高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-1a Word版含解析
2019版高考数学(理)一轮狂刷练:第11章算法、复数、推理与证明11-2a含解析
A.第一象限B.第二象限
C.第三象限D.第四象限
答案A
解析依题意,设z=a+bi(a,b∈R),则 + =2a+bi,故2a+bi= =1+ i,
故a= ,b= ,则在复平面内,复数z对应的点为 ,位于第一象限.故选A.
(1)对任意z∈C,都有D(z)>0;
(2)若 是复数z的共轭复数,则D( )=D(z)恒成立;
(3)若D(z1)=D(z2)(z1,z2∈C),则z1=z2;
(4)对任意z1,z2,z3∈C,结论D(z1,z3)≤D(z1,z2)+D(z2,z3)恒成立.
其中真命题为()
A.(1)(2)(3)(4) B.(2)(3)(4)
C.(2)(4) D.(2)(3)
答案C
解析对于(1),由定义知当z=0时,D(z)=0,故(1)错误,排除A;对于(2),由于共轭复数的实部相等而虚部互为相反数,所以D( )=D(z)恒成立,故(2)正确;对于(3),两个复数的实部与虚部的绝对值之和相等并不能得到实部与虚部分别相等,所以两个复数也不一定相等,故(3)错误,排除B,D,故选C.
A.-1+3i B.1+3i C.1-3i D.-1-3i
答案B
解析 -z2= -(1+i)2= -2i=1-i-2i=1-3i,其共轭复数是1+3i,故选B.
3.(2017·河南洛阳模拟)设复数z满足 =|1-i|+i(i为虚数单位),则复数z=()
A. -i B. +i C.1 D.-1-2i
答案A
(1)若z为纯虚数,求实数m的值;
(2)若z在复平面内的对应点位于第二象限,求实数m的取值范围及|z|的最小值.
2019版高考数学(文)一轮狂刷练:第11章算法、复数、推理与证明11-4a含解析
一、选择题
1.(2018·无锡质检)已知m>1,a= - ,b= - ,则以下结论正确的是()
A.a>bB.a<b
C.a=bD.a,b大小不定
答案B
解析∵a= - = ,b= - = .而 + > + >0(m>1),
∴ < ,即a<b.故选B.
2.设x,y,z>0,则三个数 + , + , + ()
因此各队得分分别为:2,3,4,5.第一名Biblioteka 分5:5=3+1+1,为一胜两平;
第二名得分4:4=3+1+0,为一胜一平一负;
第三名得分3:根据胜场等于负场,只能为三平;
第四名得分2:2=1+1+0,为两平一负.
则所有比赛中最多可能出现的平局场数是4.
故选C.
二、填空题
9.(2017·南昌一模)设无穷数列{an},如果存在常数A,对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-A|<ε成立,就称数列{an}的极限为A.则四个无穷数列:①{(-1)n×2};②{n};③ ;④ .其极限为2的共有________个.
答案2
解析对于①,|an-2|=|(-1)n×2-2|=2×|(-1)n-1|,当n是偶数时,|an-2|=0,当n是奇数时,|an-2|=4,所以不符合数列{an}的极限的定义,即2不是数列{(-1)n×2}的极限;对于②,由|an-2|=|n-2|<ε,得2-ε<n<2+ε,所以对于任意给定的正数ε(无论多小),不存在正整数N,使得n>N时,恒有|an-2|<ε,即2不是数列{n}的极限;对于③,由|an-2|= = = <ε,得n>1-log2ε,即对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-2|<ε成立,所以2是数列 的极限;对于④,由|an-2|= = <ε,得n> ,即对于任意给定的正数ε(无论多小),总存在正整数N,使得n>N时,恒有|an-2|<ε成立,所以2是数列 的极限.综上所述,极限为2的共有2个,即③④.
全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第2讲数系的扩充与复数的引入增分练(20
(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第2讲数系的扩充与复数的引入增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第2讲数系的扩充与复数的引入增分练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第2讲数系的扩充与复数的引入增分练的全部内容。
第2讲数系的扩充与复数的引入板块四模拟演练·提能增分[A级基础达标]1.[2017·全国卷Ⅲ]设复数z满足(1+i)z=2i,则|z|=( )A。
错误! B。
错误! C.错误! D.2答案C解析错误!由(1+i)z=2i,得z=错误!=1+i,∴|z|=错误!.故选C。
解法二:∵2i=(1+i)2,∴由(1+i)z=2i=(1+i)2,得z=1+i,∴|z|=错误!。
故选C。
2.[2018·湖南模拟]已知错误!=1+i(i为虚数单位),则复数z=( )A.1+i B.1-i C.-1+i D.-1-i答案D解析由错误!=1+i,得z=错误!=错误!=错误!=-1-i.3.[2018·江西模拟]已知复数z1=cos23°+isin23°和复数z2=cos37°+isin37°,则z1·z2为()A。
错误!+错误!i B.错误!+错误!iC.错误!-错误!iD.错误!-错误!i答案A解析z1·z2=(cos23°+isin23°)·(cos37°+isin37°)=cos60°+isin60°=错误!+错误!i.故选A。
2019版高考数学(文)一轮狂刷练:第11章算法、复数、推理与证明11-1a含解析
C.i≤31?;p=p+iD.i≤30?;p=p+i
答案D
解析由于要计算30个数的和,
故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,
即①中应填写“i≤30?”;
又由第1个数是1;
第2个数比第1个数大1即1+1=2;
第3个数比第2个数大2即2+2=4;
第4个数比第3个数大3即4+3=7;
故②中应填写p=p+i.故选D.
二、填空题
13.定义n!=1×2×3×…×n,如图是求10!的程序框图,其中k为整数,则k=________.
答案11
解析因为10!=1×2×…×10,所以判断框内的条件为“i<11?”,故k=11.
14.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,如图所示的程序框图表示用秦九韶算法求5次多项式f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0(x0是任意实数)时的值的过程,若输入a0=2,a1=-5,a2=6,a3=-4,a4=7,a5=2,Байду номын сангаас0=3,则输出的v的值为________.
A.-29
B.-5
C.7
D.19
答案D
解析程序执行过程如下:n=1,x=-2×1+9=7;
n=2,x=-2×7+9=-5;
n=3,x=-2×(-5)+9=19;
n=4>3,终止循环,输出x=19.
故选D.
4.某程序框图如图所示,若输出的k的值为3,则输入的x的取值范围为()
A.[15,60) B.(15,60]
答案986
解析执行程序框图,输入a0=2,a1=-5,a2=6,a3=-4,a4=7,a5=2,x0=3,经过第1次循环得v=13,n=2;经过第2次循环得v=35,n=3;经过第3次循环得v=111,n=4;经过第4次循环得v=328,n=5;经过第5次循环得v=986,n=6,退出循环.故输出的v的值为986.
2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a含解析
[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +a x n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111 D .⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D. 5.(2017·阳山县校级一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A “若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B “若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D “(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”是错误的;如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2017=( )A .502B .503C .504D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2017=x 1009=505.故选D.7.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( ) A.-5-12B.5-12C.1+52D.1-52 答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C.8.(2017·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4V S 1+S 2+S 3+S4答案 C解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R=3V S 1+S 2+S 3+S 4.故选C. 9.(2018·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3. S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21, …依此规律,那么S 10等于( )A .210B .230C .220D .240答案 A解析 ∵[x ]表示不超过x 的最大整数,∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,…S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(2017·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x+y =2,求1x +4y 的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x +4x y ≥2y x ·4xy =4,∴1x +4y ≥12(5+4)=92,当且仅当⎩⎨⎧ y x =4x y,x +y =2,即⎩⎪⎨⎪⎧ x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C的最小值为( )A.16πB.8πC.4πD.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C=1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________.(2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S=4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S=4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(2017·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3; 第3关收税金:14⎝⎛⎭⎪⎫1-12-16x =x 12=x 3×4; ……第8关收税金:x 8×9=x 72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2016是数列{a n }中的第________项;(2)b 2k -1=________(用k 表示).答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k-1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2016是第1008组的后面一项,即b 2016是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2. 三、解答题15.(2017·未央区校级期中)阅读以下求1+2+3+…+n 的值的过程:因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2. 类比上述过程,求12+22+32+…+n 2的值.解 ∵23-13=3·22-3·2+1,33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1),由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1),即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1). 16.(2018·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n=S 2n -1T 2n -1. (1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *),(a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *),那么对于等比数列{a n }、{b n }有⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.。
2020版高考数学一轮复习第11章算法复数推理与证明第3讲课后作业理含解析
高考数学一轮复习第11章算法复数推理与证明:第11章 算法复数推理与证明 第3讲A 组 基础关1.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )c =a (b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m ||n |”类比得到“|a ·b |=|a ||b |”; ⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ∵向量的数量积满足交换律,∴①正确; ∵向量的数量积满足分配律,∴②正确; ∵向量的数量积不满足结合律,∴③不正确; ∵向量的数量积不满足消去律,∴④不正确; 由向量的数量积公式,可知⑤不正确; ∵向量的数量积不满足消去律,∴⑥不正确; 综上知,正确的个数为2个,故B 正确.2.在用演绎推理证明通项公式为a n =cq n(cq ≠0)的数列{a n }是等比数列的过程中,大前提是( )A .a n =cq nB.a na n -1=q (n ≥2)C .若数列{a n }满足a n +1a n(n ∈N *)是常数,则{a n }是等比数列 D .若数列{a n }满足a n +1a n(n ≥2)是常数,则{a n }是等比数列 答案 C解析 证明一个数列是等比数列的依据是等比数列的定义,其公式表示为a n +1a n(n ∈N *)或a na n -1(n ≥2)是常数. 3.(2018·江西南昌模拟)已知13+23=⎝ ⎛⎭⎪⎫622,13+23+33=⎝ ⎛⎭⎪⎫1222,13+23+33+43=⎝ ⎛⎭⎪⎫2022,…,若13+23+33+43+…+n 3=3025,则n =( )A .8B .9C .10D .11 答案 C解析 观察所提供的式子可知,等号左边最后一个数是n 3时,等号右边的数为⎣⎢⎡⎦⎥⎤nn +122,因此,令⎣⎢⎡⎦⎥⎤n n +122=3025,则n n +12=55,n =10或n =-11(舍去).4.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z+3=0的距离为( )A .3B .5 C.5217 D .3 5答案 B解析 利用类比的方法,在空间中,点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离d ′=|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,所以点(2,4,1)到平面x +2y +2z +3=0的距离d =2+8+2+31+4+4=153=5.5.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2017到2019的箭头方向是( )答案 B 解析看作一个循环体,又因为2016=504×4.所以从2017到2019的箭头方向是.6.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍去,故1+11+11+…=1+52,故选C. 7.(2018·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.8.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr ,即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.9.(2018·重庆调研)甲、乙、丙三人各从图书馆借来一本书,他们约定读完后互相交换.三人都读完了这三本书之后,甲说:“我最后读的书与丙读的第二本书相同.”乙说:“我读的第二本书与甲读的第一本书相同.”根据以上说法,推断乙读的最后一本书是________读的第一本书.答案 丙解析 因为共有三本书,而乙读的第一本书与第二本书已经明确,只有丙读的第一本书乙还没有读,所以乙读的最后一本书是丙读的第一本书.10.已知点A (x 1,a x1),B (x 2,a x2)是函数y =a x的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))图象上任意不同的两点,则类似地有______________成立.答案sin x 1+sin x 22<sin x 1+x 22解析 由题意知,点A ,B 是函数y =a x的图象上任意不同的两点,该函数是一个变化率逐渐变大的函数,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有成立;而函数y =sin x (x ∈(0,π)),其变化率逐渐变小,线段AB 总是位于A ,B 两点之间函数图象的下方,故可类比得到结论sin x 1+sin x 22<sinx 1+x 22.B 组 能力关1.已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为a i ,j ,比如a 3,2=9,a 4,2=15,a 5,4=23,若a i ,j =2019,则i +j =( )1 3 5 11 9 7 13 15 17 19 29 27 25 23 21……A .64B .65C .71D .72 答案 C解析 根据数表排列可得,第1行到第i 行末共有1+2+…+i =i 1+i2个奇数,所以第1行到第44行末共有990个奇数,到第45行末共有1035个奇数,又(2019+1)÷2=1010,即2019是第1010个奇数, 所以2019在第45行,即i =45.因为第45行第一个奇数是整体数表的第991个数,即为991×2-1=1981,所以1981+2(x -1)=2019,解得x =20,又第45行奇数从右到左依次递增,所以j =45+1-20=26,所以i +j =71. 2.已知f (x )=2x2-x,设f 1(x )=f (x ),f n (x )= f n -1[f n -1(x )](n >1,n ∈N *),若f m (x )=x1-256x(m ∈N *),则m =( )A .9B .10C .11D .126 答案 B解析 由题意可得f 2(x )=f 1[f 1(x )]=f 1⎝ ⎛⎭⎪⎫2x 2-x =2×2x 2-x 2-2x 2-x =x 1-x ,同理可得,f 3(x )=x 1-2x ,f 4(x )=x1-4x,f 5(x )=x 1-8x ,…,f n (x )=x1-2n -2x,由f m (x )=x1-256x (m ∈N *)恒成立,可得2m -2=256=28,即有m -2=8,即m =10.3.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *),试归纳猜想出S n 的表达式为( )A .S n =2n n +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2答案 A解析 ∵S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1·S n -1,又S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1,故选A. 4.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 答案 D解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.5.(2018·黑龙江检测)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则________________成等比数列.答案 T 4,T 8T 4,T 12T 8,T 16T 12解析 设等比数列{b n }的公比为q ,首项为b 1, 则T 4=b 41q 6,T 8=b 81q1+2+…+7=b 81q 28,T 12=b 121q 1+2+…+11=b 121q 66, T 16=b 161q1+2+…+15=b 161q 120, ∴T 8T 4=b 41q 22,T 12T 8=b 41q 38,T 16T 12=b 41q 54, 故T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 6.如图,平面上,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,则有S △PAB S △PCD=PA ·PBPC ·PD(其中S △PAB ,S △PCD 分别为△PAB ,△PCD 的面积);空间中,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,点E ,F 为射线PL 上的两点,则有V P -ABEV P -CDF=________(其中V P -ABE ,V P -CDF 分别为四面体P -ABE ,P -CDF 的体积).答案PA ·PB ·PEPC ·PD ·PF解析 设PM 与平面PDF 所成的角为α,则A 到平面PDF 的距离h 1=PA sin α,C 到平面PDF 的距离h 2=PC sin α,∴V P -ABE =V A -PBE=13S △PBE ·h 1, V P -CDF =V C -PDF =13S △PDF ·h 2,∴V P -ABE V P -CDF =13S △PBE ·h 113S △PDF ·h 2=13PB ·PE ·PA sin α13PD ·PF ·PC sin α=PA ·PB ·PEPC ·PD ·PF.7.如图,将边长分别为1,2,3的正八边形叠放在一起,同一边上相邻珠子之间的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是________.答案 341解析 边长为1,2,3,…,10的正八边形叠放在一起,则各个正八边形上的珠子数分别为8,2×8,3×8,…,10×8,其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…,有2个珠子被重复计算了1次,故不同的珠子总数为(8+2×8+3×8+…+10×8)-(3×9+2×8+2×7+2×6+…+2×1)=440-⎝ ⎛⎭⎪⎫27+2×8×92=341,故所求总数为341.8.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为20192的格点的坐标为________.答案 (1010,1009) 解析 观察已知图形可知, 点(1,0)处标1,即12,点(2,1)处标9,即32,点(3,2)处标25,即52,……由此推断,点(n+1,n)处标(2n+1)2.当2n+1=2019时,n=1009,故标签为20192的格点的坐标为(1010,1009).。
2019版高考数学(理)高分计划一轮狂刷练:第11章 算法、复数、推理与证明 11-5a
[基础送分 提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n >n 2(n ≥5,n ∈N *),第一步应验证( )A .n =4B .n =5C .n =6D .n =7答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5.故选B.2.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1]答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2.故选B.3.(2018·沈阳调研)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案 A解析 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.故选A.4.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6答案 C解析 ∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36,∴f (1),f (2),f (3)都能被36整除,猜想f (n )能被36整除.证明如下:当n =1,2时,由以上得证.假设当n =k (k ≥2)时,f (k )=(2k +7)·3k +9能被36整除,则当n =k +1时,f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k =(6k +27)·3k -(2k +7)·3k =(4k +20)·3k =36(k +5)·3k -2(k ≥2),∴f (k +1)能被36整除.∵f (1)不能被大于36的数整除,∴所求最大的m 的值为36.5.(2017·泉州模拟)用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f (n )=n +(n +1)+(n +2)+…+(3n -2),则f (k +1)-f (k )等于( )A .3k -1B .3k +1C .8kD .9k答案 C解析 因为f (k )=k +(k +1)+(k +2)+…+(3k -2),f (k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+(3k )+(3k +1),则f (k +1)-f (k )=3k -1+3k +3k +1-k =8k .故选C.6.(2018·太原质检)平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为 ( )A .n +1B .2n C.n 2+n +22D .n 2+n +1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.故选C. 7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数N (n,3)=12n 2+12n ;正方形数N (n,4)=n 2;五边形数N (n,5)=32n 2-12n ;六边形数N (n,6)=2n 2-n .可以推测N (n ,k )的表达式,由此计算N (10,24)=( )A .500B .1000C .1500D .2000答案 B解析 由已知得,N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,根据归纳推理可得,N (n ,k )=k -22n 2+4-k 2n .所以N (10,24)=24-22×102+4-242×10=1100-100=1000,故答案为1000.选B.8.若数列{a n }满足a n +5a n +1=36n +18,n ∈N *,且a 1=4,猜想其通项公式为( )A .3n +1B .4nC .5n -1D .6n -2答案 D解析 由a 1=4求得a 2=10,a 3=16,经检验a n =6n -2.故选D.二、填空题9.设S n =1+12+13+14+…+12n ,则S n +1-S n =______.答案 12n +1+12n +2+12n +3+…+12n +2n解析 S n +1=1+12+13+14+…+12n +1 S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n . 10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.答案 3n 2-3n +1解析 由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, 推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+[f (n -2)-f (n -3)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1,∴f (n )=3n 2-3n +1.11.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案 n n +1解析 由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23; 由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.猜想S n =n n +1.12.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22 解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22. 三、解答题13.(2017·河南期末)设等差数列{a n }的公差d >0,且a 1>0,记T n =1a 1a 2+1a 2a 3+…+1a n a n +1. (1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ;(2)用数学归纳法证明你的猜想.解 (1)T 1=1a 1a 2=1a 1(a 1+d ); T 2=1a 1a 2+1a 2a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 3=2a 1a 3=2a 1(a 1+2d ); T 3=1a 1a 2+1a 2a 3+1a 3a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3+1d ⎝ ⎛⎭⎪⎫1a 3-1a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 4=3a 1a 4=3a 1(a 1+3d ); 由此可猜想T n =n a 1(a 1+nd ). (2)证明:①当n =1时,T 1=1a 1(a 1+d ),结论成立, ②假设当n =k 时(k ∈N *)时结论成立,即T k =k a 1(a 1+kd ), 则当n =k +1时,T k +1=T k +1a k +1a k +2 =k a 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ] =k [a 1+(k +1)d ]+a 1a 1(a 1+kd )[a 1+(k +1)d ] =(a 1+kd )(k +1)a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ]. 即n =k +1时,结论成立.由①②可知,T n =1a 1(a 1+nd )对于一切n ∈N *恒成立. 14.(2017·扬州模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解 (1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝ ⎛⎭⎪⎫cos π3×2n -12-1, ∴a n =2a 2n +1-1,∴a n +1=± a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2,当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3.猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !, 则当n =k +1,a k +1=a k +12< 2-2k ·k !2 =1-1k ·k !,b k +1=1-2(k +1)·(k +1)!, 要证a k +1<b k +1,即证明⎝⎛⎭⎪⎫1-1k ·k !2<⎝ ⎛⎭⎪⎫1-2(k +1)·(k +1)!2, 即证明1-1k ·k !<1-4(k +1)·(k +1)!+ ⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2, 即证明1k ·k !-4(k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0, 即证明 (k -1)2k (k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得,当n =1时,a 1>b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .15.(2018·上饶模拟)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n 且T n =1-12b n .(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.解 (1)设a n 的首项为a 1,∵a 2,a 5是方程x 2-12x +27=0的两根, ∴⎩⎪⎨⎪⎧ a 2+a 5=12,a 2·a 5=27,解得⎩⎪⎨⎪⎧a 1=1,d =2, ∴a n =2n -1.∵n =1时,b 1=T 1=1-12b 1,∴b 1=23.n ≥2时,T n =1-12b n ①,T n -1=1-12b n -1②,①-②得b n =13b n -1数列是等比数列.∴b n =23·⎝ ⎛⎭⎪⎫13n -1=23n . (2)S n =1+(2n -1)2n =n 2,S n +1=(n +1)2, 以下比较1b n与S n +1的大小: 当n =1时,1b 1=32,S 2=4,1b 1<S 2, 当n =2时,1b 2=92,S 3=9,1b 2<S 3, 当n =3时,1b 3=272,S 4=16,1b 3<S 4, 当n =4时,1b 4=812,S 5=25,1b 4>S 5, 猜想:n ≥4时,1b n>S n +1. 下面用数学归纳法证明:①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k >S k +1,即3k 2>(k +1)2,那么,n =k +1时,1b k +1=3k +12=3·3k 2>3(k +1)2=3k 2+6k +3 =(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1.综合①②,当n ≥4时,1b n>S n +1. 16.(2018·合肥模拟)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3;(2)求数列{x n }的通项公式.解 (1)证明:用数学归纳法证明2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为y -5=f (2)-52-4(x -4), 令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4), 令y =0,解得x k +2=3+4x k +12+x k +1. 由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2. 所以2≤x k +1<x k +2<3,即当n =k +1时,结论也成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得x n +1=3+4x n 2+x n. 设b n =x n -3,则1b n +1=5b n +1,即1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1. 故数列{x n }的通项公式为x n =3-43·5n -1+1.。
高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明11-2aWord版含解析
[基础送分 提速狂刷练]一、选择题1.(·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i ,可得z =-1+i i =(-1+i )ii·i =1+i.故复数z 的实部与虚部的和是1+1=2,故选C.2.(·湖北优质高中联考)已知复数z =1+i(i 是虚数单位),则2z -z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B解析 2z -z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.3.(·河南洛阳模拟)设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( )A.2-iB.2+i C .1 D .-1-2i 答案 A解析 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i.故选A.4.(·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i =( )A .iB .1C .-iD .-1答案 C解析 ∵z 为纯虚数,∴⎩⎪⎨⎪⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-3i3=-i.故选C. 5.(·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( )A.2-12B.2-1 C .1 D.2+12 答案 A解析 由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,z 的实部为2-12,故选A.6.(·安徽十校联考)若z =2-i2+i ,则|z |=( )A.15 B .1 C .5 D .25 答案 B解析 解法一:z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=35-45i ,故|z |=1.故选B.解法二:|z |=⎪⎪⎪⎪⎪⎪2-i 2+i =|2-i||2+i|=55=1.故选B. 7.(·河南百校联盟模拟)已知复数z 的共轭复数为z -,若⎝ ⎛⎭⎪⎪⎫3z 2+z -2(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 A解析 依题意,设z =a +b i(a ,b ∈R ),则3z 2+z-2=2a +b i ,故2a +b i =5-2i1-22i=1+2i ,故a =12,b =2,则在复平面内,复数z 对应的点为⎝ ⎛⎭⎪⎫12,2,位于第一象限.故选A.8.(·新乡、许昌、平顶山调研)复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A.[]-1,1B.⎣⎢⎡⎦⎥⎤-916,1 C.⎣⎢⎡⎦⎥⎤-916,7 D.⎣⎢⎡⎦⎥⎤916,7 答案 C解析 由复数相等的充要条件,可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.故选C.9.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为( )A .-36-12iB .-32+32i C.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i=32+12i ,所以z =32+32i.故选D.10.已知z =a +b i(a ,b ∈R ,i 是虚数单位),z 1,z 2∈C ,定义:D (z )=||z ||=|a |+|b |,D (z 1,z 2)=||z 1-z 2||,给出下列命题:(1)对任意z ∈C ,都有D (z )>0;(2)若z 是复数z 的共轭复数,则D (z )=D (z )恒成立; (3)若D (z 1)=D (z 2)(z 1,z 2∈C ),则z 1=z 2;(4)对任意z 1,z 2,z 3∈C ,结论D (z 1,z 3)≤D (z 1,z 2)+D (z 2,z 3)恒成立.其中真命题为( )A .(1)(2)(3)(4)B .(2)(3)(4)C .(2)(4)D .(2)(3) 答案 C解析 对于(1),由定义知当z =0时,D (z )=0,故(1)错误,排除A ;对于(2),由于共轭复数的实部相等而虚部互为相反数,所以D (z )=D (z )恒成立,故(2)正确;对于(3),两个复数的实部与虚部的绝对值之和相等并不能得到实部与虚部分别相等,所以两个复数也不一定相等,故(3)错误,排除B ,D ,故选C.二、填空题11.(·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.答案10解析 解法一:∵z =(1+i)(1+2i)=1+2i +i -2=-1+3i , ∴|z |=(-1)2+32=10. 解法二:|z |=|1+i||1+2i| =2×5=10.12.(·天津高考)已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则ab 的值为________.答案 2解析 由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎪⎨⎪⎧b +1=a ,1-b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以ab =2.13.(·北京高考)设a ∈R .若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案 -1解析 (1+i)(a +i)=(a -1)+(a +1)i ,∵a ∈R ,该复数在复平面内对应的点位于实轴上, ∴a +1=0,∴a =-1.14.若虚数z 同时满足下列两个条件:①z +5z 是实数;②z +3的实部与虚部互为相反数.则z =________.答案 -1-2i 或-2-i解析 设z =a +b i(a ,b ∈R ,b ≠0), 则z +5z =a +b i +5a +b i=a ⎝ ⎛⎭⎪⎫1+5a 2+b 2+b ⎝ ⎛⎭⎪⎫1-5a 2+b 2i. 又z +3=a +3+b i 实部与虚部互为相反数,z +5z 是实数,根据题意有⎩⎨⎧b ⎝⎛⎭⎪⎫1-5a 2+b 2=0,a +3=-b ,因为b ≠0,所以⎩⎪⎨⎪⎧ a 2+b 2=5,a =-b -3,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1.所以z =-1-2i 或z =-2-i.三、解答题15.(·徐汇区校级模拟)已知z 是复数,z +2i 与z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应点在第一象限.(1)求z 的值;(2)求实数a 的取值范围. 解 (1)设z =x +y i(x ,y ∈R ),又z +2i =x +(y +2)i 为实数,∴y +2=0,解得y =-2. ∴z2-i =x -2i 2-i =(x -2i )(2+i )(2-i )(2+i )=(2x +2)+(x -4)i 5, ∵z 2-i 为实数,∴x -45=0,解得x =4. ∴z =4-2i.(2)∵复数(z +a i)2=[4+(a -2)i]2=16-(a -2)2+8(a -2)i =(12+4a -a 2)+(8a -16)i ,∴⎩⎪⎨⎪⎧12+4a -a 2>0,8a -16>0,解得2<a <6, 即实数a 的取值范围是(2,6).16.(·孝感期末)已知复数z =(m -1)+(2m +1)i(m ∈R ). (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及|z |的最小值.解 (1)∵z =(m -1)+(2m +1)i(m ∈R )为纯虚数, ∴m -1=0且2m +1≠0,∴m =1. (2)z 在复平面内的对应点为(m -1,2m +1).由题意得⎩⎪⎨⎪⎧m -1<0,2m +1>0,∴-12<m <1, 即实数m 的取值范围是⎝ ⎛⎭⎪⎫-12,1.而|z |=(m -1)2+(2m +1)2=5m 2+2m +2=5⎝ ⎛⎭⎪⎫m +152+95, 当m =-15∈⎝ ⎛⎭⎪⎫-12,1时,|z |min =95=355.。
2019版高考数学一轮复习第11章算法、复数、推理与证明115数学归纳法课后作业理.doc
11.5数学归纳法E课后作业孕谀[基础送分提速狂刷练]一、选择题1.(2016 •安庆高三月考)用数学归纳法证明2W(/?>5,胆NJ,第一步应验证()A.n=4B. /7=5C.刀=6D. n=7答案B解析根据数学归纳法的步骤,首先要验证刀取第一个值时命题成立,又刀N5,故第一步验证77=5.故选B.2.用数学归纳法证明12+22+-+(/7- 1) 2+/72+(/7-1)2 + - + 22+12 = /? 2/?3+1时,由n=k的假设到证明n=k+\时,等式左边应添加的式子是()A.(A+1)2+2A2B.(&+1F+护C.(Zr+1)2D.|a+1) [2a+l)2+l]答案B解析由n=k 80 n= k+1时,左边增加(&+1)' + #.故选B.3.(2018 •沈阳调研)用数学归纳法证明“/『+(卄1)'+(卄2)江用2)能被9整除”, 利用归纳法假设证明n=k+1时,只需展开()A. (&+3)‘B. (&+2)‘C. (A+l)3D. U+l)3+(A+2)3答案A解析假设n=k时,原式护+(外1尸+(斤+2)'能被9整除,当n=k+1时,(斤+1)‘ + (A+2)3+(A+3)3为了能用上面的归纳假设,只须将U+3)3展开,让其出现#即可.故选A.4.己知代刀)=(2刀+7)・3"+9,存在自然数加使得对任意用N*,都能使刃整除A/?), 则最大的/〃的值为()A. 30B. 26C. 36D. 6答案C解析・.・f(l)=36, /(2) =108 = 3X36, f(3) =360=10X36, :f(2), f(3)都能被36整除,猜想fS)能被36整除证明如下:当/7=1,2时,由以上得证.假设当n= kgb 时,f(/d = (2A+7)・3"+9 能被36 整除,则当n=k+1 时,/U+1)—/W = (2&+9) • 3小一(2斤+7)・3“=(6£+27)・ 3*-(2£+7)・ 3"= (4W+20)・ 3"=36(斤+5)・ 3"_2(^2), :. f(k + 1)能被36整除・・・・f(l)不能被大于36的数整除,.••所求最大的/〃的值为36.5.(2017 •泉州模拟)用数学归纳法证明n+ (/?+!) + (/?+2) +•••+ (3/?-2) = (2/7-1)2(/?GN*)时,若记/'(刀)=刀+ (刀+1) + (卄2) ------- (3刀一2),则 f{k+Y) —/*(A)等于()A. 3A-1B. 3A+1C. 8kD. 9k答案C解析因为 f(&)=&+4+1)+ 4+2)+・・・+(3&—2), AA+1) = a+1) + a+2) +••• + (3&—2) + (3斤一 1)+ (3&) + (3£+1),则 f(k+1) 一/W =3—1 +3k+3k+1 一k=8k.故选C.6. (2018 •太原质检)平面内有刃条直线,最多可将平面分成代刃)个区域,则代刀)的表 达式为()A. n+1 r 孑乜+2答案C解析1条直线将平面分成1 + 1个区域;2条直线最多可将平面分成1 + (1+2)= 4个区 域;3条直线最多可将平面分成1 +(1+2 + 3) =7个区域;……;〃条直线最多可将平面分成 1 + (1+2 + 3 +・・・+ 〃)=1 + " 罗 =刃+;汁2个区域.故选c.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第〃 个三角形数为刀 罗1 =*+切.记第〃个斤边形数为AO,力(Q3),以下列出了部分斤 边形数中第〃个数的表达式:三角形数Nln, 3) =£/『+£〃;正方形数Nln, 4) =n :六边形数N 〈n, 6) = 2n —n.可以推测川刀,力的表达式,由此计算M10, 24) = ()A. 500B. 1000C. 1500D. 2000答案B11Q — 94 — 34 — 24 — 4解析 由已知得,Nln, 3) =~rf +㊁刀厂/?, N(n, 4) =/=—厂/+—厂刀,N(n, 5)31^ — 9 4—斤 fi —9 4 — 6_:门=匕一川+ J m Nlm 6) = 2n — n= o n + °根据归纳推理可得,Nlm &)k —2 2 4 — k 广 i i、 24 — 2 2 4 — 24丄匚亦,八亠=二一/?「+飞一刀.所以 M10, 24) X 10"+^—X 10= 1100-100 = 1000,故答案为1000.选 B.8.若数列{弘}满足%+5如1 = 36/?+18,刀丘『 且6/1 = 4,猜想其通项公式为()A. 3/7+1B. 4/7C. 5/7— 1D. 6/7—2B. 2/7 D ・ n +〃+13五边形数N5, 5)=夺 1答案D解析由0=4求得臼2=10,臼3=16,经检验臼”=6/7—2.故选D.二、填空题9. 设$=l+*+g+# -------------- 寺,则$+1 —$= _______2“+1 +2/,+ 2+2//+3+,,<+9+1 — ^=2'+1+2/,+2 +2/,+3_1 卜2"+2"10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形, 下图为一组蜂巢的截面图•其屮第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19 个蜂巢,按此规律,以代/7)表示笫/7个图的蜂巢总数,则用/7表示的A/;) =•解析 由于 f(2)—f(l)=7—l=6, A3)-A2) =19-7=2X6, 推测当心2 时,有 f(/7)— f(/7—1) =6(/7—1),所以 f {n) = [f(n) — f\n — 1) ] + [f(〃一 1) —/'(〃一2) ] + [Az?-2) —f(n —3)] 卜[f(2)-f(l)]+f(l)=6[(/?-l) + (/?-2)+・・・ + 2 + l]+l=3/-3/?+l.又 f(l) =l=3xr-3Xl + l, ・・・f(/7)=3//-3〃+l.11. 设数列{/}的前刀项和为S”且对任意的自然数刀都有($—1)2=/$,通过计算S,$, 猜想 Sn= __________ .n答案币解析由($ —1)2=£,得 $=*; 2由(1)2= (5 —$)$,得 $=§;答案 解析S T +1 = 1 b 2 + 3+44 答案1'+2'+3'+4‘=(1+2+3+4)2,由此可猜想第刀个等式为 1'+2‘+3'+4‘+・・・ + /= (1+2+3、9 n n+1+・・+沪=———三. 解答题13. (2017 •河南期末)设等差数列&}的公差小0,且 沙0,记T lt =——3\32 日2&3 3n3trV\(1) 用句,〃分别表示蛊,兀,并猜想兀; (2) 用数学归纳法证明你的猜想.解 (1) T\= = TTJ~;由此可猜想T tl = ------ .a\ a\-r nd(2)证明:①当〃=1吋,7\= ------ ,结论成立,a\ a\ + d②假设当n=k 时(圧N")时结论成立, 即 Tk= I ,,—,a\ a\~\~kd则当 n=k+1 时,Tk+i = T k + ---- -禺+偸+2=—士—+ __________________ 1 ___________ a\ a\ + kd a\ + kd [&+ k+l d]•: 3f t = 2 3n+1 — 1 91 . 112 —十 日日花】 日2丿“ T1 1 1 1 1 ¥ I' /3 —十 十 臼<31 电丄丄' | 2 2® di) 日 1 日 3 a\ a\ + 2d(1) COS'3X2^=COS2兀 3X2^= 2(COS ^^7・・・盼产土寸岁,又“+122,日”+i〉0,(2)当刀=1 时,0=_*,方】=1一2 = — 1, /. ai>Z?i,当n=2时,&2=刁血=1—㊁=空,:.氐=b“当n— 3时,臼3=^"",厶=1 —§=§,猜想:当/?23时,必人,下面用数学归纳法证明:①当77=3时,由上知,曰3<厶,结论成立.②假设n=k, 5,时,幼5成立,1 4即证明I~T^T< 1 - k+\•A+1 ! +「2 ]•・_ £+1 ~~-~~k+\~~"J 'I 4 「 2 T即证明&+i •&+i ! +[ &+1 •&+1 ! %,k_\ 2「 2 n即讪明k k+1—•—~k+l — +|_ —•—k+l —显然成立・:.n=k+1吋,结论也成立.综合①②可知:当心3时,成立.综上可得,当门=1时,0>方1;当n=2时,6?2=&;当〃23, /7EN*时,冰bn、15.(2018 •上饶模拟)已知等差数列{/}的公差〃大于0,且昂是方程/-12^+27 =0的两根,数列{爲的前刀项和为%且7;=1—尹.(1)求数列{廟,{加的通项公式;(2)设数列⑷的前/?项和为$,试比较*与恥的大小,并说明理由.解(1)设弘的首项为V^2,念是方程x — 12x+27 = 0的两根,• •禺=2/7 — 1.1 2T 〃= 1 时,A=7i = l —前,:.bi =-心2时,%=1-如"①,%一】=1-挤一1②,(2)5=1+ 7_1 刀=//,汕=(卄1严, 以下比较+与Sm 的大小:On1 3 1当n =1时,〒=云,$=4,〒〈$,力:2 bi 1 9 1当刀=2 时,—$=9, —<S, b> z th1271当刀=3 时,—=~, $=16, 了〈$,‘ 1 1 81 1 日刀=4 吋,厂二£=25, 丁>&,b\ 2 b\猜想:刀24时,}>9+i.bn 下面用数学归纳法证明: ① 当77=4时,已证.② 假设当n=k(kwN, ^4)吋,*Sz3X 即y>(A+l)2,那么,n=k+1 时, ] 3*+i 3*"_=~=3 •石>3(*+1)2=3#+6A+3—(F + 4&+4) +2 护+2A —1> [ (&+1) + 1]'=S(A +I )+I .综合①②,当刀$4时,+>SrH ・16. (2018 •合肥模拟)函数A%)=/-2x-3.定义数列{必}如下:匿=2, 是过两点户(4, 5), @(疋,f(^))的直线/U 与X 轴交点的横坐标.⑴证明:2W 血5+K3;解得曰1 = 1,d=2、①一②得仏=飢7数列是等比数列.2(2)求数列{/}的通项公式.解(1)证明:用数学归纳法证明卄K3. ① 当刀=1时,孟=2,直线PQ 的方程为 厂5丿二「5匕—4),令尸0,解得上=¥,所以2£眉<卫〈3. ② 假设当n=k 时,结论成立,即2W 池5+K3. 直线PQz 的方程为y-^=r:)(A-4),血+i —4所以2W*H 5+2<3,即当n=k+1时,结论也成立. 由①②知对任意的正整数门,2W 疋<^+K3・3 +4 x ⑵由⑴及题意得设 bn=X r — Z,'1 11 3 1 1 Q所以数列云+才是首项为一孑公比为5的等比数列,因此云+2=—]・門,即b 严一3 • 5z?_,+r3 由($ —1)2=($ — *S )得 $=孑猜想5?=刀+ ].12. (2018 •云南名校联考)观察下列等式:13 4= I 2,13+23=32,13+23+33=62,13+23+33+ 4:i=10\…,根据上述规律,第刀个等式为 __________ ・3 3 3 3 「77〃+ 1 I.,答案 1'+2'+3'+・・・+ /= ---------- ------ 〜解析 由第一个等式 13=12,得 13=(1+0)2;第二个等式 13+23=32,得 1'+2'= (1+2)2; 第三个等式13+23+33=62,得 13+23+33=(1+2+3)2;第四个等式 13+23+33+43=102,得故数列{小的通项公式为如=32 + 池+1由归纳假设知心+2=驻g_ k\_a\+&+1 d\-\~ a\a\ a\ + kd[<3i+ k+\ d]& + kd&+1 k~\~ 1 a\ a\ + kd[0+k+1 d]0 [臼1+ k+1 d\'即n=k+1时,结论成立.由①②可知,几=----- 对于一切用2恒成立.a\ a\十nd14.(2017 •扬州模拟)在数列 &}中,日“=cos3x 2(〃WN*).(1)试将N沖表示为②的函数关系式;2(2)若数列{加满足5=\———(/?eN*),猜想/与人的大小关系,并证明你的结论.n • n\。
全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案(2021年整理)
(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第1讲算法初步学案的全部内容。
第1讲算法初步板块一知识梳理·自主学习[必备知识]考点1 算法的框图及结构1.算法算法通常是指按照一定规则解决某一类问题的明确程序或有限的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.3.三种基本逻辑结构考点2 算法语句的格式及框图1.输入语句、输出语句、赋值语句的格式与功能2.条件语句的格式及框图(1)IF-THEN格式(2)IF-THEN-ELSE格式3.循环语句的格式及框图(1)UNTIL语句(2)WHILE语句[必会结论]1.注意区分处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环",是循环结构必不可少的一部分.3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)算法只能解决一个问题,不能重复使用.( )(2)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.()(3)算法可以无限操作下去. ()(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的. ( )(5)▱是赋值框,有计算功能.()(6)当型循环是给定条件不成立时执行循环体,反复进行,直到条件成立为止。
高考复习数学文一轮分层演练:第11章复数、算法、推理与证明章末总结 Word版含解析
章末总结知识点考纲展示复数❶理解复数的基本概念,理解复数相等的充要条件.❷了解复数的代数表示法及其几何意义.❸会进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.算法与程序框图❶了解算法的含义,了解算法的思想.❷理解程序框图的三种基本逻辑结构:顺序、条件分支、循环;理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.框图❶了解程序框图、工序流程图(即统筹图)与结构图.❷能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.❸会运用结构图梳理已学过的知识,整理收集到的资料信息.合情推理与演绎推理❶了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.❷了解演绎推理的重要性;掌握演绎推理的基本模式,并能运用它们进行一些简单推理.❸了解合情推理和演绎推理之间的联系和差异.直接证明与间接证明❶了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.❷了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.考点考题考源复数的几何意义(2016·高考全国卷Ⅰ,T2,5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.-3 B.-2C.2 D.3选修1-2P60练习T1(3)复数的运算与几何意义(2017·高考全国卷Ⅱ,T2,5分)(1+i)(2+i)=()A.1-i B.1+3iC.3+i D.3+3i选修1-2P60练习T1(2)复数的运算(2017·高考全国卷Ⅰ,T3,5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1-i)选修1-2P59例3(2)C .(1+i)2D .i(1+i)程序框图(2015·高考全国卷Ⅱ,T 8,5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14必修3 P 36例1(2017·高考全国卷Ⅱ,T 8,5分)执行如图的程序框图,如果输入的a=-1,则输出的S =( )A .2B .3C .4D .5必修3 P 41例4、P 42程序框图推理与证明(2017·高考全国卷Ⅲ,T 19,12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 必修2 P 79B 组T 1一、选择题1.(选修1-2 P61A组T5(4)改编)i为虚数单位,则5i(2+i)等于()A.-2-i B.-2+i C.-1+2i D.-1-2i解析:选D.5i(2+i)=5-1+2i=5(-1-2i)5=-1-2i.2.(选修1-2 P33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为()A.3、4、2、1 B.4、2、1、3C.2、3、1、4 D.1、3、2、4解析:选B.由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.3.(选修1-2 P30练习T2改编)如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(15,2)为()131 61 61 10131101 15133013301151 2112131512121…A .2942B .710C .1724D .73102解析:选C .由数阵知A (3,2)=16+16=16+23×4,A (4,2)=16+16+110=16+23×4+24×5,A (5,2)=16+16+110+115=16+23×4+24×5+25×6,…,则A (15,2)=16+23×4+24×5+25×6+…+215×16=16+2⎝⎛⎫13-14+14-15+…+115-116=16+2⎝⎛⎫13-116 =16+2×1348=1724,选项C 正确. 4.(必修3 P 34-35案例1改编)如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )A .0B .5C .45D .90解析:选C .该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C .二、填空题5.(选修1-2 P 61A 组T 3改编)ABCD 是复平面内的平行四边形,A 、B 、C 三点对应的复数分别为1+2i ,-i ,2+i ,O 为复平面原点,则|OD |=________.解析:设D 点对应的复数为x +y i(x ,y ∈R ),因为ABCD 是平行四边形, 所以AB →=DC →,即-i -(1+2i)=(2+i)-(x +y i), 即-1-3i =(2-x )+(1-y )i ,所以⎩⎪⎨⎪⎧2-x =-11-y =-3,解得x =3,y =4.所以D 点对应的复数为3+4i . 所以|OD |=|3+4i|=5, 答案:56.(选修1-2 P 44B 组T 1改编)已知sin α-cos αsin α+2cos α=-1,则tan 2α=________.解析:由sin α-cos αsin α+2cos α=-1,可得2sin α=-cos α,所以tan α=-12,所以tan 2α=2tan α1-tan 2α=2×⎝⎛⎭⎫-121-⎝⎛⎭⎫-122=-43. 答案:-43三、解答题7.(选修1-2 P 35B 组T 1改编)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2).计算S 1、S 2、S 3,并猜想S n .解:n =1时,S 1=a 1=-23.n =2时,S 2+1S 2+2=a 2=S 2-S 1=S 2+23,所以S 2=-34.n =3时,S 3+1S 3+2=a 3=S 3-S 2=S 3+34,所以S 3=-45,所以猜想S n =-n +1n +2.8.(必修2 P 45探究、P 52B 组T 1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . 解:(1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH .证明如下:因为ABCD -EFGH 为正方体,所以BC ∥FG ,BC =FG , 又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH , 所以BCHE 为平行四边形. 所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH , 所以BE ∥平面ACH . 同理BG ∥平面ACH . 又BE ∩BG =B ,所以平面BEG ∥平面ACH . (3)证明:连接FH .因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.。
2019版高考数学(理)高分计划一轮狂刷练:第11章 算法、复数、推理与证明 11-5a Word版含解析
[基础送分 提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n >n 2(n ≥5,n ∈N *),第一步应验证( )A .n =4B .n =5C .n =6D .n =7 答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5.故选B.2.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1] 答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2.故选B. 3.(2018·沈阳调研)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案 A解析 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.故选A.4.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6 答案 C解析 ∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36,∴f (1),f (2),f (3)都能被36整除,猜想f (n )能被36整除.证明如下:当n =1,2时,由以上得证.假设当n =k (k ≥2)时,f (k )=(2k +7)·3k +9能被36整除,则当n =k +1时,f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k =(6k +27)·3k -(2k +7)·3k =(4k +20)·3k =36(k +5)·3k -2(k ≥2),∴f (k +1)能被36整除.∵f (1)不能被大于36的数整除,∴所求最大的m 的值为36.5.(2017·泉州模拟)用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f (n )=n +(n +1)+(n +2)+…+(3n -2),则f (k +1)-f (k )等于( )A .3k -1B .3k +1C .8kD .9k 答案 C解析 因为f (k )=k +(k +1)+(k +2)+…+(3k -2),f (k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+(3k )+(3k +1),则f (k +1)-f (k )=3k -1+3k +3k +1-k =8k .故选C.6.(2018·太原质检)平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为 ( )A .n +1B .2n C.n 2+n +22D .n 2+n +1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.故选C. 7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数N (n,3)=12n 2+12n ; 正方形数N (n,4)=n 2; 五边形数N (n,5)=32n 2-12n ; 六边形数N (n,6)=2n 2-n .可以推测N (n ,k )的表达式,由此计算N (10,24)=( ) A .500 B .1000 C .1500 D .2000 答案 B解析 由已知得,N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,根据归纳推理可得,N (n ,k )=k -22n 2+4-k2n .所以N (10,24)=24-22×102+4-242×10=1100-100=1000,故答案为1000.选B.8.若数列{a n }满足a n +5a n +1=36n +18,n ∈N *,且a 1=4,猜想其通项公式为( )A .3n +1B .4nC .5n -1D .6n -2 答案 D解析 由a 1=4求得a 2=10,a 3=16,经检验a n =6n -2.故选D. 二、填空题9.设S n =1+12+13+14+…+12n ,则S n +1-S n =______. 答案 12n +1+12n +2+12n +3+…+12n +2n解析 S n +1=1+12+13+14+…+12n +1S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n .10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.答案 3n 2-3n +1解析 由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, 推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+[f (n -2)-f (n -3)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1,∴f (n )=3n 2-3n +1.11.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n-1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案n n +1解析 由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23; 由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.猜想S n =nn +1.12.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎢⎡⎦⎥⎥⎤n (n +1)22. 三、解答题13.(2017·河南期末)设等差数列{a n }的公差d >0,且a 1>0,记T n=1a 1a 2+1a 2a 3+…+1a n a n +1.(1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ; (2)用数学归纳法证明你的猜想. 解 (1)T 1=1a 1a 2=1a 1(a 1+d );T 2=1a 1a 2+1a 2a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 3=2a 1a 3=2a 1(a 1+2d );T 3=1a 1a 2+1a 2a 3+1a 3a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3+1d ⎝ ⎛⎭⎪⎫1a 3-1a 4=1d⎝ ⎛⎭⎪⎫1a 1-1a 4=3a 1a 4=3a 1(a 1+3d ); 由此可猜想T n =na 1(a 1+nd ).(2)证明:①当n =1时,T 1=1a 1(a 1+d ),结论成立,②假设当n =k 时(k ∈N *)时结论成立, 即T k =ka 1(a 1+kd ),则当n =k +1时,T k +1=T k +1a k +1a k +2=ka 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=k [a 1+(k +1)d ]+a 1a 1(a 1+kd )[a 1+(k +1)d ]=(a 1+kd )(k +1)a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ].即n =k +1时,结论成立.由①②可知,T n =1a 1(a 1+nd )对于一切n ∈N *恒成立.14.(2017·扬州模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解 (1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝ ⎛⎭⎪⎪⎫cos π3×2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12,又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12.(2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1, 当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立. ②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12<2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!, 要证a k +1<b k +1,即证明⎝⎛⎭⎪⎪⎫1-1k ·k !2<⎝ ⎛⎭⎪⎪⎫1-2(k +1)·(k +1)!2, 即证明1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎢⎢⎡⎦⎥⎥⎤2(k +1)·(k +1)!2, 即证明1k ·k !-4(k +1)·(k +1)!+⎣⎢⎢⎡⎦⎥⎥⎤2(k +1)·(k +1)!2>0, 即证明 (k -1)2k (k +1)·(k +1)!+⎣⎢⎢⎡⎦⎥⎥⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得,当n =1时,a 1>b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .15.(2018·上饶模拟)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n 且T n =1-12b n .(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.解 (1)设a n 的首项为a 1,∵a 2,a 5是方程x 2-12x +27=0的两根,∴⎩⎨⎧a 2+a 5=12,a 2·a 5=27,解得⎩⎨⎧a 1=1,d =2,∴a n =2n -1.∵n =1时,b 1=T 1=1-12b 1,∴b 1=23.n ≥2时,T n =1-12b n ①,T n -1=1-12b n -1②, ①-②得b n =13b n -1数列是等比数列. ∴b n =23·⎝ ⎛⎭⎪⎫13n -1=23n . (2)S n =1+(2n -1)2n =n 2,S n +1=(n +1)2, 以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,1b 1<S 2,当n =2时,1b 2=92,S 3=9,1b 2<S 3,当n =3时,1b 3=272,S 4=16,1b 3<S 4,当n =4时,1b 4=812,S 5=25,1b 4>S 5,猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k2>(k +1)2,那么,n =k +1时, 1b k +1=3k +12=3·3k 2>3(k +1)2=3k 2+6k +3 =(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1. 综合①②,当n ≥4时,1b n>S n +1.16.(2018·合肥模拟)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.解 (1)证明:用数学归纳法证明2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为 y -5=f (2)-52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3. ②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4),11 令y =0,解得x k +2=3+4x k +12+x k +1. 由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2. 所以2≤x k +1<x k +2<3,即当n =k +1时,结论也成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得x n +1=3+4x n 2+x n. 设b n =x n -3,则1b n +1=5b n +1,即1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1. 故数列{x n }的通项公式为x n =3-43·5n -1+1.。
近年高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文(2
(北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文的全部内容。
第一节数系的扩充与复数的引入A组基础题组1。
(2017北京东城期末)在复平面内,复数z=i(1+i)(i为虚数单位),那么|z|= ()A。
1 B。
C。
D。
22。
(2017北京海淀期末)复数i(2—i)(i为虚数单位)在复平面内对应的点的坐标为( ) A。
(-2,1)B。
(2,-1)C。
(1,2) D.(-1,2)3.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数是( )A. B. C。
D.4.已知i是虚数单位,则复数=()A。
1—i B。
-1+i C。
1+i D.—1—i5。
已知复数z满足z(1-i)=4(i为虚数单位),则z=( )A.1+B.-2-2iC.-1—iD.1—i6。
(2016北京朝阳二模)复数z=(i为虚数单位)在复平面内对应的点位于()C.第三象限D。
第四象限7.若复数z=+a(i为虚数单位)在复平面上对应的点在第二象限,则实数a可以是() A。
-4 B。
—3C.1D.28。
若(1+i)+(2—3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别为( )A。
近年高考数学一轮复习第11章算法、复数、推理与证明11.2数系的扩充与复数的引入学案文(2021年
2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文的全部内容。
11。
2 数系的扩充与复数的引入[知识梳理]1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈(2)复数z=a+b i(a,b∈R) 平面向量错误!.3.复数代数形式的四则运算(1)运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z+z1,(z1+z2)+z3=z1+(z2+z3).2(3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z1,z2,z3∈C,有z1·z2=z2·z1,(z1·z2)·z3=z1·(z2·z3),z1(z2+z3)=z1z2+z1z3。
(4)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量错误!,错误!不共线,则复数z1+z2是以错误!,错误!为两邻边的平行四边形的对角线错误!所对应的②复数减法的几何意义:复数z1-z2是错误!-错误!=错误!所对应的复数.4.模的运算性质:①|z|2=|错误!|2=z·错误!;②|z1·z2|=|z1||z2|;③错误!=错误!.[诊断自测]1.概念思辨(1)关于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)一定有两个根.()(2)若复数a+b i中a=0,则此复数必是纯虚数.()(3)复数中有相等复数的概念,因此复数可以比较大小.()(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案(1)√(2)×(3)×(4)√2.教材衍化(1)(选修A1-2P63A组T1(3))在复平面内,复数z=错误!(i为虚数单位)对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案D解析z=错误!=错误!=错误!-错误!i,其对应的点为错误!,在第四象限.故选D.(2)(选修A1-2P61A组T3)在复平面内,复数6+5i,-2+3i对应的点分别为A,B。
2019版高考数学(理)高分计划一轮狂刷练及答案解析:第11章 算法、复数、推理与证明 11-3a
[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +a x n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B.⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111 D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D. 5.(2017·阳山一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A ,“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B ,“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C ,将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D ,“(ab )n =a n b n ”类推出“(a+b )n =a n +b n ”是错误的,如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2017=( )A .502B .503C .504D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2017=x 1009=505.故选D. 7.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12B.5-12C.1+52D.1-52 答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C.8.(2017·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c,类比这个结论可知,四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S-ABC的体积为V,则R等于()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4答案 C解析设四面体的内切球的球心为O,则球心O到四个面的距离都是R,由平面图形中r的求解过程类比空间图形中R的求解过程可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V=V四面体S-ABC=13(S1+S2+S3+S4)R,所以R=3VS1+S2+S3+S4.故选C.9.(2018·鹰潭模拟)[x]表示不超过x的最大整数,例如:[π]=3.S1=[1]+[2]+[3]=3S2=[4]+[5]+[6]+[7]+[8]=10S3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21,…,依此规律,那么S10等于()A.210 B.230 C.220 D.240答案 A解析∵[x]表示不超过x的最大整数,∴S1=[1]+[2]+[3]=1×3=3,S2=[4]+[5]+[6]+[7]+[8]=2×5=10,S3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,……,S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(2017·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x+y =2,求1x +4y 的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x +4x y ≥2y x ·4x y =4,∴1x +4y ≥12(5+4)=92, 当且仅当⎩⎨⎧ y x =4x y,x +y =2,即⎩⎪⎨⎪⎧ x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C 的最小值为( )A.16πB.8πC.4πD.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C=1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________;(2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S=4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr ,即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S=4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(2017·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3; 第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x 3×4; ……第8关收税金:x 8×9=x 72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2016是数列{a n }中的第________项;(2)b 2k -1=________(用k 表示).答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k-1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2016是第1008组的后面一项,即b 2016是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2. 三、解答题15.(2017·未央区期中)阅读以下求1+2+3+…+n 的值的过程: 因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2. 类比上述过程,求12+22+32+…+n 2的值.解 ∵23-13=3·22-3·2+1,33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1),由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1),即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1). 16.(2018·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n =S 2n -1T 2n -1. (1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *),(a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *), 那么对于等比数列{a n }、{b n }有 ⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.。
2019版高考数学(文)高分计划一轮狂刷练:第11章算法、复数、推理与证明 11-3a Word版含解析
[基础送分 提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2016=( )A .3B .-3C .6D .-6答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2016=6×335+6,∴a 2016=a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +a x n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111 D .⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D. 5.(2017·阳山县校级一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案 C解析 对于A “若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B “若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D “(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”是错误的;如(1+1)2=12+12.故选C.6.(2017·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2017=( )A .502B .503C .504D .505答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2017=x 1009=505.故选D.7.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( ) A.-5-12B.5-12C.1+52D.1-52 答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C.8.(2017·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4V S 1+S 2+S 3+S4答案 C解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R=3V S 1+S 2+S 3+S 4.故选C. 9.(2018·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3. S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21, …依此规律,那么S 10等于( )A .210B .230C .220D .240答案 A解析 ∵[x ]表示不超过x 的最大整数,∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,…S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(2017·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x+y =2,求1x +4y 的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x +4x y ≥2y x ·4xy =4,∴1x +4y ≥12(5+4)=92,当且仅当⎩⎨⎧ y x =4x y,x +y =2,即⎩⎪⎨⎪⎧ x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C的最小值为( )A.16πB.8πC.4πD.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C=1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________.(2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S=4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S=4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(2017·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3; 第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x 3×4; ……第8关收税金:x 8×9=x 72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2016是数列{a n }中的第________项;(2)b 2k -1=________(用k 表示).答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k-1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2016是第1008组的后面一项,即b 2016是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2. 三、解答题15.(2017·未央区校级期中)阅读以下求1+2+3+…+n 的值的过程:因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2. 类比上述过程,求12+22+32+…+n 2的值.解 ∵23-13=3·22-3·2+1,33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1),由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1),即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1). 16.(2018·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n=S 2n -1T 2n -1. (1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *),(a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *),那么对于等比数列{a n }、{b n }有⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.2019版高考数学(文)2019版高考数学(文)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[基础送分 提速狂刷练]一、选择题1.(2015·湖南高考)执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.67B.37C.89D.49 答案 B解析 当输入n =3时,输出S =11×3+13×5+15×7=12⎝⎛⎭⎪⎫1-13+13-15+15-17=37.故选B.2.(2015·全国卷Ⅱ)如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A.0 B.2 C.4 D.14答案 B解析开始:a=14,b=18,第一次循环:a=14,b=4;第二次循环:a=10,b=4;第三次循环:a=6,b=4;第四次循环:a =2,b=4;第五次循环:a=2,b=2.此时,a=b,退出循环,输出a=2.故选B.3.(2018·江西赣州十四县联考)如图所示的程序框图,若输入x,k,b,p的值分别为1,-2,9,3,则输出的x值为( ) A.-29B.-5C.7D.19答案 D解析程序执行过程如下:n=1,x=-2×1+9=7;n=2,x=-2×7+9=-5;n=3,x=-2×(-5)+9=19;n=4>3,终止循环,输出x=19.故选D.4.某程序框图如图所示,若输出的k的值为3,则输入的x的取值范围为( )A .[15,60)B .(15,60]C .[12,48)D .(12,48] 答案 B解析 根据程序框图的要求逐步分析每次循环后的结果,可得不等式组⎩⎪⎨⎪⎧x >3,x3-2>3,13⎝ ⎛⎭⎪⎫x 3-2-3≤3,解得15<x ≤60,故选B.5.(2017·广东潮州二模)执行如图所示的程序框图,则输出的结果为( )A.7 B.9 C.10 D.11 答案 B解析i=1,s=1×13≤0.1, 否;i=3,s=13×35=15≤0.1,否;i=5,s=15×57=17≤0.1,否;i=7,s=17×79=19≤0.1,否;i=9,s=19×911=111≤0.1,是,输出i=9,故选B.6.(2016·全国卷Ⅲ)执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3B.4C.5D.6答案 B解析第一次循环:a=2,b=4,a=6,s=6,n=1;第二次循环:a=-2,b=6,a=4,s=10,n=2;第三次循环:a=2,b=4,a=6,s=16,n=3;第四次循环:a=-2,b=6,a=4,s=20,n=4.结束循环,输出n的值为4,故选B.7.执行如图所示的程序框图,则输出的S=( )A.32B. 3 C .-32 D .0 答案 A解析 由程序框图得S =sin π3+sin 2π3+sin 3π3+sin 4π3+sin 5π3+sin 6π3+sin 7π3+…+sin 2017π3.由正弦函数的周期性,得S =sin π3=32,故选A.8.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A .3.119B .3.126C .3.132D .3.151 答案 B解析在空间直角坐标系Oxyz 中,不等式组⎩⎪⎨⎪⎧0<x <1,0<y <1,0<z <1,表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组⎩⎪⎨⎪⎧0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×4π3×13=π6,因此π6≈5211000,即π≈3.126,故选B.9.已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′ x .执行如图所示的程序框图,若输出的结果S >20162017,则判断框中可以填入的关于n 的判断条件是()A .n ≤2016?B .n ≤2017?C .n >2016?D .n >2017? 答案 B解析 f ′(x )=3ax 2+x ,则f ′(-1)=3a -1=0,解得a =13,g (x )=1f ′ x =1x 2+x =1x x +1 =1x -1x +1,g (n )=1n -1n +1,则S =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,因为输出的结果S >20162017,分析可知判断框中可以填入的判断条件是“n ≤2017?”,故选B.10.执行如图所示的程序框图,输出的S 的值为( )A .log 210-1B .2log 23-1 C.92 D .6 答案 B解析 S =3,i =1,i ≤7成立;S =3+log 221,i =2,i ≤7成立;S =3+log 221+log 232=3+log 2⎝⎛⎭⎪⎪⎫ 21× 32 =3+log 23,i =3,i ≤7成立; S =3+log 23+log 243=3+log 2⎝⎛⎭⎪⎪⎫3× 43=3+log 24,i =4,i ≤7成立;……;S =3+log 28,i =8,i ≤7不成立,退出循环,S =log 2(3+log 28)=log 2⎝⎛⎭⎪⎫3+32=log 292=2log 23-1,故选B.11.(2018·河南模拟)下边程序框图的功能是求出16+16+16+16+16的值,则框图中①、②两处应分别填写的是( )A .i ≥1,aB .i ≥1,a -6C .i >1,aD .i >1,a -6 答案 D解析 程序框图是计算16+16+16+16+16的值,则利用累积加,则第一个处理框应为i >1,然后计算i 是自减1个,i =i -1,第二空输出结果a -6.故选D.12.(2017·湖南三模)给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A .i ≤30?;p =p +i -1B .i ≤31?;p =p +i +1C .i ≤31?;p =p +iD .i ≤30?;p =p +i 答案 D解析 由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,即①中应填写“i≤30?”;又由第1个数是1;第2个数比第1个数大1即1+1=2;第3个数比第2个数大2即2+2=4;第4个数比第3个数大3即4+3=7;故②中应填写p=p+i.故选D.二、填空题13.定义n!=1×2×3×…×n,如图是求10!的程序框图,其中k为整数,则k=________.答案11解析因为10!=1×2×…×10,所以判断框内的条件为“i<11?”,故k=11.14.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,如图所示的程序框图表示用秦九韶算法求5次多项式f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0(x0是任意实数)时的值的过程,若输入a0=2,a1=-5,a2=6,a3=-4,a4=7,a5=2,x0=3,则输出的v的值为________.答案986解析执行程序框图,输入a0=2,a1=-5,a2=6,a3=-4,a4=7,a5=2,x0=3,经过第1次循环得v=13,n=2;经过第2次循环得v=35,n=3;经过第3次循环得v=111,n=4;经过第4次循环得v=328,n=5;经过第5次循环得v=986,n=6,退出循环.故输出的v的值为986.15.(2018·黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量他们的身高获得身高数据的茎叶图如图,在样本的20人中,记身高在[150,160),[160,170),[170,180),[180,190]的人数依次为A1,A2,A3,A4.如图是统计样本中身高在一定范围内的人数的算法框图.若图中输出的S=18,则判断框应填________.答案i<5?(或i≤4?)解析由于i从2开始,也就是统计大于或等于160的所有人数,于是就要计算A2+A3+A4,因此,判断框应填i<5?或i≤4?.16.(2018·北京昌平质量抽测)执行如图所示的程序框图,当①是i<6时,输出的S值为________;当①是i<2013时,输出的S值为________.答案 5 2013解析 当①是i <6时,当i =1时,a 1=cos π2+1=1,S =1;当i =2时,a 2=cos 2π2+1=0,S =1;当i =3时,a 3=cos 3π2+1=1,S =1+1=2;当i =4时,a 4=cos 4π2+1=2,S =2+2=4;当i =5时,a 5=cos 5π2+1=1,S =4+1=5;当i =6时,a 6=cos 6π2+1=0,S =5+0=5.此时不满足条件,输出S =5. 当①是i <2013时,因为a i =cosi π2+1的周期为4,所以a 1+a 2+a 3+a 4=4,所以S =a 1+a 2+…+a 2013=503(a 1+a 2+a 3+a 4)+a 2013=503×4+a 1=2013.。