2021高考数学新高考版一轮习题:专题5 第42练 复数 (含解析)

合集下载

备战2021高考文数热点题型和提分秘籍 专题42 直线、平面平行的判定及其性质(解析版)

备战2021高考文数热点题型和提分秘籍 专题42 直线、平面平行的判定及其性质(解析版)

专题四十二直线、平面平行的判定及其性质【高频考点解读】1.以立体几何的有关定义、公理和定理为动身点,生疏和理解空间中线面平行、面面平行的有关性质与判定定理,并能够证明相关性质定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简洁命题.【热点题型】题型一平行关系基本问题例1、(1)(2021年高考广东卷)设l为直线,α,β是两个不同的平面.下面命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l∥β(2)已知m、n、l1、l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2【提分秘籍】解决有关线面平行,面面平行的判定与性质的基本问题要留意(1)留意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出推断.(3)会举反例或用反证法推断命题是否正确.【举一反三】设l表示直线,α、β表示平面.给出四个结论:①假如l∥α,则α内有很多条直线与l平行;②假如l∥α,则α内任意的直线与l平行;③假如α∥β,则α内任意的直线与β平行;④假如α∥β,对于α内的一条确定的直线a,在β内仅有唯一的直线与a平行.以上四个结论中,正确结论的个数为()A.0 B.1C.2 D.3【热点题型】题型二直线与平面平行的判定与性质例2、(2021年高考福建卷)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC =5,DC=3,AD=4,∠P AD=60°.(1)当正视方向与向量AD→的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);(2)若M为P A的中点,求证:DM∥平面PBC;(3)求三棱锥D-PBC的体积.【提分秘籍】证明直线与平面平行,一般有以下几种方法(1)若用定义直接判定,一般用反证法;(2)用判定定理来证明,关键是在平面内找(或作)一条直线与已知直线平行,证明时留意用符号语言叙述证明过程;(3)应用两平面平行的一共性质,即两平面平行时,其中一个平面内的任何直线都平行于另一个平面.【举一反三】如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1= 3.(1)求证:BC1∥平面A1CD;(2)求三棱锥D-A1B1C1的体积.【热点题型】题型三平面与平面平行的判定与性质例3、(2021年高考陕西卷)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【提分秘籍】1.平面与平面平行的几个有用性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面之间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行. (4)两条直线被三个平行平面所截,截得的对应线段成比例. (5)假如两个平面分别平行于第三个平面,那么这两个平面相互平行.(6)假如一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行. 2.判定平面与平面平行的方法 (1)利用定义;(2)利用面面平行的判定定理; (3)利用面面平行的判定定理的推论; (4)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (5)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β). 【举一反三】已知平面α∥β,直线a ⊂α,有下列说法: ①a 与β内的全部直线平行;②a 与β内很多条直线平行; ③a 与β内的任意一条直线都不垂直. 其中真命题的序号是________.【热点题型】题型四 立体几何中的探究性问题例4、如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明.【提分秘籍】解决探究性问题一般要接受执果索因的方法,假设求解的结果存在,从这个结果动身,查找使这个结论成立的充分条件,假如找到了符合题目结果要求的条件,则存在;假如找不到符合题目结果要求的条件(消灭冲突),则不存在.常见的类型有:(1)条件探究型 (2)结论探究性.【举一反三】在四棱锥P -ABCD 中,P A ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 中点,又∠CAD =30°,P A =AB =4,点N 在线段PB 上,且PN NB =13.(1)求证:BD ⊥PC ; (2)求证:MN ∥平面PDC ;(3)设平面P AB ∩平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.【高考风向标】1.(2022·浙江卷)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥αB .若m ∥β,β⊥α,则m ⊥αC .若m ⊥β,n ⊥β,n ⊥α,则m ⊥αD .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α2.(2022·安徽卷)如图1-5所示,四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .图1-5(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.3.(2022·北京卷)如图1-5,在三棱柱ABC -A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图1-5(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E -ABC的体积.4.(2022·湖北卷)如图1-5,在正方体ABCD -A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN .图1-55.(2022·江苏卷)如图1-4所示,在三棱锥P -ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC .图1-46.(2022·新课标全国卷Ⅱ)如图1-3,四棱锥P -ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD 的体积V =34,求A到平面PBC的距离.图1-37.(2022·山东卷)如图1-4所示,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F分别为线段AD ,PC 的中点.图1-4(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面P AC .8.(2022·四川卷)在如图1-4所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形. (1)若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1.(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.图1-4【随堂巩固】1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是() A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.已知两条直线a、b与两个平面α、β,b⊥α,则下列命题中正确的是()①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③ B.②④C.①④D.②③4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④5.平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α6.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题 ①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β ④⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β ⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ⑥⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( ) A .①②③ B .①④⑤ C .①④D .①③④7.设互不相同的直线l ,m ,n 和平面α,β,γ,给出下列三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β; ②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数为________.8.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.9.在四周体ABCD 中,M ,N 分别为△ACD 和△BCD 的重心,则四周体的四个面中与MN 平行的是________.10.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.11.如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA . 12.如图,四棱锥E-ABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD .(1)求证:AB⊥ED;(2)线段EA上是否存在点F,使DF∥平面BCE ?若存在,求出EFEA;若不存在,说明理由.。

高考数学《复数》专项练习(含答案)

高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。

(完整版)高考数学第一轮复习总结精品试题:复数(含全部习题答案),推荐文档

(完整版)高考数学第一轮复习总结精品试题:复数(含全部习题答案),推荐文档

2(1
i ).当实数 m 取什么值时,复数 z 是:
(1)零;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的
复数。
2 / 13
高考数学第一轮复习总结精品试题:复数(含全部习题答案)
16、计算[(1
2i)
i100
1 (
i
)5 ]2
1 (
i )20
1 i
2
17. 设 z 4m 1 (2m 1)i, m R,若 z 对应的点在直线 x 3y 0 上。求 m 的值。
)象限。
9.复数 (a2 a 2) ( a 1 1)i (a R) 不是纯虚数,则有( )
A. a 0 B. a 2 C . a 0且a 2 D. a 1
10.设 i 为虚数单位,则 (1 i)4 的值为 ( )
A.4
B.-4
C.4i
D.-4i
11.设 z C,且(1 i)z 2i ( i 为虚数单位),则 z=
;|z|=
.
2 12.复数 1 i 的实部为
,虚部为

13.已知复数 z 与 (z +2)2-8i 均是纯虚数,则 z =
14.设 Z1 1 i , Z2 1 i ,复数 Z1 和 Z2 在复平面内对应点分别为 A、B,O 为原点,
则 AOB 的面积为

15.
m2 已知复数 z=(2+ i )
6m 1i
A.第一象限
B.第二象限
C.第三象限 D.第四象限
1 3i 3. ( 3 i)2 ( )
1 3i 1 3i
1 3i 1 3i
A. 4 4 B. 4 4 C. 2 2 D. 2 2

高考数学复数习题及答案

高考数学复数习题及答案

一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .z 的实部是1B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5BC .D .5i4.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.已知复数31i z i -=,则z 的虚部为( ) A .1 B .1- C .i D .i -6.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 7.已知复数5i 5i 2i z =+-,则z =( )A B .C .D .8.已知复数()211i z i-=+,则z =( ) A .1i --B .1i -+C .1i +D .1i - 9.设2i z i +=,则||z =( )A B C .2 D .510.在复平面内,复数z 对应的点是()1,1-,则1z z =+( ) A .1i -+ B .1i +C .1i --D .1i - 11.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( )A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x =-上12.若1i i z,则2z z i ⋅-=( )A .B .4C .D .813.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i - 14.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 19.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 20.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限21.下列结论正确的是( ) A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限23.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z > 24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线25.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =26.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数27.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限28.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 29.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B2.C【分析】利用复数的除法运算求出,即可判断各选项.【详解】,,则的实部为2,故A 错误;的虚部是,故B 错误;,故C 正;对应的点为在第一象限,故D 错误.故选:C.解析:C【分析】利用复数的除法运算求出z ,即可判断各选项.【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.3.B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】(2)21z i i i =+=-,所以|z |=故选:B4.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D. 5.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B6.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .7.B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.解析:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得()()()5i 2+i 5i 5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z ==8.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 9.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i ++===-,∴z ==故选:B .10.A【分析】由得出,再由复数的四则运算求解即可.【详解】由题意得,则.故选:A解析:A由()1,1-得出1i z =-+,再由复数的四则运算求解即可.【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A 11.A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .12.A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --.【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-=故选:A13.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A14.D【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D解析:D【分析】 先对41i z i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-,所以22z i =-, 所以共轭复数z 在复平面内的对应点位于第四象限,故选:D15.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z+=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.20.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.21.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 22.BCD根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.24.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.26.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.27.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。

2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

新高考数学大一轮复习专题:第5讲 基本不等式的综合问题利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.例1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x >0,y >0,1x +2y +1=2,则2x +y 的最小值为________. 答案 (1)233 (2)324(3)3 解析 (1)由(x +y )2=xy +1,得(x +y )2≤⎝ ⎛⎭⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33时取等号), 故x +y 的最大值为233. (2)x ·1+y 2=2x ·1+y 22 ≤2·x 2+1+y 222=2·x 2+y 22+122=324⎝ ⎛⎭⎪⎫当且仅当x =32,y =22时取等号, 故x ·1+y 2的最大值为324. (3)∵2x +(y +1)=12⎝ ⎛⎭⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.例2 记max{a ,b }为a ,b 两数的最大值,则当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y的最小值为________.答案 10解析 方法一 由题意知t ≥x 2,t ≥25y x -y , ∴2t ≥x 2+25y x -y, 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25y x -y >0, ∴t 2≥x 2·25y x -y , 又∵x 2·25yx -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =aa -1>0,解得a >1.同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥21a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴所求最小值为6.2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭⎪⎫12<x <52 的最大值是________.答案 2 2解析 y 2=(2x -1+5-2x )2=4+22x -15-2x ≤4+(2x -1)+(5-2x )=8,又y >0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为________. 答案 4解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b=a +b2+8a +b ≥2a +b 2·8a +b=4, 当且仅当a +b2=8a +b, 即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 4.设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 答案 -2解析12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥-14+2b 4|a |·|a |b =34,当且仅当b 4|a |=|a |b 且a <0,即a =-2,b =4时取等号.故当a =-2时,12|a |+|a |b取得最小值.。

人教版最新高考数学复数习题及答案附参考答案(2021年整理)

人教版最新高考数学复数习题及答案附参考答案(2021年整理)

人教版最新高考数学复数习题及答案附参考答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版最新高考数学复数习题及答案附参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版最新高考数学复数习题及答案附参考答案(word版可编辑修改)的全部内容。

——教学资料参考参考范本——人教版最新高考数学复数习题及答案附参考答案______年______月______日____________________部门(附参考答案)一、选择题(每小题只有一个选项是正确的,每小题5分,共100分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(20xx·山东)复数等于()A.1+2i B.1-2i C.2+i D.2-i答案:C解析:===2+i。

故选C。

2.(20xx·宁夏、海南)复数-=( )A.0 B.2 C.-2i D.2i答案:D解析:-=-=-=i+i=2i.3.(20xx·陕西)已知z是纯虚数,是实数,那么z等于()A.2i B.i C.-i D.-2i答案:D解析:由题意得z=ai。

(a∈R且a≠0).∴==,则a+2=0,∴a=-2。

有z=-2i,故选D。

4.(20xx·××市高三年级2月调研考试)若f(x)=x3-x2+x-1,则f(i)=( )A.2i B.0 C.-2i D.-2答案:B解析:依题意,f(i)=i3-i2+i-1=-i+1+i-1=0,选择B.5.(20xx·北京朝阳4月)复数z=(i是虚数单位)在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:D解析:z==-i,它对应的点在第四象限,故选D。

2021年高考数学一轮复习 复数试题 理

2021年高考数学一轮复习 复数试题 理

2021年高考数学一轮复习复数试题理【xx新课标I版(理)2】()A. B. C. D.【答案】D【xx新课标I版(理)2】若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B. C.4 D.【答案】D【xx新课标I版(理)3】下面是关于复数的四个命题:p1:|z|=2,p2:z2=2i,p:z的共轭复数为1+i,p4:z的虚部为-1,其中的真命题为( )3A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4【答案】C1 .(河北省张家口市蔚县一中xx届高三一轮测试数学试题)若复数为纯虚数,则实数的值为()A.B.0 C.1 D.或1【答案】A(河北省唐山市xx届高三摸底考试数学(理)试题)已知复数z满足z(1+i)=i,2 .则复数z的共轭复数为()A.B.C.1+i D.1-i【答案】A3 .(河北省容城中学xx届高三上学期第一次月考数学(理)试题)复数的共轭复数为【答案】C4 .(河北省邯郸市武安三中xx届高三第一次摸底考试数学理试题)若复数是纯虚数,其中是实数, ,则()A.B.C.D.【答案】D5 .(河北省邯郸市xx届高三上学期摸底考试数学(理)试题)为虚数单位,则()A.B.C.D.1【答案】B6 .(河北省馆陶中学xx学年第一学期高三数学(理)9月检测卷)复数z=11-i的共轭复数是()A.12+12i B.12-12i C.1-i D.1+i【答案】B7 .(河北省高阳中学xx届高三上学期第一次月考数学(理)试题)复数的共轭复数是()A.B.C.D.【答案】B(河南省安阳市xx届高三第一次调研)复数z=(i是虚数单位)在复平面上对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:A(河南省开封市xx届高三第一次模拟考试)答案:A8 .(山西省山大附中xx届高三4月月考数学(理)试题)已知复数在复平面上对应点为,则关于直线的对称点的复数表示是()A.B.C.D.【答案】D9 .(河南省商丘市xx届高三第三次模拟考试数学(理)试题)若复数是纯虚数(是虚数单位,是实数),则()A.2 B.C.D.【答案】A10 .(山西省太原市第五中学xx届高三4月月考数学(理)试题)设复数(是虚数单位),则20132013201333201322201312013xCxCxCxC+⋯+++= ()A.B.C.D.【答案】C11 .(河南省三市(平顶山、许昌、新乡)xx届高三第三次调研(三模)考试数学(理)试题)设为实数,若复数,则()A.B.C.D.【答案】A12 .(河南省六市xx届高三第二次联考数学(理)试题)设是实数,若复数(为虚数单位)在复平面内对应的点在直线上,则的值为()A.B.0 C.1 D.2【答案】B13.(河南省中原名校xx届高三下学期第二次联考数学(理)试题)已知复数(i 为虚数单位),则的虚部为()A.-1 B.0 C.i D.l【答案】B14.(河南省开封市xx届高三第四次模拟数学(理)试题)复数(i是虚数单位)是纯虚数,则实数a的值为()A.4 B.一4 C.1 D.一1【答案】A15.(河南省豫东、豫北十所名校xx届高三阶段性测试(四) 数学(理)试题(word 版))设复数,则a+b= ()A.1 B.3 C.-1 D.-3【答案】D16.(河南省郑州市xx届高三第三次测验预测数学(理)试题)已知x,yR,i为虚数单位,若x-1+yi=,则x+y的值为()A.2 B.3 C.4 D.5【答案】B17.(山西省康杰中学xx届高三第二次模拟数学(理)试题)在复平面内,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】∵34(34)(1)17171(1)(1)222i i i ix ii i i+++-+====-+--+, ∴点在第二象限,故选B.18.(河北省石家庄市xx届高中毕业班第二次模拟考试数学理试题(word版))已知是虚数单位,则复数,则z的共轭复数的模为()A.1 B.C.D.5【答案】B19.(山西省临汾一中、忻州一中、康杰中学、长治二中xx届高三第四次四校联考数学(理)试题)为虚数单位,则复数的虚部是____________.【答案】 2 #40288 9D60 鵠|"38502 9666 陦 T21089 5261 剡36716 8F6C 转.29741 742D 琭33591 8337 茷926085 65E5 日。

2021年新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

2021年新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =−−,设关于x 的方程25()()()f x mf x m R e−=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x ′=−++−−=+−, ∴当2x <−或1x >时,()0f x ′>,当21x −<<时,()0f x ′<,()f x ∴在(,2)−∞−上单调递增,在(2,1)−上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e −=,()f x 的极小值为f (1)e =−. 作出()f x 的函数图象如图所示:25()()()f x mf x m R e−=∈,25()()0f x mf x e ∴−−=,△2200m e=+>, 令()f x t =则,则125t t e=−.不妨设120t t <<,(1)若1t e <−,则2250t e <<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =−,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t −<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e−=有三个不同的实数解.故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m −+−=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1)2e+ B.(0 C .1(1,1)e+ D.【解析】解:化简可得0()0x f x x =<…,当0x >时,()0f x …,()f x ′= 当102x <<时,()0f x ′>,当12x >时,()0f x ′<, 故当12x =时,函数()f x有极大值1()2f =; 当0x <时,()0f x ′=<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f =; 设()t f x =,当t >()t f x =有1个解,当t =()t f x =有2个解,当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m −+−=等价为210t mt m −+−=,等价为方程21(1)[(1)]0t mt m t t m −+−=−−−=有两个不同的根1t =,或1t m =−, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m −+−=恰好有4个不相等的实数根,则1t m −∈,即01m <−<11m <<+, 则m的取值范围是1) 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x − >= −−+…,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)−− B.(4,−− C .(3,2)−− D.(3,−−【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x − >= −−+ …,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b =−> ++> ⇒−<<− ++><−< . 故选:D .4.已知函数22,0()(1),0x x x f x ln x x −+>= −+< ,关于x 的方程2()2()10()f x af x a a R −+−=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)−∞B .[1,)+∞C .(,0)[2−∞ ,)+∞D .(−∞,0)(1∪,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x −+>=−+< 的图象如图: 方程2()2()10()f x af x a a R −+−=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x …,2()2()10()f x af x a a R −+−=∈,可得()f x a =±,当1a >时,1a +>,(0,1)a −.满足题意.当1a =时,2a +=,0a −=,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0xx x x f x x lnx x ex −= ++> …,若关于x 的方程2()()10f x mf x −−=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2−,11e + )B .(2−,0 )(∪ 0,11e + )C .2321(,)2e e e+−+D .( 32−,0 )(∪ 0,221)e e e ++【解析】解:当0x …时,3()3f x x x =−,则2()333(1)(1)f x x x x ′=−=−+, 令()0f x ′=得:1x =−,∴当(,1)x ∈−∞−时,()0f x ′<,()f x 单调递减;当(1,0)x ∈−时,()0f x ′>,()f x 单调递增,且(1)2f −=−,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x−−′=+,显然f ′(1)0=,∴当(0,1)x ∈时,()0f x ′>,()f x 单调递增;当(1,)x ∈+∞时,()0f x ′<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x −−=化为关于t 的方程210t mt −−=, △240m =+>,∴方程210t mt −−=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =−<,不妨设10t >,20t <,关于x 的方程2()()10f x mf x −−=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t −<<,设2()1g t t mt =−−,则(2)0(0)01(1)0g g g e−>< +>,解得:23212e m e e+−<<+, 故选:C .6.已知函数|1|221,0()21,0x x f x x x x − −= ++< …,若关于x 的方程22()(1)()20f x m f x m −++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m −++=得,21(1)20m m −++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m −++=为2()()0f x f x −=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m −++=为231()()022f x f x −+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m −++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x += −>…,方程2()()0f x af x −=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4B .4,6C .4,0D .6,0【解析】解:2()()0f x af x −= , ()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =−,2x =,()f x a =的四个解中,较小的两个关于直线2x =−对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e −,2(1))g e −处的切线与直线610x y ++=垂直( 2.71828e =…是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +−−=,若关于x 的方程2()()0(f x bf x c b −+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是()A .21(1,2]e + B .221[2,2]e e+−C .2221[2,]e e e−+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a ′=++, 可得()g x 图象在点2(1e −,2(1))g e −处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +−−=,可得2()2f x x lnx =−, 导数为222(1)(1)()2x x f x x x x −+′=−=, 当1x >时,()0f x ′>,()f x 递增;当01x <<时,()0f x ′<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b −+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c −+=,(1) 可得t 的范围是[1,22]e −,方程(1)判别式为240b c −>,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+…, 即21112b e <−+…, 解得2123b e <+…,① 又212122t e e +<−…, 22112t e <+…, 则21222113t t b e e e+<+=+…,② 由①②求并可得2212b e e <+…, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈−+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2−,0)B .3(2−,4)3−C .3(2−,4]3−D .4(3−,0)【解析】解:1()11f x x −=++,|()|y f x =,(1,)x ∈−+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =−,即2302t t −=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>=+++ …,解得3423m −<−…. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e −C .24{1,1}e −D .24(1,1)e − 【解析】解:函数2()x x f x e=的导数为22()x x x f x e −′=, 当02x <<时,()0f x ′>,()f x 递增;当2x >或0x <时,()0f x ′<,()f x 递减,可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <, 作出()y f x =的图象,设()t f x =,关于x 的方程2()()10f x mf x m ++−=,即为210t mt m ++−=,解得1t =−或1t m =−,当1t =−时,()1f x =−无实根; 由题意可得当241(0,)t m e =−∈, 解得241m e −=或1m =, 所以24(1m e ∈−,1) 故选:D .11.已知函数()1x x f x e=−,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值集合是( )A .(−∞,2)(2∪,)+∞B .1(2,)e −+∞C .1(2,2)e −D .12e −【解析】解:由题意1()x x f x e −′=.令1()0xx f x e −′==,解得1x =; 且1x >时,()0f x ′<,1x <时,()0f x ′>,所以()f x 在(,1)−∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=−. ()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++−=可化为210t mt m ++−=. 假设2m =,则2210t t ++=.解得1t =−,即()1f x =−.根据()f x 图象,很明显此时只有一个解,故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =−,21t =−.即()2f x =−,或()1f x =−.根据()f x 图象,很明显此时方程只有两个解,故3m =不符合题意,由此排除A 选项. 假设12m e=−时,则211(2)10t t e e +−+−=,解得111t e =−,21t =−. 即()1f x =−或1()1f x e=−, 根据()f x 的图象,很明显此时方程只有两个根, 故12m e=−不符合题意,由此排除D 故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x = −+>…,且g (1)0=,则关于x 的方程(())10g g x t −−=实根个数的判断正确的是( )A .当2t <−时,方程(())10g g x t −−=没有相异实根B .当110t e−+<<或2t =−时,方程(())10g g x t −−=有1个相异实根 C .当111t e <<+时,方程(())10g g x t −−=有2个相异实根 D .当111t e−<<−+或01t <…或11t e =+时,方程(())10g g x t −−=有4个相异实根 【解析】解:当0x …时,||||()111x x x x x f x xe e e−−=+=+=−+, 因为g (1)0=,所以120a −+=,所以1a =,所以21,0()21,0x xe x g x x x x −+= −+> …, 图象如图所示:当0x …时,0x −…,0x e >, 则11x xe −+…,当且仅当0x =时等号成立,()g x 在(,1)−∞−上是增加的,在(1,0)−上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的,故()(1)0g x g −=…恒成立.故()g x 在(,1)−∞−上是增加的,在(1,1)−上是减少的,在(1,)+∞上是增加的. 令()m g x t =−,则()10g m −=,解得:0m =或2m =,当0m =即()0g x t −=时,()g x t =,当2t <−时,()2g x <−,无解,当2m =即()2g x t −=时,()2g x t =+,当2t <−时,()0g x <,无解,故方程(())10g g x t −−=没有相异实根,故A 正确;当2t =−时,由A 可知:()0g x =,解得1x =, 当110t e −+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =−时取得极大值为1(1)1g e−=+, 结合图象可知,此时2y t =+与()g x 有且仅有一个交点,故B 正确; 当111t e<<+时,()g x t =或()2g x t =+, 若()g x t =,结合图象可知()g x 与y t =有三个不同的交点,若()2g x t =+,12(3,3)t e+∈+, 此时()g x 与y t =有一个交点,故方程(())10g g x t −−=有4个相异实根,故C 错误; 当111t e −<<−+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根,当01t <…时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,故此时方程(())10g g x t −−=共有9个不等实根,故D 错误.故选:AB .13.已知函数,1()1,12lnx x f x x x = −< …,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x = −< …, 当1x …时,0lnx …,()11f x +…,则(()1)(1)f f x ln lnx +=+,当1x <时,1112x −+>,则(()1)(2)2x f f x ln +=−. (1),1()(()1)(2),12ln lnx x g x f f x x ln x + ∴=+= −< …, 令()0g x =,则1(1)0x ln lnx += …或1(2)02x x ln < −= , 解得1x =.故函数()(()1)g x f f x =+的零点是1;由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=−有两根,也就是()1m f x e −+=,()1m f x e −=−有两根1x ,2x ,不妨设12x x <, 当1x …时,21m lnx e −=−,当1x <时,1112m x e −−=−, 令112m t e −=−>,则 2lnx t =,2t x e =,112x t −=,122x t =−, ∴1222t x x e t +=+−,12t >, 设()22t t e t ϕ=+−,12t >, 则()2t t e ϕ′=−,可得当1(2t ∈,)lnt 时,()0t ϕ′<, 当(,)t lnt ∈+∞时,()0t ϕ′>,则()t ϕ的最小值为(2)422ln ln ϕ=−.12x x ∴+的最小值是422ln −.故答案为:1;422ln −.14.已知函数,1()1,12lnx x f x x x = −< …,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(−∞ .【解析】解:当1x …时,()0f x lnx =…,则()11f x +…,(()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =−>,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e −+=,依题意,()1m f x e −=−有两个根1x ,2x ,不妨设12x x <, 当1x …时,21m lnx e −=−,当1x <时,1112m x e −−=−, 令112m t e −=−>,则1221,,1,222t x lnx t x e t x t ==−==−, ∴121(22),2t x x e t t =−>, 设1()(22),2t g t e t t =−>,则()20t g t te ′=−<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <, 12x x ∴的取值范围为(−∞.故答案为:(−∞.15.已知函数,2()48,25x ex x e f x x x x= − > …(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a −+=恰有5个相异的实根,则实数a 的取值范围为 1{}2 . 【解析】解:当2x …时,令()0xe exf x e −′==,解得1x =, 所以当1x …时,()0f x ′>,则()f x 单调递增,当12x 剟时,()0f x ′<,则()f x 单调递减, 当2x >时,4848()555x f x x x −==−单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=,则()20f x a =−<,()0f x a =−<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a −+=−−=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e> < …,解得245a e <…, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解,当()0f x <时,()2f x a =−和()f x a =−无解,不符合题意.综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0a x x f x x lnx x x ++< = −> ,若关于x 的方程()()0f x f x +−=恰有四个不同的解,则实数a 的取值范围是 (2,0)− .【解析】解:已知定义在(−∞,0)(0∪,)+∞上的函数231,0()26,0a x x f x x lnx x x ++< = −> , 若()()0f x f x +−=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231a y x x=−+−与函数()26(0)f x lnx x x =−>的图象有两个交点, 联立可得226310a lnx x x x −+−+=有两个解, 即23263a xlnx x x x =−++,0x >,可设23()263g x xlnx x x x =−++,0x >,2()32129g x lnx x x ′=+−+,2()1812120g x x x ′′=+−−=…,可得()g x ′在(0,)+∞递增, 由g ′(1)0=,可得01x <<时,()0g x ′<,()g x 递减;1x >时,()0g x ′>,()g x 递增, 即()g x 在1x =处取得极小值且为2−,作出()y g x =的图象,可得20a −<<时,226310a lnx x x x−+−+=有两个解, 故答案为:(2,0)−.17.已知函数21,0()21,0x x f x x x x + = −+> …,若关于x 的方程2()()0f x af x −=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a −=−=, ()0f x ∴=或()f x a =; ()0f x = 有两个不同的解, 故()f x a =有三个不同的解, 故(0,1)a ∈;故答案为:(0,1).18.已知函数()|1|33f x x x x =−−+.(1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m −+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x −−+<=−−+= −+…, ①当1x <时,令()0f x =,得3x =−或1x =(舍);②当1x …时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3−,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x −−+<=−−+= −+…的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n −+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =−+的零点分布情况如下:①当11t =−,2(1,4)t ∈−时,则(1)0(4)0142g g b a −= > −<−< ,得101640142m n m n m ++= −+> −<< ,故(2,3)m ∈−; ②当14t =,2(1,4)t ∈−时,则(4)0(1)0142g g b a = −> −<−< ,得164010142m n m n m −+= ++> −<< ,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈−,3)(3∪,8); 解法二:则方程20t mt n −+=的根的情况如下: ①当11t =−,2(1,4)t ∈−时,由11t =−得10m n ++=,则方程2(1)0t mt m −−+=,即(1)(1)0t t m +−−=,故21(1,4)t m =+∈−,所以(2,3)m ∈−; ②当14t =,2(1,4)t ∈−时,由14t =得1640m n −+=,则方程24(4)0t mt m −+−=,即(4)(4)0t t m −−+=,故24(1,4)t m =−∈−,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈−,3)(3∪,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=−−+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x −+=∈在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos sin()4684646442443f x x x x x x x x ππππππππππππ=−−+=−−=−=−… (3分) ∴函数()f x 的最小正周期为8.…(4分) 令222432k x k ππππππ−−+剟,k Z ∈,求得2108833k x k −+剟,k z ∈,故函数的单调递增区间为210[8,8]33k k −+,k Z ∈…(6分)(2)设()t f x =,4(3x ∈ ,4),∴2(0,)433x πππ−∈,()(0f x ∴∈,∴方程2410t mt −+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.…(10分) 11442t t t += 当且仅当…时取等号,4m ∴…,…(8分) 故实数m 的取值范围是[4,)+∞.…(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +−=+−成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅱ)记函数()h x 在[1−,1上的最大值为M ,最小值为m .若4M m −…,当0b >时,求b 的最大值;(Ⅲ)若关于x 的方程2(|21|)30|21|x x k f k −+−=−有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g −=−,g (1)0=,(0)1g ∴=, 令0y =得()(0)(2)g x g x x −=−,即2()21g x x x =−+.(Ⅱ)2()(1)h x g x bx c x bx c =+++=++.①当12b −<−,即2b >时,M m h −=(1)(1)24h b −−>,与题设矛盾②当102b −−<…时,即02b <…时,M m h −=(1)2()(1)422b b h −−+…恒成立, 综上可知当02b <…时,b 的最大值为2.(3)当0x =时,210x −=则0x =不是方程的根, 方程2(|21|)30|21|x x k f k −+−=−可化为: 2|21|(23)|21|(12)0x x k k −−+−++=,|21|0x −≠, 令|21|x t −=,则方程化为2(23)(12)0t k t k −+++=,(0)t >, 方程2(|21|)310|21|x x k f k −+−−=−有三个不同的实数解, ∴由|21|x t =−的图象知, 2(23)(12)0t k t k −+++=,(0)t >,有两个根1t 、2t , 且1201t t <<<或101t <<,21t =. 记2()(23)(12)h t t k t k =−+++,则(0)210(1)0h k h k =+> =−<,此时0k >, 或(0)210(1)032012h k h k k =+> =−= + << ,此时k 无解, 综上实数k 的取值范围是(0,)+∞.。

精选高中数学复数多选题专项训练专题复习含答案(5)

精选高中数学复数多选题专项训练专题复习含答案(5)

一、复数多选题1.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限 答案:AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.2.复数21i z i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.3.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 答案:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.4.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 答案:AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.5.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=,所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.6.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.7.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.8.已知复数1z =-(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.9.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:ADA 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.10.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.11.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z = 答案:BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.12.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z ∈,则z R ∈D .若复数1z ,2z 满足12z z R ∈,则12z z = 答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.13.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.14.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 答案:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.15.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 答案:BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z 的虚部为sin θ-,D 选项错误. 故选:BC.16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称答案:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.18.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122zz z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】 本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.20.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.21.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.22.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 答案:CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。

高考数学复数习题及答案 百度文库

高考数学复数习题及答案 百度文库

一、复数选择题1.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或12.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C.z =D .复数z 在复平面内对应的点在第四象限3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( ) A .1 B .0 C .-1 D .1+i 4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )AB .1C .2D .35.若复数()()24z i i =--,则z =( ) A .76i --B .76-+iC .76i -D .76i +6.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( ) AB .3C .5D.7.设1z 是虚数,2111z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦ C .[]22-,D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦8.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i - B .3i --C .3i +D .3i -+9.设2iz i+=,则||z =( ) ABC .2D .510.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i + B .34i - C .34i + D .43i - 12.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .313.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .114.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限15.题目文件丢失!二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 18.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-19.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =20.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -21.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =22.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点23.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限24.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =25.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限26.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>27.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >28.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 29.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -30.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C.z一定不为实数D.z对应的点在实轴的下方【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mii--==--为纯虚数,所以20m mm⎧-=⎨≠⎩,解得1m=,故选:C.2.C【分析】利用复数的除法运算求出,即可判断各选项. 【详解】,,则的实部为2,故A错误;的虚部是,故B错误;,故C正;对应的点为在第一象限,故D错误.故选:C.解析:C【分析】利用复数的除法运算求出z,即可判断各选项.【详解】()13i z i+=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.3.C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】 由题意可知=, 故选C解析:C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】由题意可知i e π=cos sin 101i ππ+=-+=-, 故选C4.A 【分析】利用复数的模长公式结合可求得的值. 【详解】,由已知条件可得,解得. 故选:A.解析:A 【分析】利用复数的模长公式结合0a >可求得a 的值. 【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.5.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,.故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .6.A 【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222121122111i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12iz a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A7.B 【分析】设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,是实数,,则,,则,解得, 故的实部取值范围是. 故选:B.解析:B 【分析】设1z a bi =+,由2111z z z =+是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 2z 是实数,220bb a b∴-=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得1122a -≤≤,故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故选:B.8.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i ++===-,∴z ==故选:B .10.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .11.D 【分析】由复数的四则运算求出,即可写出其共轭复数. 【详解】故选:D解析:D 【分析】由复数的四则运算求出z ,即可写出其共轭复数z . 【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-, 故选:D12.C 【分析】首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,所以的共轭复数是,所以. 故选:C.解析:C 【分析】首先求出复数z 的共轭复数,再求模长即可. 【详解】 据题意,得22(2)12121i i i iz i i i ++-+====--,所以z 的共轭复数是12i +,所以z =. 故选:C.13.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 14.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限. 故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.15.无二、多选题 16.BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC 【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】 对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.19.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB 【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.20.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.21.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.22.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.23.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.24.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题25.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.26.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.27.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.28.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误;令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.29.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.30.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。

2021年高考数学一轮复习 专题突破训练 复数与极限 理

2021年高考数学一轮复习 专题突破训练 复数与极限 理

2021年高考数学一轮复习专题突破训练复数与极限理一、复数1、(xx年上海高考)若复数z满足3z+=1+i,其中i是虚数单位,则z= .2、(xx年上海高考)若复数,其中是虚数单位,则 .3、(xx年上海高考)设,是纯虚数,其中i是虚数单位,则4、(静安、青浦、宝山区xx届高三二模)复数(为虚数单位)的模为.5、(闵行区xx届高三二模)若复数满足(其中为虚数单位),则.6、(浦东新区xx届高三二模)设是虚数单位,复数是实数,则实数 3 .7、(普陀区xx届高三二模)若(为虚数单位),则实数 .8、(徐汇、松江、金山区xx届高三二模)若复数为虚数单位),则9、(长宁、嘉定区xx届高三二模)若,其中、,是虚数单位,则________10、(松江区xx届高三上期末)若复数满足,则的值为▲11、(徐汇区xx届高三上期末)设是虚数单位,复数满足,则112、(杨浦区xx届高三上期末)已知,集合,集合(可以等于),则集合B的子集个数为__________13、(闸北区xx届高三上期末)若复数(是虚数单位)是纯虚数,则实数14、(嘉定区xx届高三上期末)设是虚数单位,则_________15、(金山区xx届高三上期末)如果复数z =(b R)的实部与虚部相等,则z的共轭复数= ▲二、极限1、(xx 年上海高考)设 P n (x n ,y n )是直线2x ﹣y=(n∈N *)与圆x 2+y 2=2在第一象限的交点,则极限=( )A .﹣1B . ﹣C . 1D . 22、(xx 年上海高考)设无穷等比数列的公比为,若,则 .3、(xx 年上海高考)计算:4、(闵行区xx 届高三二模)已知等比数列满足,则= .5、(徐汇、松江、金山区xx 届高三二模)矩阵1211222232332123i n i n i n n ni nn a a a a a a a a a n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭中每一行都构成公比为2的等比数列,第列各元素之和为,则 .6、(长宁、嘉定区xx 届高三二模)已知对任意,向量都是直线的方向向量,设数列的前项和为,若,则____________7、(宝山区xx 届高三上期末)计算=8、(长宁区xx 届高三上期末)已知,则9、(虹口区xx 届高三上期末)若数列为等差数列,且,则10、(浦东区xx 届高三上期末)若,则实数的取值范围是 .11、(普陀区xx 届高三上期末)若,则常数 .12、(青浦区xx届高三上期末)已知,则无穷数列前项和的极限为13、(徐汇区xx届高三上期末)已知函数222111()1()()(1)2222015nnnf x xn=+++++++,其中.当时,的零点依次记作,则14、(上海市八校xx届高三3月联考);15、(奉贤区xx届高三4月调研测试(二模))已知,,则=____________.参考答案一、复数1、解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.2、【解析】:原式=3、【解答】.4、55、6、37、-18、9、10、 11、12、16 13、4 14、-1 15、1-i二、极限1、 解:当n→+∞时,直线2x ﹣y=趋近于2x ﹣y=1,与圆x 2+y 2=2在第一象限的交点无限靠近(1,1),而可看作点 P n (x n ,y n )与(1,1)连线的斜率,其值会无限接近圆x 2+y 2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A .2、【解析】:22311110112a a q a q q q q q -==⇒+-=⇒=--,∵,∴ 3、【解答】根据极限运算法则,.4、5、 6、2 7、 8、28 9、 10、11、1 12、 13、 14、6 15、27975 6D47 浇[H20022 4E36 丶39946 9C0A 鰊29845 7495 璕29399 72D7 狗gS 33695 839F 莟30738 7812 砒tn32440 7EB8 纸。

2021新高考数学(江苏专用)一轮复习课时练习:4.4 函数y=Asin(ωx+φ)的图象及应用 (含解析)

2021新高考数学(江苏专用)一轮复习课时练习:4.4 函数y=Asin(ωx+φ)的图象及应用 (含解析)

1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )答案 A解析 令x =0得y =sin ⎝⎛⎭⎫-π3=-32,排除B ,D 项,由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C 项,故选A.2.为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =sin 2x 的图象( ) A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度答案 B解析 y =sin ⎝⎛⎭⎫2x -π6=sin 2⎝⎛⎭⎫x -π12,故将函数y =sin 2x 的图象向右平移π12个单位长度,可得y =sin ⎝⎛⎭⎫2x -π6的图象. 3.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8 D.5π4 答案 C解析 f (x )=sin 2x +cos 2x =2cos ⎝⎛⎭⎫2x -π4,将函数f (x )的图象向右平移φ个单位长度后所得图象对应的函数为y =2cos ⎝⎛⎭⎫2x -π4-2φ,且该函数为偶函数, 故2φ+π4=k π(k ∈Z ),所以φ的最小正值为3π8.4.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32 B .-12 C.12 D.32答案 A解析 将函数f (x )=sin(2x +φ)的图象向左平移π6个单位长度得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ的图象,该图象关于原点对称,即为奇函数,则π3+φ=k π(k ∈Z ),又|φ|<π2,所以φ=-π3,即f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以当2x -π3=-π3,即x =0时,f (x )取得最小值,最小值为-32. 5.若把函数y =sin ⎝⎛⎭⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A .2 B.32 C.23 D.12答案 A解析 y =sin ⎝⎛⎭⎫ωx +ωπ3-π6和函数y =cos ωx 的图象重合,可得ωπ3-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴ω的一个可能值是2.6.(2019·安徽省合肥市一中、合肥六中联考)已知函数f (x )=3sin 2x -2cos 2x +1,将f (x )的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数y =g (x )的图象,若g (x 1)·g (x 2)=9,则|x 1-x 2|的值可能为( ) A.5π4 B.3π4 C.π2 D.π3 答案 C解析 函数f (x )=3sin 2x -2cos 2x +1 =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6,变换后得函数y =g (x )=2sin ⎝⎛⎭⎫4x -π6+1的图象,易知函数y =g (x )的值域为[-1,3]. 若g (x 1)·g (x 2)=9,则g (x 1)=3且g (x 2)=3,均为函数y =g (x )的最大值, ∴|x 1-x 2|的值为函数y =g (x )的最小正周期T 的整数倍,且T =2π4=π2.7.(多选)将函数f (x )=3cos ⎝⎛⎭⎫2x +π3-1的图象向左平移π3个单位长度,再向上平移1个单位长度,得到函数g (x )的图象,则函数g (x )具有以下哪些性质( ) A .最大值为3,图象关于直线x =-π3对称B .图象关于y 轴对称C .最小正周期为πD .图象关于点⎝⎛⎭⎫π4,0成中心对称 答案 BCD解析 将函数f (x )=3cos ⎝⎛⎭⎫2x +π3-1的图象向左平移π3个单位长度, 得到y =3cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+π3-1=3cos(2x +π)-1=-3cos 2x -1的图象; 再向上平移1个单位长度,得到函数g (x )=-3cos 2x 的图象.对于函数g (x ),它的最大值为 3,由于当x =-π3时,g (x )=32,不是最值,故g (x )的图象不关于直线x =-π3对称,故A 错误;由于该函数为偶函数,故它的图象关于y 轴对称,故B 正确; 它的最小正周期为2π2=π,故C 正确;当x =π4时,g (x )=0,故函数的图象关于点⎝⎛⎭⎫π4,0成中心对称,故D 正确.8.(多选)已知函数f (x )=sin 2x +2cos 2x -1,下列四个结论正确的是( ) A .函数f (x )在区间⎣⎡⎦⎤-3π8,π8上是增函数 B .点⎝⎛⎭⎫3π8,0是函数f (x )图象的一个对称中心C .函数f (x )的图象可以由函数y =2sin 2x 的图象向左平移π4个单位长度得到D .若x ∈⎣⎡⎦⎤0,π2,则f (x )的值域为[0,2] 答案 AB解析 函数f (x )=sin 2x +2cos 2x -1=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4. 若x ∈⎣⎡⎦⎤-3π8,π8,则2x +π4∈⎣⎡⎦⎤-π2,π2, 因此函数f (x )在区间⎣⎡⎦⎤-3π8,π8上是增函数, 因此A 正确;因为f ⎝⎛⎭⎫3π8=2sin ⎝⎛⎭⎫3π4+π4=2sin π=0, 因此点⎝⎛⎭⎫3π8,0是函数f (x )图象的一个对称中心, 因此B 正确;由函数y =2sin 2x 的图象向左平移π4个单位长度得到y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4=2cos 2x , 因此由函数y =2sin 2x 的图象向左平移π4个单位长度不能得到函数f (x )的图象,因此C 不正确;若x ∈⎣⎡⎦⎤0,π2,则2x +π4∈⎣⎡⎦⎤π4,5π4, ∴sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, ∴f (x )的值域为[-1,2],因此D 不正确.9.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则ω=________,函数f (x )的单调递增区间为____________________.答案 2 ⎣⎡⎦⎤-5π12+k π,π12+k π(k ∈Z ) 解析 由图象知T 2=π3-⎝⎛⎭⎫-π6=π2, 则周期T =π,即2πω=π,则ω=2,f (x )=2sin(2x +φ). 由2×⎝⎛⎭⎫-π6+φ=2k π,k ∈Z , 又|φ|<π2,所以φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得-5π12+k π≤x ≤k π+π12,k ∈Z ,即函数的单调递增区间为⎣⎡⎦⎤-5π12+k π,π12+k π(k ∈Z ). 10.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,又x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=________.答案32解析 设f (x )周期为T , 由题图可知,T 2=π3-⎝⎛⎭⎫-π6=π2, 则T =π,ω=2,又-π6+π32=π12,所以f (x )的图象过点⎝⎛⎭⎫π12,1, 即sin ⎝⎛⎭⎫2×π12+φ=1, 所以2×π12+φ=π2+2k π,k ∈Z ,又|φ|<π2,可得φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3. 由f (x 1)=f (x 2),x 1,x 2∈⎝⎛⎭⎫-π6,π3, 可得x 1+x 2=-π6+π3=π6,所以f (x 1+x 2)=f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫2×π6+π3 =sin 2π3=32.11.(2020·黄岗中学模拟)已知函数f (x )=23sin ωx cos ωx +2cos 2ωx (ω>0),且f (x )的最小正周期为π.(1)求ω的值及函数f (x )的单调递减区间;(2)将函数f (x )的图象向右平移π6个单位长度后得到函数g (x )的图象,求当x ∈⎣⎡⎦⎤0,π2时,函数g (x )的最大值.解 (1)由题意知f (x )=3sin 2ωx +1+cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π6+1, ∵周期T =π,2π2ω=π,∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x +π6+1, 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z . ∴函数f (x )的单调递减区间为⎣⎡⎦⎤π6+k π,2π3+k π,k ∈Z . (2)∵g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6+1=2sin ⎝⎛⎭⎫2x -π6+1, 当x ∈⎣⎡⎦⎤0,π2时,-π6≤2x -π6≤5π6, ∴当2x -π6=π2,即x =π3时,g (x )max =2×1+1=3.12.(2019·湖北七校联考)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2的部分图象如图所示,其中点P (1,2)为函数f (x )图象的一个最高点,Q (4,0)为函数f (x )的图象与x 轴的一个交点,O 为坐标原点.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象向右平移2个单位长度得到y =g (x )的图象,求函数h (x )=f (x )·g (x )的图象的对称中心.解 (1)由题意得A =2,周期T =4×(4-1)=12. 又∵2πω=12,∴ω=π6.将点P (1,2)代入f (x )=2sin ⎝⎛⎭⎫π6x +φ,得sin ⎝⎛⎭⎫π6+φ=1. ∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫π6x +π3. (2)由题意,得g (x )=2sin ⎣⎡⎦⎤π6(x -2)+π3=2sin π6x . ∴h (x )=f (x )·g (x )=4sin ⎝⎛⎭⎫π6x +π3·sin π6x =2sin 2π6x +23·sin π6x ·cos π6x =1-cos π3x +3sin π3x =1+2sin ⎝⎛⎭⎫π3x -π6.由π3x -π6=k π(k ∈Z ),得x =3k +12(k ∈Z ). ∴函数y =h (x )的图象的对称中心为⎝⎛⎭⎫3k +12,1(k ∈Z ).13.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________.答案 π解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6(ω>0). 由2sin ⎝⎛⎭⎫ωx +π6=1,得sin ⎝⎛⎭⎫ωx +π6=12, ∴ωx 1+π6=2k π+π6或ωx 2+π6=2k π+5π6(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=5π6,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.14.已知函数f (x )=2cos(ωx +φ)+1⎝⎛⎭⎫ω>0,|φ|<π2,其图象与直线y =3相邻两个交点的距离为2π3,若f (x )>1对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,则φ的取值范围是____________. 答案 ⎣⎡⎦⎤-π4,0 解析 由题意可得函数f (x )=2cos(ωx +φ)+1的最大值为3.∵f (x )的图象与直线y =3相邻两个交点的距离为2π3,∴f (x )的周期T =2π3,∴2πω=2π3,解得ω=3,∴f (x )=2cos(3x +φ)+1.∵f (x )>1对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,∴2cos(3x +φ)+1>1,即cos(3x +φ)>0对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,∴-π4+φ≥2k π-π2且π2+φ≤2k π+π2,k ∈Z ,解得φ≥2k π-π4且φ≤2k π,k ∈Z ,即2k π-π4≤φ≤2k π,k ∈Z .结合|φ|<π2可得,φ的取值范围为⎣⎡⎦⎤-π4,0.15.(2019·全国Ⅲ)设函数f (x )=sin ⎝⎛⎭⎫ωx +π5(ω>0),已知f (x )在[0,2π]上有且仅有5个零点.下述四个结论:①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在⎝⎛⎭⎫0,π10上单调递增; ④ω的取值范围是⎣⎡⎭⎫125,2910. 其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④ 答案 D解析 如图,根据题意知,x A ≤2π<x B ,根据图象可知函数f (x )在(0,2π)有且仅有3个极大值点,所以①正确;但可能会有3个极小值点,所以②错误;根据x A ≤2π<x B ,有24π5ω≤2π<29π5ω,得125≤ω<2910,所以④正确;当x ∈⎝⎛⎭⎫0,π10时,π5<ωx +π5<ωπ10+π5,因为125≤ω<2910,所以ωπ10+π5<49π100<π2,所以函数f (x )在⎝⎛⎭⎫0,π10上单调递增,所以③正确.16.(2019·南通模拟)已知函数f (x )=sin ⎝⎛⎭⎫2ωx +π6+32+b . (1)若函数f (x )的图象关于直线x =π6对称,且ω∈[0,3],求函数f (x )的单调递增区间;(2)在(1)的条件下,当x ∈⎣⎡⎦⎤0,7π12时,函数f (x )有且只有一个零点,求实数b 的取值范围. 解 (1)∵函数f (x )=sin ⎝⎛⎭⎫2ωx +π6+32+b , 且函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2(k ∈Z ),且ω∈[0,3],∴ω=1.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ).(2)由(1)知f (x )=sin ⎝⎛⎭⎫2x +π6+32+b . ∵x ∈⎣⎡⎦⎤0,7π12,∴2x +π6∈⎣⎡⎦⎤π6,4π3. 当2x +π6∈⎣⎡⎦⎤π6,π2,即x ∈⎣⎡⎦⎤0,π6时,函数f (x )单调递增;当2x +π6∈⎣⎡⎦⎤π2,4π3,即x ∈⎣⎡⎦⎤π6,7π12时,函数f (x )单调递减.又f (0)=f ⎝⎛⎭⎫π3,∴当f ⎝⎛⎭⎫π3>0≥f ⎝⎛⎭⎫7π12或f ⎝⎛⎭⎫π6=0时,函数f (x )有且只有一个零点, 即sin 4π3≤-b -32<sin 5π6或1+32+b =0,∴b ∈⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52. 故实数b 的取值范围为⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52.。

新高考数学的复数选择题专项训练附答案

新高考数学的复数选择题专项训练附答案

新高考数学的复数选择题专项训练附答案一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+ C .1i - D .1i +答案:C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.复数11z i =-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 答案:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -.3.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭ 答案:D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i -的表示,最后选出答案即可. 【详解】 因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D4.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-答案:B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.5.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i答案:B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B6.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y 答案:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.7.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i - 答案:B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B8.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限. 故选:D解析:D【分析】先求出z,再求出z,直接得复数z在复平面内对应的点【详解】因为211iz ii==++,所以1z i-=-,z在复平面内对应点()1,1-,位于第四象限.故选:D9.设21izi+=-,则z的虚部为()A.12B.12-C.32D.32-答案:C【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为()()()()21223113111222i ii iz ii i i++++-====+ --+,所以其虚部为3 2 .故选:C.10.若复数11izi,i是虚数单位,则z=()A .0B .12 C .1D .2 答案:C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2ii iz i i i i ---====-++-, 所以1z i =-=.故选:C .11.设复数满足(12)i z i +=,则||z =( )A .15 B C D .5 答案:B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z ==故选:B12.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i答案:C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C.13.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上 答案:A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+,根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .14.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-答案:A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A15.已知i 是虚数单位,a 为实数,且3i 1i 2i a -=-+,则a =( ) A .2 B .1 C .-2 D .-1答案:B【分析】可得,即得.【详解】由,得a =1.故选:B .解析:B【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =.【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1.故选:B . 二、复数多选题16.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 答案:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.19.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限 答案:AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.20.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.21.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 答案:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 答案:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误;令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =- B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 答案:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.27.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数答案:AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题. 故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.28.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.29.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.30.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 答案:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.。

2021届高三数学上学期一轮复习复数典例分析

2021届高三数学上学期一轮复习复数典例分析

2021复数典例分析一、复数的概念例1.(2021八省联考适应性考试)已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3 B .复数z 的虚部为425i C .复数z 的共轭复数为342525i + D .复数的模为1【答案】C【解析】由已知得342525z i =-,z 的实部为325,虚部为425-,共轭复数为342525i +,模为不为模为15,故选C 变式:(2021山东济宁第一学期质量检测)若复数32a ii++(i 为虚数单位)为纯虚数,则是数a 的值为( ) A .32-B .23-C .23D .32【答案】B 【解析】()()()()()()1323132349232323232323i a a i a a i i i i a i i a -++=+-++=-+-+=++,因为复数32a i i++为纯虚数,则01323=+a ,所以32-=a . 例2.(2021山东滨州高三期末考试)已知i 为虚数单位,若1cos isin z θθ=+,则z 的共轭复数z =( )A .cos θ﹣isin θB .sin θ﹣icos θC .sin θ+icos θD .cos θ+isin θ 【答案】D 【解析】1cos isin z θθ=+=cos θ﹣isin θ,则z =cos θ+isin θ,选D .变式:(山东省枣庄市2021届高三第一学期期末考试)已知复数z =(i 为虚数单位),则2(z)的虚部为( )A .﹣iB .iC .﹣1D .1【答案】D【解析】因为i z 2222-=,所以i z 2222+=,()i i z =⎪⎪⎭⎫ ⎝⎛+=222222,虚部为1,选D.二、复数的运算例3.(2021山东潍坊高三上学期期末统考)若(i)i 1i a b -=+(a ,b ∈R),则1ia b +=( ) A .1i 2+ B .1i 2- C .1i 2-+ D .1i2-- 【答案】B【解析】由()ii bi a +=-1得,i b ai +=+1,所以1,1==b a ,所以()()21111111ii i i i bi a -=-+-=+=+,选择B. 变式:(2021山东淄博高三教学质量摸底检测考试)复数z 满足(1i)2i z -=,则z = A. 1i - B. 1i -+ C. 1i -- D. 1i + 【答案】B【解析】由()i i z 21=-得()()()i i i i i i i i z +-=-=+-+⋅=-=1222111212,故而选B. 例4.(江苏省海门中学2020-2021年度第一学期阶段检测)已知复数21z i=-,则||z =( )A.1B.2C .3D.2【答案】A 【解析】()()()i i i i i i 2222222111212+=+=+-+=-,所以1222222=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=z ,所以选A.变式:(江苏省徐州一中、兴化中学2021届高三两校联合第二次适应性考试数学试题)复数x i x z x i x z cos sin ,sin cos 21-=-=,则=⋅21z z ( ) A.1B.2C .3D.4【答案】A【解析】由题得()()x i x x i x z z cos sin sin cos 21--=⋅i x x i x i x i x x -=+--=cos sin sin cos cos sin 222,所以=⋅21z z 1.故而选A.三、复数的几何意义例5.(天一大联考)若()()i iz -+=423,则在复平面内,复数z 所对应的点位于( )【答案】D 【解析】()()()()i ii i i i iz 6768424223-=+-=--=-+=,对应的点为()67-,,在第四象限.注解:本题考查复数的运算和复数的几何意义。

高考复数专题及答案

高考复数专题及答案

复数专题及答案〔一〕1.【2021 高考新课标2,理2】假设a 为实数且(2)(2)4ai a i i +-=-,那么a =〔 〕 A .1- B .0 C .1 D .2 【答案】B【解析】由得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,应选B . 【考点定位】复数的运算.【名师点睛】此题考察复数的运算,要利用复数相等列方程求解,属于根底题.2.【2021 高考,理2】设i 是虚数单位,那么复数32i i-( )〔A 〕-i 〔B 〕-3i 〔C 〕i. 〔D 〕3i 【答案】C 【解析】32222ii i i i i i i-=--=-+=,选C. 【考点定位】复数的根本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考容,属于容易题.一般来说,掌握复数的根本概念及四那么运算即可.3.【2021 高考,理2】假设复数()32z i i =- ( i 是虚数单位 ),那么z =〔 〕 A .32i - B .32i + C .23i +D .23i - 【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,应选D . 【考点定位】复数的根本运算,共轭复数的概念.【名师点睛】此题主要考察复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【2021 高考新课标1,理1】设复数z满足11zz+-=i,那么|z|=( )〔A〕1 〔B〕2〔C〕3〔D〕2 【答案】A【解析】由11ziz+=-得,11izi-+=+=(1)(1)(1)(1)i ii i-+-+-=i,故|z|=1,应选A.【考点定位】此题主要考察复数的运算和复数的模等.【名师点睛】此题将方程思想与复数的运算和复数的模结合起来考察,试题设计思路新颖,此题解题思路为利用方程思想和复数的运算法那么求出复数z,再利用复数的模公式求出|z|,此题属于根底题,注意运算的准确性.5.【2021 高考,理1】复数()i2i-=〔〕A.12i+B.12i-C.12i-+D.12i--【答案】A考点定位:此题考察复数运算,运用复数的乘法运算方法进展计算,注意21i=-. 【名师点睛】此题考察复数的乘法运算,此题属于根底题,数的概念的扩大局部主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i=-,注意运算的准确性,近几年高考主要考察复数的乘法、除法,求复数的模、复数的虚部、复数在复平面对应的点的位置等.6.【2021 高考,理1】i为虚数单位,607i的共轭复数....为〔〕A.i B.i-C.1 D.1-【答案】A【解析】iiii-=⋅=⨯31514607,所以607i的共轭复数....为i,选A .【考点定位】共轭复数. 【名师点睛】复数中,i是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,, 7.【2021 高考,理2】假设复数z 满足1zi i=-,其中i 为虚数为单位,那么z =〔 〕 〔A 〕1i - 〔B 〕1i + 〔C 〕1i -- 〔D 〕1i -+ 【答案】A 【解析】因为1zi i=-,所以,()11z i i i =-=+,所以,1z i =-应选:A. 【考点定位】复数的概念与运算.【名师点睛】此题考察复数的概念和运算,采用复数的乘法和共轭复数的概念进展化简求解.此题属于根底题,注意运算的准确性. 8.【2021 高考,理1】设i 是虚数单位,那么复数21ii-在复平面所对应的点位于〔 〕 〔A 〕第一象限〔B 〕第二象限 〔C 〕第三象限 〔D 〕第四象限 【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,应选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四那么运算问题主要是要熟记各种运算法那么,尤其是除法运算,要将复数分母实数化〔分母乘以自己的共轭复数〕,这也历年考察的重点;另外,复数z a bi =+在复平面一一对应的点为(,)Z a b .9.【2021 高考,理11】设复数a +bi 〔a ,b ∈R ,那么〔a +bi 〕〔a -bi 〕=________. 【答案】3【解析】由a bi +=得=,即223a b +=,所以22()()3a bi a bi a b +-=+=. 【考点定位】复数的运算.【名师点晴】复数的考察核心是代数形式的四那么运算,即使是概念的考察也需要相应的运算支持.此题首先根据复数模的定义得a bi +=根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【2021 高考XX ,理9】i 是虚数单位,假设复数()()12i a i -+是纯虚数,那么实数a 的值为. 【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-. 【考点定位】复数相关概念与复数的运算.【名师点睛】此题主要考察复数相关概念与复数的运算.先进展复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【2021 高考,3】设复数z 满足234z i =+〔i 是虚数单位〕,那么z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒= 【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等〞进展求解.此题涉及复数的模,利用复数模的性质求解就比拟简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【2021 高考,理1】()211i i z-=+〔i 为虚数单位〕,那么复数z =〔 〕 A.1i + B.1i - C.1i -+ D.1i -- 【答案】D.【考点定位】复数的计算.【名师点睛】此题主要考察了复数的概念与根本运算,属于容易题,意在考察学生对复数代数形式四那么运算的掌握情况,根本思路就是复数的除法运算按“分母实数化〞原那么,结合复数的乘法进展计算,而复数的乘法那么是按多项式的乘法法那么进展处理.13.【2021 高考,理2】假设复数z 满足31z z i +=+,其中i 为虚数单位,那么z =.【答案】1142i +【解析】设(,)z a bi a b R =+∈,那么113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚局部别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚局部别对应相加.【2021 高考,理15】设1z ,2C z ∈,那么“1z 、2z 中至少有一个数是虚数〞是“12z z -是虚数〞的〔 〕A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【答案】B【解析】假设1z 、2z 皆是实数,那么12z z -一定不是虚数,因此当12z z -是虚数时,那么“1z 、2z 中至少有一个数是虚数〞成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B. 【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.假设b =0,那么a +b i 为实数;假设b ≠0,那么a +b i 为虚数;假设a =0且b ≠0,那么a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.复数专题及答案〔二〕一、选择题1.(2021·全国Ⅰ理)复数3+2i2-3i =( )A .iB .-iC .12-13iD .12+13i [答案] A[解析] 3+2i 2-3i =(3+2i )(2+3i )(2-3i )(2+3i )=6+9i +4i -613=i .2.(2021·文)在复平面,复数6+5i ,-2+3i 对应的点分别为A ,B .假设C 为线段AB 的中点,那么点C 对应的复数是( )A.4+8i B.8+2i C.2+4i D.4+i [答案] C[解析] 由题意知A(6,5),B(-2,3),AB中点C(x,y),那么x=6-22=2,y=5+32=4,∴点C对应的复数为2+4i,应选C.3.假设复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,那么实数m的值是( )A.-1B.4C.-1和4D.-1和6[答案] C[解析] 由m2-3m-4=0得m=4或-1,应选C.[点评] 复数z=a+bi(a、b∈R)对应点在虚轴上和z为纯虚数应加以区别.虚轴上包括原点(参见教材104页的定义),切勿错误的以为虚轴不包括原点.4.(文)复数z=11+i,那么z-·i在复平面对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析] z=1-i2,z-=12+i2,z-·i=-12+12i.实数-12,虚部12,对应点⎝⎛⎭⎪⎫-12,12在第二象限,应选B.(理)复数z在复平面上对应的点在单位圆上,那么复数z2+1z( )A.是纯虚数B.是虚数但不是纯虚数C.是实数D.只能是零[答案] C[解析] 解法1:∵z的对应点P在单位圆上,∴可设P(cosθ,sinθ),∴z=cosθ+i sinθ.那么z2+1z=cos2θ+i sin2θ+1cosθ+i sinθ=2cos2θ+2i sinθcosθcosθ+i sinθ=2cosθ为实数.解法2:设z=a+bi(a、b∈R),∵z的对应点在单位圆上,∴a2+b2=1,∴(a-bi)(a+bi)=a2+b2=1,∴z2+1z=z+1z=(a+bi)+(a-bi)=2a∈R.5.(2021·市)复数(3i-1)i的共轭复数....是( )A.-3+iB.-3-iC.3+iD.3-i[答案] A[解析] (3i-1)i=-3-i,其共轭复数为-3+i.6.(2021·一中)x,y∈R,i是虚数单位,且(x-1)i-y=2+i,那么(1+i)x-y的值为( )A.-4B.4C.-1D.1[答案] A[解析] 由(x-1)i-y=2+i得,x=2,y=-2,所以(1+i)x-y=(1+i)4=(2i)2=-4,应选A.7.(文)(2021·市质检)复数z1=3+i,z2=1-i,那么z=z1·z2在复平面对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] ∵z=z1z2=(3+i)(1-i)=4-2i,∴选D.(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,假设a=C50cos5θ-C52cos3θsin2θ+C54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于( ) A.cos5θ+isin5θB.cos5θ-isin5θC.sin5θ+icos5θD.sin5θ-icos5θ[答案] A[解析]a+b i=C50cos5θ+iC51cos4θsinθ+i2C52cos3θsin2θ+i3C53cos2θsin3θ+i4C54cosθsin4θ+i5C55sin5θ=(cosθ+isinθ)5=(e iθ)5=e i(5θ)=cos5θ+isin5θ,选A.8.(文)(2021·市质检)复数a =3+2i ,b =4+xi (其中i 为虚数单位),假设复数ab ∈R ,那么实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C[解析] a b =3+2i 4+xi =(3+2i )(4-xi )16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2i ∈R ,∴8-3x 16+x 2=0,∴x =83. (理)(2021·邹平一中月考)设z =1-i (i 是虚数单位),那么z 2+2z=( )A .-1-iB .-1+iC .1-iD .1+i [答案] C[解析] ∵z =1-i ,∴z 2=-2i ,2z =21-i=1+i ,∴z 2+2z=1-i ,选C.9.(2021·聊城市模拟)在复平面,复数21-i 对应的点到直线y =x +1的距离是( )A.2 2B. 2 C.2 D.2 2 [答案] A[解析] ∵21-i=2(1+i)(1-i)(1+i)=1+i对应点为(1,1),它到直线x-y+1=0距离d=12=22,应选A.10.(文)(2021·质检)设复数z满足关系式z+|z-|=2+i,那么z等于( ) A.-34+iB.34-iC.34+iD.-34-i[答案] C[解析] 由z=2-|z-|+i知z的虚部为1,设z=a+i(a∈R),那么由条件知a=2-a2+1,∴a=34,应选C.(理)(2021·马市质检)假设复数z=a+i1-2i(a∈R,i是虚数单位)是纯虚数,那么|a+2i|等于( )A.2B.2 2C .4D .8[答案] B[解析] z =a +i 1-2i =(a +i )(1+2i )5=a -25+2a +15i 是纯虚数,∴⎩⎨⎧ a -25=02a +15≠0,∴a =2,∴|a +2i |=|2+2i |=2 2.二、填空题11.规定运算⎪⎪⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,假设⎪⎪⎪⎪⎪⎪⎪⎪ zi -i 2=1-2i ,设i 为虚数单位,那么复数z =________.[答案] 1-i[解析] 由可得⎪⎪⎪⎪⎪⎪⎪⎪ zi -i 2=2z +i 2=2z -1=1-2i ,∴z =1-i . 12.(2021·市调研)假设复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,那么实数a 的值为________.[答案] -1[解析] 因为z 1·z 2=(a -i )(1+i )=a +1+(a -1)i 为纯虚数,所以a =-1.13.(文)假设a 是复数z 1=1+i 2-i的实部,b 是复数z 2=(1-i )3的虚部,那么ab 等于________.[答案] -25[解析] ∵z 1=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=15+35i ,∴a =15. 又z 2=(1-i )3=1-3i +3i 2-i 3=-2-2i ,∴b =-2.于是,ab =-25. (理)如果复数2-bi 1+2i(i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________.[答案] -23[解析] 2-bi 1+2i =2-bi 1+2i ·1-2i 1-2i =2-2b 5-b +45i , 由复数的实数与虚数互为相反数得,2-2b 5=b +45, 解得b =-23. 14.(文)假设复数z =sin α-i (1-cos α)是纯虚数,那么α=________.[答案] (2k +1)π (k ∈Z )[解析] 依题意,⎩⎪⎨⎪⎧ sin α=01-cos α≠0,即⎩⎪⎨⎪⎧α=k πα≠2k π,所以α=(2k +1)π (k ∈Z ). [点评] 新课标教材把?复数?这一章进展了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考察复数的代数形式以及复数的四那么运算,这是我们复习的重点,不要超过围.(理)(2021·中学模考)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),假设z ∈R ,那么tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R ,∴12sin θ+5cos θ=0,∴tan θ=-512. 三、解答题15.(2021·通州市调研)复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R ).试数a 分别为什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.[解析] (1)当z 为实数时,⎩⎪⎨⎪⎧ a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎪⎨⎪⎧ a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎪⎨⎪⎧ a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.16.(2021·徐汇区模拟)求满足⎪⎪⎪⎪⎪⎪z +1z -1=1且z +2z ∈R 的复数z .[解析] 设z =a +bi (a 、b ∈R ),由⎪⎪⎪⎪⎪⎪z +1z -1=1⇒|z +1|=|z -1|,由|(a +1)+bi |=|(a -1)+bi |,∴(a +1)2+b 2=(a -1)2+b 2,得a =0,∴z =bi ,又由bi +2bi ∈R 得,2b-b=0⇒b=±2,∴z=±2i.。

2021 新高考 复数 专题 练习

2021 新高考 复数 专题 练习
考点:复数的运算及共轭复数的概念.
34.A
【详解】
试题分析:因为z=a+bi( , )在复平面内对应的点位于第四象限, ,则复数 在复平面内对应的点位于第一象限
考点:复数与复平面的点的一一对应关系
35.D
【解析】
由题意得 ,该复数表示的点为 ,它在第四象限,故选D.
【名师点睛】本题考查复数的计算及复数的几何意义,属于基础题.利用复数的除法求出 后得到它对应的点,进而可判断其所处象限.
A. B. C. D.
25.已知复数 满足 ,则 ( )
A. B. C. D.
26.已知复数 , 为 的共轭复数,则下列说法正确的是( )
A. 的虚部为 B. C. D.
27.复数 满足 ,则
A. B. C. D.
28.若 ,其中 ( 为虚数单位),则直线 的斜率为( )
A.-2B.-1C.1D.
29.若复数 为实数( 为虚数单位),则实数 等于( )
【点睛】
本题考察复数的几何意义和复数的除法,属于基础题.
2.A
【解析】由 ,即 ,所以复数 的虚部为 ,故选A.
3.A
【解析】
由 ,得 ,
故选A.
4.A
【解析】
,故选A
5.D
【分析】
化简得到 ,再计算复数模得到答案.
【详解】
,∴ ,∴ ,∴ .
故选: .
【点睛】
本题考查了复数的运算,复数模,意在考查学生的计算能力.
【详解】

在复平面内对应点的坐标为 ,
因为复数 所对应的点落在直线 上,
所以 ,解得 .
故选A.
【点睛】
本题考查复数代数形式的乘除运算,考查复数的几何意义,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.

新高考数学的复数选择题专项训练含答案

新高考数学的复数选择题专项训练含答案

新高考数学的复数选择题专项训练含答案一、复数选择题1.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 答案:C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C.2.i是虚数单位,复数1i +=-( )A.i - B.i Ci -Di答案:B【分析】由复数除法运算直接计算即可.【详解】.故选:B.解析:B【分析】由复数除法运算直接计算即可.【详解】()21ii i +==-.故选:B.3.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +答案:C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C解析:C【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可.【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C4.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫- ⎪⎝⎭,在第四象限, 故选:D.5.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚部1>0∴复数Z 在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.6.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 答案:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .7.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3 D .5答案:D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D .解析:D【分析】求出复数z ,然后由乘法法则计算z z ⋅.【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .8.已知复数5i 5i 2i z =+-,则z =( )A B .C .D .答案:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.解析:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得()()()5i 2+i 5i 5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.9.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D【分析】 先对41i z i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-, 所以共轭复数z 在复平面内的对应点位于第四象限,故选:D10.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.11.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i - 答案:D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D由复数的四则运算求出z ,即可写出其共轭复数z .【详解】2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,故选:D12.若复数11iz i ,i 是虚数单位,则z =( )A .0B .12 C .1D .2 答案:C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】 由复数除法求出z ,再由模计算.【详解】由已知21(1)21(1)(1)2ii iz i i i i ---====-++-,所以1z i =-=.故选:C .13.题目文件丢失!14.已知复数31iz i -=,则z 的虚部为( )A .1B .1-C .iD .i -答案:B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B15.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-答案:A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A二、复数多选题16.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.17.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z = 答案:BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.18.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.19.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =答案:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 20.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误;复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】 本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.21.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.22.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =答案:AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.23.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题. 故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.24.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模 答案:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模25.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上答案:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.26.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =答案:AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.27.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 答案:BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.28.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 答案:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.29.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +,故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.30.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数答案:BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知复数z =21-i
,则下列结论正确的是( ) A .z 的虚部为i
B .|z |=2
C .z 2为纯虚数 D.z =-1+i
2.(2019·河北枣强中学期末)若i 为虚数单位,复数m -i i
与(i +1)2的虚部相等,则实数m 的值是( )
A .-1
B .2
C .1
D .-2
3.(2020·石家庄调研)已知z 1=2t +i ,z 2=1-2i ,若z 1z 2
为实数,则实数t 的值为( ) A .1 B .-1 C.14 D .-14
4.设z =1-i 1+i
+2i ,则z +|z |等于( )
A .-1-i
B .1+i
C .1-i
D .-1+i
5.(2019·济南月考)设复数z =3+4i 1-2i
(i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6.在复平面内,复数z =1-2i 对应的向量为OA →,复数z 2对应的向量为OB →,则向量AB →所对
应的复数为( )
A .4+2i
B .4-2i
C .-4-2i
D .-4+2i
7.(多选)在复平面内,下列命题是真命题的是( )
A .若复数z 满足1z
∈R ,则z ∈R B .若复数z 满足z 2∈R ,则z ∈R
C .若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2
D .若复数z ∈R ,则z ∈R
8.(多选)设复数z =x +y i(x ,y ∈R ,i 为虚数单位),z 2+|z |=0,且|z |≠0,则( )
A .|z |=1
B .z =1-i
C .z =±i D.z z =1
9.i 是虚数单位,若复数(1+2i)(a +i)是纯虚数,则实数a =________.
10.已知i 是虚数单位,若复数z 满足z i 2 020=1+i ,则z =________,|z |=________.
11.已知i 是虚数单位,复数z 1在复平面内对应的向量OZ 1→=(-2,1),则复数z =z 11+i
的虚部为( )
A .-12
B.32 C .-12i D .-32
i 12.(2019·泉州市泉港区第一中学期末)若a ∈R ,则“复数z =3-2a i i
的共轭复数在复平面内对应的点在第二象限”是“a >0”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
13.(2020·大连模拟)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,记事件A :实数x ,y 满足x -y -1≥0,则事件A 发生的概率为( )
A.14
B.12
C.12π
D.1π
14.在复平面内,复数z =a +b i(a ∈R ,b ∈R )对应向量OZ →(O 为坐标原点),设|OZ →|=r ,以射
线Ox 为始边,OZ 为终边逆时针旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现棣莫弗定理:z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)],由棣莫弗定理导出了复数乘方公式:z n =[r (cos θ+isin θ)]n =r n (cos nθ+isin nθ),则(-1+3i)10等于( )
A .1 024-1 0243i
B .-1 024+1 0243i
C .512-5123i
D .-512+5123i
15.已知复数z 1对应复平面上的点(3,-4),复数z 2满足z 1z 2=|z 1|,则复数z 2的共轭复数为________.
16.(2019·福州模拟)欧拉在1748年给出的著名公式e i θ=cos θ+isin θ(欧拉公式)是数学中最卓越的公式之一,其中,底数e =2.718 28…,根据欧拉公式e i θ=cos θ+isin θ,任何一个复数z =r (cos θ+isin θ)都可以表示成z =r e i θ的形式,我们把这种形式叫做复数的指数形式,若
复数z 1=πi 32e ,z 2=πi 2
e ,则复数z =z 1z 2在复平面内对应的点在第________象限.
答案精析
1.C 2.D 3.D 4.C 5.C 6.C 7.AD
8.ACD 9.2 10.1+i
2 11.B 12.C
13.B
14.D [(-1+3i)10 =⎣⎡⎦⎤2⎝
⎛⎭⎫cos 2π3+sin 2π3i 10 =210⎝
⎛⎭⎫cos 20π3+sin 20π3i =210⎝⎛⎭
⎫-12+32i =-512+5123i.] 15.35-45
i 16.四
解析 因为e i θ=cos θ+isin θ,
所以z 1=π
i 3
2e =2⎝⎛⎭⎫cos π3+isin π3=1+3i , z 2=πi 2
e =cos π2+isin π2=i , 所以z =z 1z 2=1+3i i =i +3i 2i 2=i -3-1
=3-i , 则复数z =z 1z 2在复平面内对应的点(3,-1)在第四象限.。

相关文档
最新文档