初中数学模拟试题(一)

合集下载

房山区2023年初中学业水平考试模拟测试(一)数学试题

房山区2023年初中学业水平考试模拟测试(一)数学试题

房山区2023年初中学业水平考试模拟测试(一)九 年 级 数 学本试卷共8页,共100分,考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回,试卷自行保存。

一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.如图是某几何体的展开图,该几何体是 (A )长方体 (B )四棱锥(C )三棱柱(D )正方体2.中国立足本国国情、粮情,实施新时期国家粮食安全战略,走出了一条中国特色粮食安全之路. 2022年我国全年粮食产量68653万吨,比上年增加368万吨,增产0.5% . 将686 530 000用科学记数法表示应为 (A )68653×104(B )0.68653×109 (C ) 6.8653×108 (D )6.9×1083.如图是由射线AB ,BC ,CD ,DE ,EF ,FA 组成 的平面图形,则123456∠+∠+∠+∠+∠+∠的值 为(A )180° (B )360° (C )540°(D )720°4.实数a 、b 在数轴上的对应点的位置如图所示, 实数c 满足0+=a c ,下列结论中正确的是 (A )>b c (B )| a | > b (C )0<bc(D )| c | > | a |5.直尺和三角板如图摆放,∠1 = 50°,则∠2的度数为 (A )30° (B )40° (C )45°(D )50°6.下列图形中,直线l 为该图形的对称轴的是(A ) (B ) (C ) (D )12ll l l l ll l F EDCB A6543217.同时抛掷面值为1角,5角,1元的三枚质地均匀的硬币,则三枚硬币都正面向上的概率是 (A )31 (B )41 (C )61 (D )81 8.如图8-1,在边长为4的等边△ABC 中,点D 在BC 边上,设BD 的长度为自变量x ,以下哪个量作为因变量y ,使得x ,y 符合如图8-2所示的函数关系(A )△ABD 的面积(B )△ABD 的周长 (C )△ACD 的面积(D )△ACD 的周长二、填空题(共16分,每题2分)9x 的取值范围是 . 10.分解因式:22ax ax a -+= .11.计算:22a b a b b a+--= . 12.在平面直角坐标系xOy 中,若点A (1,m ),B (3,n )在反比例函数xky(k<0)的图象上,则m n (填“>”“=”或“<”) 13.如图,△ABC 中,CD 平分∠ACB ,DE ∥AC 交BC于点E .若AC = 5,DE = 3,则BE = .图8-1 图8-2EDCBADCBA14.关于x 的一元二次方程240++=ax x c 有两个相等的实数根,写出一组满足条件的实数a ,c 的值:a = ,c = .15.某校要在张平和李波两位跳远成绩优秀的同学中选择一位同学代表学校参加区春季运动会. 体育老师对两位同学近10次的测试数据进行了统计,发现其平均数都是5.72米,并将两位同学的测试数据制成了折线图. 如果要选出一名发挥相对稳定的同学参赛,则应该选择 (填“张平”或“李波”).16.为进一步深化“创城创卫”工作,传播健康环保的生活理念,房山区持续推进垃圾分类工作. 各乡镇(街道)的党员、志愿者纷纷参与“桶前值守”,在垃圾桶旁监督指导居民对垃圾进行分类. 某垃圾值守点有甲、乙、丙、丁四名志愿者,某一天每人可参与值守时间段如下表所示:已知每名志愿者一天至少要参加一个时间段的值守,任意时刻垃圾值守点同时最多需要2名志愿者值守,则该值守点这一天所有参与值守的志愿者的累计值守时间最短为_______小时,最长为_______小时(假设志愿者只要参与值守,就一定把相应时间段全部值完).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()04sin6043--+π-./18.解不等式组:4123,54.3-<+⎧⎪-⎨>⎪⎩x x x x19.已知2430+-=a a ,求代数式2(2)(3)+++a a a 的值.20.下面是证明等腰三角形性质定理“三线合一”的三种方法,选择其中一种完成证明.21.如图,ABCD 中,对角线AC 、BD 交于点O ,在BD 上截取OE = OF = OA. (1)求证:四边形AECF 是矩形;(2)若AE = AF ,求证:AC 平分∠BAD .22.在平面直角坐标系xOy 中,点A (1,a )在直线l 1:=+30()y kx k k >上,直线l 2:y = x +m 过点B (2,3).(1)求a 的值及直线l 2的表达式;(2)当x >-1时,对于x 的每一个值,函数=+30y kx k k >()的值大于函数y = x +m 的值,直接写出k 的取值范围.23.如图,△ABC 中,AB = AC ,以BC 为直径作⊙O ,与边AC 交于点D ,过点D 的⊙O 的切线交BC的延长线于点E .(1)求证:∠BAC = 2∠DBC ; (2)若cos ∠BAC =53,DE = 4,求BE 的长.24.2023年国际数学日的主题是“给每一个人的数学”. 在数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛. 为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息. a .两校学生得分的数据的频数分布直方图如下:(数据分成4组:20≤x <40,40≤x <60,60≤x <80,80≤x ≤100)乙校20名学生得分频数分布直方图Bb .其中乙校学生得分在60≤x <80这一组的数据如下:68 68 69 73 74 74 76 76 77 78 79 c .两组样本数据的平均数、中位数如下表所示:学校 平均数 中位数 甲校 68.25 69 乙校67.65m根据所给信息,解答下列问题:(1)写出表中m 的值:m = ;(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是 (填“甲校”或“乙校”)学生;(3)在这次数学知识竞赛中,你认为哪个学校的学生表现较好,为什么?25.如图25-1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上. 若将拱门看作抛物线的一部分,建立如图25-2所示的平面直角坐标系. 拱门上的点距地面的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2=+0()(<)y a x h k a .图25-1 图25-2(1)拱门上的点的水平距离x 与竖直高度y 的几组数据如下:根据上述数据,直接写出“门高”(拱门的最高点到地面的距离),并求出拱门上的点满足的函数关系2=+0()(<)y a x h k a .(2) 一段时间后,公园重新维修拱门. 新拱门上的点距地面的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =-0.288(x -5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d 1,“新拱门”的跨度为d 2,则d 1 d 2(填“>”“=”或“<”).水平距离x/m23681012竖直高度y/m 4 5.4 7.2 6.4 4 0 竖直高度y /m水平距离x /mO竖直高度y /m水平距离x /mO26.已知抛物线22=-+y x ax b 经过点(1,1).(1)用含a 的式子表示b 及抛物线的顶点坐标;(2)若对于任意1-a ≤x ≤2+a ,都有y ≤1,求a 的取值范围.27.如图,正方形ABCD 中,点E 是边BC 上的一点,连接AE ,将射线AE 绕点A 逆时针旋转90°交CD 的延长线于点F ,连接EF ,取EF 中点G ,连接DG .(1)依题意补全图形;用等式表示∠ADG 与∠CDG 的数量关系,并证明; (2)若DG,用等式表示线段BC 与BE 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于直线l :y = kx +b (k ≠ 0)和点P ,给出如下定义:将点P 向右(k > 0)或向左(k < 0)平移 | k | 个单位长度,再向上(b ≥0)或向下(b < 0)平移 | b | 个单位长度,得到点P'l 的“平移对称点”.(1)如图,已知直线l 为1=-y x .①点A 坐标为(1,2),则点A 关于直线l 对称点”坐标为 ;②在直线l 上是否存在点B ,使得点B “平移对称点”还在直线l 坐标,若不存在请说明理由.(2)已知直线m :y =-x +b ,若以点T (t ,0)为圆心,1为半径的圆上存在一点P ,使得点P关于直线m 的“平移对称点”在直线m 上,直接写出t 的取值范围.A BCD E。

【好题】七年级数学下期末模拟试题(含答案)(1)

【好题】七年级数学下期末模拟试题(含答案)(1)

【好题】七年级数学下期末模拟试题(含答案)(1)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 7.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .98.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,xx x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y22< D .2x 2y -<-二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.14.不等式组11{2320x x ≥--<的解集为________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________18.关于x的不等式1x <-的非负整数解为________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表.根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.C解析:C 【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.5.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .7.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.8.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==.【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,18.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O则直线与坐标轴围成的三角形是以OAOB为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

初中数学新课标测试题及答案(三套)

初中数学新课标测试题及答案(三套)

初中数学新课标考试模拟试题(一)一、选择题(每小题3分,共45分)1、新课程的核心理念是()A.联系生活学数学B.培养学习数学的爱好C.一切为了每一位学生的发展 D、进行双基教学2、教学是数学活动的教学,是师生之间、学生之间()的过程。

A.交往互动B.共同发展C.交往互动与共同发展3、教师要积极利用各种教学资源,创造性地使用教材,学会()。

A.教教材B.用教材教 C、教课标 D、教课本4、根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现()的教学。

A.概念 B.计算 C.应用题 D、定义5、“三维目标”是指知识与技能、()、情感态度与价值观。

A.理解与掌握B.过程与方法C.科学与探究 D、继承与发展6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的()的动词。

A.过程性目标 B.知识技能目标7、建立成长记录是学生开展()的一个重要方式,它能够反映出学生发展与进步的历程。

A.自我评价 B.相互评价 C.多样评价 D、小组评价8、学生的数学学习活动应是一个()的过程。

A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性9、“用数学”的含义是()A.用数学学习B.用所学数学知识解决问题C.了解生活数学 D、掌握生活数学10、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。

”,现在的《新课标》改为: ( )A.人人都能获得良好的数学教育,不同的人在数学上得到不同的发展B.人人都获得教育,人人获得良好的教育C.人人学有用的数学,人人获得有价值的教育D.人人获得良好的数学教育11、《新课标》强调“从双基到四基”的转变,四基是指:()A. 基础知识、基本技能、基本方法和基本过程B. 基础知识、基本经验、基本过程和基本方法C. 基础知识、基本技能、基本思想和基本活动经验D. 基础知识、基本经验、基本思想和基本过程12、《新课标》强调“从两能到四能”的转变,“四能”是指()A. 分析问题、解决问题的能力;发现问题和讨论问题的能力。

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。

初中数学模拟试题集

初中数学模拟试题集

初中数学模拟试题集
第一部分:选择题
1. 12 ÷ 4 =
A. 1
B. 2
C. 3
D. 4
2. 某收费站发行了一款通行卡,每张售价15元,小明购买了5张通行卡,他消费了多少元?
A. 50元
B. 60元
C. 65元
D. 70元
3. 一个正三角形的内角和为多少度?
A. 120度
B. 135度
C. 150度
D. 180度
4. 下列哪个数是质数?
A. 9
B. 16
C. 21
D. 37
5. 某数的一半加上它本身等于30,那么这个数是多少?
A. 20
B. 25
C. 30
D. 35
第二部分:填空题
1. 4 × 6 = ____
2. 阳光小学的学生人数是1000人,其中男生有600人,那么女生人数是____
3. 在一个减法公式中,减数是9,差是5,被减数是____
4. 24 × 0.5 = ____
5. 小明爸爸的年龄是36岁,小明的年龄是12岁,那么小明爸爸的年龄是小明年龄的____倍
第三部分:解答题
1. 一张长方形桌子的长是80cm,宽是60cm,求桌子的周长和面积。

2. 两个相邻的偶数之和为30,求这两个偶数。

3. 假设x是一个正数,用3减去它的一半,再用4减去它的一半,最后用5减去它的一半,得到的三个数的和是100,求x。

4. 一个长方体的长是5cm,高是3cm,宽是4cm,求它的体积。

5. 一个正方形的面积是16平方米,求它的边长。

以上就是初中数学模拟试题集的部分内容,希望对你有帮助!。

初中中考数学模拟试题

初中中考数学模拟试题

初中中考数学模拟试题一、选择题(每小题3分,共30分)1. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 正数C. 零D. 无法确定2. 已知一个圆的半径为5厘米,那么这个圆的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米3. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的体积是:A. 240立方厘米B. 180立方厘米C. 120立方厘米D. 90立方厘米4. 一个数的相反数是-5,则这个数是:A. 5B. -5C. 0D. 无法确定5. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 120°C. 150°D. 180°6. 一个数的绝对值是它本身,那么这个数是:A. 负数B. 正数C. 零D. 无法确定7. 一个三角形的内角和是:A. 90°B. 180°C. 270°D. 360°8. 一个数的立方根是它本身,那么这个数是:A. 1B. -1C. 0D. 1或-1或09. 一个数的平方是16,那么这个数是:A. 4B. -4C. 4或-4D. 无法确定10. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边是:A. 5厘米B. 6厘米C. 7厘米D. 8厘米二、填空题(每空2分,共20分)1. 一个数的绝对值是它与______的距离。

2. 一个数的平方根是它本身的数是______。

3. 一个圆的周长是2πr,其中r代表______。

4. 一个数的立方是它自身的数是______。

5. 一个数的相反数是它与______的距离。

6. 一个数的补角是它与______的角度。

7. 一个数的平方是25,那么这个数是______。

8. 一个数的立方根是它自身的数是______。

9. 一个三角形的外角和是______。

10. 一个直角三角形的斜边是两直角边的______。

2024年四川省绵阳市初中学业水平考试数学模拟试题一

2024年四川省绵阳市初中学业水平考试数学模拟试题一

2024年四川省绵阳市初中学业水平考试数学模拟试题一一、单选题1.如图,在平面直角坐标系中,A 、B 两点在一次函数的图象上,其坐标分别为(,)A x y ,(,)B x a y b ++,下列结论正确的是( )A .0a <,0b =B .0a >,0b >C .0a <,0b <D .0ab <2.下列各式正确的是( )A 4±B .4=C 4=-D 3-3.根据等式的性质,下列等式变形中,不一定成立的是( ) A .若x y =,则22x y +=+ B .若x y =,则11x y -=- C .若ax ay =,则x y =D .若x ya a=,则x y = 4.如图, 在Rt ABC V 中,90C ∠=︒,BAC ∠的平分线AE 交BC 于点E ,ED AB ⊥于点 D , 若 ABC V 的周长为12,则 BDE △ 的周长为 4 ,则AC 为 ( )A .3B .4C .6D .85.下列各组数中,相等的一组是( ) A .()1--与1-- B .23-与()23-C .()34-与34-D .223与223⎛⎫⎪⎝⎭6.如图,是正方体的平面展开图,每个面上都标有一个汉字,与“明”字相对的面上的字为( )A .法B .治C .诚D .信7.如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE 交CF 于D ,AC 交BE 于M ,AB 交CF 于N ,则下列结论中错误的是( )A .∠EAC =∠F AB B .∠EAF =∠EDFC .△ACN ≌△ABMD .AM =AN8.求23201212222++++⋯+的值,可令23201212222S =+++++K ,则2342013222222S =++++⋯+,因此2013221S S -=-.仿照以上推理,计算出23201215555++++⋯+的值为( )A .201251- B .201351-C .2013514-D .2012514-9.若abc ≠0,则a a+b b+cc的值为( ) A .±3或±1B .±3或0或±1C .±3或0D .0或±110.已知二次函数y =ax 2+2ax +2a +5(其中x 是自变量)图象上有两点(﹣2,y 1),(1,y 2),满足y 1>y 2.当﹣2≤x ≤1时,y 的最小值为﹣5,则a 的值为( )A .﹣5B .﹣10C .﹣2D .511.如图,在正方形ABCD 中,点P 在对角线BD 上,PE BC ⊥,PF CD ⊥,E ,F 分别为垂足,连结AP ,EF ,则下列命题:①若5AP =,则5EF =;②若AP BD ⊥,则E F B D ∥;③若正方形边长为4,则EF 的最小值为2,其中正确的命题是( )A .①②B .①③C .②③D .①②③12.如图,抛物线2y ax bx c =++的顶点坐标为()1,n .下列结论:①0abc >;②80a c +<;③关于x 的一元二次方程21ax bx c n ++=-有两个不相等实数根;④抛物线上有两点()11,P x y 和()22,Q x y ,若121x x <<,且122x x +>,则12y y >.其中正确的结论共有( )A .1个B .2个C .3个D .4个二、填空题13.已知点M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为. 14.将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式 .15.有一人利用手机发短信,获得他信息的人也按他的发送人数发送该条短信,经历两轮短信的发送,共有110人的手机获得该条短信.设每人给y 人发短信,则可列方程. 16.如图,在直角坐标系xOy 中,边长为1的正方形A 1B 1C 1D 1(称为第1个正方形)的顶点A 1在原点处,点B 1在y 轴上,点D 1在x 轴上,点C 1在第一象限内,现以点C 1为顶点作等边三角形C 1A 2B 2,使得点A 2落在x 轴上,且A 2B 2⊥x 轴;以A 2B 2为边做正方形A 2B 2C 2D 2(称为第2个正方形),且正方形的边A 2D 2落在x 轴上…如此类推,则第2020个正方形的边长为.17.如图,在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为12S S 、.则12S S -=.18.如图,在Rt ABC △中,9060ACB B ∠=︒∠=︒,,点E ,N ,M 分别是线段AB AC EB ,,的中点,下列结论:①NMC V 为等边三角形.②CE MN ⊥;③2ABC ENCM S S 四边形=V ;④AN .其中正确的是 .三、解答题 19.计算或解方程:(1)()321128⎛-+-⨯ ⎝; (2)()22132x -=.20.为促进师生身心全面健康发展,进一步推广“阳光体育”大课间活动,某学校就学生对A 实心球,B 立定跳远,C 跑步,D 跳绳四种体育活动项目喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次被调查的学生总人数和喜欢“跑步”的学生人数; (2)将两个统计图补充完整;(3)随机抽取了4名喜欢“跑步”的学生,其中有2名女生,2名男生,现从这4名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到2名女生的概率. 21.如图,AC 是▱ABCD 的对角线,∠BAC =∠DAC . (1)求证:AB =BC ;(2)若AB =2,AC =▱ABCD 的面积.22.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于4,求5a b+﹣(a +b ﹣2cd )x ﹣5cd 的值.23.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,解答以下问题. (1)当销售单价定为每千克35元时,销售量是千克、月销售利润是元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.如图,AB 是O e 的直径,C 为O e 上一点,连接AC BC ,,延长AB 至点D ,使得DCB CAB ∠=∠,点E 为»AB 的中点,连接CE 交AB 于点F ,连接BE .(1)求证:DC 为O e 的切线; (2)若14tan 2CD CEB =∠=,,求CF CE ⋅. 25.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx =+经过点A (2,0)和点()1,B m -,顶点为点D .(1)求直线AB 的表达式; (2)求tan ∠ABD 的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC V 与ABP V 相似,求点C 的坐标.。

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)(1)

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)(1)

一、选择题1.(0分)[ID:67645]某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.(0分)[ID:67629]下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.43.(0分)[ID:67624]若一个数的绝对值的相反数是17-,则这个数是()A.17-B.17+C.17±D.7±4.(0分)[ID:67623]计算4(8)(4)(1)+-÷---的结果是()A.2 B.3 C.7 D.4 35.(0分)[ID:67606]在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,36.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.47.(0分)[ID:67594]下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.(0分)[ID:67590]一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多109.(0分)[ID:67585]2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107 10.(0分)[ID:67582]下列说法中正确的是()A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数11.(0分)[ID :67565]6-的相反数是( ) A .6 B .-6 C .16 D .16- 12.(0分)[ID :67561]一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( )A .18B .1-C .18-D .2 13.(0分)[ID :67578]把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .612000 14.(0分)[ID :67569]已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 15.(0分)[ID :67568]下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题16.(0分)[ID :67757]若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.17.(0分)[ID :67755]在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.18.(0分)[ID :67743]3-的平方的相反数的倒数是___________.19.(0分)[ID :67742]一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.20.(0分)[ID :67715]小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.21.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 22.(0分)[ID :67688]在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.23.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.24.(0分)[ID :67668]分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出25.(0分)[ID :67753]若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________. 26.(0分)[ID :67719]比较大小:364--_____________()6.25--. 27.(0分)[ID :67705]用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 三、解答题28.(0分)[ID :67942]计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 29.(0分)[ID :67901]计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-30.(0分)[ID :67874]计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.C3.C4.C5.A6.C7.D8.D9.B10.D11.B12.C13.C14.C15.C二、填空题16.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=17.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键18.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义19.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键20.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为01221.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=22.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×23.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶24.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运25.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==26.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小27.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.2.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.3.C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键. 4.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.5.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.7.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.8.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.B解析:B【分析】科学记数法表示较大的数形式为a×10n 的形式,其中1≤|a|<10,n 为整数,10的指数n 比原来的整数位数少1.【详解】3504000=3.504×106,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a -可以表示任何有理数,故该选项正确.故选:D .【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.11.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .12.C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C.【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】--⨯=--=-,错误,不符合题意;A、82681220B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题16.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000= 解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 17.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】 负分数为:﹣12 ,﹣313,共2个;正整数为: 3, 6005共2个, 则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键. 18.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义 解析:19- 【分析】根据倒数,相反数,平方的概念可知.−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.19.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.20.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.21.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.22.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.23.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517第4次:3171364⨯+=;第5次:640.50.50.50.50.50.51⨯⨯⨯⨯⨯⨯=;第6次:311316⨯+=;第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H 运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.24.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运 解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 25.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b、a 的形式 ∴0b ≠,∴a b +=0, ∴3a 3b=-,∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b=-3是解答本题的关键. 26.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小 解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】 ∵3276 6.7544--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36( 6.25)4--<--, 故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.27.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理 解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.三、解答题28.(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+-=113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.29.(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.30.(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】(1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案;(4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4=【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。

初中数学第一次模拟考试题(含答案)

初中数学第一次模拟考试题(含答案)

初中毕业生升学文化课第一次模拟考试数 学 试 卷注意事项:1.本试卷分卷Ⅰ和卷Ⅰ两部分;卷Ⅰ为选择题,卷Ⅰ为非选择题,将卷Ⅰ各题的答案填在卷Ⅰ前面选择题答题卡内,交卷只交卷Ⅰ部分. 2.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)一、选择题(每小题中的选项只有一个是正确的,每小题2分,共24分) 1.6的相反数是 A .6B .C .D . 2.下列运算正确的是A .2m 3+m 3=3m 6B .m 3·m 2=m 6C .(-m 4)3=m 7D .m 6÷2m 2= 12m 43.自2010年1月1日起,移动电话在本地拨打长途电话时,将取消现行叠加收取的本地通话费;在国内漫游状态下拨打国际及台港澳电话,取消现行叠加收取的漫游主叫通话费.据有关电信企业测算,这些措施每年可为手机用户减负逾60亿元.60亿元用科学计数法表示为 A .元 B .元 C .元D .元4.不等式组的解集是 A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-35.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是 A .B .C .D .6.如图1,平行四边形中,,,的垂直平分线交于,则的周长是 A .6B .8C .9D .106-1616-610⨯86010⨯9610⨯10610⨯78671718ABCD AB 3=5BC =AC AD E CDE △图27.如图2,在直角坐标系中,正方形EFOH 是正方形ABCD经过位似变换得到的,对角线OE=4则位似中心的坐标是A .(-2,2)B .(-2 ,2)C .(-4,4)D .(0 ,0) 8.一个钢管放在V 形架内,图3是其截面图,O 为钢管的圆心.如果钢管的半径为25 Cm ,∠MPN = 60︒,则OP 的长为 A .50 CmB .25CmC .Cm D .50Cm9.如图4,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的余弦值为,则坡面 AC 的长度为 A .m B .10 mC . mD .m 10.函数的图象过点,则此函数的图象在平面直角坐标系中的 A .第一、三象限B .第三、四象限C .第一、二象限D .第二、四象限11.抛物线的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是 A .(0,-2)B .C .D . 12.有一列数A 1,A 2,A 3,A 4,A 5,…,A n ,其中A 1=5×2+1,A 2=5×3+2,A 3=5×4+3,A 4=5×5+4,A 5=5×6+5,…,当A n =2009时,n 的值等于 A .334 B .401 C .2009 D .2010二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.若a -b =1,ab=2,则(a +1)(b -1) .14.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量 本.222223335034515210302(0)ky k x=≠(22)-,()20y x x p p =++≠19,24⎛⎫-⎪⎝⎭19,24⎛⎫-⎪⎝⎭19,24⎛⎫-- ⎪⎝⎭图1图3图4……15.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图5所示,则小明5次成绩的方差与小兵5次成绩的方差之间的大小关系为.16.如图6,菱形的对角线相交于点请你添加一个条件: ,使得该菱形为正方形.17.如图7,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .18.如图8,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 .三、解答题(本大题共8个小题;共78分.解答应写出文字明、证明过程或演算步骤)19.(本小题满分8分)先化简,再求值:,其中.20.(本小题满分8分)如图9,的半径为2,直径经过弦的中点,∠ADC =75°. (1)填空:=____________;(2)求的长.21S 22S 21S 22S ABCD O ,ABC ︒=∠90ACB ︒=∠30B 6=BC CA 'A AB B 2112x x x x x ⎛⎫++÷- ⎪⎝⎭21x =+O ⊙CD AB G cos ACB ∠OG 1210 8 6 4 2 01 2 3 4 5 小明 小兵 A B C D D C B A O图6O 图5图7图821.(本小题满分9分)作为一项惠农强农应对国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已取得成效,在气温较低的季节,电冰箱也有一定的销量.我市某家电公司营销点对自去年10月份至今年3月份销售两种不同品牌冰箱的数量做出统计,数据如图10所示:根据图10提供的信息解答下列问题:(1)请你从平均数角度对这6个月甲、乙两品牌冰箱的销售量作出评价.(2)请你从方差角度对这6个月甲、乙两品牌冰箱的销售情况作出评价.(3)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.22.(本小题满分9分)如图11,正比例函数的图像与一次函数的图像交于点A(m,2), 一次函数图像经过点B , 与y 轴的交点为C 与轴的交点为D . (1)求一次函数解析式;(2)求C 点的坐标; (3)求ⅠAOD 的面积。

中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题

中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题

某某市铜梁区巴川中学2016届中考数学模拟试卷一一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠15.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠211.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29212.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为(结果保留π).17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=, =, =;(2)2x2﹣7x+2=0(x≠0),求的值.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年某某市铜梁区巴川中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵ =2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值X围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对某某“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100X该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【考点】切线的性质.【专题】计算题.【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理的运用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分【考点】函数的图象.【专题】探究型.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项A错误;前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项B正确;由图可知,5分钟时两人都跑了500米,故选项C正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;故选A.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值X围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值X围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【专题】规律型.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 6.02×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:602 000 000 000=6.02×1011,故答案为:6.02×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥B C,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为8﹣2π(结果保留π).【考点】扇形面积的计算.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故答案为:8﹣2π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【考点】概率公式;根的判别式;解一元一次不等式组.【分析】首先解不等式组,即可求得a的取值X围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.【点评】此题考查了概率公式的应用、不等式组的解集以及一元二次方程的解法.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值X围,再利用w与x之间的函数关系式,求出函数最值即可.【解答】解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 , = 14 , = 194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【考点】一元二次方程的解.【专题】阅读型.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用;解直角三角形的应用-仰角俯角问题.【分析】(1)延长FE交AB于M,设ME=x,根据直角三角形函数得出AM=tanα•x,BM=tanβ•x,然后根据tanα•x+tanβ•x=36,即可求得EM的长,然后通过余弦函数即可求得AE;(2)根据BM=NG=DN,得到DN的长,然后解直角三角形函数求得EN和FN,进而求得EF和DF的长,然后根据题意列出方程,解方程即可求得.【解答】解:(1)延长FE交AB于M,∵EF∥BC,∴MN⊥AB,MN⊥DG,设ME=x,∴AM=tanα•x,BM=tanβ•x,∵AB=36,∴tanα•x+tanβ•x=36,∴tan37°x+tan24°x=36,0.75x+0.45x=36,解得x=30,∴AE==≈37.5(米);(2)延长EF交DG于N,∵GN=BM=tan24°•30=13.5,DE=CE,EF∥BC,∴DN=GN=13.5(米),∵∠DCG=30°,∴∠DEN=30°,∴EN=DN•cot30°=13.5×,∵=,∴∠DFN=60°,∴∠EDF=30°,FN=DN•cot60°=13.5×,∴DF=EF=EN﹣FN=13.5×,∴EF+DF=27×=18,设施工队原计划平均每天修建y米,根据题意得, =+2,解得x=3(米),经检验,是方程的根,答:施工队原计划平均每天修建3米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,。

【典型题】初二数学上期中第一次模拟试题(及答案)(1)

【典型题】初二数学上期中第一次模拟试题(及答案)(1)

【典型题】初二数学上期中第一次模拟试题(及答案)(1)一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为( )A .6B .8C .10D .8或102.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm3.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =14.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣345.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形 6.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处7.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.58.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45°9.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .252710.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)11.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角12.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 16.当x =_________时,分式33x x -+的值为零. 17.若分式15x -有意义,则实数x 的取值范围是_______. 18.若分式67x--的值为正数,则x 的取值范围_____.19.因式分解:m3n﹣9mn=______.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;22.先化简,再求值:计算2213693+24a a a aa a a+--+-÷--,再从-2、0、2、3四个数中选择一个合适的数作为a的值代入求值.23.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAD+∠CAE=60°,求∠BAC的度数.25.解方程:(1)2332 x x=-(2)31144xx x ++=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再求出AB 即可.【详解】解:∵在Rt △ABC 中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB (直角三角形30°所对的直角边等于斜边的一半), 又∵CD 是斜边AB 上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC (直角三角形30°所对的直角边等于斜边的一半), ∴AC=6,又∴AC=12 AB,∴12AB=.故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.3.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.5.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.6.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.7.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.8.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.10.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.11.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C 、直角三角形有三条高,故本选项错误;D 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B .【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.12.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33 解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx -6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.16.3【解析】【分析】分式的值为零时:分子等于零但是分母不等于零【详解】依题意得:x-3=0且x+3≠0解得x=3故答案是:3【点睛】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于解析:3【解析】【分析】分式的值为零时:分子等于零,但是分母不等于零.【详解】依题意得:x-3=0且x+3≠0,解得x=3.故答案是:3.【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.17.【解析】由于分式的分母不能为0x-5在分母上因此x-5≠0解得x 解:∵分式有意义∴x -5≠0即x≠5故答案为x≠5本题主要考查分式有意义的条件:分式有意义分母不能为0 解析:【解析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x . 解:∵分式15x -有意义, ∴x-5≠0,即x≠5.故答案为x≠5. 本题主要考查分式有意义的条件:分式有意义,分母不能为0.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后利用平方差公式分解即可详解:原式=mn (m2-9)=mn (m+3)(m-3)故答案为mn (m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后,利用平方差公式分解即可.详解:原式=mn (m 2-9)=mn (m+3)(m-3).故答案为mn (m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将3221-利用平方差公式分解因式,根据3221-可以被10到20之间的某两个整数整除,即可得到两因式分别为15和17.【详解】因式分解可得:3221-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.见解析【解析】【分析】作∠AOB 的角平分线与线段MN 的垂直平分线的交点即所求仓库的位置.【详解】如图所示:点P 即为所求,【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—应用与设计作图,解题关键在于掌握作图法则.22.1-【解析】【分析】先把除法转化为乘法,并把分子、分母分解因式约分,然后再算减法,最后选一个使分式有意义的数代入计算即可.【详解】221369324a a a a a a a +--+-÷-+- =221343269a a a a a a a +---⨯-+-+ =()()()22213323a a a a a a a +-+--⨯-+-=1233a a a a +---- =123a a a +-+- =33a - ∵a=-2、2、3时,原式无意义,∴a 只能取0,∴原式=33a -=-1. 【点睛】 本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.23.详见解析.【解析】试题分析:(1)由点O 是线段AB 和线段CD 的中点可得出AO =BO ,CO =DO ,结合对顶角相等,即可利用全等三角形的判定定理(SAS )证出△AOD ≌△BOC ;(2)结合全等三角形的性质可得出∠A =∠B ,依据“内错角相等,两直线平行”即可证出结论.试题解析:证明:(1)∵点O 是线段AB 和线段CD 的中点,∴AO =BO ,CO =DO . 在△AOD 和△BOC 中,∵AO =BO ,∠AOD =∠BOC ,CO =DO ,∴△AOD ≌△BOC (SAS ).(2)∵△AOD ≌△BOC ,∴∠A =∠B ,∴AD ∥BC .24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键.25.(1)9x =- (2)0x =【解析】【分析】(1)先去分母,再移项和合并同类项,最后检验即可.(2)先去分母,再移项和合并同类项,最后检验即可.【详解】(1)2332 x x=-439x x=-9x=-经检验,9x=-是方程的根.(2)31144xx x ++=--341x x++-=-20x=x=经检验,0x=是方程的根.【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.。

初中数学模拟试题及答案

初中数学模拟试题及答案

初中数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 计算下列哪个表达式的结果为0?A. 3 + 2B. 5 - 5C. 4 × 0D. 6 ÷ 23. 如果一个角的补角是90°,那么这个角的度数是:A. 90°B. 45°C. 30°D. 60°4. 一个数的平方等于36,这个数是:A. 6B. ±6C. 3D. ±35. 下列哪个图形是轴对称图形?A. 圆形C. 三角形D. 所有选项6. 一个数的立方等于-27,这个数是:A. -3B. 3C. -1D. 17. 一个等腰三角形的底边长为6cm,两腰长为5cm,那么这个三角形的周长是:A. 16cmB. 17cmC. 18cmD. 19cm8. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不对9. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 6cmC. 7cmD. 8cm10. 一个数的倒数是它自己,这个数是:B. -1C. 1或-1D. 0二、填空题(每题3分,共30分)1. 一个数的相反数是-7,那么这个数是______。

2. 一个数的绝对值是8,那么这个数可以是______或______。

3. 一个数的平方根是4,那么这个数是______。

4. 一个数的立方根是2,那么这个数是______。

5. 一个数的倒数是1/2,那么这个数是______。

6. 一个三角形的三个内角的度数之和是______度。

7. 如果一个角是另一个角的补角,那么这两个角的和是______度。

8. 一个数的平方是25,那么这个数是______或______。

9. 一个数的立方是-8,那么这个数是______。

10. 一个等边三角形的每个内角的度数是______度。

初中毕业会考仿真考试数学试题(一)

初中毕业会考仿真考试数学试题(一)

初中毕业会考仿真考试数学试题(一)时量:120分钟 总分:120分一、 精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分)1、下列各式计算正确的是 ( )(A )011(1)()-32---= (B (C )224246a a a += (D )236()a a =2、下列命题中,真命题是( )A 、对角线互相垂直且相等的四边形是正方形B 、等腰梯形既是轴对称图形又是中心对称图形C 、圆的切线垂直于经过切点的半径D 、垂直于同一直线的两条直线互相垂直3、某种生物细胞的直径约为0.00056m ,将0.00056用科学记数法表示为( )A 、0.56×10﹣3B 、5.6×10﹣4C 、5.6×10﹣5D 、56×10﹣54、在△ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是( )A 、B 、C 、πD 、5、为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( )A 、B 、C 、D 、6、两个相似多边形的面积比是9:16,其中小多边形的周长为36cm ,则较大多边形的周长为( )A 、48cmB 、54cmC 、56cmD 、64cm7.已知平面直角坐标系中两点A (-1,O)、B(1,2).连接AB ,平移线段AB 得到线段11B A ,若点A 的对应点1A 的坐标为(2,一1),则B 的对应点B 1的坐标为 ( ) A.(4,3) B .(4,1) C .(一2,3 ) D .(一2,1) 8、如图,在菱形ABCD 中,对角线AC=6,BD=8,点E 、F 分别是边 AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE+PF 的 最小值,则这个最小值是( ) A 、3 B 、4 C 、5 D 、6 9、如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,还需补充一个条件,则补充的条件不正确的是( )A 、AC ∥ODB 、AB=ACC 、CD=DBD 、DE=DO10、一小球被抛出后,距离地面的高度h (米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t ﹣1)2+6,则小球距离地面的最大高度是( ) A 、1米 B 、5米 C 、6米 D 、7米二、细心填一填,一锤定音(本大题共8道小题,每小题4分,满分32分)11、已知25523y x x =-+--,则2xy 的值为 .12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x 满足:60100x ≤<,赛后整理所有参赛选手的成绩如表(一)分 数 段频数 频率 6070x ≤< 300.15 7080x ≤< m 0.45 8090x ≤< 60 n 90100x ≤<200.1表(一)根据表(一)提供的信息得到m=_______,n = . 13、如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC= . 14.已知不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,则)1)(1(-+b a 的值等于 . 15.分式方程1m x -+1x x-=1有增根,则m 的值为_______________. 16、一次函数y 1=k 1x+b 和反比例函数(k 1∙k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是___________.17、如图,点0为优弧所在圆的圆心,∠AOC=108°,点D 在AB 延长线上,BD=BC ,则∠D= .18、观察一列单项式:a ,22a -,34a ,48a -,… 根据你发现的规律,第7个单项式为 ;第n 个单项式为 .三、用心做一做,慧眼识金(本大题共3道小题,每小题7分,满分21分)19、先化简,再求值:232244()()442x y y xy x x xy y x y -⋅+++-,其中2121x y ⎧=⎪⎨=⎪⎩20.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB=150厘米,∠B AC=30°,另一根辅助支架DE=76厘米,∠CED=60°. (1)求垂直支架CD 的长度。

《易错题》人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(1)

《易错题》人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(1)

一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( ) A .20001200(22)x x =- B .212002000(22)x x ⨯=- C .220001200(22)x x ⨯=-D .12002000(22)x x =-2.(0分)[ID :68201]已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18D .6x+4(x ﹣2)=183.(0分)[ID :68200]如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .3 4.(0分)[ID :68184]方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =05.(0分)[ID :68165]在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( ) A . B . C . D .6.(0分)[ID :68248]下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x7.(0分)[ID :68242]图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A .2314B .3638C .42D .448.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6-9.(0分)[ID :68239]某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3. A .38B .34C .28D .4410.(0分)[ID :68235]关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .311.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-12.(0分)[ID :68225]我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=13.(0分)[ID :68216]整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =14.(0分)[ID :68213]佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元B .3500元C .4000元D .4100元15.(0分)[ID :68180]商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折二、填空题16.(0分)[ID :68356]关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.17.(0分)[ID :68349]解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________. 18.(0分)[ID :68347]如果3m -与21m +互为相反数,则m =________. 19.(0分)[ID :68343]已知一个角的补角是这个角的4倍,那么这个角的度数是_________.20.(0分)[ID :68302]若4a +9与3a +5互为相反数,则a 的值为_____. 21.(0分)[ID :68294]在方程1322x -=-的两边同时_________,得x =__________. 22.(0分)[ID :68291]某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米.(1)若设这个足球场的宽为x 米,那么长为_______米。

初中数学联赛模拟试卷一

初中数学联赛模拟试卷一

初中数学联赛模拟试卷一一、选择题〔大题共6个试题,每题有一个正确答案,选对得5分,选错、不选或多项选择均得0分〕.1.在40与50之间能整除724-1的数是( ).A .41、48B . 45、47C . 43、48D . 41、47 2. 设N =88888888写成十进制数时,它的各位数字之和是A , 而A 的各位数字之和是B , B 的各位数字之和是C , 那么C 是( ).A . 11B . 7C . 9D . 43. 为了给一本书的各页标出页码,在计算机排版录入时,录入员需击打数字键3645次,这本书的页数是( ).A . 1187B . 1188C . 1189D . 非上述答案4. 设a 1, a 2,…, a 8是8个互异的整数, a 是它们的算术平均数. 如果r 是下面方程:(x -a 1)(x -a 2)…(x -a 8)+1980=0 的整数解, 那么r 等于( ).A . a +1B . a +2C . a +2或a -25. 甲、乙二人同时解根式议程7=+++b x a x . 抄题时,甲错抄成7=-++b x a x , 成果解得一根是12; 乙错抄成7=+++b x d x , 成果解得一根是13. 乙知二人除抄错题之外, 解题过程无误, 那么d 的值有( )个.A . 2B . 3C . 4D . 56. x 1,x 2,x 3,…,x 10都是正整数, x 1+x 2+x 3+…+x 10=x 1x 2x 3…x 10, 且此中一个取得最大值, 那么x 1+x 2+…+x 10的值等于( ).A . 19B . 20C . 21D . 22 二、填空题(本大题共6个小题, 每题5分)1. 将整数N 的个位数字写在最高位得另一整数M ,且M =5N . 那么N 最小是________.2. 19962-a 是整数,那么a 等于________.3. a 、b 、c 都是整数, m =a 2+b 2, n =c 2+d 2. 那么mn 也可暗示为两个整数的平方和,且有m ·n =________.4. 3p +9q =51, 且p 、q 为素数,那么15log 13+q p=________. 5. 某城市在一次为残疾人募捐发行的彩票999999张. 每张彩票上印有一个六位数字的号码. 从000001到999999号. 如果号码的前三位数字之和等于后三位数字之和,那么称这张彩票为“幸运票〞. 例如112031, 因1+1+2=3+1, 所以号码为112031的彩票为幸运票. 幸运票总共有N 张. 那么该城市此次发行的彩票中,所有幸运票号码之和可暗示为______.6. 由七个数字0,1,2,3,4,5,6组成的,且能被55整除的最小的七位数是______.三、解答题1. (8分)能否将①19991999; ②1999! 暗示成1999个持续的奇自然数之和2. (8分)证明(1)假设2n-1为素数(这样的素数称为梅森素数),那么n也是素数.n不克不及同时为素数.(2)当n为奇素数时,2n-1、123. (10分)求对于任何自然数n总能整除n4+2n3+11n2+10n的最大自然数m.4. (14分)假设自然数a、b、c满足a2+b2=c2, 就称a、b、c为一组勾股. 试证任何一组勾股数a、b、c的乘积abc总能被60整除.参考答案=(712+1)(76+1)(73+1(73-1)而 73+1=8×4373-1=6×578×6=48从而43、48是在40与50之间的能整除724-1的数. 应选C.2. 阐发与解我们知道,一个十进制数被9除余几,它的各位数字之和被9除也余几; 又一个数被9除余1, 它的任意正整数次幂被9除也余1. 这样就有N、A、B、C被9除的余数不异.N=88888888=88888·11118888而88888=64444464除以9余1, 644444除以9也余1, 88888除以9也余1.+4888811118888=(1107×9+4)8888=9k148888=48886×16=642962×16由前所述, 642962除以9余1,又1除以9余7.这样有48888除以9余7,进而有11118888除以9余7,从而有N=88888888除以9余7.所以, N、A、B、C除以9均余7.又N=88888888的位数小于4×8888=35552,因而,N的各位数字之和A<9×35552=319968.而小于319968的多位数的各位数字之和最大是2+5×9=47.即B≤47而小于等于47的数各位数字之和最大是3+9=12, 从而C≤12.又C除以9余7,故C=7.所以选B.3. 解: 1~9页每页需要一个数字,共需要9个数字;10~99页每页需要两个数字,共需要2×90=180个数字;100~9999页每页需要3个数字,共需要3×900=2700个数字.这样1~999页共需要数字9+180+2700=2889个数字. 3645~2889=756(个)1000~9999页每页共需要4个数字,而 756÷4=189(页)因而,数码是4位数的共有189页,从而全书的页数是: 999+189=1188(页). 应选B .4. 解:将r 代入方程, 有 (r -a 1)(r -a 2)…(r -a 8)=-1980因为a 1,a 2,…,a 8是互异整数,所以r -a 1,r -a 2,…,r -a 8也是互异整数,而它们都是-1980的因数.又1980=22×32×5×11.从-1980的因数中选出8个互异的因数,且使乘积等于-1980,只有两种情况:±1,±2,±3,5,11或±1,±2,±3, -5,-11.这八个数相加别离得:(r -a 1)+(r -a 2)+…+(r -a 8)=1+(-1)+2+(-2)+3+(-3)+5+11 =16或 (r -a 1)+(r -a 2)+…+(r -a 8)=1+(-1)+2+(-2)+3+(-3)+(-5)+(-11) =-16即 8r -(a 1+a 2+…+a 8)=16 或 8r -(a 1+a 2+…+a 8)=-16 所以r =a +2或r =a -2. 应选D .5. 阐发与解 因为乙在解方程7=+++b x d x 时,得一根为13,因而d +13.b +13应为整数,且71313=+++b d ,由此得d 的值应为-13,-12,-9.-4,3,12,23,36; 相应的b 的值为36,23,12,3,-4,-9,-12,-13.又甲在解方程7=+++b x a x 时,得一根为12,因而b -12应为整数,且不大于7.这样,上面得到的b 值只能取12,3,-4,-13.从而d 的可能取值为-9,-4,3,36.应选C .6. 解: 因为x 1,x 2,…,x 10都是正整数,由对称性,不妨设x 1≤x 2≤…≤x 10.由≤9101091091111x x x x x x ++++ (等号当且仅当x 1=x 2=…=x 8=1时才成立)109x x ≤1098x x ++)1)(1(109--x x ≤9(1)假设9=1,那么有1921====x x x .于是得10109x x =+,矛盾. (2)假设9x ≥2,110-x ≤9,10x ≤10,仅当29=x 时,才有1010=x .此时有21x x =18===x .于是得2010921=+++x x x x .因而,当1021,,,x x x 有一个取得最大值时,201021=+++x x x .应选B .二、填空题1.解:设数N 是几位数,个位数字是x ,且N =10y +x ,M =10n -1x +y .由M =5N ,因而)10(5101x y y x n +=+-即y x n 49)510(1=--显然49不克不及整除x ,故7可以整除5101--n . 但)7(m od 3)37(10111---≡+=n n n 从而)7(m od 5351011-≡---n n 又)7(m od 232≡ 因而)7(m od 5333532≡=⨯从而,当n -1=5,即n =6时,11016--能被7整除.可以验证,n =6是最小的n .由此解出x =7,y =14285.故N =142857.2.解:设x a =-19962,x 应为正整数. 从而199622=-x a即 (a +x )(a -x )=499×22.由此可知,a +x ,a -x 是1996的两个因数,且乘积等于1996.注意到a +x 、a -x 奇偶性不异,且a +x >a -x .应有a +x =499×2,a -x =2或a +x =-2,a -x =-499×2,进而得到a =500或a =-500.3.解:因为22b a m +=,22d c n +=, 所以 ))((2222d c b a mn ++=即 22)()(bc ad bd ac mn -++=或22)()(bc ad bd ac ++-4.解:因为3p +9q =51,从而p +3q =17.由此可知p 、q 的奇偶性相反.我们知道,只有2是偶素数.当p =2时,q =5也是素数;当q =2时,p =11也是素数.也就是满足3p +9q =51的素数p 、q 有两对,p =2,q =5或p =11,q =2故得=+15log 13q p 1552log 13+⨯=-1 或012511log 13=+⨯.5.解:显然号码为999999的彩票是幸运票.除这张幸运票外,假设某号码是321321b b b a a a n =的彩票是幸运票.这里应有321321b b b a a a ++=++.而m =999999-n =)9)(9)(9)(9)(9)(9(321321b b b a a a ------,且有=-+-+-)9()9()9(321a a a)9()9()9()(27)(27321321321b b b b b b a a a -+-+-=++-=++-.也就是号码为m =999999-n 的彩票也是幸运票.由于999999为奇数,所以n m ≠.由于m +n =999999,相加时不发生进位.这就是说,除号码为999999这张幸运票之外,其余所有幸运票可两两配对,而每对号码之和为999999,这也得到所有幸运票的张数N 应是奇数.除号码999999外,如上述规那么配对的幸运票共有21-N 对,从而得所有幸运票号码之和为 99999921-N +999999=99999921+N6.解:设要求的七位数四个奇数位上的数字之和为A ,三个偶数位上数字之各为B ,那么A -B 是11的倍数.因为A +B =0+1+2+3+4+5+6=21,这样A 和B 都是小于21的正整数.所|A -B |<21,又A +B 是奇数,故0≠-B A .只能有|A -B |=11,所以A 和B 一个是21121+=16,另一个是21-16=5.又因为0,1,2,3,4,5,6中最小的四个数0,1,2,3的和是6(>5),所以A =16,B =5.这七个数中三个数之和等于5的只有0,1,4和0,2,3两种情况.因此A =2+3+5+6,B =0+1+4或A =1+4+5+6,B =0+2+3.在上述两种情况中,0都在偶数位上,不成能在个位.因为要求的数是55的倍数,所以个位数字必需是5.要求的数是最小的,第一位数字是1,因而应是A =1+4+5+6,B =0+2+3.所以要求的最小七位数是1042635.三、解答题 1.解:(1)能.设1999个持续的奇数为a ,a ±2,a ±4,…,a ±1998,其和为1999a .要使 1999a =19991999 得 a =19991998所得的a =19991998是奇数,这样持续的1999个持续的奇数19991998,19991998±2, 19991998+4,…, 19991998±1998,其和就是19991999.(2)不克不及.因为持续的1999个奇数这和应为奇数,而1999!是一个偶数,所以1999!不克不及暗示成1999个持续奇数之和.2.证明(1)(用反证法)假设n 为合数,n =pq ,p >1,q >1.由q >1,知12-q >1,又q >1,p >1,12)2()2(21++++--q p q p q >1,从而证明得12-n 是合数.同12-n 是素数想矛盾.(2)由于n 是奇素数,知n ≥3,12-n ≥7,因为12-n ,n 2,12+n 这三个数必有一个是3的倍数,n 2不是3的倍数,所以12-n ,12+n 中定有一个是3的倍数,又它们都大于6,所以二者中有一个是合数.即当n 是奇素数时,12-n 、12+n 不克不及同时为素数.×××,对任何自然数N ,总能整除n n n n 10112234+++的最大自然数m 可能是24.为此,我们验证n n n n 10112234+++总能被3和8整除.当n =3k 时,n n n n 10112234+++ =3k (3k +1)[3k (3k +1)+10] 当n =3k +1时,n n n n 10112234+++=(3k +1)(3k +2)[(3k +1)(3k +2)+10] =3(3k +1)(3k +2)[3k 2+3k +4] 当n =3k +2时,n n n n 10112234+++=(3k +2)(3k +3)[(3k +2)(3k +3)+10] =3(3k +2)(k +1)[(3k +2)(3k +3)+12] 于是,对任意自然数N ,3总能整除n n n n 10112234+++. 当n =4k 时,n n n n 10112234+++ =4k (4k +1)[4k (4k +1)+10] =8k (4k +1)[2k (4k +1)+5] 当n =4k +1时,n n n n 10112234+++=(4k +1)(4k +2)[(4k +1)(4k +2)+10] =8(4k +1)(2k +1)[4k 2+3k +3] 当n =4k +2时,n n n n 10112234+++=(4k +2)(4k +3)[(4k +2)(4k +3)+10] =8(2k +1)(4k +3)[4k 2+5k +4] 当n =4k +3时,n n n n 10112234+++=(4k +3)(4k +4)[(4k +3)(4k +4)+10] =8(4k +3)(k +1)[(4k +3)(2k +2)+5] 于是对任意自然数,8总能整除n n n n 10112234+++.因为(8,3)=1,因此对任意自然数n ,24=3×8总能整除n n n n 10112234+++.由特例知,m =24也是总能整除n n n n 10112234+++的最大者.4.阐发与证明因为60=22×3×5,要证abc 能被60整除,只要证明a 、b 、c 中有能被3、4、5整除者即可.(1)证a 、b 、c 中有被3整除者.设a 、b 、c 除3的余数别离是r 1,r 2,r 3.假设三个余数均不为零.那么必有)3(mod 12≡i r i =1,2,3于是)3(mod 1232221222≡++≡-+r r r c b a显然与0222≡-+c b a 相矛盾.即r 1,r 2,r 3不成能全不为0.即r 1,r 2,r 3至少有一个为0.因而a 、b 、c 中有能被3整除者.(2)证a 、b 、c 中有能被4整除者.设a 、b 、c 的最大公约数是1.由于222c b a =+,可证a 、b 、c 中有且仅有一个是偶数.c 不克不及是偶数.事实上,假设c 为偶数,c 2可被4整除,a 、b 为奇数,令a =2k +1, b =2t +1, k 、t 为整数那么=[4k (k +1)+1]+[4t (t +1)+1] =4[k (k +1)+t (t +1)]+2 不克不及被4整除.与222c b a =+相矛盾.c 为奇数, a 、b 中有且仅有一个为偶数,不妨设b 为偶数.设a =2k +1,c =2n +1, k ,n 为整数,那么=4(n +k +1)(n -k )因为n +k +1与n -k 奇偶性相反,故(n +k -1)(n -k )定能被2整除.从而b 2可被8整除,进而b 2可被16整除,即b 可被4整被.(3)证a 、b 、c 中有能被5整除者.设a 、b 、c 除以5的余数别离为r 4、r 5、r 6.假设三个余数全不为0,那么12≡i r 或4(mod 5)i =4,5,6.进而有 )5(mod 0262524≡-+r r r又 )5(mod 00262524222≠-+≡-+=r r r c b a 矛盾.故r 4、r 5、r 6中必有一个为0.即a 、b 、c 中有能被5整除者.综上所述,注意到3、4、5两两互素,定有abc 能被60=3×4×5整除.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学模拟试题(一)一、选择题(每小题3分,共30分)1.8-的立方根是().A.-B.2-C.-D2.下面所示的四个汽车标志图案中,能用平移变换来分析其形成过程的是( ).A B C D3.方程24x x=的解是().A.4x=B.122x x==C.14x=,2x=D.0x=4.2009年10月11日,第十一届全运会在美丽的泉城济南顺利召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,用科学记数法表示建筑面积是(保留三个有效数字)().A.535.910⨯平方米B.53.6010⨯平方米C.53.5910⨯平方米D.435.910⨯平方米5.若k>0,b<0,则一次函数y=kx+b的图象大致是( ).OAxyOBxyOCxyODxy6.图1中有两个形状相同的星星图案,则x的值为().A.8 B. 12 C. 10 D. 157.图2是平面直角坐标系的一部分,若点M的坐标是(22)-,,点N的坐标是(42)-,,则点G的坐标为().A.(13),B.(11),C.(01),D.(11)-,8.型号/厘米38 39的是().A.平均数B.中位数C.众数D.方差建设和谐广州图39.一个正方体的平面展开图如图3所示,将它折成正方体后“建”字对面是( ). A .和B .谐C .广D .州10.从2,3,4,5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对二、填空题(每小题3分,共18分)11.因式分解:2m 2-8n 2 = .12.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.13.如图4,在梯形ABCD 中,AB ∥CD ,AD = CD ,E ,F 分别是AB ,BC 的中点,若∠1 = 35︒,则∠D = .14.如图5,点A ,B ,C 是⊙O 上的三点,∠BAC=25°,则∠OBC 的度数是15.图6是某种工件的三视图,其俯视图为正六边形,则它的表面积是2cm .16. 如图7,在正方形ABCD 中,E 是BC 边上一点,以点E 为圆心、EC 为半径的半圆与以点A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为 . 三、解答题(共102 分)17.(本小题满分9分) 化简:22111x x x ---.18.(本小题满分9分) 解不等式组:212143x x x -⎧⎪-⎨<⎪⎩≤,,并将其解集表示在数轴上.19. (本小题满分10分) 如图8,矩形PMON 的边OM ,ON 分别在坐标轴上,将矩形PMON 向右平移4个单位得到矩形P M O N ''''.已知点P 的坐标为(-2,3). (1)请在图8中画出平移后的矩形P M O N ''''; (2)求直线M 'N '的解析式.DC EBA图720. (本小题满分10分) 号称世界第一高塔的广州新电视塔又名“海心塔”是广州的新地标.小强和小明为了测量该塔的高度(如图9所示),•他们在离海心塔1053米的A 处,用测角仪器得塔顶的仰角为30°,已知测角仪器高AD=2.07米,则海心塔BE 的高约为多少1.41≈≈,精确到1米) ?21.(本小题满分12分) 2009年,名牌高校A 面向广东招生人数比2007年增加50%,名牌高校B 面向广东招生人数比2007年增加70%,仅这两所名牌高校面向广东招生总人数就从2007年的5000人增加到2009年的7900人.(1)设名牌高校A 和名牌高校B 在2007年面向广东招生的人数分别为x 人、y 人,则名牌高校A 和名牌高校B 在2009年面向广东招生的人数分别为 人、 人(用x ,y 表示); (2)求这两所名牌高校2009年面向广东招生的人数分别是多少?22.(本小题满分12分) 端午节吃粽子是中华民族的传统习俗.农历五月初五端午节到了,奶奶包了4个粽子,其中有2个是红枣馅儿的,有1个是肉豆馅儿的,有1个是咸蛋黄馅儿的(这些粽子除馅料不同外其他外观均相同).小聪随手拿了两只来吃. (1)求小聪所吃两只粽子馅料相同的概率; (2)求小聪吃到了喜欢的肉豆馅儿粽子的概率.图923.(本小题满分12分) 如图10,在ABC △中,AB AC =,点D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为点E F ,.(1)求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.24. (本小题满分14分) 某产品每件成本10元,试销阶段每段产品的日销售价x(元)与产品的日销售量y(件)之间的关系如表2所示:(2) 要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?25.(本小题满分14分) 如图11,在平面直角坐标系xOy 中,抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于A B ,两点,点B 的坐标为(30),,直线3y x =-+恰好经过B C ,两点. (1)写出点C 的坐标;(2)求出抛物线2y x bx c =++的解析式,并写出抛物线的对称轴和点A 的坐标; (3)若点P 在抛物线的对称轴上,抛物线顶点为D 且APD ACB ∠=∠,求点P 的坐标.图11图10初中数学模拟试题(一)参考答案一、选择题1.B.2.D.3.C.4.B.5.D.6.A.7.C.8.C.9.D. 10.B. 二、填空题11.2(m + 2n )(m -2n ). 12.60 . 13.110︒. 14.65°. 15.(36+. 16.35. 三、解答题 17.11x +. 18.332x -<≤.将其解集在数轴上表示如图1所示:19. (1)如图2所示;(2)332y x =-.20.如图3, 过点A 作AC ⊥BE 于点C ,则 AC=DE=1053,CE=AD=2.07,∠CAB=30°. ∵tan ∠CAB=AC BC =1053BC, ∴BC=1053×tan 30°=3513.∴BE=BC+CE=3513+2.07≈609(米) .∴海心塔BE 的高约为609米. 21. (1)(1+50%)x 、(1+70%)y ; (2)依题意得+=⎧⎨+++=⎩5000,(150%)(170%)7900.x y x y 解得=⎧⎨=⎩3000,2000.x y∴(1+50%)x = (1+50%)×3000 = 4500,(1+70%)y = (1+70%)×2000 = 3400.答:大学A 和B 在2009年面向广东招生的人数分别为4500人、3400人. 22.(1)用A ,B ,C 分别表示红枣馅儿、肉豆馅儿和咸蛋黄馅儿的粽子. 则小聪所吃两个粽子的情况如图4中的树形图所示:2图2可知共有12种吃粽子的情况,其中两只粽子馅料相同的情况有2种, 所以小聪所吃两只粽子馅料相同的概率为P=122=61. (2)由图4中的树形图可以看出,小聪所拿两只粽子中有肉豆馅儿的情况有6种,所以小聪吃到了喜欢的肉豆馅儿粽子的概率为P=126=21. 23. (1)DE AB DF AC ⊥,⊥,90BED CFD ∴∠=∠=°.AB AC = ,B C ∴∠=∠,D 是BC 的中点,BD CD ∴=, BE D CF D∴△≌△. (2) DE AB DF AC ⊥,⊥,90AED AFD ∴∠=∠=°,90A ∠= °,∴四边形DFAE 为矩形.BED CFD △≌△,DE DF ∴=, ∴矩形DFAE 为正方形.24. (1)根据草图可得出y是x的一次函数,设此一次函数的解析式为y=kx+b (k ≠0), 把(20,20),(30,10)代入,得2020,1030.k b k b =+⎧⎨=+⎩∴1,40.k b =-⎧⎨=⎩ ∴y=-x+40. (2) 设每日销售利润是w 元,则w=(x-10)(-x+40), ∴y=-x 2+50x-400=-(x-25)2+225.∴当每件产品的销售价定为25元时,每日销售利润最大,最大利润是225元.25.(1)(03)C ,.(2) 抛物线2y x bx c =++过点B C ,, 9303b c c ++=⎧∴⎨=⎩,.解得43b c =-⎧⎨=⎩,.∴抛物线的解析式为243y x x =-+.∴对称轴为2x =,点(1)A ,0.(3)顶点(21)D -的坐标是,,3OB =,3OC =,1OA =,2AB =.可得OBC △是等腰直角三角形.45OBC ∴∠=,CB =. 如图5,设抛物线对称轴与x 轴交于点F ,112AF AB ∴==. 过点A 作AE BC ⊥于点E .90AEB ∴∠=.可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=,ACE APF ∠=∠,AEC AFP ∴△∽△. AE CE AFPF∴==.解得2PF =.点P 在抛物线的对称轴上,∴点P 的坐标为(2,2)或(2,-2).。

相关文档
最新文档