高等流体力学 讲义Chap04

合集下载

高等流体力学讲义课件_第四章二维势流4.4

高等流体力学讲义课件_第四章二维势流4.4

l 4c
翼型厚度
t
dy 2 4 0 sin 2 1 cos cos 0 cos 2 cos 0, , d 3 3
0 y 0 ,是为翼型后沿最小厚度;

2 4 , 3 3 y 3 3 c 2
, 是为翼型最厚处 y 坐标;
W U (e
i

c2

ei ) 2
i 1 2
圆柱表面
cei
i c 2 i 2i i ei i i i W U e 2 e e Ue Ue i e c 2 c 2 c i i i 2iU sin e u iu e R 2 c
4.17 圆弧翼型
平面偏心圆变换为 z 平面圆弧翼型
z

22 2

1

h
2c
2
1

l
21 2
2c
m
a
c
2
c
2
ζ 平面圆心在 ζ=im .
由茹柯夫斯基变换性质知, z 平面 z 2c 点将分别对应于 平面的 c , 且 z 平面上一点与 2c 点连线的夹角是 平面上相应点与 c 点连线夹角的两 倍。 设 平面实轴上部圆弧上的一点 映射为 z 平面实轴以上半平面内的点 z ,则 z 与 2c 连线夹角应为 21 2 ,为常数,因此 平面上部该段圆弧变换 为 z 平面上的一段圆弧。 设 平面实轴下部圆弧上的一点映射为 z 平面实轴以下半平面内的 z 点,则该 点与 2c 连线夹角应为 22 2 ,为常数,可见 平面下部此段圆弧变 换为 z 平面上的同一段圆弧。

哈工程3系流体力学--04流体动力学基本原理-04讲解

哈工程3系流体力学--04流体动力学基本原理-04讲解

§4.7 非惯性坐标系中的动量方程
非惯性坐标系问 题与惯性坐标系问题 相比,关键在于质量 力不同。在惯性坐标 系中质量力用 f表示, 比较简单,如重力场 中 f =-gk。在非惯性 系中,质量力应包括 附加惯性力:
7
f f ao ωr ωωr 2ω V
带负号的四项依次是: 平移惯性力, 旋转切向惯性力, 旋转向心惯性力, 哥氏惯性力。 单位质量的惯性力是 加速度的量纲。
dl l
p dA dl AV 2 dl V Adl
dl
l
t
对微分项作适当展开有
g Adz Adl2r dr A p dl p dA dl
dl l
dl
p dA dl AV V dl V AV dl
条件,即
d p V2
dr

g

2g

z

0
将其与法向动量方程
联立,得到
V2 d p
gr

dr

z

g

dV V 0 dr r
积分得
V c r
作为一种应用,在弯曲管道中,内侧流速较高,外侧流速较低,
就是例证。
5
工程流体力学 Engineering Fluid Mechanics
工程流体力学
(第四章 流体动力学基本原理)
哈尔滨工程大学 动力与能源工程学院
1
工程流体力学 Engineering Fluid Mechanics
第4章 流体动力学基本原理
§4.6 流线法向动量方程
伯努利方程表达了沿流线方向的压力,速 度等的变化规律,现在我们讨论垂直于流线方 向的压力速度变化关系问题。为此我们换一种 思考问题途径,即直接对流体质点运用牛顿第 二定律建立方程。

高等流体力学讲义

高等流体力学讲义

高等流体力学授课提纲第一章概论§1.1 流体力学的研究对象§1.2 流体力学发展简史§1.3 流体力学的研究方法§1.3.1 一般处理途径§1.3.2 应用数学过程§1.3.3 流体力学方法论:一般方法§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述●无量纲化●线性化●分离变量法●积分变换法●保角映射法●奇点法(孤立奇点法、分布奇点法、Green函数法)●控制体积法●微元法第一章概论§1.1 流体力学的研究对象(1)物质四态:●四态:固态—液态—气态—等离子态;等离子体=电离气体●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、等离子体物理学);●液体与气体的差别:液体—有固定容积、有自由面、不易压缩、有表面张力;气体—无固定容积、无自由面、易压缩、无表面张力。

(2)流体的基本性质:易流动性:静止流体无剪切抗力;压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;粘性:运动流体对剪切的抗力,判据:雷诺数;热传导性:温差引起的热量传递,普朗特数。

(3)流体的分类:i)按有无粘性、热传导性分:真实流体(有粘性、有热传导、与固体有粘附性无温差);理想流体(无粘性、无热传导、与固体无粘附性有温差);ii)按压缩性分:不可压缩流体,可压缩流体;iii)按本构关系分:牛顿流体(牛顿粘性定律成立),非牛顿流体(牛顿粘性定律不成立),下分纯粘性流体(拟塑性流体,涨塑性流体);粘塑性流体(非宾汉流体、宾汉流体);时间依存性流体(触变流体、振凝流体);粘弹性流体拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减小,如淀粉浆糊、玻璃溶液、高分子流体、纤维树脂;涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减小,如淀粉中加水、某些水-砂混合物;粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流动,如粘土泥浆、沥青、油漆、润滑脂等,所有粘塑性流体为非宾汉流体,宾汉流体为近似;触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高分子物质的油、粘土悬浊液;振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶胶、五氧化钒溶液等;粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,也不像纯粘性体全部耗散。

流体力学第四章ppt课件

流体力学第四章ppt课件

p
p d yd z(p pd x)d yd z pd xd yd z
x
x
y
理想流体,各面上无切应力,
dy A(x,y,z) dx dz
p p dx x
质量力在x轴上的投影: z
x
ρX dx dy dz 加速度在x方向的投影:精选a 课x件d d x t v txvx v x xvy v y xv3z v zx
Dt
即为理想流体的 欧拉运动微分方程式。
精选课件
4
该方程适用条件: 理想流体,即无论流动定常与否,可压缩还是 不可压缩均适用。
方程(4-2)有三个分量式,再加上连续方 程式共四个方程组成一方程组,方程封闭,可 求解四个未知函数vx ,vy ,vz和p。
若要使所求的vx ,vy ,vz ,p是某个实 际问题的解,还要满足所提问题的边界条件,
2g
这样就可解出小孔理想出流的速度公式:
U 2gh (15) 实际上因为粘性对阻力的影响,出流速度 小于此值,一般用一个流速系数来修正,则
U实际 =U 由实验确定, = 0.96~1
流量Q = 平均流速U精σ选课c件
(16)
33
收缩断面:出流中,流体从四面八方向到孔口处 汇集时,因惯性的作用,流线不可能突然转到水 平方向,射出的流注因之必然出现颈缩现象。
三个高度(水头)之和称为总水头。
其端点的连线——总水头线为一条水平线 。如
下图所示。
精选课件
25
V
2 1
总水头线
2g
V
2 2
2g
p1
压力水头线
H
p2
精选课件
26
二、能量意义(物理意义)
z :代表单位重量流体的位能,记为 e z

流体力学讲义

流体力学讲义

140第六章、 流體動量分析(Momentum analysis offlow systems )牛頓第二定率 – 動量守衡牛頓第二定律: ∑===F dtV m d dt V d m a m)({}⎭⎬⎫⎩⎨⎧++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧)(viscous pressure forcces surface force body system the of m om entum the of change of rate tim e⎰∑=syssys F V d V Dt Dρ 假設系統與控制容積於時間 t 時互相重疊,如下圖所示:∑∑=CVcoincident the of contents sys F F則由雷諾轉換定理,∑∑⎰⎰⎰⎰-+∂∂=∙+∂∂=in in in in out out out out CVCS CVsys V A V V A V V d V t dA n V V V d V t V d V Dt D ρρρρρρ)(或141⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧....V C the of out m om entum of flow of rate net V C coincident the of m om entum the of change of rate tim e system coincident the of m om entum the of change rate tim e 故以控制容積而言∑∑∑⎰⎰⎰=-+∂∂=∙+∂∂CVtheof contents in in in in out out out out CV CS CVF V A V V A V V d V t dA n V V V d V t ρρρρρ)( (注意:上式中,每一項單位均為 kg.m/s ,並為一向量方程式,故有三分量。

) 此式可以下式表示之:∑=+-CVtheof contents F S I O∑=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⋅+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ii F s m kg CV the in m om entum of rate torage S s m kg m om entum of rate nflow I s m kg m om entum of rate utflow O )/()/()/(此為控制容積法表示之動量守衡定律。

高等流体力学-第四讲

高等流体力学-第四讲

uuj uuj p(u , uj )duduj i i i i


1)同一点上的两脉动速度相关系数(correlation coefficient)
Qij u ( x , t )uj ( x , t ) i
Rij
Qij u 2 uj 2 i
北京工业大学市政学科部——马长明 高等流体(水)力学讲稿
6
第四讲
紊(湍)流运动基础
二、基于统计理论的紊流运动方程
1、基本统计量 对不可压缩流动问题,基本未知量ui,p可认为是具有一定统计规律 的随机变量,即:可表示为
ui ui u i
p p p
其中上划线表示平均值,上ui’ 、p’表示脉动值,称为“涨落” (Fluctuation)。 (1)系综平均与时间平均 1)系综平均(ensemble average)
空间相关图示
R22 (r ) g (r )
u ( x1 )u ( x1 r ) 2 2
u 2 2
f(r) 、g(r )曲线
其中f(r) 、g(r) 存在关系
北京工业大学市政学科部——马长明
高等流体(水)力学讲稿
4
第四讲
紊(湍)流运动基础
(4)充分发展的紊流研究 紊流的发生:剪切层的存在—产生涡。(剪切层的类型图示)
对充分发展的紊流研究分类: 1)自由剪切紊流:剪切层由流速间断面引起,紊动发展 不受边壁的限制; 2)边壁剪切紊流:剪切层由边壁附着引起,紊动发展受 边壁限制。 3)均匀各向同性紊流:作为理论研究的假想模型。流动 中无速度梯度,也无剪切应力。
u i 0 x i
可得:
ui 0 x i
北京工业大学市政学科部——马长明

高等流体力学 讲义

高等流体力学 讲义

0.01775
式中水温t /s计 式中水温t以°C计,ν以cm2/s计
前进
牛顿流体与非牛顿流 (3)牛顿流体与非牛顿流体 一般把符合牛顿内摩擦定律的流体称为牛顿流 一般把符合牛顿内摩擦定律的流体称为牛顿流体(属于水力学 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 ),反之称为非牛顿流体 A线为牛顿流体,当流体种类一定、温 线为牛顿流体,当流体种类一定、
前进
Hale Waihona Puke 绪 论主要内容: 主要内容:
气体、 气体、液体和固体 连续介质 作用于流体上的力 流体的传递特性 液体的表面特性 边界条件
前进 结束
固体、液体、 固体、液体、气体
固体:具有固定的形状和体积。 ◆宏观状态的不同 固体:具有固定的形状和体积。 液体:具有固定的体积,没有固定的形状。 液体:具有固定的体积,没有固定的形状。 气体:没有固定的形状和体积。 气体:没有固定的形状和体积。 凝聚态
根据理论力学( 根据理论力学(Shamed,1966)得 )
M z = I z a z + ω xω y ( I y − I x )
式中:Mz为各作用力对 轴的力矩;Ix、Iy、Iz为隔离体对 为各作用力对z轴的力矩 为隔离体对x,y,z 式中 为各作用力对 轴的力矩; 为隔离体对 轴的惯性矩; 为隔离体的角加速度在 方向分量; 和 为隔离体的角加速度在z方向分量 轴的惯性矩;az为隔离体的角加速度在 方向分量;ωx和ωy 为隔离体角速度在x和 轴的分量 轴的分量。 为隔离体角速度在 和y轴的分量。
以δxδyδz 除之,上式可简化成 除之 上式可简化成
(δx) 2 + (δy ) 2 (δx) 2 + (δy ) 2 τ xy − τ yx = ρ az + ρω xω y 12 12

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

《高等流体力学》第4章 理想流体运动的基本特征

《高等流体力学》第4章 理想流体运动的基本特征
∇ϕ ∂′ϕ − ve ⋅∇′ϕ + +P +U = f ( t ) ∂t 2
2
上式即为动坐标系的柯西-拉格朗日积分。
∂ϕ ∂ϕ ∂ϕ 若 ve = i′ue , ∇′ϕ = i′ + j′ + k′ ∂x′ ∂y′ ∂z ′ ∂ϕ ′ 相乘可得:ve ⋅∇ ϕ = ue ∂x′
dp
dl
o
曲线L一定时 仅为p的函数
于是在L曲线上,压力函数沿l的变化率为:
∂P ∂P ∂p dP ∂p 1 ∂p = = = ∂l ∂p ∂l dp ∂l ρ ∂l
一般情况下,在任意给定的曲线L上,函数关系 ρ ( p, L ) 是不知道的,只有在某些特定情况下能够确定: p = p ( ρ ) 或 ρ = ρ ( p ) 且与所选曲线无关。 1、正压流体:
ρ
2、完全气体绝热可逆定常流动中的压力函数:
Ds 绝热可逆: = 0 Dt
定常流动:迹线和流线重合,熵不变。 热力学第一定律用于理想气体的可逆方程:
= Tds c p dT − 1
dp d ρ 1 dp d ρ dT dp dp = cp − = cp − d = cp s − R −R T p p ρ p γ p ρ d ρ 1 dp ds ∴ = − sL是曲线L上 ρ γ p cp
ρ
dp
积分得:
的熵,为常数
p p s1 − s2 s1 − s2 ρ ∴ ln = ln + ⇒ = = ρ ( p, sL ) ρ ρ1 exp ρ1 cp cp p1 p1


由此可得,沿同一条流线的压力函数:
P ( p, L ) = ∫ dp

流体力学第四章

流体力学第四章

第五节 系统 控制体 输运公式(续)
输运公式
1、目的:系统的物理量随时间的变化率与控制体内这种 物理量随时间的变化率和经过控制面的净通量之间的关系。
2、推导过程
N = ∫∫∫ηρdV
V
N——t时刻系统内流体所具有的物理量的总和; η—— 单位质量流体所具有的物理量。

⎞⎛

⎜ ∫∫∫ηρdV ⎟ − ⎜ ∫∫∫ηρdV ⎟
v = v ( x, y, z) p = p ( x, y, z) T = T ( x, y, z)
EXIT
第二节 流动的分类(续)
(2)非定常流(非恒定流) 定义:任一流动参量随时间变化的流动。
∂v ≠ 0 v = v ( x, y, z,t )
∂t
∂p ≠ 0 p = p ( x, y, z,t )
解:微元流量 dQ = udA = u2π rdr
∫ Q =
r0 0
umax
⎡ ⎢1
-
⎛ ⎜
⎢⎣ ⎝
r r0
⎞2 ⎟ ⎠

⎥2π rdr
⎥⎦
=
π umaxr02
/
2
Q = π r02v

v=
1 2
umax
第五节 系统 控制体 输运公式
第五节 系统 控制体 输运公式
系统·边界 包含确定不变的物质的集合叫做系统;边界是把系统
=
dz dt
=
∂z (a,b,c,t )
∂t
⎧ ⎪ax ⎪
=
d2x dt 2
=
∂2x (a,b, c,t )
∂t 2
流体质点加速度
⎪ ⎨ay ⎪
=
d2y dt 2

高等流体力学第二部分讲义

高等流体力学第二部分讲义

p y
dxdydz
z方向,微元流体所受合压力
C
D.Βιβλιοθήκη NBp zdxdydz
微元流体所受合压力
A ZY
∂p ∂p ∂p
X
- ( ∂xi + ∂yj+ ∂zk)dxdydz
G
H
.M
.
OF
E
第二章 流体静力学
2、微元体所受的质量力:
F=F i +F j+F k=(Xi +Yj+Zk)ρdxdydz
绝对真空
则:绝对压强=相对压强+大气压强 p´=p+pa
第二章 流体静力学
绝对压强总是≥0,但相对压强不一定。若某流体
点处在B点,从图可知,B点相对压强为负。
pv=pa- p´
p
2、压强的度量单位
(1) 以压强的基本定义出
A.
. A点相对压强 大气压强pa
B
真空度
发即单位面积上的压力,单位 A点绝对压强 B点绝对压强 绝对真空
hD hC h
o α
a y
左侧受水压力,水面大 气压强为pa,在平板表面所在 y b 的平面上建立坐标,原点o取在平板
. .dA C
.
yC yD
x
D
表面与液面的交线上,ox轴与交线重合,oy轴沿平
板向下。
第二章 流体静力学
则微元面dA所受压强p=γh
压力dP=pdA=γhdA=γysinαdA
整个平面由无数dA组成, 则整个平板所受水静压力 由dP求和得到。
第二章 流体静力学
第五节 压强的计算基准和度量单位
1、 计算基准
(1) 绝对压强:
以无一点气体存在的绝对真空为零点起算的压

高等流体力学讲义课件-流体力学基本概念

高等流体力学讲义课件-流体力学基本概念

和对流导数联系起来。
1.2 欧拉和拉格朗日参考系
例1. 拉格朗日变数 (x0,y0,z0) 给出的流体运动规律为 x x0e2t , y y0 (1 t)2 ,
z z0e2t (1 t)2
1) 求以欧拉变数描述的速度场; 2) 问流动是否定常; 3) 求加速度。
解: 1) 设速度场的三个分量是 u, v, w
t
d
CV
undA
CS
CV
t
d
undA
CS
D Dt
V dV
V [ t
(u)]dV
D
Dt
dV
V
V
[ tห้องสมุดไป่ตู้
( xk
uk
)]dV
高斯公式,
undA (u)dV
CS
CV
1 . 3 雷诺输运定理
例2. 一流场中流体的密度为 1,速度分布为 u ax, v ay, w 2az
t t 时刻, (x x, y y, z z,t t)
泰勒级数展开,
(x x, y y, z z,t t)
(x, y, z,t) t x y z
t x
y
z
D lim 1 (x x, y y, z z,t t) (x, y, z,t)
(x, y, z,t) x(x0, y0, z0,t), y(x0, y0, z0,t), z(x0, y0, z0,t),t
D
x
x y
z
Dt
t x0 , y0 ,z0
t x t y t z t x,y,z
y , z ,t
x0 , y0 ,z0
x , z ,t
x0 , y0 ,z0
1.1 连续介质假说

高等流体力学课件 高等流体力学第四章平面势流

高等流体力学课件 高等流体力学第四章平面势流

2010-10-25
西安交通大学流体力学课程组
9
流函数1
不可压缩平面流动连续方程
d dx dy vdx udy x y u v 0 x y
流 流 函 函 数 数
直角坐标系 极坐标系
u , v x y
, u uR R R
4.10 4.10 施瓦茨 施瓦茨-克里斯托弗尔变换 克里斯托弗尔变换
2010-10-25 西安交通大学流体力学课程组 1
理想不可压缩流体流动1
基本方程组 基本方程组
连续方程 运动方程
const
0
u 0
u 1 u u p f t
W uR iu e i
2010-10-25
e i cos i sin
17
西安交通大学流体力学课程组
复位势与复速度4
复位势的性质 复位势可以相差一个常数而不影响其所代表的流 场性质
F z const
x , y const x , y const
满足柯西—黎曼条件的速度势函数和流函数必然 满足拉氏方程,它们是一对共轭的调和函数
复位势 复位势
、 满足柯西—黎曼条件且可微,则可构造解析函数
F z i
2010-10-25
z x iy
i 1
15
西安交通大学流体力学课程组
复位势和复速度2
复速度 复速度
F F dF F i x iy dz y
2 个方程 拉普拉斯方程线性 分开求解,先求解速度势 函数,再由速度势函数求 解速度,最后求解压强
2010-10-25
4 个方程 欧拉方程非线性

高等流体力学第4讲

高等流体力学第4讲

第四讲 气体流动的基本方程气体动力学是研究气体与物体之间有相对运动时,气体的运动规律以及气体和物体间相互作用的一门科学。

与液体相比,气体具有较大的压缩性,但这并不意味着所有情况下气体的密度都会有明显的变化。

在这里有必要澄清可压缩流体与可压缩流动这两个概念。

当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。

因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。

而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。

由于可压缩流动要比不可压缩流动复杂得多,所以在本课程中只能简要地介绍有关气体一元稳定流动的一些基本知识,其中包括气体一元稳定流动的基本方程、声速及马赫数、气流参数、气动函数及其应用以及一元稳定管流等方面的知识,为今后的进一步研究复杂的气体流动打下一个基础。

一、一元稳定气流的基本方程一元稳定流动是一种最简单的理想化的流动模型。

气体在实际管道中的流动都不是真正的一元流动,但在工程上,只要在同一截面的气流参数变化比沿流动方向上的气体参数变化小得多,就可以看作是一元流动。

因此,在工程实际问题中,一元近似方法有着极其广泛的用途。

但是应该记住,一元流动假设只是一个较好的近似,如果需要更精确的结果,则必须用二元或三元流动的理论去处理。

在一元稳定流动中,气体的流动当然仍要遵守自然界中的一些基本定律,如质量守恒定律、牛顿第二定律、热力学第一定律和第二定律。

下面就来推导这些基本定律应用于气体一元稳定流动时的数学表达式,即流动的基本方程式。

(一)状态方程由热力学知道,气体的状态可用压力p 、温度T 和密度ρ等参数来描述,三者之间的函数关系称为状态方程,即(,,)0f p ρT = (4-1) 对完全气体而言,状态方程可写成p ρRT = (4-2) 式中p 绝对压力,Pa ;T 为热力学温度,K ;R 为特定气体的气体常数,对空气来讲R 可取为,287.06J/(kg·K)。

高等流体力学-第4讲

高等流体力学-第4讲

·二次曲面 F ( r ) = ± 1 可看作二阶对称张量的几何表示,是有心二次曲面; ·在主轴坐标系下:如果主值 λ1 λ 2 λ 3 同号,表示的半径分别为:
G
1
1
1
λ1
λ2
λ3
的椭球面;
·在主轴坐标系下: 如果主值异号,则表示的双曲椭圆面。
G 1 (5) 对称张量 S 与矢径的内积为 : S ⋅ r = gradF 2
∇P= ∂ pi i "i ∂xk
1 2
n
其梯度运算的结果是一个 (n+1) 阶张量 。
( )
JGJG ∂aij JGJGJG ∂ JG ek aij ei e j = ek ei e j ∇A = ∂xk ∂xk
(
)
1.5 张量初步
1.5.6 张量的微分运算
¾ 张量的散度运算 n 阶张量P 的散度 — 定义为哈密顿算子与张量P 的左向内积:
ei′ = α ij ei′
α isα js = α siα sj = δ ij
ai′ = αij a j a j = α ji ai′
′ = αisα jt pst pij ′ pij = αsiαtj pst
1.5 张量初步
1.5.5 二阶张量
⎛ p11 ⎜ {pij } ↔ ⎜ p21 ⎜p ⎝ 31 p12 p 22 p32 p13 ⎞ ⎟ p 23 ⎟ p33 ⎟ ⎠
+
p11 p31
p11 p12 ⎞ ⎟− p =0 + p33 p21 P22 ⎟ ⎠ p13
由根与系数的关系得知: —— 二阶张量的三个不变量 ——
I1 = p11 + p22 + p33 =λ1 +λ2 +λ3

高等计算流体力学讲义(4)

高等计算流体力学讲义(4)
xR TDL TDR xR

则:
xL
U ( x, T ) dx = ∫
xL
U ( x, T ) dx + ∫
TDL
U ( x, T ) dx + ∫
TDR
U ( x, T )dx

xR xL
U ( x, T )dx = ∫
TDR
TDL
U ( x, T )dx + (TDL − xL )U L + ( xR − TDR )U R
据守恒律直接确定通量,可以更好的体现格式粘性的影响,且通过选取适当的 DL 、 DR ,
3
也可以对格式粘性进行直接控制。综上所述,数值通量 F 0 可用下式计算:
⎧ FL ⎪ F0 = ⎨ F hll ⎪F ⎩ R ⎧ FL ⎪ = ⎨ F hll ⎪F ⎩ R
0 ≤ DL DL ≤ 0 ≤ DR 0 ≥ DR 0 ≤ DL DL ≤ 0 ≤ DR 。 0 ≥ DR
(13b)
1 1 ) vi(+j1/ l( j ) ⋅ (U L + U R ) − sign(λ ( j ) − x / t )l( j ) ⋅ (U R − U L ) 2 ( x, t ) = 2 2

( j) Vi + 1/ 2 ( x / t ) =
(14)
1 1 L(U L + U R ) − [ sign(Λ ) − ( x / t ) I ]L(U R − U L ) 2 2
(15)
I 是单位矩阵。由 V = LU ,知:
~ 1 1 U ( x, t ) = (U L + U R ) − L−1 ( sign Λ− ( x / t ) I ) L(U R − U L ) 2 2

高等流体力学讲义课件_第四章二维势流4.2.

高等流体力学讲义课件_第四章二维势流4.2.
ε <<1 z
ε 2 m ε ε = ln + + + 0 2 2π z z z ε m ε ε m ε ln + + 0 2 = + 0 2 2π z z 2π z z
0 sin 0 0,
0 1 4Ua
1 4Ua
•有环量流动,
0 1 4Ua
有两个驻点,分别位于3,4象限,且关于y轴对称。 顺时针点涡流场与绕流圆柱流场叠加在 1 , 2 象限速度方 向相同,速度增加;在 3 , 4 象限速度方向相反,速度减 少,于是分别在 3 , 4 象限的某个点处速度为零。相当于 把θ=0和π的两个驻点分别移动至3,4象限。
4.7 圆柱的无环量绕流
叠加原理
势函数和流函数满足的控制方程是线性的,因此它们的解具有可 叠加性。依据这一原理,上面给出的基本流动的复位势函数可以叠 加起来给出较为复杂的流动问题的解。
4.7 圆柱的无环量绕流
均匀流与偶极子叠加
沿 x 方向的均匀流和在原点的偶 极子叠加给出圆柱绕流的解,
F(z) Uz +
4.6 偶极子流动
F( z ) μ z
显然 z = 0 处是上述函数的奇点。
4.6 偶极子流动
偶极子是一对无限接近的非常强的点源和非常强的点汇
ε m m m z+ε m z F( z ) ln z + ε ln(z - ε)= ln = ln 2π 2π 2π z - ε 2π - ε z +
有环量绕流速度场对 y 轴对称,压强场也对 y 轴对称,因此在 x 轴方向圆柱所受表面力合力为零。 由于环量的存在,流场对 x 轴不再对称,在圆柱上表面顺时针 的环流和无环量的绕流方向相同,因此速度增加,而在下表面 则方向相反,速度减少。根据伯努利方程上表面压强减小,下 表面压强增大,于是产生向上的合力,称升力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 04:Potential Flows1.Stream Functions2.Potential Functions3.The Complex Potential4.Blasius Integral Laws5.Kutta-Joukowski Theorem6.Conformal Mappings7.Joukowski Airfoil8.Method of Images9.Doublet Distributions10.Added Mass1. Stream FunctionsA stream function is a special scalar function that is useful when analyzing 2D, steady flows. As will be shown, the stream function has the following properties: 1. The stream function satisfies the continuity equation. 2. The stream function is a constant along a streamline.3. The flow rate between two streamlines is equal to the difference in the streamlines’ stream functions.First, let’s define the stream function.Define a scalar function, ψ, called a stream function , such that the continuity equation is automatically satisfied for 2D (planar and axi-symmetric), steady flows.For a steady, 2D, planar, incompressible flow in rectangular coordinates, define ψ=ψ(x , y ) such that:and x y u u y xψψ∂∂==−∂∂ (4.1)If the stream function is defined in this manner, then the continuity equation will automatically be satisfied:220y x u u x y x y y xψψ∂∂∂∂∇⋅=+=−=∂∂∂∂∂∂uFor a steady, 2D, planar, incompressible flow in polar coordinates, ψ=ψ(r , θ):1 and r u u r r θψψθ∂∂==−∂∂ (4.2)The continuity equation for a 2D, incompressible flow in polar coordinates is:()2211110r u ru r r r r r r r θψψθθθ∂∂∂∂+=−=∂∂∂∂∂∂Now let’s consider some of the additional properties of the stream function.The Stream Function is Constant Along a StreamlineLet’s determine the curve along which the stream function remains constant. We’ll only consider an incompressible flow in rectangular coordinates here for simplicity (the same result holds for polar coordinates and compressible flows).The total change in the stream function, d ψ, where ψ=ψ(x , y ), over some displacement (dx , dy ) is given by:(),y x x y d dx dy u dx u dy x y ψψψψψ∂∂=⇒=+=−+∂∂where the definition of the stream function has been used to write d ψ in terms of the velocities. To findthe slope of the curve along which ψ=constant, we let d ψ=0.constant 0y x y xd u dx u dyu dydx u ψψ===−+⇒=Notice that the slope of the curve along which the stream function is constant is exactly the same as the slope of a streamline. Thus, we conclude that the stream function is constant along a streamline !Example :A particular planar, incompressible flow can be described with the following stream function:Axy ψ=where A is a constant.a. Sketch the streamlines for the flow.b. Determine the velocity components for the flow.ψ=ψ1 2 ψ=ψ3where ψ1, ψ2, and ψ3 are constants.Note that these constants may varyfrom streamline to streamline.The Flow Rate Between Two Streamlines is Equal to the Difference in their Stream FunctionsNow let’s examine how the flow rate between two streamlines is related to the stream function. Consider the sketch below.The volumetric flow rate passing between the two streamlines, and thus crossing through a line drawn between the two streamlines can be found by calculating the volumetric flow rate through a small piece of the line and then integrating from one streamline to the other.()()()()ˆˆˆˆˆˆˆˆcos sin x x y y x y x x y y x y x y dy dx dQ d u u dA u u dA dAdA u dy u dx dy dx y xθθψψ⎛⎞=⋅=+⋅−=+⋅−⎜⎟⎝⎠∂∂=−=+∂∂u A e e e e e e eedQ d ψ∴=Integrating from streamline A to streamline B we have:AB B A Q ψψ=−The volumetric flow rate between two streamlines is equal to the difference in the streamline stream functions !Note that if ψB >ψA then the flow is from left to right. If ψB <ψA then the flow is from right to left.Example :The velocity field for a planar, incompressible flow is given by:22ˆˆ2()6x y x y xy =−−u e e a. Determine the stream function for this flow field if ψ(0,0)=0.b. Determine the volumetric flow rate across the line AB shown in the figure.ψB ˆˆsin x y θθ−e e sin θ cos θA: (1,0)xThe properties of stream functions described previously are enough to justify their use. There are additional reasons to use stream functions, however. Models of real flows can be produced by combining “building block” stream functions. The significance of this topic will be discussed in greater detail when examining the potential function (especially the complex potential); a topic covered later in the notes. For now, however, it is sufficient to present some “building block” stream functions and discuss how they can be combined to produce models of actual flows. First, let’s examine a few basic “building block” stream functions.Because the continuity equation is a linear PDE, the “building block” stream functions just presented can be combined together to produce new stream function flows.Proof :Let ψT =ψ1+ψ2 where ψ1 and ψ2 are stream functions that satisfy the continuity equation. The velocities determined from the new stream function are given by:()()12121212T x T y u y y y yu x x x xψψψψψψψψψψ∂+∂∂∂===+∂∂∂∂∂+∂∂∂=−=−=−−∂∂∂∂Substitute these velocities into the continuity equation:12121212y x u u x y x y y y x x x y x y y x y x ψψψψψψψψ∂∂⎛⎞∂∂∂∂∂∂⎛⎞∇⋅=+=+−+⎜⎟⎜⎟∂∂∂∂∂∂∂∂⎝⎠⎝⎠∂∂∂∂=+−−∂∂∂∂∂∂∂∂=u Thus, the new stream function, ψT , formed by the superpostion of the original stream functions also satisfies the continuity equation.Example :The doublet is formed by superposing a source and sink of equal strength separated by an infinitesimal distance.The stream function for the source/sink pair is given by (m >0):()2121222m m m ψθθθθπππ=−=−Re-arrange and take the tangent of both sides:()212121tan tan 2tan tan 1tan m θθπψθθθθ−⎛⎞=−=⎜⎟+⎝⎠(4.3) Note that a trig identity has been used in deriving the previous expression. From the figure we observe that:1sin tan cos r r a θθθ=− and 2sin tan cos r r aθθθ=+Substitute these expressions into equation (4.3) and simplify:22222222222222222222sin sin 2cos cos tan sin sin 1cos cos sin cos sin sin cos sin cos sin 1cos 2sin cos cos sin cos r r r a r a r r m r a r a r ar r ar r a r r aar r a r a r r a θθπψθθθθθθθθθθθθθθθθθθθθ⎛⎞⎛⎞−⎜⎟⎜⎟+−⎛⎞⎝⎠⎝⎠=⎜⎟⎛⎞⎛⎞⎝⎠+⎜⎟⎜⎟+−⎝⎠⎝⎠−−−−=+−−−=−+−2222sin ar r a θ−=− 1222sin tan 2m ar r a θψπ−−⎛⎞∴=⎜⎟−⎝⎠(4.4) Stream function for a source/sink pair of equal strength each located a distance a from the origin along the x -axis.xThe streamlines for the stream function given in equation (4.4) are shown in the following figure.0lim aψ→=m →∞) such that the ratio ma /πxψNote :1. Doublets have an orientation. The stream function for a doublet oriented in the y -direction is given by:doublet oriented along y-axiscos K r θψ=x xshown for K >0Example :The flow of a frictionless fluid (there can be slip at solid surfaces) around a non-rotating cylinder can be modeled as a uniform stream superimposed with a doublet:ψflow around a non-rotating cylinder = ψuniform stream + ψdoubletIf the cylinder radius is R , determine the velocity of the fluid on the surface of the cylinder as a function of angular position, θ.x doublet with strength k uniform stream with velocity, U ∞U ∞Note that inside the cylinder the streamlines look like:Notes :1. Stream functions can also be defined for steady, compressible, 2D flows. For example, in rectangular coordinates:00 and x y u u y xρρψψρρ∂∂==−∂∂ where ρ0 is a reference densityThe continuity equation for these conditions is:()()()000y x u u x y x y y x ρρρρψψρρρρρ∂∂⎛⎞⎛⎞∂∂∂∂∇⋅=+=+−=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠u2. Stream functions also exist for axi-symmetric, incompressible flows (referred to as Stokes’ stream functions): ψ=ψ(r , z )11 and r z u u r z r rψψ∂∂=−=−∂∂ The continuity equation for these conditions is:()10r zru u r r z ∂∂+=∂∂3. Stream functions cannot be defined for arbitrary 3D flows.2. Potential FunctionsThe velocity field for an irrotational flow can be written as the gradient of a potential function, φ:φ=∇u (4.5) since, from a vector identity:φ∇×∇=0and because an irrotational flow is defined as one with zero vorticity, i.e.:∇×=ω0Now let’s ensure that the continuity equation is satisfied for an incompressible fluid (compressible potential flows will be considered in a separate set of notes dedicated specifically to compressible flows):0 0 φ∇⋅=⇒∇⋅∇=u20 φ∴∇= (4.6) This is Laplace’s Equation!, a well studied, linear, elliptic partial differential equation that appears in many other disciplines such as electromagnetics and conduction heat transfer.The momentum equations for a potential flow simplify to Bernoulli’s equation since the flow is everywhere irrotational (refer to an earlier set of notes concerning Bernoulli’s equation):()()12p G F t t φφφρ∂++∇⋅∇+=∂ (4.7) where G is a conservative body potential (e.g. for gravity, G = gz where g and ˆz epoint in opposite directions) and F (t ) is a function of time. For an steady potential flow, Eqn. (4.7) simplifies to:()12constant p G φφρ+∇⋅∇+= (4.8)Note that the momentum equation (Eqn. (4.7) or (4.8)) need not be solved to determine the fluidkinematics. Solving Eqn. (4.6) subject to appropriate boundary conditions is sufficient to determine the flow velocity field. This occurs because we placed two restrictions on the flow field: the continuityequation and the irrotationality assumption. The momentum equation can be solved to determine the fluid pressure field once the velocity field is known.The appropriate boundary conditions for Laplace’s equation are either Dirichlet (the functions value is specified), Neumann (the functions gradient is specified), or mixed. At solid surfaces the appropriate boundary condition for the flow is that the flow velocity normal to the surface is equal to the surface velocity, i.e.:ˆˆ⋅=⋅u n U n (4.9)where u is the fluid velocity, U is the boundary velocity, and ˆnis the normal vector to the boundary. This is a Dirichlet or kinematic boundary condition. Note that the no-slip condition is not satisfied for potential flows. This occurs because potential flows have no viscous force contributions since the viscous terms in the Navier-Stokes equations (i.e. momentum equations) drop out due to the irrotationality assumption. As a result, the Navier-Stokes equations, which are normally 2nd order PDEs, simplify to the 1st order Euler’s equations (and can be simplified further to Bernoulli’s equation). Hence, only a single boundary condition must be specified.Neumann boundary conditions are specified at free surfaces, i.e. surfaces where the pressure is defined. These are sometimes called dynamic boundary conditions. Bernoulli’s Eqn (Eqns. (4.7) or (4.8)) are used to relate free pressure boundary conditions to the velocity field.Notes :1. Incompressible potential flows are often referred to as ideal fluid flows since is the fluid is incompressible and viscous forces are negligible.2. Potential functions can be defined for 3D flows (as long as they’re irrotational). Recall that stream functions could only be specified for 2D flows.3. The governing equation for potential flows (Laplace’s equation) is a linear PDE so that the principle of superposition can be used to combine potential flow solutions. The approach is similar to that discussed previously for stream functions.4. Potential functions and stream functions are intimately related. This will become clear in the following section of notes concerning the complex potential function.5. Streamlines (ψ = constant) and equi-potential lines (φ = constant) are perpendicular everywhere in the flow. Consider the curves along which ψ = constant (a streamline) and φ = constant:00d d d d ψψφφ==∇⋅==∇⋅x xwhere d x is a small distance along the curves. Re-write these relations in terms of the velocities:00yy x xxx y yu dy d u dx u dy dx u u dyd u dx u dy dx u ψφ∇⋅==−+⇒=∇⋅==+⇒=−x xFrom analytical geometry, two curves will be perpendicular to each other if the slopes of the linesmultiplied together equal -1. Hence, we see that the streamlines and equi-potential lines will always be perpendicular to each other. The resulting mesh of streamlines and equi-potential lines is known as the flow net .3. Complex Variable Methods for Investigating Planar, Ideal, Irrotational FlowsA good mathematics reference for this topic is: Churchill, R.V. and Brown, J.W., Complex Variables and Applications , McGraw-Hill.Let’s define the complex potential, f (z ): ()f z i φψ=+where z = x +iy = r exp(i θ) where 0 ≤ θ < 2π and exp(i θ)=cos(θ)+i sin(θ)φ is the velocity potential ψ is the stream functionWhy do this? Because it allows us to present information in a compact manner and because we can use tools from complex variable mathematics to analyze fluid flows.Notes:1. A few complex variables preliminaries:a. z = x +iy = r exp(i θ) where 0 ≤ θ < 2π and exp(i θ)=cos(θ)+i sin(θ) b . |z | = (x 2+y 2)1/2 = r c. arg(z ) = tan -1(y /x ) = θ d. log(z ) = ln(r ) + i θ e. A function f of the complex variable z is analytic on an open set if it has a derivative at each point in that set. (counter-example: f (z ) = |z |2 is not analytic anywhere since its derivative exists only at z = 0.)2. If a function, f (z )=a (x ,y )+ib (x ,y ), is analytic in a domain D then its component functions, a and b , are harmonic conjugates in D .Proof:A function, h , is harmonic if it has continuous partial derivatives of the first and second order and satisfies Laplace’s equation:20h ∇=If a function, f (z )=a (x ,y )+ib (x ,y ), is analytic in D , then the first order partial derivatives of its component functions, a and b , must satisfy the Cauchy-Riemann equations throughout D .and a b a b x y y x∂∂∂∂==−∂∂∂∂ Differentiating:222222222222anda b a bx y x y x xa b a by x y x y y ∂∂∂∂==−∂∂∂∂∂∂∂∂∂∂==−∂∂∂∂∂∂ But from advanced calculus:2222 and a a b bx y y x x y y x∂∂∂∂==∂∂∂∂∂∂∂∂ Substituting and simplifying:2222222222 and 0 and 0a ab bx y y x a b ∂∂∂∂=−=−∂∂∂∂⇒∇=∇=Thus, a and b are harmonic.θry xIf two functions, a and b , are harmonic in a domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations throughout D , b is said to be a harmonic conjugate of a .3. Any analytic function, f (z )=φ(x ,y )+i ψ(x ,y ), is a valid planar, incompressible, irrotational flow field.Proof: R ecall that for an irrotational flow, the velocity may be written as the gradient of a potential function, φ:from a vector identity: 0 for any φφφ=∇×=∇×∇=⇒=∇ωu 0u For the flow to satisfy the continuity equation for an incompressible fluid:20 0 is a harmonic function!φφφ∇⋅=⇒∇⋅∇=∇=∴u Also recall that the stream function, ψ, is defined for 2D flows such that continuity for an incompressible fluid is automatically satisfied:22 andso that 0continuity is automatically satisfied!x y u u y xx y x yψψψψ∂∂==−∂∂∂∂∇⋅=−=∂∂∂∂∴u If the flow is also irrotational, the stream function must also satisfy:22222-0-0is a harmonic function!y xu u x yx yψψψψ∂∂=∇×=⇒=∂∂∂∂⇒−=−∇=∂∂∴ωu 0In addition,Cauchy-Riemann equationsand are harmonic conjugates!x y u x y u y xφψφψφψ∂∂⎫==⎪∂∂⎪⎬∂∂⎪==−⎪∂∂⎭∴ From Note 2, the components of any analytic function are harmonic conjugates. Thus, since thegoverning equations for the fluid are Laplace’s equation and since φ and ψ are harmonic conjugates, then any analytic f (z )=φ+i ψ will be a valid flow field.Thus, by choosing various forms of f (z ) that are analytic, we can produce various valid(incompressible and irrotational) flow fields. Whether or not the flow fields are interesting from an engineering perspective is another matter.3. Some “building block” flows and their complex potentials:z =x +iy and z 0=x 0+iy 0 0 ≤ θ < 2π()()1/22210000 and tan y y r x x y y x x θ−⎛⎞−⎡⎤=−+−=⎜⎟⎣⎦−⎝⎠4. Fluid velocities are found via differentiation of the complex potential:()x y dff z u iu dz′==−()()() where ,,also, 1(an identical result occurs if we consider )x yx y f df z f z x y i x y x dz x f i u iu x x xz x df f df z u iu dz y dz y φψφψ∂∂==+∂∂∂∂∂⇒=+=−∂∂∂∂=∂∂∂∴=−=∂∂For example:()2222()log() (source/sink at origin)211exp()cos sin 22exp()22cos and sin 22or in polar coordinates using some geometry and trig.:an x y r x y mf z z df m m m i mi dz z r i rr m mu u r ru u u u θπθθθππθππθθππ=−====−∴==+=+-1-1tan d tan tan 1tan y y r r x x r u u u u u u u u u u θθθθθθ⎛⎞+⎜⎟⎛⎞⎛⎞⎝⎠⎛⎞=+⇒=⎜⎟⎜⎟⎜⎟⎝⎠⎛⎞⎝⎠⎝⎠−⎜⎟⎝⎠ Substituting in for our values of u x and u y and simplifying:()2222tan and tan 1tan 0 21tan 0 and 2r r r r r u u m u u u u u r u mu u rθθθθθθθθπθπ⎛⎞+⎜⎟⎛⎞⎝⎠⎛⎞+==⇒+=⎜⎟⎜⎟⎝⎠⎛⎞⎝⎠−⎜⎟⎝⎠⇒==In general the relation between the velocity components expressed in rectangular and polar coordinates is given by:cos sin sin cos x r y r u u u u u u θθθθθθ=−=+()()()()()()cos sin sin cos cos sin cos sin cos sin x y r r rdfu iu u u i u u dzu i iu i u iu i θθθθθθθθθθθθθ=−=−−+=−−−=−−5. We can use the principle of superposition to combine complex potentials and form new complex potentials since if two functions are analytic in a domain D , then their sum is also analytic.u x u y u r u θ tan-1(u y /u x ) tan -1(u θ/u r )θuθ6. A few example flows created by superposition:Flow over a Rankine half-body :Combine the complex potentials for a uniform stream and a source (m >0):()log 2mf z Uz z π=+Flow over a Rankine oval :Combine the complex potentials for a uniform stream, a source, and a sink:()log()log()22m mf z Uz z a z a ππ=+−−+where m >0 and a ∈ℜ > 0.Flow around a non-rotating cylinder of radius R:Combine the complex potentials for a uniform stream and a doublet:()cf z Uz z=+where the constant c is found by not allowing any flow through the cylinder walls, i.e .()()2220cos sin ()cos sin 1cos cos cos 0cos r r r u r R c c f z Ur i Ur r r c u U r r r c u r R U c UR Rφψθθθθφψθθθθθ==⎡⎤⎡⎤=++−⎢⎥⎢⎥⎣⎦⎣⎦∂∂===−∂∂⇒===−⇒=so that the complex potential becomes:2()R f z U z z ⎛⎞=+⎜⎟⎝⎠ (4.11)Notes :1. Real (viscous) flow over a sphere (a golf ball in the figure below) is shown below. The streamlines for flow over a cylinder look much the same.The streamlines over the front half of a cylinder are similar to those predicted by the potential flow analysis. In fact, the velocity and pressures field on the front half of the cylinder are also accurate (the pressures will be discussed in a moment.) The flow field downstream of the cylinder is not accurately predicted. The discrepancy between the potential flow analysis and real life occurs due to the formation of a viscous boundary layer on the cylinder surface. The boundary layer separates near the top/bottom points of the cylinder and forms a wake. Assuming irrotational flow in theboundary layer and wake are poor assumptions. However, outside the boundary layer and wake, thepotential flow assumption is reasonable. We’ll discuss boundary layers in a later section of notes.2. The pressure distribution on the cylinder surface can be predicted using Eqn. (4.11) and Bernoulli’s equation:2()R f z U z z ⎛⎞=+⎜⎟⎝⎠From Eqn. (4.10), the flow velocity field is:()()()()()()()()()()222222222222exp 11exp 21exp 2exp exp exp 1cos 1sin exp r df R R u iu i U U dz z r i R R U i U i i i r r R R U i i r r θθθθθθθθθθ⎛⎞⎛⎞−−==−=−⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎡⎤⎡⎤=−−=−−−⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎞⎛⎞=−++−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦On the cylinder surface (r = R ):()2sin r r R r R u u U θθ====−The pressure distribution on the cylinder surface is found via Bernoulli’s equation, and expressed in terms of a dimensionless pressure coefficient, c p :()221214sin s p p pc U θρ∞−==− (4.12)Notes :a. The total drag (F D ) and lift (F L ) on the cylinder may be found by integrating the pressure distribution over the entire cylinder surface:2020cos sin D L F p Rd F p Rd θπθθπθθθθθ=====−=−∫∫Either by actually evaluating Eqn. (4.13) or noting that the velocity field is symmetric over thefront and back and upper and lower surfaces, the drag and lift forces on the cylinder are both zero. Of course in real flows we know that the drag is not zero. The fact that the potential flow model predicts zero drag while real flows have non-zero drag is known as d’Alembert’sParadox . We, of course, now know that the discrepancies are explained by the formation of a boundary layer and boundary layer separation. d’Alembert’s paradox will be discussed again when reviewing Blasius’ integral law.pb. Eqn. (4.12) is compared to experimental data in the plot below.Again, the potential flow analysis predicts the pressure distribution reasonably well over the upstream part of the cylinder but does a poor job over the back half due to boundary layer separation.Flow around a rotating cylinder of radius R:Combine the complex potentials for a uniform stream, a doublet, and a free vortex:()log 2c i f z Uz z z πΓ=+− where the constant c is found by not allowing any flow through the cylinder walls, just as in the previous example. Note that the addition of a vortex will not change the value of c since a vortex only produces tangential flow and not radial flow. As a result, the complex potential becomes:2()log 2R i f z U z z z π⎛⎞Γ=+−⎜⎟⎝⎠Notes :1. The corresponding velocity field is:()()()()2222exp 121exp 2exp 2r df R i u iu i U dz z z R i U i i rr θθπθθπ⎛⎞Γ−−==−−⎜⎟⎝⎠⎛⎞Γ=−−−−⎜⎟⎝⎠ Using the previous results for a non-rotating cylinder:()()22221cos 11sin 2r R u U r R u U r r θθθπ⎛⎞=−⎜⎟⎝⎠⎛⎞Γ=−++⎜⎟⎝⎠ (4.14) On the cylinder surface (r = R ):()012sin 2r r R r R u u U Rθθπ===Γ=−+ (4.15) Using Bernoulli’s equation, the pressure coefficient over the surface is:221114sin 4sin 22p c UR UR θθππΓΓ⎛⎞=−+−⎜⎟⎝⎠(4.16) The corresponding drag, F D , and lift, F L , are:0D L F F U ρ==−Γ(4.17)Notes :a. The drag again is zero and is not unexpected due to the fore/aft symmetry of the velocity field.b. The lift is non-zero and is related to the flow circulation. This type of lift is referred to as Magnuslift . Both drag and lift for potential flows will be discussed in detail when reviewing Blasius’integral law and the Kutta-Joukowski theorem.c. The photo below shows the flow past a rotating golf ball. The flow is from left to right and the golfball rotates in a clockwise manner (Γ < 0). From Eqn. (4.17), the lift on the golf ball will be in thepositive vertical direction.In real (i.e. viscous) flows the lift on a rotating object comes primarily from deflection of thedownstream wake (the fluid momentum is directed downward resulting in an upward force on theball) rather than from the unbalanced pressure distribution on the object. The Magnus effect is oftenmistakenly referred to as the primary source of the lift force.Notes…:7. Flow in and around corners of varying angles can be modeled using the following complex potential:() where and are constants n f z Az A n =a. This produces flows between boundaries intersecting at an angle π/n (only flows with n ≥1/2 are of interest):b. The potential and stream functions are given by:()()()()()()n() exp exp cos sin cos and sin n n n n n n f z Az A r i Ar in Ar n iAr n Ar n Ar n θθθθφθψθ====+⎡⎤⎣⎦∴==c. The fluid speed at the origin is:()1100000lim lim ()lim exp (1)lim 01lim 11n n r r r r r f z nAr i n nAr n A n n θ−−→→→→→′==−=>⎧⎪⇒==⎨⎪∞<⎩u uyyn =3 n =2 n=1 n =2/3d. In a real fluid (one with viscosity), the flow along the surface streamline would:for nfor n<1: separate after reaching the corner unless the corner angle is small4. Blasius Integral LawsConsider the 2D, incompressible, inviscid, steady, irrotational flow around an arbitrary closed body:Using COLM, determine the lift, L , and drag, D , acting on the body:()()outside outside outside outside x x y C C d y x y C C d D pdy u u dy u dx L pdx u u dy u dx ρρρρρ⋅⋅−−=−−+=−∫∫∫∫u A u AFrom Bernoulli’s equation (neglecting gravity):()()22221122 x y x y p u u c p c u u ρρ++=⇒=−+where c is a constant. Substituting and re-arranging:()()()()outsideoutside 2221222212x y x x y C x y x y y C D cdy u u dy u dy u u dx L cdx u u dx u u dy u dx ρρρρ⎡⎤=−++−−⎣⎦⎡⎤=−+−−⎣⎦∫∫Noting that:outside outside 0C C cdy cdx ==∫∫and simplifying:()()outsideoutside 22122212x y x y C x y x y C D u u dy u u dx L u u dx u u dy ρρρρ⎡⎤=−−+⎣⎦⎡⎤=−−−⎣⎦∫∫As shown below, the previous drag and lift relations may be written in terms of the complex potential.u x()()()()()()()()()outside outside outside outside 22222222222211222222222x y C C x x y y C x y x y x y x y C x y x y x y D df i dz i u iu dx idy dz iu iu u u dx idy i u dx u dx u u dy i u dy u dy u u dx u u dy u u dx i u u dx u ρρρρρρρρ=⎛⎞=−+⎜⎟⎝⎠=−−+⎡⎤=−++−−⎣⎦=−−+−−−−∫∫∫∫ ()outside x y C L u dy =⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦∫Substituting the expressions for lift, L , and drag, D , found previously:outside 22C df i dz D iL dz ρ⎛⎞=−⎜⎟⎝⎠∫ BLASIUS’ INTEGRAL LAWHow is this result used? Typically, it is applied using a theorem from complex variables referred to as the Residue Theorem (Churchill and Brown, p. 169) which states:()1()2Res ()k nz z k C w z dz i w z π===∑∫A residue is the coefficient in front of the 1/(z -z 0) term (the b 1 term in the series below) in the Laurent series expansion of an analytic complex function about the point z 0 (Churchill and Brown, p. 144):()()0010()n n n n n n b w z a z z z z ∞∞===−+−∑∑ where the coefficients a n and b n are given by()()11001()1() and 22n n n n C C f z dz f z dz a b i i z z z z ππ+−+==−−∫∫ The details of the expressions above won’t concern us here and are only presented for completeness. Blasius’ Integral Law is used in deriving the Kutta-Joukowski theorem given in the following section which relates the lift (and drag) around any arbitrary, closed object to the circulation, Γ, caused by the object.5. Kutta-Joukowski TheoremNow consider the flow around an arbitrary closed body (centered at the origin) in a uniform stream of horizontal velocity, U . Far from the body (z →∞) the complex potential will be of the following form (a Laurent series expansion):1()log 2n n n b m i f z Uz z zπ∞=−Γ⎛⎞=++⎜⎟⎝⎠∑ (4.18) Note that the coefficients, a n , for the terms involving z n (n ≥ 2) in the Laurent series (refer to the previous set of notes on the Blasius integral law) are all zero since we are considering external flows (recall that the velocity field is given by df /dz so that terms involving z n where n ≥ 2 will approach ∞ as z →∞).Furthermore, since we are concerned only with closed bodies, the net source term, m , should also be zero. We, however, will continue to include the source term until the end of this analysis.Given the complex potential above, let’s apply Blasius’ Integral Law to determine the lift and drag about an arbitrary object:11222231211222n n n df m i U nb z dz z df m i U m i U O dz z z z πππ∞−+=−Γ⎛⎞=++−⎜⎟⎝⎠−Γ−Γ⎛⎞⎛⎞⎛⎞⎛⎞=+++⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠∑ Using the Residue Theorem to evaluate Blasius’ Integral Law:outside 2202i Res 2i 22222z C df df m i D iL i dz i i U dz dz mU i U ρρρπππρρ=−Γ⎛⎞⎛⎞⎛⎞−==⋅=⋅⋅⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠=−+Γ∫Thus, we see that for a closed object (m =0): 0 and D L U ρ==−Γ KUTTA-JOUKOWSKI THEOREM (4.19) For an object that is not closed (e.g. a Rankine half-body), we have:and D mU L U ρρ=−=−ΓNotes:1. The result given above indicates that there is no drag around an arbitrary closed object in an a steady, incompressible, irrotational, inviscid flow. In real life of course there is always some drag on an object. The conflict between the derived value of zero drag and the real-life value of non-zero drag is referred to as D’Alembert’s Paradox . There is no paradox, in fact, if one realizes that it is viscous effects (skin friction drag and form, aka pressure, drag resulting from the formation of a wake (which in turn is a result of boundary layer separation)) which produces drag on an object.2. Bodies of semi-infinite extent (e.g. a Rankine half-body) do have drag on them due to the fact that the net source term, m , is not zero. The drag is a result of a non-zero flux of horizontal momentum out through the control surface.3. The Kutta-Joukowski theorem states that the lift on an object is directly proportional to the net circulation, Γ, caused by the object. This is an important observation that is especially useful inaerodynamics when calculating the lift on an airfoil. As will be shown later, the circulation around an airfoil is dependent on the free stream velocity so that the lift turns out to be proportional to thecirculation squared.Γ U。

相关文档
最新文档