第2章第1节描述运动的基本概念
八年级物理第二节运动的描述
八年级物理第二节运动的描述大家好!今天我们来聊聊一个非常有趣的话题——运动的描述。
哎,不知道你们有没有觉得,运动这玩意儿就像是我们生活中的调味品,少了它可真没滋味。
那我们就来一探究竟,看看运动到底是怎么回事吧!1. 什么是运动?运动,说白了就是物体位置的变化。
简单来说,就是一个东西从这儿跑到那儿。
就好像你从家里跑到学校,或者从沙发上爬到床上,这都是运动。
听起来简单吧?但其实,它的描述可是大有学问的呢!1.1 运动的基本概念首先,运动的基本概念就是物体相对于其他物体的位置变化。
你想象一下,如果你在车上坐着,车子在跑,窗外的景物快速后退,那就是你在运动。
而你坐在车里,车里的一切(比如你自己的手臂)看起来是不动的,这也是运动的一个有趣的现象。
1.2 运动的种类运动有很多种,常见的有直线运动、曲线运动、周期运动等等。
直线运动就像你在滑滑梯一样,一路向下。
曲线运动呢,比如你在玩蹦床,身体跳得又高又远。
周期运动则像是钟表的摆锤,一下子往这边摆一下子往那边摆,不停地重复。
2. 速度的描述了解了运动的基本概念,那速度就是运动的“快慢”了。
我们平时说的速度就是物体单位时间内走过的距离。
打个比方,你跑步时,如果每秒钟跑10米,那你的速度就是10米每秒。
这就像开车时,车速表上的数字,越大表示跑得越快。
2.1 速度的计算速度计算起来也很简单,记住这个公式:速度 = 距离÷ 时间。
比如你从家到学校一共跑了400米,花了10分钟,那你的速度就是40米每分钟。
是不是感觉很神奇?其实,速度就是这么个简单的玩意儿。
2.2 平均速度与瞬时速度说到速度,我们还得聊聊“平均速度”和“瞬时速度”。
平均速度就是在整个运动过程中计算出的速度,就像你整个跑步的时间和距离综合得出的速度。
而瞬时速度呢,就是在某一瞬间的速度,比如你跑到学校门口时的速度,可能就比你在中间跑的时候快点儿,或者慢点儿。
3. 加速度的描述加速度嘛,就是物体速度变化的快慢。
运动的基本概念和运动规律
运动的基本概念和运动规律运动是指物体在空间内从一个位置转移到另一个位置的过程,它是物质存在的基本属性之一。
运动具有许多基本概念和运动规律,这些概念和规律对于我们理解和应用运动现象都有着重要的意义。
一、基本概念1. 位移:位移是指物体由一个位置变化到另一个位置的矢量量值。
位移与路径无关,只与起点和终点有关。
2. 速度:速度是指物体在单位时间内移动的位移量。
速度是矢量量值,包括大小和方向。
3. 加速度:加速度是指物体在单位时间内速度变化的量。
加速度也是矢量量值,包括大小和方向。
二、运动规律1. 牛顿第一定律:也称作惯性定律,它指出物体在没有外力作用时将保持静止或匀速直线运动的状态。
2. 牛顿第二定律:牛顿第二定律表明物体所受的合力等于物体的质量与加速度的乘积。
即 F=ma,其中 F表示合力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律:牛顿第三定律也称为作用力与反作用力定律,它指出任何两个物体之间的相互作用力都是相等且反向的。
三、运动的特殊概念和规律1. 弹性碰撞:当两个物体发生碰撞时,它们之间的动能可以部分或全部转化为位移,这种碰撞被称为弹性碰撞。
在弹性碰撞中,动量和机械能守恒。
2. 不均匀运动:不均匀运动是指物体在运动过程中速度大小或方向的改变不是均匀的。
在不均匀运动中,加速度是变化的,即速度的变化率随时间的变化而变化。
3. 圆周运动:圆周运动是指物体绕固定点做圆形轨迹的运动。
在圆周运动中,物体始终受到向心力的作用,向心力的大小与物体质量和速度的乘积成正比,与物体到圆心距离的平方成反比。
运动的基本概念和运动规律是物理学研究物体运动的基石,它们可以帮助我们理解和解释日常生活中的运动现象。
通过研究运动,我们可以预测物体的运动轨迹、计算物体的速度和加速度,进而探索更深层次的物理规律。
了解和掌握这些基本概念和规律不仅对于物理学学习有帮助,也能增进对运动世界的认识和理解。
总结起来,物体的位移、速度和加速度是描述运动的基本概念,而牛顿三定律则为我们提供了解释和分析运动现象的重要规律。
高中物理 运动的描述 知识点及考点
第一章运动的描述第一节描述运动的基本概念一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量.(2)路程是物体运动路径的长度,是标量.2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即=,是矢量.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量.3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小.三、加速度1.定义式:a=;单位是m/s2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同.考点一对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断.3.物体可被看做质点主要有三种情况:(1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点.(3)有转动但转动可以忽略时,可把物体看做质点.考点二平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt→0时的平均速度.(2)对于匀速直线运动,瞬时速度与平均速度相等.考点三速度、速度变化量和加速度的关系1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a与v同向或夹角为锐角时,物体加速.(2)当a与v垂直时,物体速度大小不变.(3)当a与v反向或夹角为钝角时,物体减速物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v=中当Δt→0时v是瞬时速度.(2)公式a=中当Δt→0时a是瞬时加速度.第二节匀变速直线运动的规律及应用一、匀变速直线运动的基本规律1.速度与时间的关系式:v=v0+at.2.位移与时间的关系式:x=v0t+at2.3.位移与速度的关系式:v2-v=2ax.二、匀变速直线运动的推论1.平均速度公式:=v=.2.位移差公式:Δx=x2-x1=x3-x2=…=xn-xn-1=aT2.可以推广到xm-xn=(m-n)aT2.3.初速度为零的匀加速直线运动比例式(1)1T末,2T末,3T末……瞬时速度之比为:v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.(2)1T内,2T内,3T内……位移之比为:x1∶x2∶x3∶…∶xn=1∶22∶32∶…∶n2.(3)第一个T内,第二个T内,第三个T内……位移之比为:x∶∶x∶∶x∶∶…∶xn=1∶3∶5∶…∶(2n-1).(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶…∶tn=1∶(-1)∶(-)∶…∶(-).三、自由落体运动和竖直上抛运动的规律1.自由落体运动规律(1)速度公式:v=gt.(2)位移公式:h=gt2.(3)速度—位移关系式:v2=2gh.2.竖直上抛运动规律(1)速度公式:v=v0-gt.(2)位移公式:h=v0t-gt2.(3)速度—位移关系式:v2-v=-2gh.(4)上升的最大高度:h=.(5)上升到最大高度用时:t=.考点一匀变速直线运动基本公式的应用1.速度时间公式v=v0+at、位移时间公式x=v0t+at2、位移速度公式v2-v=2ax,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v0=0时,一般以a的方向为正方向.3.求解匀变速直线运动的一般步骤→→→→4.应注意的问题①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二匀变速直线运动推论的应用1.推论公式主要是指:①=v=,②Δx=aT2,①②式都是矢量式,在应用时要注意v0与vt、Δx与a的方向关系.2.①式常与x=·t结合使用,而②式中T表示等时间隔,而不是运动时间.考点三自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g的匀加速直线运动.2.竖直上抛运动的重要特性(1)对称性①时间对称物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA.②速度对称物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法物理思想——用转换法求解多个物体的运动在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义①图线与时间轴围成的面积表示相应时间内的位移大小.②若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.(4).相同的图线在不同性质的运动图象中含义截然不同,下面我们做一全面比较(见下表).二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”考点二追及与相遇问题1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若vA=vB时,xA+x0<xB,则能追上;若vA=vB时,xA+x0=xB,则恰好不相撞;若vA=vB时,xA +x0>xB,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路→→→(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v-t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t内的平均速度等于物体在这段时间内的初速度v0与末速度v的平均值,也等于物体在t时间内中间时刻的瞬时速度,即===v.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T内的位移之差为一恒量,即Δx=xn+1-xn=aT2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx=aT2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况.五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动基本要求:一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.5.计算出相邻的计数点之间的距离x1、x2、x3、….6.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验.四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.方法规律一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T内的位移分别为x1、x2、x3、x4、…,若Δx=x2-x1=x3-x2=x4-x3=…则说明物体在做匀变速直线运动,且Δx=aT2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v-t 图象.若v-t图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度vn=.3.求加速度的两种方法:(1)逐差法:即根据x4-x1=x5-x2=x6-x3=3aT2(T为相邻两计数点之间的时间间隔),求出a1=,a2=,a3=,再算出a1、a2、a3的平均值a==×=,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用vn=求出打各点时的瞬时速度,描点得v-t图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v-t图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞.5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.。
运动的基本概念与运动规律
运动的基本概念与运动规律运动是自然界中普遍存在的现象,是物体在空间和时间上的位置发生变化的过程。
我们身边的一切物体,不论是活的还是非活的,都在经历运动。
运动不仅是物质发展的基础,也是人类社会进步的动力。
本文将介绍运动的基本概念以及运动规律,帮助读者更好地理解运动的本质和特点。
一、运动的基本概念运动是物体在空间和时间上的位置发生变化的过程。
运动的基本要素包括两个方面:物体和参考系。
物体是指在运动中发生位置变化的实体,可以是任何物质形态的物体,包括人、动物、车辆、星球等。
参考系是指观察者用来衡量运动物体位置变化的基准,通常是选取一个固定的点或物体作为参考点。
运动可以根据不同的参考系进行分类。
绝对运动是指物体相对于固定的参考系发生位置变化,如地球绕太阳公转。
相对运动是指物体相对于其他物体发生位置变化,如两个车辆相对行驶。
值得注意的是,运动是相对的,没有绝对的静止状态。
二、运动的规律1. 牛顿第一运动定律:也称为惯性定律,它表明物体如果受力平衡,则物体会保持静止或匀速直线运动。
这意味着物体没有受到外力时,将保持现有的状态,包括静止和匀速直线运动。
2. 牛顿第二运动定律:它描述了物体运动的加速度与其所受的外力之间的关系。
牛顿第二定律的数学表达是F=ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
这个定律告诉我们,物体所受的力越大,加速度也越大;物体的质量越大,加速度越小。
3. 牛顿第三运动定律:也称为作用-反作用定律,它表明任何作用力都会产生一个相等大小、方向相反的反作用力。
如跳水时,人的脚用力踩水,水也会对人产生一个反作用力将其推出水面。
三、应用运动规律的例子1. 赛车比赛中的离心力:当车辆在转弯时,由于离心力的作用,在车辆相对转弯的一侧产生一个向外的力,使得车辆向外移动。
这是因为车辆运动的惯性使其继续保持直线运动,而转弯路线则需要车辆受到一个向心的力。
2. 自行车行驶的稳定性:骑自行车时,车辆的行驶保持相对平稳。
第一讲 描述运动的基本概念 匀速直线运动
西 C 南 第一讲 描述运动的基本概念 匀速直线运动知识要点1.运动学的基本概念(1)质点、位移和时间当物体的形状、大小只是无关因素或是次要因素时,就可把物体看成一个“点”,它不同于数学点,它仍具有原来物体的其它物理性质,如质量,因此称它为质点。
位移 初位置指向末位置的有向线段叫位移,位移是矢量。
路程 是物体实际运动路径,是标量。
时刻是指某一瞬时,时间是两个时刻的间隔 例1、如左图质点由A 运动到B 再运动到C ,求:(1)位移,并作出位移的图示,(2)路程。
解(1)s=10km,方向北偏东530(2)路程14km练习:质点作如右图半径为R 的圆周运动,求:(1)从A 到B 的位移和路程,(2)从A 到C 的位移和路程,(3)从A 到A 的位移和路程,(4)走7/4 圈的位移和路程,并画出位移的图示。
解(1)s=√2R,AB 与AC 夹角450;路程ΠR/2;(2)s=2R,方向A 到C,路程πR (3)s=0 路程2πR (4)s=√2R, AD 与AC 成450角.路程7πR/2(2)平均速度 瞬时速度做变速直线运动的物体所经过的位移s 与所用时间t 之比,叫做这一位移或这一时间内的平均速度。
公式 tx v ∆∆= 方向 为物体运动方向,也为位移变化Δx 的方向。
运动物体在某时刻或某位置的速度,叫做瞬时速度。
它是描述做变速直线运动的物体在任何时刻(或任一位置)的运动快慢和运动方向的物理量。
例2、图示为高速摄影机拍摄到的子弹穿过苹果瞬间的照片。
已知子弹直径为8mm ,子弹飞行的平均速度约为500 m/s ,请你估算这幅照片的曝光时间为多少?解:从照片上量得子弹直径约为2mm ,长约8mm ,按比例关系可知子弹实际长度约为32mm ,由照片在曝光的时间内子弹的位移约为5倍子弹长度,所以在曝光的时间内子弹的实际位移约为160mm ;)(102.310516.042s v s t -⨯=⨯== 2.匀速直线运动物体在一条直线上运动,如果在任意相等的时间里位移相等,我们就把这种运动叫做匀速直线运动(简称匀速运动)匀速直线运动是速度的大小和方向都不改变的直线运动,因此是速度不变的运动。
描述运动的基本概念—匀速直线运动的定义
③利用
(即某段时间内的平均速度等于该段时
间中间时刻的瞬时速度),也只适用于匀变速直线运动.
(2)求平均速度的关键是明确所求的是哪一段时间的平
均速度或哪一段位移的平均速度.
2-1:(2010年河南信阳第一次调研)在某一高度以v0=20 m/s的初速度竖直上抛一个小球(不计空气阻力),当小球速度 大小为10 m/s时,以下判断正确的是(g取10 m/s2) ( )
“它是静止的.”丙说:“它在做加速运动.”这三个人
的说法
()
A.在任何情况下都不对
B.三人中总有一人或两人是讲错的
C.如果选择同一参考系,那么三人的说法就都对了
D.如果各自选择自己的参考系,那么三人的说法就
可能都对了
【解析】 被选作参考系的物体是被假定不动的物体, 另外物体相对于参考系发生位置的变化,就是运动的,没 有相对位置的改变,即静止的.如果被观察物体相对于地 面是静止的,甲、乙、丙相对于地面分别做匀速运动、静 止、加速运动,再以他们自己为参考系,则三人说的都正 确,A、B错误,D正确;在上面的情形中,如果他们都选 择地面为参考系,则只有乙正确,C错误.
式
求,规定向上为正,当小球的末速度为
向上10 m/s时,vt=10 m/s,用公式求得平均速度为15 m/s , 方 向 向 上 , A 正 确 ; 当 小 球 的 末 速 度 为 向 下 10
m/s时,vt=-10 m/s,用公式求得平均速度为5 m/s, 方向向上,C正确;由于末速度大小为10 m/s时,球的
意义
在时间轴 上的表示
时刻 一瞬间 一个 点
时间间隔 一段时间
一段 间隔
对应 位置、瞬时速度、 位移、位移的变化、速
运动量 瞬时加速度
2022高考物理(浙江选考)总复习学案-第一节-描述运动的基本概念-含答案
[高考导航]知识内容考试要求真题统计2017.4 2017.11 2018.4 2018.11 2019.42020.12020.71.质点、参考系和坐标系b32.时间和位移b22、19 43.速度c2、194、112、10、191、194.加速度c2、6、1917191、195.匀变速直线运动的速度与时间的关系d 46.匀变速直线运动的位移与时间的d1991919关系7.自由落体运c 4动8.伽利略对自由落体a运动的研究实验:探究小车速度随时间变化的规律匀变速直线运动规律是高中物理的基础。
近几年来,单独考查本部分内容的题目较少,结合牛顿运动定律考查匀变速直线运动的题目几乎必考。
备考知识有:(1)匀变速直线运动公式的灵活应用;(2)运动图象如x-t图象、v-t图象等的应用;(3)结合图象考查追及相遇问题;(4)自由落体和竖直上抛运动的规律;(5)实验:探究小车速度随时间变化的规律。
注:a—识记;b—理解;c—简单应用;d—综合应用。
第一节描述运动的基本概念一、质点、参考系和位移答案:□1质量□2形状□3大小□4同一□5不同□6有向线段□7直线距离□8初位置□9末位置【基础练1】在评判下列运动员的比赛成绩时,运动员可视为质点的是()解析:选A。
马拉松比赛时,由于路程长,运动员的体积可以忽略,可以将其视为质点,故A符合题意;击剑时,评委需要观察运动员的肢体动作,不能将其视为质点,故B不符合题意;跳水时,评委要关注运动员的动作,所以不能将运动员视为质点,故C不符合题意;体操比赛时,评委主要根据体操运动员的肢体动作进行评分,所以不能将其视为质点,故D不符合题意。
【基础练2】下列说法中符合实际的是()A.出租汽车按位移的大小收费B.相对于不同的参考系来描述同一个物体的运动其结果一定不同C.路程、位移、速度都是矢量D.当物体沿直线朝一个方向运动时,位移的大小等于路程解析:选D。
出租汽车按路程收费,A错误;将两个相对静止的物体分别作参考系观察另一个物体的运动,观察结果是相同的,B错误;路程是标量,C错误;物体沿直线朝一个方向运动时,位移的大小等于路程,D正确。
高一物理1到3章知识点
高一物理1到3章知识点第一章:运动的描述1. 运动的基本概念运动是物体在空间中相对于参照物发生位置改变的过程。
运动包括直线运动和曲线运动。
2. 运动的描述描述运动的重要概念有位移、位移矢量、路径、速度、平均速度和瞬时速度。
(1) 位移:物体从初始位置到终止位置的位移表示物体在空间位置的改变。
(2) 位移矢量:位移与方向共同构成的量被称为位移矢量。
(3) 路径:物体运动的轨迹被称为路径。
(4) 速度:物体运动的位移与时间的比值称为速度,是标量。
(5) 平均速度:物体运动一段时间内的位移与时间的比值称为平均速度。
(6) 瞬时速度:物体运动某一时刻的速度。
3. 加速度加速度表示物体速度变化的快慢,即速度每秒变化的量。
加速度与速度的变化量成正比,与时间的变化量成反比。
4. 运动规律运动的规律包括匀速直线运动规律和变速直线运动规律。
(1) 匀速直线运动规律:当物体做匀速直线运动时,位移与时间成正比。
(2) 变速直线运动规律:当物体做变速直线运动时,位移与时间的平方成正比。
第二章:力和运动1. 力的基本概念力是改变物体状态或形状的原因。
力可以使物体产生加速度,同时还可以改变物体的形状。
2. 力的分类力的分类包括接触力和场力。
接触力是由物体之间的接触产生的,场力则是物体之间通过场作用产生的。
3. 牛顿运动定律牛顿运动定律是描述力和运动之间关系的基本规律。
(1) 牛顿第一定律(惯性定律):物体的运动状态只有在外力作用下才会改变。
(2) 牛顿第二定律(运动定律):物体受力时,其加速度与外力成正比,与物体质量成反比。
(3) 牛顿第三定律(作用-反作用定律):物体之间的作用力和反作用力大小相等、方向相反、不同物体之间作用在同一直线上。
第三章:力的合成与分解1. 力的合成多个力作用在同一物体上时,可以将这些力合成为一个合力。
2. 力的分解一个力可以分解为多个分力,分力是作用在同一物体上的多个力的合成。
3. 力的平衡与力的不平衡如果一个物体受到的合力为零,即物体处于静止状态或作匀速直线运动状态,这时称物体处于力的平衡状态;反之,如果一个物体受到的合力不为零,即物体处于加速或减速状态,这时称物体处于力的不平衡状态。
运动的基本概念及描述
运动的基本概念及描述运动是人类生活中不可或缺的一部分,它是人类身体活动的表现形式之一。
通过运动,人类可以保持健康、增强体质、提高心肺功能,同时还可以增进社交关系、培养团队精神。
本文将详细介绍运动的概念、分类及对人体的影响。
一、运动的概念运动可以简单地定义为身体运动和活动,它是一种肌肉收缩和骨骼运动的形式。
运动可以包括行走、跑步、跳跃、游泳等各种形式,既可以是日常生活中的活动,也可以是参与体育运动、健身活动所进行的身体锻炼。
运动是通过人体的肌肉系统、神经系统和心肺系统的协同作用来实现的。
它在人体各个方面都起着重要作用,涉及到心血管健康、肌肉力量、骨骼密度以及代谢功能的调节等。
通过适当的运动,人们可以改善身体机能、提高免疫力、增强心理健康等。
二、运动的分类根据运动的性质和强度,运动可以分为有氧运动和无氧运动。
1. 有氧运动有氧运动是指在较长时间、较低强度下进行的运动,常常通过增加心脏跳动速度和呼吸频率来提供足够的氧气供应给身体。
典型的有氧运动包括散步、慢跑、游泳、有氧舞蹈、骑自行车等。
有氧运动可以增加心肺功能、促进脂肪燃烧、改善心血管健康等。
2. 无氧运动无氧运动是指高强度、短时间、爆发力较强的运动,通常在短时间内快速耗尽肌肉中的氧气储备。
举重、短跑、游泳爬升、跳绳等都属于无氧运动。
无氧运动可以增强肌肉力量、改善爆发力和爆发力耐力。
三、运动对人体的影响运动对人体有着广泛而积极的影响,以下是一些主要方面的介绍:1. 心血管健康运动可以促进心肺功能的提升,增强心脏的泵血能力和血管的弹性。
长期坚持有氧运动可以降低心脏病、中风和高血压的风险,保护心血管健康。
2. 肌肉力量和骨骼健康运动可以增强肌肉力量和骨骼密度,预防骨质疏松症和骨折的发生。
力量训练和无氧运动尤其对肌肉力量的提升起到积极作用。
3. 代谢功能和体重控制运动可以增加能量消耗,促进脂肪燃烧,从而有助于体重的控制和代谢的调节。
适度的运动可以改善身体组成,减少脂肪堆积,增加肌肉含量。
第一节 塑造地表形态的力量
第1讲 描述运动的第基二本章概念地表形态的塑造
3.勃隆克沙漠旅游区位于我国内蒙古自治区,是一个集沙漠、草原、奇山、怪石、 湖泊、原始次生林等于一体的旅游景区。试描述下图怪石的形成过程。 提示:结合内力作用与外力作用两方面进行分析。
风化作用 (1)概念:在温度、水、大气、生物等因素的作用下,地表或接近地表的岩石发生破 碎崩解、化学分解和生物分解等,这一过程叫风化作用。
压实、固 砾岩、砂岩、页岩等
化学沉淀物或生物遗体堆积形成
石灰岩
第1讲 描述运动的第基二本章概念地表形态的塑造
(3)变质岩 已生成的岩石,在地球内部的 高温、高压 条件下,成分、性质发生改变形 成。如页岩变质成为板岩,石灰岩变质成为大理岩。 3.岩石圈物质循环过程
岩浆
4.岩石圈物质循环对地表形态的影响:三大类岩石之间相互转换,使得岩石圈的物 质处于循环转化中。地表形态的塑造过程也是 岩石圈物质的循环 过程。
变质作用
岩石受温度、压力等因素影响, 变质岩的形成 成分、结构发生改变
第1讲 描述运动的第基二本章概念地表形态的塑造
3.内力作用对地形的影响:奠定了地表形态的基本格局,总的趋势是使地表变得⑤ 高低不平 。
|外力作用 1.能量来源:来自地球外部,主要是⑥ 太阳辐射能 。
第1讲 描述运动的第基二本章概念地表形态的塑造
|内力作用 1.能量来源:来自地球内部的① 热能 。
第1讲 描述运动的第基二本章概念地表形态的塑造
2.主要表现形式
表现形式
概念
对地形影响举例
地壳运动 (构造运动)
岩石圈因受内力作用而发生的 大陆漂移、地面抬升和沉降上升,侵入③ 岩 火山爆发 石圈 或喷出地面
第1讲 描述运动的第基二本章概念地表形态的塑造
高中物理 第二章 运动学的基本概念 匀速直线运动课件 新人教版必修1
例3、一列长为l的队伍,行进速度为v1,通讯员从队尾以速 度v2赶到排头,又立即以速度v2返回队尾,求这段时间里队 伍前进的距离。
解析:若以队伍为参考系,则通讯员从队尾赶到排头这一 过程中,相对速度为(v2-v1);再从排头返回队尾的过程 中,相对速度为(v2+v1)。则
重力加速度g:物体只受 重力 而产生的加速度 方向:竖直向下 大小:不同位置g的数值一般不同
8、匀速直线运动 物体在一条直线上运动,如果在相等的时间内 位移 相
等,这种运动就叫做匀速直线运动。
匀速直线运动中,物体的位移与时间成正比,即x = v t
议一议:若物体在第1秒内的位移为1m,第2秒内的位移为 1m,第3秒内的位移为1m,依次类推。这个物体的运动时 匀速直线运动吗?
v甲对乙 v甲对丙 v丙对乙 v甲对乙 v甲对丙 v乙对丙
S甲对乙 S甲对丙 S丙对乙 S甲对乙 S甲对丙 S乙对丙
3、质点:用来代替物体的有质量的点叫质点。 它是一种 理想化模型 。
物体能简化成质点的条件是:在研究的问题中,物体只做 平动,或物体的 形状和大小 对研究物体运动无影响,才可
解:
vx
x
2v1v2
t x x v1 v2
2v1 2v2
例2:一个朝着某方向做直线运动的物体,在时间t内的平均
速度为v,紧接着t/2时间内的平均速度为v/2,则物体在这段
时间内的平均速度为多少?
解:
v
x
vt
v 2
t 2
5
v
t总
3t
6
2
2、位移、速度、加速度的矢量性问题 例1、一物体做匀变速直线运动,某时刻的速度大小为4m/s, 1s后速度的大小变为10m/s,则在这1s内该物体( AD) A、位移大小可能小于4m B、位移大小可能大于10m C、加速度的大小可能小于4m/s2 D、加速度的大小可能小于10m/s2
高考物理总复习第1讲 描述运动的基本概念
②都是过程量 联系
③一般情况下,物体(质点)的位移大小小于其路程,只有在物体(质点)
做 06 __单__向__直__线____运动时,其位移大小才等于路程
1.[教材母题] (人教版必修 1 P14·T1、T2)(1)以下各种说法中,哪些指 时间?哪些指时刻?
A.列车员说:“火车 8 点 42 分到站,停车 8 分。” B.“您这么早就来啦,等了很久吧!” C.“前 3 秒”“最后 3 秒”“第 3 秒末”“第 3 秒内”。 (2)某市出租汽车的收费标准有 1.20 元/公里、1.60 元/公里、2.00 元/公 里……其中的“公里”说的是路程还是位移?
6.P19~21 打点计时器使用什么电源?从纸带上如何确定物体的运动速 度?实验时,接通电源和拉动纸带的顺序是怎样的?
提示:交流电源;用前后相邻两点间的平均速度代表纸带上打这一点 时物体的瞬时速度;先接通电源后拉动纸带。
7.P24[科学漫步]测出的速度是不是瞬时速度? 提示:是瞬时速度。 8.P25[思考与讨论]加速度描述什么?加速度大说明什么? 提示:加速度描述物体速度变化的快慢;加速度大说明物体速度变化 快。 9.P26~27 课本底图,你能根据飞机间距的关系做出什么判断? 提示:飞机正在加速前进。
1.(多选)下列关于物体是否可以看做质点的说法中,正确的有( ) A.研究奥运游泳冠军叶诗文的游泳技术时,叶诗文不能看成质点 B.研究飞行中直升机上的螺旋桨的转动情况时,直升飞机可以看做质 点 C.观察航空母舰上的舰载飞机起飞时,可以把航空母舰看做质点 D.在作战地图上确定航空母舰的准确位置时,可以把航空母舰看做质 点
14.P38~39 阅读“匀变速直线运动的位移”一段,体会“微元法”。 提示:时间分得非常细。 15.P40[思考与讨论]初速度为 0 的匀变速直线运动的 x-t2 图象斜率的物 理意义是什么? 提示:斜率表示加速度的一半。 16.P41[问题与练习]T5,你还能作出 T5 的 v-t 图象吗? 提示:能,如图所示。
沪科版物理第二章第一节:动与静
学习目标
理解运动和静止的相 对性。
能够运用动与静的基 本概念分析实际问题。
掌握参照物的概念及 其选择原则。
02
动与静的基本概念
什么是动?
总结词
动是指物体位置的变化或物体相对于某一参照物的位置改变 。
详细描述
在物理学中,动是指物体在空间中的位置随时间发生变化的 状态。这种变化可以是直线运动、曲线运动或旋转运动等形 式。例如,一个球在桌面上滚动,它的位置相对于时间发生 了变化,因此它是动的。
天体运动
地球的自转和公转
行星和卫星的运动
地球围绕太阳公转,同时自身也在自 转,这些运动规律涉及到角速度、线 速度、向心力和离心力等物理概念。
行星和卫星围绕太阳公转,这些运动 规律涉及到开普勒定自身也在自 转,这些运动规律也涉及到角速度、 线速度、向心力和离心力等物理概念。
相对速度和相对加速度
理解了相对速度和相对加速度的概念, 能够进行简单的计算和应用。
思考题
思考题一
如果你在一辆高速行驶的列车上向上抛起一个苹果,苹果会如何运动?请解释原因。
思考题二
一辆汽车在平直公路上以恒定速度行驶,突然发现前方有障碍物,司机紧急刹车,使汽车 做匀减速运动。已知汽车在第1秒内的位移为24米,最后1秒内的位移为4米,则汽车刹车 时的初速度为多少?
沪科版物理第二章第一节 :动与静
• 引言 • 动与静的基本概念 • 物体的运动状态 • 动与静的应用 • 实验探究:动与静的观察 • 总结与思考
01
引言
主题简介
主题概述
动与静是物理学中描述物体运动 和静止状态的基本概念,是理解 力学、运动学等后续章节的基础 。
主题重要性
掌握动与静的概念对于理解物体 运动规律、解释生活现象以及解 决实际问题具有重要意义。
运动的基本概念与运动学公式
运动的基本概念与运动学公式运动是我们日常生活中经常观察到的现象,它是物体位置随时间变化的过程。
运动学是物理学的一个分支,研究运动的基本概念和数学表达方式,以及运动的规律、属性和性质。
在本文中,我们将介绍运动的基本概念和一些常用的运动学公式。
1. 运动的基本概念在运动学中,有几个基本的概念需要了解。
1.1 位移位移(displacement)是指物体从参考点到另一个位置之间的变化,通常用Δx表示。
它是一个矢量量,具有大小和方向。
1.2 速度速度(velocity)是物体位置随时间变化的快慢和方向,通常用v表示。
它是位移Δx与时间间隔Δt的比值,即v=Δx/Δt。
1.3 加速度加速度(acceleration)是速度随时间变化的快慢和方向,通常用a 表示。
它是速度变化Δv与时间间隔Δt的比值,即a=Δv/Δt。
2. 匀速直线运动在匀速直线运动中,物体在时间上保持一定的速度,其位移随时间的变化是匀速的。
2.1 位移与速度的关系在匀速直线运动中,位移与速度的关系可以用如下的公式表示:Δx = v × Δt。
其中,Δx表示位移,v表示速度,Δt表示时间间隔。
2.2 位移与加速度的关系在匀速直线运动中,由于加速度为零,位移与加速度没有直接关系。
3. 匀变速直线运动在匀变速直线运动中,物体在时间上的速度会发生变化,其加速度保持一定的值。
3.1 位移与速度的关系在匀变速直线运动中,位移与速度的关系可以用如下的公式表示:Δx = v0 × Δt + 0.5 × a × (Δt)^2。
其中,Δx表示位移,v0表示起始速度,a表示加速度,Δt表示时间间隔。
3.2 速度与时间的关系在匀变速直线运动中,速度与时间的关系可以用如下的公式表示:v = v0 + a × Δt。
其中,v表示速度,v0表示起始速度,a表示加速度,Δt表示时间间隔。
3.3 位移与加速度的关系在匀变速直线运动中,位移与加速度的关系可以用如下的公式表示:Δx = v^2 - v0^2 / (2a)。
高中物理:描述运动的基本概念知识点
高中物理:描述运动的基本概念知识点知识点一质点和参考系1.参考系(1)定义:在描述物体运动时,用来作参考的物体。
(2)参考系的四性:①标准性:选作参考系的物体都假定不动,被研究的物体都以参考系为标准。
②任意性:参考系的选取原则上是任意的,通常选地面为参考系。
③同一性:比较不同物体的运动必须选取同一参考系。
④差异性:对于同一运动,选择不同的参考系观察结果一般不同。
2.质点(1)定义:用来代替物体的有质量的点。
(2)把物体看作质点的条件:物体的形状和大小对研究问题的影响可以忽略不计。
[考法指导]1.由于运动描述的相对性,凡是提到物体的运动,都应该明确它是相对哪个参考系而言的,在没有特殊说明的情况下,一般选大地作为参考系。
2.在同一个问题中,若要研究多个物体的运动或同一物体在不同阶段的运动,则必须选取同一个参考系。
3.对于复杂运动的物体,应选取能最简单描述物体运动情况的物体为参考系。
知识点二路程和位移知识点三平均速度、平均速率和瞬时速度1.平均速度物体的位移与发生这段位移所用时间的比值,即;表示物体在某段位移或某段时间内的平均运动快慢程度;平均速度是矢量,其方向与位移的方向相同。
2.瞬时速度运动物体在某一时刻或某一位置的速度,表示物体在某一时刻或某一位置的运动快慢程度;瞬时速度是矢量,其方向沿轨迹上物体所在点的切线方向。
3.平均速率物体的路程与所用时间的比值。
一般情况下,物体的平均速度大小小于其平均速率,只有当路程与位移的大小相等时,平均速率才等于平均速度的大小。
4.注意事项(1)平均速度的大小与物体不同的运动阶段有关,求解平均速度必须明确是哪一段位移或哪一段时间内的平均速度。
(2)速率是瞬时速度的大小,是标量;但平均速率并不是平均速度的大小。
知识点四加速度1.定义:物体速度的变化量与发生这一变化所用时间的比值。
2.定义式:单位:m/s2。
3.方向:与Δv的方向一致,由合力的方向决定,而与v0、v的方向无关。