减复习及典例分析

二次根式的加减【重点难点点拨】重点:(1)二次根式化简为最简根式.(2)能熟练地进行二次根式的加减运算。

(3)会进行二次根式的混合运算。

难点与关键:(1)会判定是否是最简二次根式.(2)会判断什么样的两个二次根式是同类二次根式.(3)由整式运算知识迁移到含二次根式的运算.【规律方法指津】1、判断几个二次根式是不是同类二次根式,前提是将其化简成最简二次根式;2、二次根式的加减是把同类二次根式合并,不是同类二次根式则不能合并。

3、加法的运算律仍然适用于二次根式的运算。

【知识详细解读】1、同类二次根式(1)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如x x 25,2223 和和这样的二次根式都是同类二次根式。

(2)判断同类二次根式的方法:①首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。

②几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

2、合并同类二次根式的方法合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

3、二次根式的加减法则二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

4、二次根式的混合运算方法和顺序运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。

运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

5、二次根式的加减法则与乘除法则的区别乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

【典型例题感悟】例1、在下列各组根式中,是同类二次根式的有_________。

.=11a a -≠+=,故②正确;==.解:②③点拨:判断两个二次根式是否为同类二次根式,必须先化简,而后判断。

中考数学复习:专题1-15 巧用二次根式两个非负性解题

中考数学复习:专题1-15 巧用二次根式两个非负性解题

专题15 巧用二次根式两个非负性解题【专题综述】 一般地,形如a (a ≥0)的式子叫做二次根式.注意到a 表示非负数a 的算术平方根,那么二次根式定义中隐含着两个非负数:一个是被开方数a 的值,另一个是二次根式a 的值.解答某些与二次根式有关的问题时,要注意灵活巧用这两个非负数. 【方法解读】例1:如果2211a a a +-+=,那么a 的取值范围是( )A.a =0B.a =1C.a =0或a =1D.a ≤1 .【举一反三】已知3233x x x x +=-+,那么( )A.x ≤0B.x ≥-3C.0<x <3D.-3≤x ≤0.二、化简问题例2:当ab <0时,化简2ab ,得( )A.b a -B.b aC.b a -D.b a -- .【举一反三】把-a 1a -中根号外面的因式移到根号内的结果是( ) A.a - B. -a C. -a - D. a三、求值问题例3:若x 、y 都为实数,且21124x x y -+-+=,则xy 的值为( )A.0B.12C.2D.不能确定.【举一反三】已知5260x y x -++=,则31x y ++=______ .【强化训练】1.若21x x =,请写出一个符合条件的x 的值__________. 2.若1221n n -+-有意义,则(﹣n )2的平方根是( )A. 14B. 12C. 14±D. 12± 3.若12x <<,则23(1)x x -+-的值为( )A. 24x -B. 2C. 42x -D. 2-4.化简2961x x -+-(35x -)2的结果是( )A. 6x -6B. -6x +6C. -4D. 45.已知xy <0,化简二次根式x 2y x-的正确结果为 . 6.当x 取某一范围的实数时,代数式()()221613x x -+-的值是一个常数,该常数是( ) A. 29 B. 16 C. 13D. 3 7.已知a 满足|2017﹣a |+2018a -=a ,则a ﹣20172的值是_____.8.若x 、y 满足y <2x - +2x -+4,化简|y -4|-21025y y -+=__________.9.实践与探索:(1)填空: 23= ; 25-()= ; (2)观察第(1)的结果填空:当a ≥0时,2a = ;当a <0时, 2a = ; (3)利用你总结的规律计算: 2223x x -+-()(),其中2<x <3.10.阅读材料,解答下列问题:例:当错误!未找到引用源。

中考数学复习指导:巧用二次根式两个非负性解题

中考数学复习指导:巧用二次根式两个非负性解题

巧用二次根式两个非负性解题一般地,形如a (a ≥0)的式子叫做二次根式.注意到a 表示非负数a 的算术平方根,那么二次根式定义中隐含着两个非负数:一个是被开方数a 的值,另一个是二次根式a 的值.解答某些与二次根式有关的问题时,要注意灵活巧用这两个非负数.一、确定取值范围问题例1如果2211a a a ,那么a 的取值范围是()(A )a =0(B )a =1(C )a =0或a =1(D )a ≤1 .解:已知等式即为2211a a a .因为221a a ≥0,所以1a ≥0,a ≤1,应选D .例2已知3233x x x x ,那么()(A )x ≤0(B )x ≥-3(C )0<x <3(D )-3≤x ≤0.解:由323x x ≥0,得3x x ≥0.因为3x ≥0,x +3≥0,所以-x ≥0,x ≥-3.所以-3≤x ≤0,应选D .二、化简问题例3当ab <0时,化简2ab ,得()(A )b a (B )b a (C )b a (D )b a .解:在2ab 中,因为2ab ≥0,所以ab b ≥0 .因为ab <0,b ≠0,所以b <0,a >0 .原式=2b a b a ,应选 A .三、求值问题例4若x 、y 都为实数,且21124x x y ,则xy 的值为()(A )0 (B )12(C )2(D )不能确定.解:由21x ≥0,12x ≥0,得2x ≥1,2x ≤1 .所以2x =1,x =12 .所以y =4, xy =2,应选 C .例5已知5260x y x ,则31x y ______ .解:在5260x y x 中,因为5x ≥0,26y x ≥0,所以5x =0,260y x .所以5x ,16y ,31x y 0 .。

2022-2023年数学中考第一轮复习-专题二二次根式

2022-2023年数学中考第一轮复习-专题二二次根式

专题二:二次根式1:考向解读1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2.了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、的化简与运算(分母有理化).2:导图导学3:考点数的乘方负数的奇次幕是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.这样的二次根式叫做最简二次根式.(3)同类二次根式:当二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.二次根式的运算二次根式的性质:0(0)a a≥≥,2()(0)a a a=≥.2(0),||(0)a aa aa a≥⎧==⎨-<⎩.(0,0)ab a b a b=⋅≥≥.(0,0)a aa bb b=≥>.4:解题技巧化简二次根式的步骤(易错点)(1)把被开方数分解因式(或因数) ;(2)把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;(3)如果因式中有平方式(或平方数),应用关系式(a)2=a(a≥0)把这个因式(或因数)开出来,将二次根式化简。

二次根式运算中的注意事项(1)一般将最后结果化为最简二次根式,并且分母中不含二次根式。

(2)二次根式的加减:先将二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。

(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。

常见二次根式化简求值的九种技巧一、估算法二、公式法三、拆项法四、换元法 五、整体代入法 六、因式分解法 七、配方法 八、辅元法 九、先判后算法 考点1:二次根式有意义的条件 1.(2022•衡阳)如果二次根式1a -有意义,那么实数a 的取值范围是( ) A .1a > B .1a C .1a < D .1a 【分析】根据二次根式有意义的条件:被开方数为非负数,即可得出a 的取值范围. 【解答】解:由题意得:10a -, 1a ∴, 故选:B . 2.(2022•日照)若二次根式32x -在实数范围内有意义,则x 的取值范围为 32x . 【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:320x -,解得:32x , 故答案为:32x.举一反三1.(202236x -x 的取值范围是( )A .2x >B .2x <C .2xD .2x【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:360x -,2x ∴,故选:D .2.(2022•广州)代数式11x +有意义时,x 应满足的条件为( ) A .1x ≠- B .1x >- C .1x <- D .1x - 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【解答】解:代数式11x +有意义时,10x +>, 解得:1x >-. 故选:B . 3.(2022•常州)若二次根式1x -有意义,则实数x 的取值范围是( ) A .1x B .1x > C .0x D .0x > 【分析】根据二次根式有意义的条件,可得:10x -,据此求出实数x 的取值范围即可. 【解答】解:二次根式1x -有意义, 10x ∴-,解得:1x .故选:A .考点二:二次根式的定义1.(2022秋•二道区校级期中)下列式子中,不是二次根式的是( )A .3B .0.6C .12D .3π-【分析】根据二次根式的定义进行判断.【解答】解:3,0.6,1为二次根式,2而30π-<,所以3π-不是二次根式.故选:D.2.(2022春•泸县校级期中)下列式子中是二次根式的是()A.x B.3-C.2-D.38【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式判断即可.【解答】解:A选项,x缺少条件0x,当0x<时,x不是二次根式,故该选项不符合题意;B选项,30-<,故该选项不符合题意;>,故该选项符合题意;C选项,20D选项,38是三次根式,故该选项不符合题意;故选:C.举一反三1.(2022秋•新蔡县校级月考)下列各式中,一定是二次根式的是()A a B21a+C32D2-【分析】(0)a a的式子叫做二次根式.【解答】解:A.当0a<aa+B21C32是三次根式,故此选项不合题意;D2-故选:B.2.(2022秋•宛城区校级月考)下列各式中,一定是二次根式的是() A.4-B.21x+x-C.32a D.21【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.x的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;C.根指数是3,不是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.故选:D.3.(2022秋•榆树市月考)下列各式中,一定是二次根式的是() A.3-B.32a C.22a+D.29a-【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式.【解答】解:A.3-,被开方数是负数,二次根式无意义,故此选项不合题意;B.32a,三次根式,故此选项不合题意;a+,是二次根式,故此选项符合题意;C.22a-,被开方数有可能是负数,二次根式无意义,故此选项不合题意;D.29故选:C.考点三:考向3 二次根式的性质与化简1.(2021•娄底)2、5、m是某三角形三边的长,则22-+-等于((3)(7)m m)A.210-C.10D.4m-B.102m【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:2、5、m是某三角形三边的长,5252m ∴-<<+, 故37m <<, ∴22(3)(7)m m -+- 37m m =-+- 4=. 故选:D . 2.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简22|1|(1)()a b a b +--+-= 2 . 【分析】根据数轴可得:10a -<<,12b <<,然后即可得到10a +>,10b ->,0a b -<,从而可以将所求式子化简. 【解答】解:由数轴可得,10a -<<,12b <<,10a ∴+>,10b ->,0a b -<,22|1|(1)()a b a b ∴+--+-1(1)()a b b a =+--+-11a b b a =+-++-2=,故答案为:2.举一反三1.(2022•内蒙古)实数a 21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -【分析】根据数轴得:01a <<,得到0a >,10a -<||a =和绝对值的性质化简即可.【解答】解:根据数轴得:01a <<,0a ∴>,10a -<,∴原式||11a a =++-11a a =++-2=.故选:B .2.(2022( )A .B .3C .D .2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为.【解答】===故选:A .3.(2022•河北)下列正确的是( )A23=+ B 23⨯ C 23= D 0.7【分析】A 0,0)a b 判断B 选项;根据||a 判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=B 、原式23=⨯,故该选项符合题意;C 、原式29,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .考点4:最简二次根式1.(2021•桂林)下列根式中,是最简二次根式的是( ) A .19 B .4 C .2a D .a b + 【分析】直接根据最简二次根式的概念:(1)被开方数不含分母,分母中不含根号;(2)被开方数中不含能开得尽方的因数或因式判断即可. 【解答】解:11.93A =,不是最简二次根式; .42B =,不是最简二次根式; 2.||C a a =,不是最简二次根式; .D a b +,是最简二次根式. 故选:D . 2.(2022•杭州)计算:4= ;2(2)-= .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:42=,2(2)4-=,故答案为:2,4.举一反三1.(2022秋•忻州月考)下列二次根式是最简二次根式的是( )A 12B 3C 12D 2a 【分析】根据最简二次根式的概念判断即可.【解答】解:A 124323⨯=,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;B 3是最简二次根式,本选项符合题意;C 122=D 2||a a =,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;故选:B .2.(2021•益阳)将452化为最简二次根式,其结果是( ) A .452 B .902 C .9102 D .3102 【分析】根据二次根式的性质进行化简即可. 【解答】解:459523102222⨯⨯==⨯, 故选:D . 3.(2022秋•永春县期中)下列二次根式是最简二次根式的是( ) A .13 B .18 C .7 D .12 【分析】根据最简二次根式的定义进行判断即可. 【解答】解:13.33A =,因此13不是最简二次根式,所以选项A 不符合题意; .1832B =,因此18不是最简二次根式,所以选项B 不符合题意;.7C 是最简二次根式,因此选项C 符合题意;.1223D =,因此12不是最简二次根式,所以选项D 不符合题意; 故选:C .考点5:二次根式的乘除法1.(2022•山西)计算:1182⨯的结果为 . 【分析】按照二次根式的乘法法则计算即可.【解答】解:原式93==.故答案为:3.2.(2022•衡阳)计算:28⨯= .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解答】解:原式28164=⨯==.故答案为:4举一反三1.(2022•呼和浩特)下列运算正确的是( ) A 1822=± B .222()m n m n +=+C .1211x x x-=--D .2229332y x xy x y-÷=-【分析】利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可. 【解答】解:A 1822,故A 不符合题意; B 、222()2m n m mn n +=++,故B 不符合题意;C 、21221xx x x x--=--,故C 不符合题意; D 、2229332y x xy x y-÷=-,故D 符合题意; 故选:D .2.(202211622正确的是( ) A .4B .2C 7D .2±【分析】直接利用二次根式的乘除运算法则化简,进而得出答案. 【解答】解:原式11622=÷⨯4=2=.故选:B .3.(202223= .【分析】根据二次根式的乘法法则进行计算即可. 【解答】236= 6.考点61.(2021•潍坊)下列运算正确的是( ) A .2211()24a a a -=-+ B .1221()a a --=C .33a ab b-=- D .623=【分析】根据完全平方公式判断A ,根据负整数指数幂判断B ,根据分式的基本性质判断C ,根据二次根式的除法判断D .【解答】解:A 选项,原式214a a =-+,故该选项正确;B 选项,原式122211()()a a a-===,故该选项正确;C 选项,根据分式的基本性质,分子,分母都乘或除以一个不为0的数,分式的值不变,不能分子,分母都加3,故该选项错误;D 选项,原式2=,故该选项错误;故选:AB .2.(2021•娄底)计算:0111(2021)()2cos45221π--++-︒+. 【分析】根据零指数幂,分母有理化,负整数指数幂,特殊角的三角函数值计算即可.【解答】解:原式222121222(2)1-=++-⨯- 12122=+-+-2=.举一反三1.(2022秋•嘉定区月考)下列结论正确的是( ) A 22a b +是最简二次根式 B x y -x y + C 2(12)12-D a ba b-=+【分析】根据最简二次根式的定义,有理化因式的定义,不等式的解法即可得到结论.【解答】解:A 是最简二次根式,故本选项正确,符合题意;BC 1,故本选项错误,不符合题意;D=故选:A .2.(2022•信阳二模)下列式子运算正确的是( ) A .632a a a ÷= B .22(2)4a a =C 1=D .22()(2)2x y x y x y -+=+【分析】根据整式运算相关的法则和分母有理化逐项判断. 【解答】解:632a a ÷=,故A 错误,不符合题意;22(2)4a a =,故B 正确,符合题意;1,故C 错误,不符合题意;22()(2)2x y x y x xy y -+=+-,故D 错误,不符合题意;故选:B .3.(2022春•孝义市期末)下列是最简二次根式的是( )AB C D 【分析】根据最简二次根式的定义解决此题.【解答】解:A 不是最简二次根式,那么A 不符合题意.B 不是最简二次根式,那么B 不符合题意.C .根据最简二次根式的定义,C 不符合题意.D.根据最简二次根式的定义,15是最简二次根式,那么D符合题意.故选:D.考点7:同类二次根式1.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是() A.8与3B.2与12C.5与15D.75与27【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、822=和3不是同类二次根式,本选项不合题意;B、1223=与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、7553=是同类二次根式,本选项符合题意.=,2733故选:D.2.(2020•上海)下列二次根式中,与3是同类二次根式的是() A.6B.9C.12D.18【分析】根据同类二次根式的定义解决此题.【解答】解:A.根据同类二次根式的定义,6与3不是同类二次根式,那么A 不符合题意.B.根据算术平方根以及同类二次根式,93=与3不是同类二次根式,那么B 不符合题意.=与3是同类二次C.根据二次根式的性质以及同类二次根式的定义,1223根式,那么C符合题意.D.根据二次根式的性质以及同类二次根式的定义,1832=与3不是同类二次根式,那么D 不符合题意. 故选:C .举一反三1.(2022秋•浦东新区校级月考)下列四组二次根式,不是同类二次根式的是( ) A 313B 850C 34x 38xD 3x 233a x 【分析】根据同类二次根式的定义:化成最简二次根式后,被开方数相同的叫做同类二次根式,即可解答. 【解答】解:A 、133=∴313故A 不符合题意;B 、822=5052=∴850故B 不符合题意;C 、342x x x 3822x x ,∴34x 38x故C 符合题意;D 、2333a x ax x =∴3x 233a x故D 不符合题意; 故选:C .2.(20222022m +2可以合并,则m 的值为( ) A .2020B .2020-C .2024D .2024-【分析】2022m +22022m +2的被开方数相同,即20222m +=.【解答】解:最简二次根式2022m +与2可以合并,则2022m +与2是同类二次根式,20222m ∴+=.解得2020m =-. 故选:B .3.(2022春•綦江区校级月考)若8和最简二次根式37m -是同类二次根式,则m 的值为( ) A .5m =B .2m =C .3m =D .6m =【分析】先把8化为最简二次根式22,再根据同类二次根式得到372m -=,然后解方程即可. 【解答】解:822=,372m ∴-=, 3m ∴=.故选:C .考点8:二次根式的加减法1.(2022•鞍山)下列运算正确的是( ) A .2810+= B .3412a a a ⋅= C .222()a b a b -=-D .2336(2)8ab a b -=-【分析】利用二次根式的加法的法则,完全平方公式,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A 、2832+=,故A 不符合题意;B 、347a a a ⋅=,故B 不符合题意;C 、222()2a b a ab b -=-+,故C 不符合题意;D 、2336(2)8ab a b -=-,故D 符合题意;故选:D .2.(2022•宁夏)下列运算正确的是( ) A .220--=B .826-=C .3362x x x +=D .326()x x -=【分析】直接利用二次根式的加减、合并同类项、幂的乘方与积的乘方法则分别化简,进而判断得出答案.【解答】解:A .224--=-,故此选项不合题意;B .822-=,故此选项不合题意;C .3332x x x +=,故此选项不合题意;D .326()x x -=,故此选项符合题意;故选:D .举一反三1.(2022•鄂尔多斯)下列运算正确的是( ) A .32235523a b a b a b += B .2363(2)6a b a b -=-C .2124-=-D 2832=【分析】把每一选项按照运算法则计算后判断结果即可.【解答】解:32232a b a b +不能合并,因为不是同类项,A 选项错误;2363(2)8a b a b -=-,B 选项也错误;2124-=,C 选项也错误; 2832=D 选项正确.故选:D .2.(2022123( ) A 15B .32C .33D .53【分析】根据二次根式的加法法则,先化简,再合并同类二次根式.【解答】解:12323333+=+=. 故选:C .3.(2022秋•沈河区校级月考)下列计算正确的是( ) A .2(2)2-=-B .43331-=C .235+=D .1222= 【分析】直接利用二次根式的性质以及二次根式的加减运算法则分别计算,进而得出答案.【解答】解:2.(2)2A -=,故此选项不合题意;.43333B -=,故此选项不合题意; .23C +无法合并,故此选项不合题意;12.22222D =⨯=,故此选项符合题意; 故选:D .考点9:二次根式混合运算1.(2022•朝阳)计算:637|4|÷--= . 【分析】先算除法,去绝对值,再合并即可. 【解答】解:原式6374=÷-34=-1=-.故答案为:1-.2.(2022•泰安)计算:48633⋅-= . 【分析】化简二次根式,然后先算乘法,再算减法. 【解答】解:原式238633=⨯-⨯4323=- 23=,故答案为:23.举一反三1.(2022•安顺)估计1()(2552)5A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式210=<<,310452106∴<<,故选:B.2.(2022•湖北)下列各式计算正确的是()A235÷D236=B.43331C1226【分析】利用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.【解答】解:A23A不符合题意;B、43333,故B不符合题意;=C不符合题意;C1223D236,故D符合题意;故选:D.3.(2022•青岛)计算1的结果是()(2712)3A3B.1C5D.3【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:1(2712)3112712=⨯⨯3394=-32=-1=,故选:B .考点10:二次根式的化简求值1.(2022•内蒙古)已知x ,y 是实数,且满足1228y x x =-+-+,则xy 的值是 .【分析】根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.【解答】解:1228y x x =-+-+,20x ∴-,20x -,2x ∴=,18y =, 则原式1112842=⨯==, 故答案为:122.(2022秋•浦东新区校级月考)已知15x x-=,那么1x x+的值为 .【分析】把所求的式子转为条件的形式,再进行求解即可. 【解答】解:15x x-=,∴1x x+21()x x =+21()4x x =-+2(5)4=+54=+3=.故答案为:3.举一反三1.(2021•包头)若21x =,则代数式222x x -+的值为( ) A .7B .4C .3D .322-【分析】利用条件得到12x -两边平方得221x x -=,然后利用整体代入的方法计算.【解答】解:21x =+,12x ∴-2(1)2x ∴-=,即2212x x -+=,221x x ∴-=, 222123x x ∴-+=+=.故选:C .2.(2022秋•琼山区校级月考)已知51x =时,则代数式223x x ++的值( ) A .1B .4C .7D .3【分析】根据完全平方公式以及二次根式的性质即可求出答案. 【解答】解:51x =-时,15x ∴+=2(1)5x ∴+=,2215x x ∴++=,2237x x ∴++=,故选:C .3.(2022春•东莞市月考)若1220223x =1220223y ,则222x xy y ++的值( )A .12B .4C .2022D .8【分析】先利用x 、y 的值计算出22x y +=,再利用完全平方公式得到2222()x xy y x y ++=+,然后利用整体代入的方法计算.【解答】解:1220223x =+,1220223y =-, 22x y ∴+=,22222()(22)8x xy y x y ∴++=+==.故选:D .考点11:二次根式的应用1.(2022秋•新蔡县校级月考)如图,在长方形中放入面积分别为32和18的正方形m 和正方形n ,则图中阴影部分的周长为 .【分析】先根据正方形的面积公式求得两个正方形的边长,再根据图形求得阴影部分的长与宽,最后根据矩形的周长公式求得结果. 【解答】解:根据题意得,2(321818)⨯-+242=⨯ 82=,故答案为:82.2.(2022秋•仁寿县校级月考)若直角三角形斜边长为4,周长为432+,则三角形面积等于 .【分析】由周长可得出两直角边的关系,再利用勾股定理列出另一方程求出两直角边之积进而求得三角形的面积. 【解答】解:设两直角边长分别为x ,y ;则22443216x y x y ⎧++=+⎪⎨+=⎪⎩, 解得1xy =.故这个三角形的面积为1122xy =, 故答案为:12.举一反三1.(20221250的周长为( ) A .23102B .4352C .43102D .4352或23102【分析】分腰长为1250关系进行验证,可求得其周长.【解答】12121250,不满足三角形的三边关系;50125050系,此时周长为23102综上可知,三角形的周长为23102 故选:A .2.(2022•雄县校级开学)如图,在一个长方形中无重叠的放入面积分别为29cm 和28cm 的两张正方形纸片,则图中空白部分的面积为( )A .21)cmB .21cmC .26)cmD .28)cm【分析】根据HLFG MCEF S S S =+矩形矩形空白部分,需求HC 以及LM .由题意得()229ABCH S HC cm ==正方形,()22228LMEF S LM LF MF cm ====正方形,故3HC cm =,)LM LF MF cm ===,进而解决此题.【解答】解:如图所示:由题意知:()229ABCH S HC cm ==正方形,()22228HCDG S LM LF ME cm ====正方形.3()HC cm ∴=,)LM LF MF cm ===.HLFG MCDE S S S ∴=+矩形矩形空白部分HL LF MC ME =⋅+⋅ HL LF MC LF =⋅+⋅()HL MC LF =+⋅ ()HC LM LF =-⋅(3=-⨯2)cm =.故选:D .3.(2022春•孝义市期末)如图,从一个大正方形中裁去面积为26cm 和215cm 的两个小正方形,则留下阴影部分的面积为( )A.2B.221cm C.2D.2【分析】根据小正方形的面积得到边长即可得到大正方形的边长,根据阴影部分的面积=大正方形的面积-两个小正方形的面积即可得出答案.【解答】解:两个小正方形的面积为15和6,∴,+=--∴阴影部分的面积26151526615=+--2)cm=,故选:A.专题二:练习一.选择题1.(2022秋•榆树市期中)下列计算正确的是( ) ABCD 3-2.(2022秋•恩阳区 月考)x ( ) A .1.5B .1-C .3-D .9-3.(2022秋•新蔡县校级月考)已知x 、y 为实数,且1y =,则x y +的值是( ) A .2022B .2023C .2024D .20254.(2022秋•文山市校级月考)下列二次根式中,是最简二次根式的是( )AB C D 5.(2022秋•新蔡县校级月考)下列各式计算正确的是( ) A=B = C=D 6.(2022秋•汝州市校级月考)下列二次根式中,最简二次根式是( )A .B C .D 7.(2022秋•泌阳县校级月考)若代数式有意义,则实数x 的取值范围是()A .1x ≠B .0xC .1x -D .0x 且1x ≠-8.(2022秋•泌阳县校级月考)下列二次根式中,是最简二次根式的是( ) ABC D9.(2022秋•宛城区校级月考)下列根式中为最简二次根式的是( )AB C D 10.(2022秋•泌阳县校级月考)下列运算正确的是( ) AB .2C D 11.(2022秋•渝中区校级月考)下列计算正确的是( )A3-B 2=C 123D .2(10-=12.(2022秋•邓州市校级月考)已知ABC ∆的面积为212cm ,底边为,则底边上的高为( )A .B .C D .13.(2022秋•邓州市校级月考)下列二次根式中属于最简二次根式的是( )ABC D14.(2022秋•商水县月考)如图,数轴上表示1和的对应点分别为A 、B ,点B 关于点A 的对称点是C ,设C 点 表示的数为x ,则x +( )A .1B .1C 1D .215.(2022秋•安溪县校级月考)已知y =,则20202021()()x y x y +-的值为( ) A .2B .2C .1-D .116.(2022秋•安溪县校级月考)下列计算正确的是( )A2=-B .26=C D .=17.(2022秋•西安月考)下列计算中正确的是( ) A=B .1C 8D18.(2022( ) A .2BC D 19.(2022春•重庆月考)下列二次根式是最简二次根式的是( )AB C D 0)a >20.(2022秋•禅城区校级月考)实数a 、b 在轴上的位置如图所示,且||||a b >,则化||a b -的结果为( )A .2a b +B .2a b -+C .bD .2a b -21.(202230b -=,则b 的取值范围是( ) A .3b >B .3b <C .3bD .3b22.(2022春•鲤城区校级期中)下列计算错误的是( ) A=B .3=C =D 23.(2022( ) A .1x >B .1xC .1x ≠D .1x24.(2022有意义的实数x 的取值范围是( ) A .2xB .3x 且2x ≠C .2x >且3x ≠D .2x 且3x ≠25.(2022春•福山区期中)下列计算中,正确的是( ) A .21 B .3=C 3D =26.(2022春•鼓楼区校级期中)下列运算正确的是( )A .3=B =C 3=-D .215=27.(2022( ) A .0B .3C .D .28.(2022春•东莞市月考)下列各组二次根式中,能进行合并的是( ) ABC D29.(2022春•东莞市月考)下列二次根式中,最简二次根式是( )AB C D 30.(2022春•东莞市校级期中)当a 满足( ) A .3aB .3a >C .3a -D .3a >-31.(2022春•仓山区校级期中)下列计算正确的是( )A4B 32=C 5=±D 1=-32.(2022春•东莞市校级期中)下列计算正确的是( ) A=B =C5-D 1=33.(2022春•杭州期中)下列运算正确的是( )A=B .26=C D 2=-34.(2022秋•高新区校级月考)若实数a ,b ,c 在数轴上的对应点的位置如图所示,则化简||b c +( )A .b c a +-B .b c a ++C .b c a ---D .b c a --+35.(2022春•北京期中)下列二次根式计算正确的是( ) A=BC D36.(2022春•武隆区校级期中)把二次根式化简为( ) A .B C .D 二.填空题37.(2022秋•忻州月考)若最简二次根式则x=.38.(2022=的值为.39.(20222)<<=.x40.(2022秋•仁寿县校级月考)计算:20212022⋅=.41.(2022.42.(2022在实数范围内有意义,则x的取值范围是.43.(2022秋•高新区校级月考)若3y=,则xy的值为.44.(2022秋•虹口区校级月考)设x=y=t为时,代数式22++=.2062202022x xy y45.(2022秋•虹口区校级月考)若x,y满足6y=,则x y⋅的平方根为.46.(2022秋•虹口区校级月考)在二次根式;.(填写编号)47.(2022秋•仁寿县校级月考)若直角三角形的两边长为a、b,且满足b-==.|4|048.(2022秋•虹口区校级月考)已知x=,则654322--+-+.x x x x49.(2022秋•二道区校级期中)当1x=.50.(2022秋•渝中区校级月考)若两不等实数a,b满足8b+,则a+=,8.三.解答题51.(2022秋•禅城区校级月考)计算.(1)01)|-(252.(2022秋•浦东新区校级月考)先化简,+,其中5x =,15y =.53.(2022. 54.(2022秋•薛城区校级月考)计算:(1)+(2)2011)()|1(2)3π---+--55.(202256.(202257.(2022春•江汉区校级月考)计算:(1(2)747a .一.选择题1.【解答】解:AA选项不符合题意;B==B选项不符合题意;C==C选项符合题意;D.原式6318=⨯=,所以D选项不符合题意;故选:C.2.【解答】解:由题意得,210x +,解得0.5x -,3210.50-<-<-<-<,故选项A符合题意.故选:A.3.【解答】解:20230x -,20230x-,20230x∴-=,2023x∴=,1y∴=,202312024x y∴+=+=,故选:C.4.【解答】解:A是最简二次根式,故本选项符合题意;B的被开方数的因数不是整数,不是最简二次根式,故本选项不符合题意;C不符合题意;D不是最简二次根式,故本选项不符合题意;故选:A .5.【解答】解:A ,故A 不符合题意;B =B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .6.【解答】解:A 、原式=,故A 不符合题意.B 、原式=B 不符合题意.C 、C 符合题意.D 、原式||a =,故D 不符合题意.故选:C .7.【解答】解:根据题意得:100x ≠⎪⎩, 解得0x .故选:B .8.【解答】解:AB 不是最简二次根式,故此选项不合题意;C D不是最简二次根式,故此选项不合题意; 故选:A .9.【解答】=式,故A 选项不符合题意;是最简二次根式,故B 选项符合题意;=C 选项不符合题意;,被开方数含能开得尽方的因式,不是最简二次根式,故D 选项不符合题意;故选:B .10.【解答】解:A A 不符合题意;B 、=B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .11.【解答】解:A 3=,故此选项不合题意;B 2=,故此选项符合题意;C =,故此选项不合题意;D .2(20-=,故此选项不合题意; 故选:B .12.【解答】解:ABC ∆的面积为212cm ,底边为,∴底边上的高为:122)cm ⨯÷=. 故选:B .13.【解答】解:A 故本选项不符合题意;B 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;C 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D 是最简二次根式,故本选项符合题意; 故选:D .14.【解答】解:由题意可得:1AB CA ==,则C点坐标为:11)2x=-=-故22x==.故选:D.15.【解答】解:y=,∴20 20xx-=⎧⎨-=⎩,20x∴-=,解得2x=,y∴=20202021()()x y x y∴+-20202020()()()x y x y x y=+--2020[()()]()x y x y x y=+--222020()()x y x y=--20201(2=⨯2=+故选:B.16.【解答】解:A|2|2=-=,故本选项不符合题意;B.24312=⨯=,故本选项不符合题意;CD.4(2=⨯=,故本选项符合题意;故选:D.17.【解答】解:A=B.=C=D 故选:A .18.【解答】解:A .2不是同类二次根式,故本选项不合题意;B =C =,与不是同类二次根式,故本选项不合题意;D = 故选:B .19.【解答】解:2=不是最简二次根式,=C 是最简二次根式;(0)D a >,因此不是最简二次根式; 故选:C .20.【解答】解:实数a 、b 在轴上的位置可知,0a b <<,且||||a b >, 0a b ∴-<,∴原式a b a =-+-2b a =-,故选:B .21.【解答】解:30b -=,即|3|3b b -=-,30b ∴-, 即3b ,故选:D .22.【解答】解:A =A 不符合题意;B 、B 符合题意;C =C 不符合题意;D=D不符合题意;故选:B.23.【解答】解:由题意得:10x-,解得:1x,故选:B.24.【解答】解:由题意得:20x-且30x-≠,解得:2x且3x≠,故选:D.25.【解答】解:A.原式=A选项不符合题意;B.3B选项不符合题意;C.原式C选项不符合题意;D.原式=,所以D选项符合题意.故选:D.26.【解答】解:A.3不能合并,所以A选项不符合题意;B B选项不符合题意;=,所以C选项不符合题意;C.原式3D.原式1=,所以D选项符合题意.5故选:D.27.【解答】解:原式===.故选:A.28.【解答】解:A不能合并,故此选项不符合题意;B、∴C、=,∴不是同类二次根式,不能合并,故此选项不符合题意;D、==,∴故选:B.29.【解答】解:|a=不是最简二次根式;C故选:D.30.【解答】解:由题意得,30a+,解得3a-,故选:C.31.【解答】解:A、原式=,故A不符合题意.B、原式3=,故B符合题意.2=,故C不符合题意.C、原式5D、原式1=,故D不符合题意.故选:B.32.【解答】解:A A不符合题意;B=B符合题意;C5,故C不符合题意;D D不符合题意;故选:B.,故选项A正确,符合题意;33.【解答】212=,故选项B错误,不符合题意;C错误,不符合题意;2,故选项D错误,不符合题意;故选:A.34.【解答】解:根据题意得:0∴+<,b c<<<,0c b a||+=---,b c b c a故选:C.35.【解答】==,故选项A错误,不符合题意;==C错误,不符合题意;不能合并,故选项D错误,不符合题意;故选:B.36.【解答】解:10->,a∴<,a∴二次根式0<,∴二次根式化简为故选:A.二.填空题37.【解答】解:最简二次根式∴+=,x25解得:3x=,故答案为:3.38.【解答】解:=,22∴,220∴-=,0∴=,0≠,∴0=,∴25a b ∴=,∴ 5035255b b b b b b++=-+ 5829b b =2=.39.【解答】解:原式11)=-2=,故答案为:2.40.【解答】解:原式2021=⨯⨯2021(1)=-⨯1=-⨯=, 故答案为:41.【解答】0)x y z =>>>,两边平方得:13x y z ++++ 比较系数得:13x y z ++=①,5xy =②,7xz =③,35yz =④,由②得:5x y =,代入③得:57z y=, 即:75y z =, 代入④得:225y =,5y ∴=,1x ∴=,7z =,∴原式.42.【解答】解:由题意得:230x -且20x -≠, 解得:32x 且2x ≠, 故答案为:32x且2x ≠. 43.【解答】解:根据题意,得310130x x -⎧⎨-⎩, 解得13x =,所以3y =,所以1313xy =⨯=.故答案为:1.44.【解答】解:(1t xy t ==,42x y t +==+,2206220220()2222022x xy y x y xy ∴++=++=,20(42)2222022t ∴++=,解得:2t =或3t =-(舍去)2t ∴=.故答案为:2.45.【解答】解:x ,y 满足6y =, ∴30620x x -⎧⎨-⎩, 解得3x =,6y ∴=,18x y ∴⋅=,x y ∴⋅的平方根为=±.故答案为:±46.【解答】解:=,=⑤23=∴②⑤. 故答案为:②⑤.47.【解答】解:|4|0b -=,即|3||4|0a b -+-=,3a ∴=,4b =, ∴该直角三角形的斜边长的平方22223425a b =+=+=, 故答案为:25.48.【解答】解:2022x ==654322x x x x ∴--+-+5432(2x x x x x =--+-+-54322x x x x =-+-+54322x x x x =-+-+-432[1]2x x x x =-+-+-4321]2x x x =-+-+432(202220211)2x x x =--+-+-322x x =-+2(2x x x =-+-22x x =+22x x =+[2]x x =+-2]x =+(202120222)x =-+x ==49.【解答】解:当1x =时,原式3=, 故答案为:3.50.【解答】解:38a b +=,8b +=,0a b ∴-+,0∴-=, a b ≠,∴≠∴3=,16a b ++=,7a b ∴+=,27∴-=,∴21=,∴原式32124=+=.故答案为:21.三.解答题51.【解答】解:(1)原式1=1=+(2)原式=+23=+5=.52.【解答】===当5x=,15y=时,原式===.53.【解答】=4=4=.54.【解答】解:(1)原式=÷==;2(2)原式=---+51911=.755.【解答】解:原式===56.【解答】解:原式==.57.【解答】解:(1==+-4=;4(2)747a2=⨯+a a747=147=20。

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。

当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。

6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。

【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式知识点讲解1、二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式。

2、二次根式的基本性质①2a =(a ≥0); a = (a ≥0); a = (a 取全体实数)。

3、二次根式的乘除(1)二次根式的乘法:①ab b a =⋅; ②b a ab ⋅= (a ≥0, b ≥0)。

(2)二次根式的除法:= = (a ≥0, b >0)。

4、最简二次根式 最简二次根式满足的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。

5、二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

专题练习一、选择题1.下列二次根式中,是最简二次根式的是( )A .√12B .√8C .√13D .√0.22.若二次根式√x +2有意义,则x 的取值范围是( ).A .x >−2B .x ≥−2C .x <−2D .x ≥23.化简√(−3)2的结果是( )A .−3B .±3C .3D .94.估计(√27−√6)÷√3的值应在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间5.下列计算错误的是( )A .3√2−√2=3B .√60÷√5=2√3C .√25a +√9a =8√aD .√14×√7=7√26.若 x =√m −√n,y =√m +√n ,则 xy 的值是( ).A .2√mB .m −nC .m +nD .2√n 7.计算:√12×√13−√8÷√2的结果是( ) A .2 B .0 C .-2 D .−√28.用四张大小一样的长方形纸片拼成一个正方形 ABCD (如图),它的面积是 48, 已知长方形的一边长 AE =3√3, 图中空白部分是一个正方形,则这个小正方形的周长为( )A .2√3B .4√3C .8√3D .16√3二、填空题9.化简√3= 10.若√a +√3=3√3,则a = . 11.计算(2√2+1)(2√2−1)的结果等于 .12.若二次根式√x+3x 有意义,则x 的取值范围为 .13.当m = 时,二次根式√m −2取到最小值.三、解答题14.计算 (1)√16÷√2−√13×√6; (2)32√4x +2√x 9−x √1x +4√x4.15.已知2x =+2y =(1)试求22x y +的值; (2)试求x y y x-的值. 16.某居民小区有一块形状为长方形ABCD 的绿地,长方形绿地的长BC 为√162m ,宽AB 为√128m (即图中阴影部分),长方形花坛的长为(√13+1)m ,宽为(√13−1)m ,(1)长方形ABCD 的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?17.已知x=2−√3,y=2+√3.(1)求x2+y2−xy的值;(2)若x的小数部分是a,y的整数部分是b,求ax−by的值.参考答案1.C2.B3.C4.B5.A6.B7.B8.C9.√33 10.1211.712.x ≥−3且x ≠013.214.解:(1)原式=√16÷2−√13×6=2√2−√2=√2;(2)原式=3√x +23√x −√x +2√x=143√x .15.(1)解:∵2x =, 2y =∴x+y=22+,xy=(22+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵2x =+,2y =-∴x+y=22+,x-y=((2222--=+=xy=(22=1∴()()22x y x yx y x yy x xy xy+---====16.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m),答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1)=50×132=6600(元)答:购买地砖需要花费6600元.17.(1)解:∵x=2−√3,y=2+√3,∴xy=(2−√3)(2+√3)=4−3=1,(x−y)2=(2−√3−2−√3)2=(−2√3)2=12,∴x2+y2−xy=(x−y)2+xy=12+1=13;(2)解:∵1<3<4,∴1<√3<2,∴3<2+√3<4,∴2+√3的整数部分是3,∴b=3,∵1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∴2−√3的整数部分是0,小数部分=2−√3−0=2−√3,∴a=2−√3,∴ax−by=(2−√3)(2−√3)−3(2+√3)=7−4√3+6−3√3=13−7√3,∴ax−by的值为13−7√3.)解:①(30x -2)x -②0020x x -22))(2)x -,又232x -+30x -+代数式当2x =时,代数式。

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

1
10,则a- 的值为

±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4


+2
÷ 2 ,其中m

= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10

B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简

中考数学复习指导:解答二次根式问题的几点注意

中考数学复习指导:解答二次根式问题的几点注意

解答二次根式问题的几点注意二次根式的运算可以说是二次根式乘法、除法及加减法运算法则的综合运用,也是本章内容的落脚点,是前面几节内容的总结,在进行二次根式的运算时,请同学们还要注意以下几点:一、注意运算顺序问题二次根式的运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号里面的.例1.计算:.解:原式==.说明:计算时注意运算顺序,另外,除法没有分配律,若做成就错了.二、注意运算法则问题在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式可以看作“多项式”,因此实数运算中的运算律(分配律、结合律、交换律),所有的乘法公式(平方差公式、完全平方公式、立方和、立方差公式等)在二次根式的运算中仍然适用.例2.计算:(+―)(――).解:原式=〔(―)+〕〔(―)―〕=(―)―()=8―2―3=5―2.三、注意熟练进行二次根式计算和化简在理解二次根式基本概念基础上,掌握好二次根式的重要性质多做一些练习,就能达到熟练计算和化简二次根式的目的,除此之外还要掌握一些方法技巧. 1.因式分解法 例4.化简:+ 解:原式=+===+2.观察法例5.设等式在实数范围内成立,其中a,x,y实数,则的值为().解:由二次根式定义知:a-y≥0,x-a≥0,a(x-a)≥0,a(y-a)≥0,∴a≥0且a≤0∴a=0∴已知等式可化为,∴x= -y. ∴==.3.凑零法例6.已知=求+的值.解:由==,得,两边平方后整理得,原式=.4.倒数法例7.当时,求代数式的值.解:由,得,∴原式=.5.整体代入法例8.已知,,求代数式的值.解:由已知得,,,,原式=. 6.换元法例9.已知,求的值.解:设>0,则1,由已知得两边平方得,=0,,,b =,,.四、探索与思考:1.(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”.①()②()③()④()(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:.(3)请用数学知识说明你所写式子的正确性.2.如图1,所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.3.细心观察如图2,认真分析各式,然后解答问题.S =;S =;S =……(1)请用含有n(n 为正整数)的等式表示上述变化规律;AAA AAAS1SSS3,,,-2,图1(2)推算出OA的长.(3)求出的值.4.先将化简,然后自选一个合适的x值,代入化简后的式子求值.答案与提示:1.答案为①∨②∨③∨④×.(2)、(3)略。

中考数学复习指导:例说二次根式求值的若干方法

中考数学复习指导:例说二次根式求值的若干方法

1例说二次根式求值的若干方法
一、顺次通分法
例1 计算:
二、
逆用平方差公式法
例2 计算:
++⋯.
三、整体相减法
例3 已知a +b

a b −=,求ab 的值.
2
四、待定系数法
例4 已知a 、b 、c 为有理数,且等式a ++成立,求2a +999b +1001c 的值.
五、配方法
例5 ()12
x y z ++=++,求(x -yz)3的值. 解 由已知等式得,
3六、应用完全平方公式法
例6
的值.
七、巧用平方法
例7 化简:
八、部分分式法
例8

九、常值代换法
例9 .
4
十、分组分解法
例10

十一十一、、提取公因式法
例11
十二十二、、倒数法
例12
3+.
5
十三十三、、分拆配方法
例13
十四十四、、联姻法
例15 化简:
(
+++++.
十五十五、、换元法
例16 化简:

6
十六十六、、巧添项
例17

十七十七、、
整体配对法
例18
大小不超过的最大整6
+数为多少?。

专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)

专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)

专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。

中考数学专题特训第六讲:二次根式(含详细参考答案)

中考数学专题特训第六讲:二次根式(含详细参考答案)

中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。

中考数学专题复习题:二次根式的乘除法

中考数学专题复习题:二次根式的乘除法

中考数学专题复习题:二次根式的乘除法一、单项选择题(共6小题)1.下列各式①√8;②√0.3;③√12;④√3;⑤√a2+1;其中一定是最简二次根式的有()A.4 个B.3 个C.2个D.1个2.已知x是整数,√3⋅√6x是整数,则x的最小值()A.2B.3C.4D.183.计算(5√2−2√5)×√15的结果是()A.√10−√2B.√2−2C.√10−2D.√2−√104.计算(1+√2)2024(1−√2)2023的结果是()A.√2−1B.−1C.1D.−1−√25.通过“由特殊到一般”的方法探究下面二次根式的运算规律:特例1:√1+13=√3+13=√4×13=2√13;特例2:√2+14=√8+14=√9×14=3√14;特例3:√3+15=√15+15=√16×15=4√15……应用发现的规律求√2024+12026×√4052的值()A.2024B.2025√2C.2023D.2023√2 6.下列各式中,化简正确的是()A.√(−16)×(−25)=√−16×√−25=20B.√12×27=√4×√81=18C.√16+94=√16+√94=4+32=112D.√4925=√4×√925=2×35=65二、填空题(共4小题)7.计算√3÷√2×2√5÷√110的结果为________.8.计算(√7+√2)(√7−√2)的结果是________.9.长方形的面积为18cm2,一边长为2√3cm,则另一边长为________cm.10.设6−√10的整数部分为a ,小数部分为b ,那么(2a +√10)b =________.三、解答题(共5小题)11.计算:(1)√8×√18; (2)√1.2×102×√3×105;(3)√2×√5×√10;(4)14√12×3√3. 12.计算下列各题.(1)√(−5)2×(−3)2;(2)√(−4)×259×(−169);(3)√−a ⋅√−ab 3;(4)2b √ab 3⋅(−32√a 3b ⋅3√a b ) (a >0,b >0).13.计算:(1)√48÷√3−√13×√18+√24;(2)(√5+1)(√5−1)+(−2)0−√273.14.请观察式子:9√127=√9227=√3,−2√12=−√222=−√2,仿照上面的方法解决下列问题:(1)化简:①5√25;②−7√37;③a√−1a (a <0).(2)把(1−a )√1a−1中根号外的因式移到根号内,化简的结果是________.15.填空(可用计算器计算):√4×9=__________,√4×√9=__________;√4×5=__________,√4×√5=__________;√916=__________,√9√16=__________; √32=__________,√3√2=__________.比较左右两边的等式,你发现了什么?你能用字母表示发现的规律吗?。

中考数学备考专题复习: 二次根式(含解析)

中考数学备考专题复习: 二次根式(含解析)

中考备考专题复习:二次根式一、单选题1、(2016•曲靖)下列运算正确的是()A、3 ﹣=3B、a6÷a3=a2C、a2+a3=a5D、(3a3)2=9a62、把分母有理化后得()A、4bB、2C、D、3、若,则xy的值为()A、3B、8C、12D、44、下列各式中,不是二次根式的是()A、B、C、D、5、已知:m,n是两个连续自然数(m<n),且q=mn.设p=+,则p( ).A、总是奇数B、总是偶数C、有时是奇数,有时是偶数D、有时是有理数,有时是无理数6、(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A、2﹣4B、2C、2D、207、若等腰三角形的两边长分别为和,则这个三角形的周长为()A、B、或C、D、8、(2016•自贡)下列根式中,不是最简二次根式的是()A、B、C、D、9、(2016•眉山)下列等式一定成立的是()A、a2×a5=a10B、C、(﹣a3)4=a12D、10、(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A、﹣2a+bB、2a﹣bC、﹣bD、b11、(2016•龙岩)与- 是同类二次根式的是()A、B、C、D、12、(2016•梅州)二次根式有意义,则x的取值范围是()A、x>2B、x<2C、x≥2D、x≤213、(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A、x<1B、x≤1C、x>1D、x≥114、(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A、B、C、D、15、(2016•呼伦贝尔)若1<x<2,则的值为()A、2x﹣4B、﹣2C、4﹣2xD、2二、填空题16、若,则a-b+c=________ .17、若两个最简二次根式与可以合并,则a=________ .18、(2016•自贡)若代数式有意义,则x的取值范围是________.19、(2016•天津)计算(+ )(﹣)的结果等于________.20、(2016•曲靖)如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)三、计算题21、(2016•攀枝花)计算;+20160﹣| ﹣2|+1.22、(2016•荆州)计算:.四、解答题23、已知 + =0,求的值.24、实数a、b在数轴上的位置如图所示,化简:25、我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的当两个实数与的积是1时,我们仍然称这两个实数互为倒数.①判断与是否互为倒数,并说明理由;②若实数是的倒数,求x和y之间的关系.五、综合题26、(2016•黄石)观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.27、(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p= =6∴S= = =6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.答案解析部分一、单选题1、【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,二次根式的加减法【解析】【解答】解:A、由于3 ﹣=(3﹣1)=2 ≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.本题考查了二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则,熟记法则是解题的关键.2、【答案】D【考点】分母有理化【解析】【解答】==.故选D.【分析】根据二次根式的除法法则计算,再分母有理化.3、【答案】C【考点】二次根式的化简求值【解析】【解答】根据题意得:,解得:,则xy=12.故选C.【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.4、【答案】B【考点】二次根式的定义【解析】【解答】形如叫二次根式。

2024年中考数学二轮复习:二次根式(附答案解析)

2024年中考数学二轮复习:二次根式(附答案解析)


= ,②
×



C.①③

=1,③ �� ÷

D.①②③
【考点】二次根式的乘除法.
【专题】计算题.
【答案】B
【分析】由 ab>0,a+b<0 先求出 a<0,b<0,再进行根号内的运算.
【解答】解:∵ab>0,a+b<0,
∴a<0,b<0


① � = ,被开方数应≥0,a,b 不能做被开方数,(故①错误),

� �
� �
② �• � =1, �• � =
� �
× = 1 =1,(故②正确),
� �
第 3页(共 12页)

=−b,

��
−�


=−b,(故③正确).
③ �� ÷ � =−b, �� ÷ � = �� ÷ −� = �� ×
��
故选:B.
【点评】本题是考查二次根式的乘除法,解答本题的关键是明确 a<0,b<0.
次根式的性质化简得出答案.
【解答】解:由图可知:a<0,a﹣b<0,
则|a|+ (� − �)2
=﹣a﹣(a﹣b)
=﹣2a+b.
故选:A.
【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关
键.
2.如果 ab>0,a+b<0,那么下面各式:①
其中正确的是(
A.①②

B.②③

D.2a﹣3

二.填空题(共 5 小题)
11.若|2017﹣m|+ � − 2018 =m,则 m﹣20172=

中考数学复习《二次根式》专项训练(含答案)

中考数学复习《二次根式》专项训练(含答案)

~数学中考专项:二次根式【沙盘预演】1.函数y=自变量的取值范围是()A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3【解析】解:根据题意得到:x+3>0,解得x>﹣3,故选B.2.下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣5 D.=±3【解析】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.3.与是同类二次根式的是()A.B.C.D.【解析】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【解析】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A6.在函数y=34xx--中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx-⎧⎨-⎩≥≠解得x≥3且x≠4.故选D.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1 【解析】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 【解析】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.若式子1-x在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.下列算式①=±3;②=9;③26÷23=4;④=;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解析】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.11.若式子1x在实数范围内有意义,则x的取值范围是x≥1.-【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.若二次根式有意义,则x的取值范围是x≥1.【解析】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【真题演练】1.(•张家界)下列运算正确的是()A.a2+a=2a3B.=aC.(a+1)2=a2+1 D.(a3)2=a6【解析】解:A、a2和a不是同类项,不能合并,故原题计算错误;B、=|a|,故原题计算错误;C、(a+1)2=a2+2a+1,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.2.(•聊城)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【解析】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.3.(•扬州)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3D.x≠3【解析】解:由题意,得x﹣3≥0,解得x≥3,故选:C.4.(•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【解析】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.5.(•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【解析】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.6.(•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=2【解析】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.7.(•郴州)计算:=3.【解析】解:原式=3.故答案为:38.(•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式应用
三只钟的故事
一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。

一只旧钟对小钟说:“来吧,你也该工作了。

可是我有点担心,你走完三千两百万次以后,恐怕会吃不消
的。

”“天哪!三千两百万次。

”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:
“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。

”“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。

”小钟很轻松地每秒滴答摆一
下,不知不觉中,一年过去了,它摆了三千两百万次。

成功就是这样,把简单的事做到极致,就能成功。

例1.=_________.
+=_________.
例2.=_________
例3.计算:﹣=_________;
例4. 计算:(﹣)2=_________.
1.若最简二次根式与是同类二次根式,则x=_________.
2.,,,四个二次根式中,是同类二次根式的是_________.
3.化简=_________.
4.计算:=_________;.
5.化简:(﹣)﹣﹣|﹣3|=_________.
6.计算(﹣2)×(+2)的结果是_________.
7.计算:(﹣2)0+|2﹣|﹣×=_________.
8.若p=,q=,则=_________.
9.化简求值:=_________,其中a=+1.
10.化简的结果是_________.
11.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是_________.(结果保留根号)
12.若矩形长为cm,宽为cm,则此矩形的面积为_________.
13.方程+=2的解是x=_________.
14.若矩形的长和宽分别为和,则矩形的对角线的长为_________.
15.直角三角形两直角边分别为(5+)cm,(5﹣)cm,则它的周长为_________,面积为_________.16.一个等腰三角形的周长为,一边长为,则它的底边长为_________.
17.已知矩形长为cm,宽为cm,那么这个矩形对角线长为_________cm.
18.已知:,,则代数式m2﹣mn+n2的值为_________
19.等边三角形的边长为,则它的周长为_________.
20.设a,b,c是△ABC的三边的长,化简的结果是
_________.
21.①=_________.
②(2)2=_________;
22.化简:=_________;
23.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.24.如果一个三角形的三边的长分别为a、b、c,那么可以根据秦九韶﹣海伦公式
S=(其中p=(a+b+c))或其它方法求出这个三角形的面积.试求出三边长分
别为的三角形的面积.
25.解方程:(﹣1)(+1)x=4﹣2(x+2)
26.做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体;求:
(1)这个长方体的长、宽、高分别是多少?
(2)长方体的表面积是多少?
(3)长方体的体积是多少?
27.一个矩形的长减少4cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等,求这个矩形
的面积.
28.已知三角形的两边长分别为3和5,第三边长为c,化简.
29.已知:如图,Rt△ABC中,∠C=90°,AC=2﹣2,BC=2.
(1)求Rt△ABC的面积;
(2)求斜边AB的长.
30.设a.b为实数,且|﹣a|+=0
(1)求a2﹣2a+2+b2;
(2)若满足上式的a,b为等腰三角形的两边,求这个等腰三角形的面积.。

相关文档
最新文档