巩固练习-函数及其表示方法-基础

合集下载

高中数学必修一 《3 1 函数的概念及其表示》课时练习09

高中数学必修一 《3 1 函数的概念及其表示》课时练习09

课时分层作业(十五)函数的表示法(建议用时:60分钟)[合格基础练]一、选择题1.购买某种饮料x听,所需钱数为y元.若每听2元,用解析法将y表示成x(x∈{1,2,3,4})的函数为()A.y=2x B.y=2x(x∈R)C.y=2x(x∈{1,2,3,…}) D.y=2x(x∈{1,2,3,4})D[题中已给出自变量的取值范围,x∈{1,2,3,4},故选D.]2.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为()x 12 3f(x)230A.3 B.2C.1 D.0B[由函数g(x)的图象知,g(2)=1,则f(g(2))=f(1)=2.]3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()C [距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.]4.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1B [令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t1-1t=1t -1,故选B.] 5.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 B [设f (x )=ax +b ,由题设有 ⎩⎪⎨⎪⎧2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1. 解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.]二、填空题6.已知f (2x +1)=x 2-2x ,则f (3)=________. -1 [由2x +1=3得x =1,∴f (3)=1-2=-1.] 7.f (x )的图象如图所示,则f (x )的值域为________.[-4,3] [由函数的图象可知,f (x )的值域为[-2,3]∪[-4,2.7],即[-4,3].]8.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.y =80x (x +10),x ∈(0,+∞) [由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0.]三、解答题9.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)求函数f (x )的值域.[解] f (x )=-(x -1)2+4的图象如图所示:(1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4, 则函数f (x )的值域为(-∞,4].10.(1)已知f (x )是一次函数,且满足2f (x +3)-f (x -2)=2x +21,求f (x )的解析式;(2)已知f (x )为二次函数,且满足f (0)=1,f (x -1)-f (x )=4x ,求f (x )的解析式; (3)已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2+1,求f (x )的解析式.[解] (1)设f (x )=ax +b (a ≠0),则2f (x +3)-f (x -2)=2[a (x +3)+b ]-[a (x -2)+b ]=2ax +6a +2b -ax +2a -b =ax +8a +b =2x +21,所以a =2,b =5,所以f (x )=2x +5. (2)因为f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0). 由f (0)=1,得c =1. 又因为f (x -1)-f (x )=4x ,所以a (x -1)2+b (x -1)+c -(ax 2+bx +c )=4x ,整理,得-2ax +a -b =4x ,求得a =-2,b =-2,所以f (x )=-2x 2-2x +1.(3)∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2+1=⎝ ⎛⎭⎪⎫x -1x 2+3.∴f (x )=x 2+3.[等级过关练]1.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值为( ) A .-1 B .5 C .1D .8C [由3x +2=2得x =0, 所以a =2×0+1=1. 故选C.]2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( )A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10) D [由题意得y +2x =20, 所以y =20-2x ,又2x >y ,即2x >20-2x ,即x >5, 由y >0即20-2x >0得x <10, 所以5<x <10.故选D.]3.已知f (x )+2f (-x )=x 2+2x ,则f (x )的解析式为________.f(x)=13x2-2x[以-x代替x得:f(-x)+2f(x)=x2-2x.与f(x)+2f(-x)=x2+2x联立得:f(x)=13x2-2x.]4.设f(x)=2x+a,g(x)=14(x2+3),且g(f(x))=x2-x+1,则a的值为________.-1[因为g(x)=14(x2+3),所以g(f(x))=14[(2x+a)2+3]=14(4x2+4ax+a2+3)=x2-x+1,求得a=-1.]5.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域.[解](1)由已知,横断面为等腰梯形,下底为2 m,上底为(2+2h)m,高为h m,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.。

1.2 函数及其表示

1.2  函数及其表示

1 0.5 -2 -1 O -1 -2
1
2
x
练习: (课本23页) 1. 如图, 把截面半径为 25 cm 的 圆形木头据成矩形木料, 如果矩形的 一边长为 x cm, 面积为 y cm2, 把 y 表示为 x 的函数. 解: 由勾股定理得矩形的宽为 502 - x 2 , 则矩形面积的函数为 y = x 502 - x 2 , (0<x<50)
5 公里的分段. 设里程为 x, 票价为 y, 则解析式为:
2, 0<x≤5, y= 3, 5<x≤10, 4, 10<x≤15, 5, 15<x≤20. 其图象为:
y 5 4 3 2 1 o
5
10 15 20
x
练习: (补充题) 画出下列函数的图象, 根据图象写出定义域和值域:
1 (0 x 1) ; (1) y = x x ( x 1)
笔记本数 x 钱数 y 1 5 2 10
y 25 20 15 10 5
3 15
4 20
(直接反 25 映函数值)
5
(3) 图象表示: 问: 三种表示 方法各有什么优点?
(直观反映 出定义域, 值域及大 O 1 2 3 4 5 x小关系)
· · · · ·
例4. 下表是某校高一 (1) 班三名同学在高一学 年度六次数学测试的成绩及班级平均分表.
1.2.2 函数的表示法
第一课时
函数的表示
返回目录
1. 函数有哪三种表示方法? 2. 函数的各种表示方法各自最能反映函数的 哪些特性? 3. 函数的各种表示方法怎样互相联系, 互相 转化?
问题1. 初中我们学了一次函数, 二次函数, 反 比例函数等, 这些函数可以用哪些方法进行表示? 函数的表示一般有三种方法: 解析法、图象法和 列表法. 解析法, 就是用数学表达式表示两个变量之间的 对应关系, 这个表达式又称解析式. 图象法, 就是用图象表示两个变量之间的对应关 系. 列表法, 就是列出表格来表示两个变量之间的对 应关系.

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。

高考数学专题《函数的概念及其表示》习题含答案解析

高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。

高中试卷-3.1 函数的概念及其表示方法(含答案)

高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。

高考数学模拟试题-第06讲 函数及其表示(解析版)

高考数学模拟试题-第06讲 函数及其表示(解析版)

第6讲 函数及其表示学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·江苏南通·模拟预测)若函数f (x )满足f (2x )=x ,则f (5)=( ) A .25 B .52C .log 52D .log 25【答案】D【解析】25x =.∴2log 5x =,∴()25log 5f =, 故选:D .2.(2022·重庆市朝阳中学高三开学考试)函数()f x = )A .(][),16,-∞-⋃+∞B .()[),16,⋃-∞-+∞C .(]1,6-D .[]2,3【答案】C【解析】256010x x x ⎧-++≥⎨+≠⎩,解得16x -<即函数()f x 的定义域(]1,6- 故选:C3.(2022·山东济南·二模)已知函数()1221,0,,0,x x f x x x ⎧-≤⎪=⎨⎪>⎩若()3f m =,则m 的值为( )AB .2C .9D .2或9【答案】C【解析】∴函数()1221,0,0x x f x x x ⎧-≤⎪=⎨⎪>⎩,()3f m =,∴2130m m ⎧-=⎨≤⎩或1230m m ⎧⎪=⎨⎪>⎩, 解得9m =. 故选:C.4.(2022·全国·高三专题练习)已知函数()f x 的定义域为()0,∞+,且()121f x f x ⎛⎫= ⎪⎝⎭,则()f x =( )A ()203x > B ()103x >C ()10x >D ()10x >【答案】B【解析】∴()121f x f x ⎛⎫= ⎪⎝⎭,∴,∴1()2()1f f x x =,∴,由∴∴联立解得1(),(0)3f x x =>. 故选:B .5.(2022·全国·高三专题练习)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A . (0,4] B . 254,4⎡⎤⎢⎥⎣⎦C . 3,32⎡⎤⎢⎥⎣⎦D . 3,2⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,当32x =时,254y =-;当0x =或3时,4y =-. 因此当332m ≤≤时,函数234y x x =--在区间[]0,m 上的最小值为254-, 最大值为4-,所以,实数m 的取值范围是3,32⎡⎤⎢⎥⎣⎦.故选:C.6.(2022·全国·高三专题练习)若函数()f x 满足()122f x f x x ⎛⎫-=+ ⎪⎝⎭,则()2f =( )A .0B .2C .3D .3-【答案】D【解析】由()122f x f x x ⎛⎫-=+ ⎪⎝⎭,可得()1122f f x x x ⎛⎫-=+ ⎪⎝⎭,联立两式可得()1223f x x x ⎛⎫=-+- ⎪⎝⎭,代入2x =可得()23f =-.故选:D.7.(2022·江苏泰州·模拟预测)设函数f (x )={x 2+2x,x ≤0−x 2,x >0,若()()()20f f a f a -+=,则实数a 的值为( )A1 B .1- C 1 D .1【答案】B【解析】令()f a t =,()()()20f f a f a -+=,则()2f t t =- 1°0t ≤时,222t t t +=-,则220t t ++=无解. 2°0t >时,22t t -=-,∴1t =,∴()1f a =0a ≤时,221a a +=,则1a =;0a >时,21a -=无解综上:1a =. 故选:B .8.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∴x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是( ) A .(-1,+∞) B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭【答案】B【解析】0m ≥时,()()()22220f x m mf x x m mx ++=++>,符合题意;0m <时,()()20f x m mf x ++>,即()())2f x m mf x f+>-=显然()f x 在R 上递增,则2x m +>对1x ∀≥恒成立(120x m +>对1x ∀≥恒成立则:10104120m m ⎧>⎪⇒-<<⎨>⎪⎩; 综上,1,4m ∞⎛⎫∈-+ ⎪⎝⎭,故选:B .9.(多选)(2022·全国·高三专题练习)已知函数()()1lg ,0e ,0x x x f x x -⎧-<=⎨⎩,若()()213f f a +=,则a 的值可能为( ) A .1 B .1- C .10 D .10-【答案】AD【解析】()01e 1f ==,因为()()213f f a +=,所以()1f a =,当0a <时,()()lg 1f a a =-=,解得:10a =-,当0a >时,()1e 1af a -==,解得:1a =,故选:AD10.(多选)(2022·全国·高三专题练习)已知221()1x f x x +=-,则()f x 满足的关系有( ) A .()()f x f x -=- B .1()f f x x ⎛⎫=- ⎪⎝⎭C .1()f f x x ⎛⎫= ⎪⎝⎭D .1()f f x x ⎛⎫-=- ⎪⎝⎭【答案】BD【解析】因为221()1x f x x +=-,所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项; 1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 22221111111x f x x x x ⎛⎫+- ⎪⎛⎫⎝⎭-== ⎪⎝⎭⎛⎫-- ⎪⎝+-⎭,1()f f x x ⎛⎫-=- ⎪⎝⎭,即满足D 选项. 故选:BD11.(2022·湖北武汉·模拟预测)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】由题知,021********x x x x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.12.(2022·山东临沂·二模)已知函数()()4log ,03,0x x f x f x x >⎧=⎨+≤⎩,则()4f -的值为__________.【答案】12【解析】因为()()4log ,03,0x x f x f x x >⎧=⎨+≤⎩,则()()()414462log 22f f f -=-+===.故答案为:12.13.(2022·浙江温州·三模)已知函数11()1261x f x x x x ⎧>-⎪=+⎨⎪--≤-⎩,, 若[()]0f f a =,则实数a 的值等于___________. 【答案】32-【解析】∴当1a >-即10a +>时,1()=11f a a >-+,则110112a f a a a +⎛⎫==⇒=- ⎪++⎝⎭(舍) ∴当1a ≤-即10a +≤时,()26f a a =--∴:当261a --≤-,即512a -≤≤- 时,有3(26)2(26)602f a a a --=----=⇒=-∴:当261a -->- 时,即52a <- 时,有1(26)0261f a a --==⇒--+a 无解 综上,32a =-.故答案为:32-14.(2022·湖北·荆州中学模拟预测)设a ∈R ,函数33(0)()log (0)ax x f x x x ⎧≤=⎨>⎩.若1[()]93f f ≥,则实数a 的取值范围是_________. 【答案】(,2]-∞-【解析】3()lo 113g 13f ==-,1(())(1)393af f f -=-=≥所以2-≥a 即2a ≤- 故答案为:(,2]-∞-15.(2022·浙江·模拟预测)设函数3,0()(3),0x x f x x f x x ⎧+>⎪=⎨⎪+≤⎩,则()4f -=________,若()(2)=-f a f ,则实数a 的最大值为_______. 【答案】723 【解析】由题意得37(4)(1)(2)222f f f -=-==+=, 又()(2)(1)4f a f f =-==,结合解析式可知a 的最大值一定是正数, 当0x > 时,3()f x x x=+ ,()f x在上递减,在)+∞上单调递增, 且(1)(3)4f f ==,若3,()(3)4x f x f >>=,所以实数a 的最大值为3,故答案为:72,3.16.(2022·全国·高三专题练习)根据下列条件,求函数的解析式: (1)已知f1)=x +(2)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1;(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1).【解】(1)(方法1)(换元法):设t1,1t ≥,则x =(t -1)2(t ≥1).代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.∴f (x )=x 2-1(x ≥1).(方法2)(配凑法):∴x +2+1-1=1)2-1, ∴f1)=1)2-1≥1),即f (x )=x 2-1(x ≥1).(2)用-x 换x 得2f (-x )-f (x )=-3x +1,与原式2f (x )-f (-x )=3x +1联立消去f (-x )得f (x )=x +1. (3)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y=()()21y y -+-+,所以f (y )=y 2+y +1,即f (x )=x 2+x +1.17.(2022·全国·高三专题练习)已知函数25,0()6,0x x f x x x ⎧-≥=⎨+<⎩(1)若()4f m =,求m 的值;(2)若()211f a -->,求a 的取值集合.【解】(1)当0m ≥时,2()54f m m =-=,解得3m =或3m =-(舍去); 当0m <时,()64f m m =+=, 解得2m =-. ∴m 的值为3或-2.(2)对任意实数a R ∈,210a --<,()221161f a a ∴--=--+>,24a <,解得22a -<<.∴a 的取值集合是{}22x a -<<.【素养提升】1.(2022·全国·高三专题练习)设函数()f x =42x f f x ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的定义域为( ) A .1,42⎡⎤⎢⎥⎣⎦B .[]2,4C .[)1,+∞D .1,24⎡⎤⎢⎥⎣⎦【答案】B【解析】由题意,函数()f x =满足10x -≥,即1≥x ,所以函数42x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭满足12x ≥且41x ≥,解得24x ≤≤,即函数42x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的定义域为[]2,4,故选B .2.(2022·上海市七宝中学模拟预测)已知()f x 为定义在(0,)+∞上的增函数,且任意0x >,均有()()11f f x x f x ⎡⎤+=⎢⎥⎣⎦,则(1)f =_____.【解析】设(1)f a =,令1x =得:()()()111111f f f a f a ⎡⎤+=⇒+=⎣⎦; 令1x a =+得:()()()111111111f f a f a f a f a a a ⎡⎤⎛⎫++=⇒+== ⎪⎢⎥+++⎣⎦⎝⎭, 因为()f x 为定义在(0,)+∞上的增函数,所以1111a a a +=⇒=+,当()1f a ==时,由()()11111101a f a f a a a a +>⇒+>⇒>⇒<-<<或矛盾.故()1f a ==.3.(2022·全国·高三专题练习)已知函数32()f x x ax bx c =+++,(2017)2018f =,(2018)2019f =,(2019)2020f =,则(2020)f =________.【答案】2027解:因为函数32()f x x ax bx c =+++, 又(2017)2018f =,(2018)2019f =,(2019)2020f =, 所以321x ax bx c x +++=+的根为2017,2018,2019, 即方程32(1)10x ax b x c ++-+-=的根为2017,2018,2019, 所以32(1)1(2017)(2018)(2019)x ax b x c x x x ++-+-=---, 所以32()(2017)(2018)(2019)1f x x ax bx c x x x x =+++=---++,所以(2020)(20202017)(20202018)(20202019)202012027f =-⨯-⨯-++=, 故答案为:20274.(2022·全国·高三专题练习)已知函数f (x )=22221,0,2,0.x ax a x x a x x ⎧-++≤⎪⎨+->⎪⎩(1)若对于任意的x ∴R ,都有f (x )≥f (0)成立,求实数a 的取值范围; (2)记函数f (x )的最小值为M (a ),解关于实数a 的不等式M (a -2)<M (a ). 【解】(1)当x ≤0时,f (x )=(x -a )2+1,因为f (x )≥f (0),所以f (x )在(-∞,0]上单调递减,所以a ≥0, 当x >0时,()222f x x x '=-, 令2220xx ,得x =1,所以当0<x <1时()0f x '<,当x >1时,()0f x '>, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f min (x )=f (1)=3-a , 因为f (x )≥f (0)=a 2+1,所以3-a ≥a 2+1,解得-2≤a ≤1. 又a ≥0,所以a 的取值范围是[0,1].(2)由(1)可知当a ≥0时,f (x )在(-∞,0]上的最小值为f (0)=a 2+1, 当a <0时,f (x )在(-∞,0]上的最小值为f (a )=1, f (x )在(0,+∞)上的最小值为f (1)=3-a ,解不等式组2130a aa ⎧+≤-⎨≥⎩,得0≤a ≤1,解不等式组130aa ≤-⎧⎨<⎩,得a <0,所以()21,011,03,1a a M a a a a ⎧+≤≤⎪=<⎨⎪-≥⎩.所以M (a )在(-∞,0)上为常数函数,在(0,1)上是增函数,在(1,+∞)上是减函数, 作出M (a )的函数图象如图所示:令3-a =1得a =2, 因为M (a -2)<M (a ), 所以0<a <2.5.(2022·上海·高三专题练习)对定义域,f g D D 的函数()y f x =,()y g x =,规定: 函数()()()()(),,,f gf g f g f x g x x D D h x f x x D x D g x x D x D⎧∈⋂⎪=∈∉⎨⎪∉∈⎩且且(1)若函数()11f x x =-,()2g x x =,写出函数()h x 的解析式; (2)求问题(1)中函数()h x 的值域;(3)若()()g x f x α=+,其中α是常数,且[]0,απ∈,请设计一个定义域为R 的函 数()y f x =,及一个α的值,使得()cos4h x x =,并予以证明. 【解】(1)()()()2,,11,{11,1x x h x x x ∈-∞⋃+∞=-=.(2)当时,()211211x h x x x x =-++--, 若1x >时, 则()4h x ≥,其中等号当2x =时成立, 若1x <时, 则()0h x ≤,其中等号当0x =时成立,∴ 函数()h x 的值域是(]{}[),014,-∞⋃⋃+∞. (3) 令,则()()sin 2cos 2cos 2sin 244g x f x x x x x ππα⎛⎫⎛⎫=+=+++=- ⎪ ⎪⎝⎭⎝⎭,于是()()()()()·sin 2cos2cos2sin 2cos4h x f x f x x x x x x α=+=+-=,另解令()()()12,,2f x xg x f x παα===+()1212x x π=+=,于是()()()()()·1212cos 4h x f x f x x x x α=+==.。

新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理

新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理

高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。

专题1第一章集合与函数的概念知识点与基础巩固题(原卷版)高一数学复习巩固练习(人教A版)

专题1第一章集合与函数的概念知识点与基础巩固题(原卷版)高一数学复习巩固练习(人教A版)

专题1人教A 版集合与函数的概念知识点与基础巩固题——寒假作业1(原卷版)集合部分考点一:集合的定义及其关系 基础知识复习 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。

记作:A ∪B(读作”A 并B ”),即A ∪B={x|x ∈A ,或x ∈B}.3、交集与并集的性质:A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A.4、全集与补集(1)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。

通常用U 来表示。

(2)补集:设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中 所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)。

2018年高考数学一轮总复习 专题2.1 函数及其表示练习(含解析)理

2018年高考数学一轮总复习 专题2.1 函数及其表示练习(含解析)理

专题.1 函数及其表示真题回放1. 【2017高考天津理第1题】设函数y =A ,函数ln(1)y x =-的定义域B ,则A B =( )(A )()1,2 (B )(]1,2 (C )()2,1- (D )[)2,1- 【答案】D【解析】:由240x -≥得22x -≤≤,由10x ->得1x <,故AB ={}|21x x -≤≤,选D【考点解读】1.集合的运算 2.函数定义域 3.简单不等式的解法,集合的交、并、补运算问题,应先把集合化简再运算,常常借助数轴或韦恩图来处理2. 【2015高考湖北文第6题】函数256()lg 3x x f x x -+=-的定义域为( )(A )()2,3 (B )(]2,4 (C )()(]2,33,4 (D )()(]1,33,6-【答案】C【考点解读】本题考察函数的定义域,涉及根式、绝对值、对数和分式、交集等内容 3. 【2015高考福建理第14题】若函数64,2()(01)3log ,2a x x f x a a x x -+≥≥⎧=>≠⎨+<⎩且的值域是[)4+∞,,则实数的取值范围是______ 【答案】(]12,【解析】:当2x ≤,故64x -+≥,要使得函数()f x 的值域为[)4+∞,,只需()1()3l o g2a f x x x =+>的值域包含于[)4+∞,,故1a >,所以1()3log 2a f x >+,所以3log 24a +≥,解得12a <≤,所以实数的取值范围是(]12,【考点解读】本题考查分段函数的值域问题,分段函数是一个函数,其值域是各段函数值取值范围的并集,将分段函数的值域问题转化为集合之间的包含关系,是本题的两点,要注意分类讨论思想的运用 考点分析1.函数及其表示了解构成函数的要素,会求一些简单函数的定义域和值域 了解映射的概念在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数 2.了解简单的分段函数并能简单的应用3.函数的概念、解析式、图像、分段函数的应用为高考主要考点,重点考查数形结合、分类讨论思想及逻辑推理能力,2018年复习时应予以高度关注. 融会贯通题型一 映射与函数的概念【例1】给出四个命题:①函数是其定义域到值域的映射;②()f x =③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】A知识链接1.符号:f A B →表示集合A 到集合B 的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应; (3)象不一定有原象,象集C 与B 间关系是C B ⊆.2.函数是特殊的映射,它特殊在要求集合A 和B 都是非空数集.函数三要素是指定义域、值域、对应法则.同一函数必须满足:定义域相同、对应法则相同.3.要注意()f a 与()f x 的区别与联系,()f a 表示x a =时,函数()f x 的值,它是一个常数,而()f x 是自变量的函数,对于非常数函数,它是一个变量,()f a 是()f x 的一个特殊值.4.区间是某些数集的一种重要表示形式,具有简单直观的优点.应注意理解其含义并准确使用.5.函数的表示方法有三种:解析法、图象法、列表法. 【变式训练】1.下列四组函数中,表示为同一函数的是( )A .(),()f x x g x ==B .x x f -=2)(与2)(-=x x gC .21(),()11x f x g x x x -==+- D .()()f x g x ==【答案】A2.已知函数()23,f x x x A =-∈的值域为{1,1,3}-,则定义域A 为 . 【答案】{1,2,3}【解析】由函数定义,令()f x 分别等于1,1,3-,求对应自变量的值,即得定义域为{1,2,3}. 解题技巧与方法总结1.判断一个对应是否为映射,关键看是否满足“集合A 中元素的任意性,集合B 中元素的唯一性”.2. 判断一个对应f :A →B 是否为函数,一看是否为映射;二看A ,B 是否为非空数集.若是函数,则A 是定义域,而值域是B 的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 题型二 函数的定义域问题典例1. (2017·南师大考前模拟)函数()f x =的定义域为 ▲ .【答案】3,22⎛⎤ ⎥⎝⎦【解析】由题意得123log (23)0023122x x x -≥⇒<-≤⇒<≤,即定义域是3,22⎛⎤ ⎥⎝⎦【变式训练】(2017届河南南阳一中高三文月考)函数()lg(1)f x x =+的定义域为( )(A )(1,0)(0,1]- (B )(1,1]- (C )(4,1]-- (D )(4,0)(0,1]-【答案】A【解析】要使函数有意义,应有⎪⎩⎪⎨⎧≠+>+≥+--11,01,0432x x x x 解得01<<-x 或10≤<x ,故选A.解题技巧与方法总结已知解析式求函数定义域问题列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等角度出发,而解则与一元二次不等式、指对数不等式、三角不等式等联系在一起 典例2. (2016·福建福州五校联考理)已知函数(2)y f x =-定义域是[]0,4,则(1)1f x y x +=-的定义域是_________ 【答案】[)3,1-【变式训练1】已知函数()f x 的定义域为[]1,2-,求函数2(1)(1)y f x f x =+--的定义域【答案】由题意2112112x x -≤+≤⎧⎨-≤-≤⎩,1x ≤ 【解析】求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 、B ,再求A B I ,即为所求函数的定义域【变式训练2】(2016~2017学年广西陆川县中学月考)已知函数12(log )y f x =的定义域为11,42⎡⎤⎢⎥⎣⎦,则函数(2)x y f =的定义域为( )A .[]1,0-B .[]0,2C .[]1,2-D .[]0,1 【答案】D解题技巧与方法总结(1)已知原函数()[](),f x a b f a x b << ()f x 的定义域为(),a b ,求复合函数[]()f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域;(2)已知复合函数[]()f g x 的定义域为(),a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域;(3)求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 、B ,再求A B I ,即为所求函数的定义域典例3.已知函数()f x =R ,则实数的取值范围是( )(A )120a -<≤ (B )120a -<< (C )13a > (D )13a ≤ 【答案】A【解析】函数()f x =R ,只需分母不为即为,所以0a =或24(3)0a a a ≠⎧⎨∆=-⨯-<⎩,可得120a -<≤ 【变式训练】已知函数4()12f x x =-+的定义域是[],a b (,a b 为整数),值域是[]0,1,则所有满足条件的整数数对(),a b 所组成的集合为_____________ 【答案】()()()()(){}2,0,2,1,2,2,1,2,0,2----题型三 函数的值域问题 命题点1 求函数的值域 典例1.函数()=x f 25243x x -+的值域是 . 【答案】 (0,5]【解析】因为2x 2-4x+3=2(x-1)2+1≥1,所以0<212-43x x +≤1,所以0<y ≤5,所以值域为(0,5].典例2 求函数253)(-+=x x x f 的值域. 【答案】{}|3y y ≠【变式训练1】(2016·江苏省扬州市期末统考)函数221xx y =+()0x ≥的值域为 . 【答案】1,12⎡⎫⎪⎢⎣⎭【解析】函数221111212121x x x x x y +-===-+++110,21,212,0212x x x x ≥∴≥∴+≥∴<≤+Q 1111221x ∴≤-<+【变式训练2】(2016-2017学年黑龙江哈师大附中)函数()f x 的值域为 . 【答案】[)1,1-解题技巧与方法总结分离常数法求值域步骤:第一步 观察函数()f x 类型,型如()ax bf x cx d +=+; 第二步 对函数()f x 变形成()a ef x c cx d=++形式;第三步 求出函数ey cx d=+在()f x 定义域范围内的值域,进而求函数()f x 的值域.典例3 求函数y x =+. 【答案】(,1]-∞【解析】令210,2t t x -=≥=,原函数化为()211022y t t t =-++≥,其开口向下,并且对称轴是1t =,故当1t =时取得最大值为,没有最小值,故值域为(,1]-∞. 解题技巧与方法总结换元法求值域:第一步 观察函数解析式的形式,函数变量较多且相互关联;第二步 另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域. 典例4 (2016人教A 版双基双测)函数21xy x =+的值域为__________ 【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】法一:当0x =时,0y =当0x >时,21112,x x y x x +==+≥=当且仅当1x x =即1x =时取“=”,所以102y <≤当0x <时,211112,x x x y x x x +⎛⎫⎫==+=----=- ⎪⎪⎝⎭⎭当且仅当1x x -=-即1x =-时取“=”,所以102y -≤<综上1122y -≤≤法二:21x y x =+,所以20yx x y -+=有解当0y =时方程有解;当0y ≠时,由0≥V 可得2140y -≥,∴1122y -≤≤且0y ≠综上可知1122y -≤≤ 【变式训练1】已知52x ≥,求函数245()24x x f x x -+=- 的最小值.【答案】最小值为1【变式训练2】 若函数()y f x =的值域为1,32⎡⎤⎢⎥⎣⎦,则函数()()()1F x f x f x =+的值域是( )A .1,32⎡⎤⎢⎥⎣⎦B .102,3⎡⎤⎢⎥⎣⎦C .510,23⎡⎤⎢⎥⎣⎦D .52,2⎡⎤⎢⎥⎣⎦【答案】B【变式训练3】(2016届浙江省杭州市学军中学高三5月模拟,理16)已知实数,a b R ∈,若223a ab b -+=, 则()22211ab a b +++的值域为 .【答案】160,7⎡⎤⎢⎥⎣⎦【解析】试题分析:222233233a ab b a b ab ab ab -+=⇒+=+≥⇒-≤≤()()2222211(3)9614ab ab t t a b ab t t++-===+-+++,其中4[1,7]t ab =+∈,所以9660t t +-≥=,当且仅当3t =时取等号,又当7t =时96t t +-取最大值167, 故值域为160,7⎡⎤⎢⎥⎣⎦考点:函数值域典例5求函数3274222++-+=x x x x y 的值域.【答案】9,22⎡⎫-⎪⎢⎣⎭【解析】 2223(1)20x x x ++=++>Q ,所以函数的定义域为R原函数可以化为2223247x y xy y x x ++=+-,整理得:()222(2)370y x y x y -+-++=当2y ≠时,上式可以看成关于的二次方程,该方程的范围应该满足解题技巧与方法总结判别式法求函数值域:观察函数解析式的形式,型如22dx ex fy ax bx c++=++的函数,将函数式化成关于的方程,且方程有解,用根的判别式求出参数y 的取值范围,即得函数的值域. 【精要点评】配方法、分离常数法和换元法是求常见函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解;二次分式型函数求值域,多采用分离出整式利用基本不等式法求解. 命题点2 已知函数定义域(值域)求参数的取值范围典例1 (2016-2017学年河北卓越联盟高一上学期月考三数学试卷)若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则m 的取值范围是( )A .()2,4B .[)2,4 C .(]2,4 D .[]2,4【答案】D【解析】二次函数对称轴为2x =,当2x =时取得最小值8-,当0x =时函数值为4-,由对称性可知4x =时函数值为4-,所以m 的取值范围是[]2,4【变式训练】(2014届陕西省考前保温训练)函数2()46f x x x =--的定义域为[0]m ,,值域为[10,6]﹣﹣,则m 的取值范围是( )A .0,4]B .2,4]C .2,6]D .4,6]【答案】B典例2(江苏省南京师范大学附属中学2015-2016学年期中)已知函数()f x =的定义域是一切实数,则m 的取值范围是__________. 【答案】[]04,【解析】当0m =时,显然函数有意义,当0m ≠,则210mx mx ++≥对一切实数恒成立,所以0{m >∆≤,得04m <≤,综合得04m ≤≤点睛:本题在解题时尤其要注意对0m =时的这种情况的检验,然后根据二次函数大于等于零恒成立,只需开口向上0∆≤即可.【变式训练】(2015-2016浙江湖州中学高二期中,理14)已知函数2()lg(1)f x mx mx =++,若此函数的定义域为R ,则实数m 的取值范围是 ;若此函数的值域为R ,则实数m 的取值范围是 .【答案】04m ≤< 4m ≥考点:对数函数定义域、值域.典例3 (2015-2016学年广西南宁八中高一上期末)若函数21242y x x =-+的定义域、值域都是闭区间[2]2b ,,则的取值为 . 【答案】2;【解析】联系二次函数图象特点,注意函数在闭区间[2]2b ,是单调增函数. 解:函数21242y x x =-+的图象是开口向上的抛物线,对称轴是2x =,∴函数在闭区间[2]2b ,上是单调增函数, 函数的定义域、值域都是闭区间[2]2b , ∴2x b =时,函数有最大值2b , ∴21422422b b b ⨯⨯+=﹣,∴1b =(舍去) 或2b =, ∴的取值为 2.考点:函数的值域;函数的定义域及其求法.【变式训练】(2017届江苏如东高级中学等四校高三12月联考)已知函数()224f x x x =-+定义域为[],a b ,其中a b <,值域[]3,3a b ,则满足条件的数组(),a b 为__________. 【答案】()1,4题型四 求函数的解析式典例1 (江西新余四中2016~2017月考)已知2(1)2f x x x +=-,求函数()f x 的解析式 【答案】2()43f x x x =-+【解析】令1x t +=,则1x t =-,求得()f t 的表达式,从而求得()f x 的解析式 考点:换元法求函数解析式【变式训练】(天津南大附中高一同步练习)已知,则的表达式是( ) A . B . C . D .【答案】A【解析】令1x t -=,得1x t =+ 因为2(1)45f x x x -=+-所以22()(1)4(1)56f t t t t t =+++-=+ 由此可得2()6f x x x =+典例2 (辽宁省阜新市2016~2017第一次月考)已知2(1)27f x x x -=-+,求()f x 的解析式【答案】2()6f x x =+【解析】由题意得2227(1)6x x x -+=-+,所以2(1)(1)6f x x -=-+,即2()6f t t =+ 【变式训练】(甘肃省武威第六中学2016~2017第一次月考)若函数()f x 满足(32)9+8f x x +=,则()f x 的解析式是( )(A )()9+8f x x = (B )()3+2f x x = (C )()34f x x =-- (D )()3234f x x x =+--或【答案】B【解析】由题意得(32)983(32)2f x x x +=+=++,所以()32f t t =+,即()32f x x =+ 考点:配凑法求函数解析式典例 3 (河南南阳一中2016级第一次月考)已知函数()y f x =满足1()2()3f x f x x=+,则()f x 的解析式为___________【答案】2()(0)f x x x x=--≠考点:解方程组法求函数解析式【变式训练】定义在(-1,1)内的函数()f x 满足()(-)()21f x f x lg x -=+,求函数()f x 的解析式. 【答案】21()lg(1)+lg(1-),(-11)33f x x x x =+∈, 【解析】当(-11)x ∈,时,有()(-)()21f x f x lg x -=+①以x -代,得2(-)()lg(1)f x f x x -=-+②由①②消去f (-x ),得21()lg(1)+lg(1-),(-11)33f x x x x =+∈,典例4 (山东蒙阴一中2016级高一开学考)已知函数()f x 是一次函数,若(())48f f x x =+,求()f x 的解析式【答案】8()2()283f x x f x x =+=--或【分析】设一次函数()(0)f x ax b a =+≠,利用(())48f f x x =+,得出关于,a b 的关系式,即可求解,a b 的值,得出函数的解析式考点:待定系数法求函数解析式 【变式训练】已知[]{}()2713ff f x x =+,且()f x 是一次式,求()f x 的解析式【答案】()31f x x =+【分析】由题意可得,设()(0)f x kx b k =+≠ []2()()f f x k kx b b k x kb b ∴=++=++[]{}232()()2713ff f x k kx kb b b k x k b kb b x ∴=+++=+++=+32273113k k b k b kb b ⎧==⎧⎪∴⎨⎨=++=⎪⎩⎩ ∴()31f x x =+ 解题技巧与方法总结1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法.4.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解.6.求函数解析式一定要注意函数的定义域,否则极易出错. 题型三 分段函数典例1.【河北枣强中学2016~2017第一次月考】已知21,1()23,1x x f x x x ⎧+<=⎨-+≥⎩,则((2))f f =( ) (A) -7 (B) 2 (C) -1 (D) 5 【答案】B【解析】由题意得2((2))(1)(1)12f f f =-=-+= 考点:函数值的求解【变式训练】(山东鄄城一中2016~2017调研)设[]3,10()(5),10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则(6)f 的值为_______ 【答案】7【分析】[](6)(65)((11))(8)f f f f f f =+==由(8)((85))(133)=(10)7f f f f f =+=-=典例2.(2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域)设函数()f x =246,06,0x x x x x ⎧-+≥⎨+<⎩,则不等式()()1f x f >的解集是( ) A .(),1,)3(3-∞U + B .()3,1,()2∞U -+ C .()1,1,()3∞U -+ D .(),3()1,3∞U -- 【答案】A典例3.【2014上海,理18】⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则的取值范围为( ).(A)-1,2] (B)-1,0] (C)1,2] (D) [0,2] 【答案】D【考点】分段函数的单调性与最值问题.典例4.【2014高考重庆理第16题】若不等式2212122++≥++-a a x x 对任意实数恒成立,则实数的取值范围是____________. 【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】令()()312121|2|3221312x x f x x x x x x x ⎧⎪--≤-⎪⎪⎛⎫=-++=--<≤⎨ ⎪⎝⎭⎪⎪⎛⎫+>⎪ ⎪⎝⎭⎩,其图象如下所示(图中的实线部分)考点:1、分段函数;2、等价转换的思想;3、数形结合的思想. 典例 5.(安徽省六安市2016~2017第一中学)设函数31,1()2,1xx x f x x -<⎧=⎨≥⎩,则满足()(())2f a f f a =的的取值范围是_________【答案】23a ≥解题技巧与方法总结1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则. 知识交汇1.(北京第四中学2016~2017期中)已知函数()log ()xa f x a ka =-,其中01,a k R <<∈(1) 若1k =,求函数()f x 的定义域 (2) 若12a =,且()f x 在[)1,+∞内总有意义,求的取值范围 【答案】(1){}|1x x >(2)1k <【交汇技巧】将定义域问题与对数函数的性质进行结合,需要注意对数函数的单调性及真数大于0;本题求参数取值范围采用参数分离,参数分离法求取值范围的原则为分离后不等式另一边函数的单调性、最值、值域等易求2. (江苏连云港房山中学月考)已知函数2()25(1)f x x ax a =-+> (1) 若函数()f x 的定义域和值域均是[]1,a ,求实数的值(2) 若对任意的[]12,1,1x x a ∈+,总有12()()4f x f x -≤,求实数的取值范围 【答案】(1)=2 (2)13a <≤【解析】(1)Q 22()()5(1)f x x a a a =-+->∴()f x 在[]1,a 上是减函数,又定义域和值域均为[]1,a ∴(1),()1f a f a == 解得=2(2)若2a ≥,又[]1,1x a a =∈+,且(1)1a a a +-≤-∴2max min (1)62,()5f f a f f a a ==-==-∴对任意的[]12,1,1x x a ∈+,总有12()()4f x f x -≤∴max min 4f f -≤即2(62)(5)4a a ---≤,解得13a -≤≤∴23a ≤≤若12a <<,22max min (1)6,()5f f a a f f a a =+=-==-max min 4f f -≤显然成立综上13a <≤练习检测1.下列对应法则f 为A 上的函数的个数是( )①2Z N A B f x y x →+=,=,:=;②Z A B Z f x y →=,=,:; ③{}[11]00A B f x y →=-,,=,:= A .0 B .1 C .2 D .3 【答案】B2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).【答案】B【解析】选项A 中定义域为[]2,0-,选项C 的图像不是函数图像,选项D 中的值域不对,选B.3. 已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥02-x,x <0(a ∈R ),若ff (-1)]=1,则a =( )A.14B.12 C .1 D .2 【答案】A【解析】因为-1<0,所以f (-1)=2-(-1)=2,又2>0,所以ff (-1)]=f (2)=a ·22=1,解得a =14。

函数及其表示方法-提高

函数及其表示方法-提高

函数及其表示方法-提高【巩固练习】 1.函数1y x x =-+的定义域是( )A .{}|1x x ≤B .{}|0x x ≥C .{}|10x x x ≤≥或D .{}|01x x ≤≤ 2.(2014 福建南安期中)函数243,[0,3]y x x x =-+∈的值域为 ( )A .[0,3]B .[-1,0]C .[-1,3]D .[0,2] 3.对于集合A 到集合B 的映射,有下述四个结论 ( )①B 中的任何一个元素在A 中必有原象; ②A 中的不同元素在B 中的象也不同;③A 中任何一个元素在B 中的象是唯一的; ④A 中任何一个元素在B 中可以有不同的象. 其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.设{}{}|02,|12M x x N y y =≤≤=≤≤,给出下列四个图形,如下图所示,其中能表示从集合M 到N 的函数关系的有 ( )个.A .1个B .2个C .3个D .4个5.(2014 浙江台州期末)设函数2, 0,()1, 0,x x f x x x -≤⎧=⎨+>⎩则))1((-f f 的值为A .2-B .1-C .1D .26.已知函数)2(+=x f y 定义域是]21[,-,则y f x =-()21的定义域是( )A .]251[, B . [14]-, C . []-55, D . []-37, 7.向高为H 的水瓶里注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是图中的( )8.已知函数22()1x f x x =+,则1111(1)(2)()(3)()(4)()(2010)()2342010f f f f f f f f f +++++++⋅⋅⋅++的值是( )A .2008B .2009C . 120092D . 20109.若函数()y f x =的定义域是[]0,1,则函数()()()(2)01F x f x a f x a a =+++<<的定义域是 .10.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 .11.设函数2()4,(),()2(),()(),().g x x x g x g x x x R f x g x x x g x ++<⎧=-∈=⎨-≥⎩则()f x 的值域是( ).12.已知*,a b N ∈,()()(),(1)2,f a b f a f b f +==则(2)(3)(4)(2011)(1)(2)(3)(2010)f f f f f f f f +++⋅⋅⋅+= . 13.当m 为何值时,方程24||5,x x m -+=(1)无解;(2)有两个实数解;(3)有三个实数解;(4)有四个实数解.14.已知函数2()f x ax bx c =++,且满足(0)0,(1)()1,f f x f x x =+-=+求()f x 的值域. 15.设,A B 两地相距260km ,汽车以52/km h 的速度从A 地到B 地,在B 地停留1.5h 后,再以65/km h 的速度返回到A 地.试将汽车离开A 地后行走的路程s 表示为时间t 的函数. 16.(2014 湖南张家界期末)设函数kx x x x f ++-=22|1|)( . (1)若2=k ,求方程0)(=x f 的解;(2)若函数)(x f 在()2,0上有两个不同的零点21,x x ,求k 的取值范围;并证明: 41121<+x x . 【答案与解析】 1.【答案】D .【解析】由题意1-x ≥0且x ≥0,解得01x ≤≤,故选D . 2.【答案】C【解析】2243(2)1,y x x x =-+=-- 又[0,3]x ∈, ∴ 当x =2时,y =-1当x =0时,y =3∴ -1≤y ≤3 即 [1,3]y ∈-,故选C3.【答案】A .【解析】由映射的概念知,只有③正确. 4.【答案】A .【解析】由函数的定义知选A . 5.【答案】D【解析】该分段函数的二段各自的值域为(](),0,1,-∞+∞, ∴ ()()()11112ff f -==+=,故选D .6.【答案】A .【解析】 512,124,1214,12x x x x -≤≤≤+≤≤-≤≤≤; 7.【答案】B.【解析】观察函数的图象发现,图象开始“增得快”,后来“增得慢”,A 、C 、D 都不具备此特性.也就是由函数的图象可知,随高度h 的增加,体积V 也增加,并且随单位高度h 的增加,选项A 的体积V 的增加量变大;选项B 的体积V 的增加量变小;选项C 的体积V 的增加量先变小后变大;选项D 的体积V 的增加量不变,故选B.8.【答案】C .【解析】11(2)()1,(3)()1,23f f f f +=+=⋅⋅⋅,11(1)20092009200922f ∴=+=+=原式.9.【答案】1,22a a -⎡⎤-⎢⎥⎣⎦解不等式组01,02 1.x a x a ≤+≤⎧⎨≤+≤⎩得1,122a x a a a x -≤≤-⎧⎪⎨--≤≤⎪⎩,又11,1,2222a a a a a a x ---<-<-∴-≤≤. 10.【答案】3(,]2-∞ 【解析】当320,2,(2)1,25,2,2x x f x x x x +≥≥-+=++≤-≤≤即则 当20,2,(2)1,25,2x x f x x x x +<<-+=---≤<-即则恒成立,即, ∴32x ≤. 11.【答案】 【解析】()9,02,4⎡⎤-+∞⎢⎥⎣⎦.令()x g x <,即220x x -->,解得1x <-或2x >.令()x g x ≥,而220x x --≤,解得12x -≤≤,故函数222(12),()2(12).x x x x f x x x x ⎧++<->⎪=⎨---≤≤⎪⎩或当1x <-或2x >时,函数()(1)2f x f >-=;当12x -≤≤时,函数1()()(1)2f f x f ≤≤-,即9()04f x -≤≤.故函数()f x 的值域是()9,02,4⎡⎤-+∞⎢⎥⎣⎦.12.【答案】4020【解析】 令,1a x b ==,则由()()(),(1)2,f a b f a f b f +== 可得(1)(1)()2(),f x f f x f x +==即(1)2,()f x f x +=分别令1,2,3,,2010x =⋅⋅⋅, 则(2)(3)(4)(2011)(1)(2)(3)(2010)f f f f f f f f +++⋅⋅⋅+ =2+2+2+…+2=2010×2=402013.【解析】设2124||5,y x x y m =-+=,则该方程解的个数问题即可转化为两个函数图象的交点个数问题来处理.设214||5,y x x =-+则21245,0,45,0.x x x y x x x ⎧-+≥⎪=⎨++<⎪⎩画出函数的图象,如右图.再画出函数2y m =的图象.由图象可以看出:(1)当1m <时,两个函数图象没有交点,故原方程无解.(2)当1m =或5m >时,两个函数图象由两个交点,故原方程有两个解. (3)当5m =时,两个函数图象有三个交点,故原方程有三个解. (4)当15m <<时,两个函数图象有四个交点,故原方程有四个解. 14.【答案】1,8⎡⎫-+∞⎪⎢⎣⎭【解析】由(0)0f =得0c =,从而2()f x ax bx =+由(1)()1,f x f x x +-=+得22(1)(1)1,a x b x ax bx x +++--=+ 整理得21ax a b x ++=+,x R ∈,21,1a ab =⎧∴⎨+=⎩,解得12a b ==.2211111()()22228f x x x x ∴=+=+-,()f x 的值域为1,8⎡⎫-+∞⎪⎢⎣⎭. 15.【答案】52,260,5 6.526065( 6.5),6.510.5t s t t t ≤⎧⎪=≤≤⎨⎪+-<≤⎩ 0t<516.【答案】(1)231--=x 或21-=x ;(2)略【解析】(1)2=k 时:x x x x f 2|1|)(22++-=当1≥x 时,122)(2-+=x x x f ,由0122)(2=-+=x x x f得231,231+-=±-=x x (舍去), 故231--=x 当1<x 时,12)(+=x x f , 由012)(=+=x x f 得21-=x 故当2=k 时,方程0)(=x f 的解是231--=x 或21-=x(2)不妨设2021<<<x x ,⎪⎩⎪⎨⎧<+≥-+=++-=)1(1)1(12|1|)(222x kx x kx x kx x x x f若[)2121,,∈x x ,与2121-=⋅x x 矛盾,()[)2,1,0121∈∈∴x x 且有 011=+kx ① , 012222=-+kx x ②由①得:111-<-=x k , 由②得:⎥⎦⎤ ⎝⎛--∈-=1,272122x x k k ∴的取值范围是⎪⎭⎫⎝⎛--1,27联立①、②消去k 得:01)1(22122=-⋅-+x x x [))2,1(42112221∈<=+∴x x x x。

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。

高考数学一轮复习 第二章 函数、导数及其应用 第1节 函数的概念及其表示练习 新人教A版-新人教A版

高考数学一轮复习 第二章 函数、导数及其应用 第1节 函数的概念及其表示练习 新人教A版-新人教A版

第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。

新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析

新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析

3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。

A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。

2.下列四个图形中,不是以x为自变量的函数的图像是()。

图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。

显然选项A,B,D 满足函数的定义,而选项C不满足。

故选C。

3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。

3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。

【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。

4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。

A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。

超实用高考数学专题复习:第三章函数概念及基本初等函数Ⅰ第1节函数及其表示

超实用高考数学专题复习:第三章函数概念及基本初等函数Ⅰ第1节函数及其表示

诊断自测 1.判断下列说法的正误.
(1)函数y=1与y=x0是同一个函数.( ) (2)与x轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数 y= x2+1-1 的值域是{y|y≥1}.( ) (4)若两个函数的定义域与值域相同,则这两个函数相等.( )
解析 (1)函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故 不是同一函数. (3)由于 x2+1≥1,故 y= x2+1-1≥0,故函数 y= x2+1-1 的值域是{y|y≥0}.
解析 (1)令 x+1=t,则 x=(t-1)2(t≥1),代入原式得 f(t)=(t-1)2+2(t-1) =t2-1,所以 f(x)=x2-1(x≥1). (2)当-1≤x≤0 时,0≤x+1≤1,由已知 f(x)=12f(x+1)=-12x(x+1).
(3)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1).① 将x换成-x,则-x换成x,得2f(-x)-f(x)=lg(-x+1).② 由①②消去 f(-x)得,f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1). 答案 (1)x2-1(x≥1) (2)-12x(x+1) (3)23lg(x+1)+13lg(1-x),(-1<x<1)
(3)在 f(x)=2f1x· x-1 中,将 x 换成1x,则1x换成 x,得 f1x=2f(x)· 1x-1,
由f(x)=2f1x· x-1, f1x=2f(x)· 1x-1,
解得 f(x)=23 x+13.
答案
(1)-13
-1
2 (2)lgx-1(x>1)
2 (3)3
x+13
规律方法 求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法. (2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值 范围. (3)构造法:已知关于 f(x)与 f1x或 f(-x)的表达式,可根据已知条件再构造出另外一 个等式,通过解方程组求出 f(x). (4)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以 x替代g(x),便得f(x)的表达式.

2023版新教材高中数学第三章函数-函数及其表示方法第3课时分段函数课时作业新人教B版必修第一册

2023版新教材高中数学第三章函数-函数及其表示方法第3课时分段函数课时作业新人教B版必修第一册

第3课时 分段函数必备知识基础练1.函数f(x)=,则f(f(2))的值为( )A.-1 B.-3C.0 D.-82.已知函数f(x)=,若f(a)=10,则实数a的值为( )A.±3 B.3 C.-3 D.-3或-53.设函数f(x)=则f()=________,若f(x0)>1,则x0的取值范围是________.4.设x∈R,则函数y=2|x-1|-3|x|的值域为________.5.已知函数f(x)=2x-1,g(x)=求f(g(x))和g(f(x))的解析式.6.设函数f(x)=且f(-4)=f(0),f(-2)=-1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.关键能力综合练7.设f(x)=则f(5)的值是( )A.24 B.21 C.18 D.168.已知f(x)=如果f(x0)=3,那么x0=( )A.2或- B.2C.- D.2或9.设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x| B.|x|=x sgn |x|C.|x|=|x|sgn x D.|x|=x sgn x10.令[x]表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2,若函数f(x)=3[x]-[2x],则函数f(x)在区间[0,2]上所有可能取值的和为( )A.1 B.2 C.3 D.411.(多选)已知f(x)=则满足不等式xf(x)+x≤2的x的值有( )A.1 B.2 C.3 D.-112.求函数f(x)=-+x2的定义域,并画出图象,再求其值域.核心素养升级练13.若定义运算a⊙b=则函数f(x)=x⊙(2-x)的值域为________.14.已知函数f(x)=1+,(1)用分段函数的形式表示函数f(x);(2)在坐标系中画出函数f(x)的图象;(3)在同一坐标系中,再画出函数g(x)=(x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)>的解集.第3课时 分段函数必备知识基础练1.解析:因为函数f(x)=,所以f(2)=22-2-3=-1,所以f(f(2))=f(-1)=1-(-1)2=0.答案:C2.解析:因为函数f(x)=,f(a)=10,所以当a≤0时,f(a)=a2+1=10,解得a=-3或a=3(舍去);当a>0时,f(a)=-2a=10,解得a=-5(舍去),所以实数a的值为-3.答案:C3.解析:f()= ==,当x0≤0时,由-x0-1>1,得x0<-2,当x0>0时,由>1,得x0>1,所以x0的取值范围为(-∞,-2)∪(1,+∞).答案: (-∞,-2)∪(1,+∞)4.解析:当x≥1时,y=2(x-1)-3x=-x-2,当0≤x<1时,y=-2(x-1)-3x=-5x+2,当x<0时,y=-2(x-1)+3x=x+2,故y=根据函数解析式作出函数图象,如图所示,由图象可以看出,函数的值域为{y|y≤2}.答案:{y|y≤2}5.解析:当x≥0时,g(x)=x2,f(g(x))=2x2-1,当x<0时,g(x)=-1,f(g(x))=-2-1=-3,所以f(g(x))=因为当2x-1≥0,即x≥时,g(f(x))=(2x-1)2,当2x-1<0,即x<时,g(f(x))=-1,所以g(f(x))=6.解析:(1)因为f(-4)=f(0),f(-2)=-1,所以16-4b+c=3,4-2b+c=-1,解得:b=4,c=3,所以f(x)=(2)分析函数的定义域为[-4,4],当-4≤x<0时,f(x)=x2+4x+3=(x+2)2-1,由-4≤x<0可得,-1≤f(x)≤3,当0≤x≤4时,f(x)=-x+3,所以-1≤f(x)≤3,所以函数的值域为[-1,3],其图象如图所示.关键能力综合练7.解析:f(5)=f(f(10)),f(10)=f(f(15))=f(18)=21,f(5)=f(21)=24.答案:A8.解析:因为f(x)=所以若x0<0,f(x0)=x=3,则x0=-,同理若x0>0,f(x0)=x0+1=3,则x0=2.答案:A9.解析:当x<0时,|x|=-x,x|sgn x|=x,x sgn |x|=x,|x|sgn x=(-x)·(-1)=x,排除A,B,C.答案:D10.解析:因为[x]表示不超过x的最大整数,所以:当0≤x<时,有0≤2x<1,则[x]=0,则3[x]=0,[2x]=0,此时f(x)=0,当≤x<1时,有1≤2x<2,则[x]=0,则3[x]=0,[2x]=1,此时f(x)=-1,当1≤x<时,有2≤2x<3,则[x]=1,则3[x]=3,[2x]=2,此时f(x)=1,当≤x<2时,有3≤2x<4,则[x]=1,则3[x]=3,[2x]=3,此时f(x)=0,当x=2时,2x=4,则[x]=2,则3[x]=6,[2x]=4,此时f(x)=2,函数f(x)在区间[0,2]上所有可能取值的和为0-1+1+0+2=2.答案:B11.解析:当x≥0时,f(x)=1,代入xf(x)+x≤2,解得x≤1,所以0≤x≤1,当x<0时,f(x)=0,代入xf(x)+x≤2,解得x≤2,所以x<0.综上可知x≤1.答案:AD12.解析:由题意知,该函数的定义域为{x|x≠0},f(x)=其图象如图所示,由图象可知,所求函数的值域为[-,+∞).核心素养升级练13.解析:由题意得f(x)=画出函数f(x)的图象,值域是(-∞,1].答案:(-∞,1]14.解析:(1)因为当x≥0时,f(x)=1;当x<0时,f(x)=x+1,所以f(x)=(2)函数图象如图:所以不等式f(x)>的解集为{x|x>1} .。

新高考数学一轮复习考点知识专题讲解与练习 6 函数的概念及其表示

新高考数学一轮复习考点知识专题讲解与练习 6 函数的概念及其表示

新高考数学一轮复习考点知识专题讲解与练习第三章 函数、导数及其应用 考点知识总结6 函数的概念及其表示高考概览高考在本考点的常考题型为选择题和填空题,分值为5分,中、高等难度考纲研读1.了解构成函数的要素2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数3.了解简单的分段函数,并能简单应用一、基础小题1.下列关于x ,y 的关系中为函数的是( ) A .y =x -2+1-x B .x 2+y 2=1C .y =⎩⎨⎧x ,x ≥1,1-2x ,x ≤1D .答案 D解析 根据函数的定义,自变量在其允许取值范围内任意取一个值,有唯一的函数值与其对应.选项A 中的表达式,x 的取值范围为∅,故它不是函数;选项B 中的表达式,当x 在它允许取值范围内取值时,y 的值不唯一,故它不是函数;选项C 中,当x =1时,y 的值不唯一,故它不是函数;选项D 中的x ,y 满足函数的定义.故选D.2.若函数f (x )满足f ⎝⎛⎭⎪⎫x +1x =x ,则f (x )的解析式为( ) A .f (x )=1x -1(x ≠1) B .f (x )=1x +1(x ≠-1) C.f (x )=x x -1(x ≠1) D .f (x )=xx +1(x ≠-1)答案 A解析 f ⎝ ⎛⎭⎪⎫x +1x =x ,即f ⎝ ⎛⎭⎪⎫1+1x =x ,令1+1x =t (t ≠1),则x =1t -1,∴f (t )=1t -1(t ≠1),即f (x )=1x -1(x ≠1).故选A. 3.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则()A .|x |=x |sgn x |B .|x |=x sgn |x |C .|x |=|x |sgn xD .|x |=x sgn x答案 D解析 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn |x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C.故选D.4.若点A (0,1),B (2,3)在一次函数y =ax +b 的图象上,则一次函数的解析式为( ) A .y =-x +1 B .y =2x +1 C .y =x +1 D .y =2x -1 答案 C解析 将点A ,B 的坐标代入一次函数y =ax +b ,得b =1,2a +b =3,则a =1.故一次函数的解析式为y =x +1.故选C.5.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( )A .32B .-32C .14D .-14 答案 D解析 令2x +3=6,得x =32.故m =12x -1=12×32-1=-14.故选D.6.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 由函数的定义,排除C ;由函数y =f (x )的定义域为M ={x |-2≤x ≤2},排除A;由函数y=f(x)的值域为N={y|0≤y≤2},排除D.故选B.7.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x答案 C解析A中,f(2x)=|2x|=2|x|=2f(x);B中,f(2x)=2x-|2x|=2f(x);C中,f(2x)=2x +1≠2f(x);D中,f(2x)=-2x=2f(x).故选C.8.(多选)如图表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象提出了关于这两个旅行者的如下信息,其中正确的信息为()A.骑自行车者比骑摩托车者早出发3 h,晚到1 hB.骑自行车者是变速运动,骑摩托车者是匀速运动C.骑摩托车者在出发1.5 h后追上了骑自行车者D.骑摩托车者在出发1.5 h后与骑自行车者速度一样答案ABC解析看时间轴易知A正确;骑摩托车者行驶的路程与时间的函数图象是线段,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线段,所以是变速运动,因此B 正确;两条曲线的交点的横坐标对应着4.5,故C 正确,D 错误.9.(多选)中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译作“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M ={-1,1,2,4},N ={1,2,4,16},给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .y =log 2|x |B .y =x +1C .y =2|x |D .y =x 2 答案 CD解析 当x =±1时,y =log 21=0∉N ,故A 错误;当x =-1时,y =-1+1=0∉N ,故B 错误;任取x ∈M ,总有y =2|x |∈N ,故C 正确;任取x ∈M ,总有y =x 2∈N ,故D 正确.故选CD.10.已知函数g (x )=1-2x ,f (g (x ))=2x 2-x 2,则f ⎝ ⎛⎭⎪⎫12=________.答案 831解析 令1-2x =12,得x =14,所以f ⎝ ⎛⎭⎪⎫12=2×142-116=123116=831. 11.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫23,+∞解析 f (x )在R 上单调递增,由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,所以a ≥23,所以23≤a <1.当a ≥1时,有2a ≥1,所以a ≥0,所以a ≥1.综上,a ≥23.12.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-13=________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2 -13解析 由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=-13.二、高考小题13.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 答案 C解析 ∵-2<1,∴f (-2)=1+log 2[2-(-2)]=3;∵log 212>1,∴f (log 212)=2log 212-1=2log 26=6.∴f (-2)+f (log 212)=9.故选C.14.(2022·浙江高考)已知a ∈R ,函数f (x )=⎩⎨⎧x 2-4,x >2,|x -3|+a ,x ≤2.若f (f (6))=3,则a=________.答案 2解析 因为6>2,所以f (6)=6-4=2,所以f (f (6))=f (2)=1+a =3,解得a =2. 15.(2022·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.答案22解析 ∵f (x +4)=f (x ),∴函数f (x )的周期为4,∴f (15)=f (-1)=12,f ⎝ ⎛⎭⎪⎫12=cos π4=22,∴f (f (15))=f ⎝ ⎛⎭⎪⎫12=22.16.(2022·全国Ⅲ卷)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,所以-14<x ≤0;当0<x ≤12时,原不等式为2x +x+12>1,显然成立;当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.三、模拟小题17.(2022·厦门外国语学校高三第一次阶段检测)已知函数y =⎩⎨⎧x 2-1,x ≤0,-3x ,x >0,则使函数值为3的x 的值是( )A .-2或2B .2或-1C .-2D .2或-2或-1 答案 C解析 当x ≤0时,令y =3,得x 2-1=3,解得x =-2;当x >0时,令y =3,得-3x =3,解得x =-1,不符合题意,舍去.综上所述,x =-2.故选C.18.(2022·重庆巴蜀中学期中)已知函数f (x )的定义域为R ,且满足f (x )+2f (-x )=x 2-x ,则f (x )的解析式是( )A .f (x )=12x 2-xB .f (x )=13x 2-xC .f (x )=12x 2+xD .f (x )=13x 2+x 答案 D解析 由f (x )+2f (-x )=x 2-x ①,得f (-x )+2f (x )=x 2+x ②,①-2×②,得f (x )=13x 2+x .故选D.19.(2022·湖北孝感模拟)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =⎣⎢⎡⎦⎥⎤x 10 B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 答案 B解析 根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为y =⎣⎢⎡⎦⎥⎤x +310,也可以用特殊取值法,若x =56,y =5,排除C ,D ;若x =57,y =6,排除A.故选B.20.(2022·衡水中学实验学校高三一模)小明在如图1所示的跑道上匀速跑步,他从A 点出发,沿箭头方向经过B 点跑到C 点,共用时30 s ,他的教练选择了一个固定的位置观察小明跑步的过程.设小明跑步的时间为t (s),他与教练间的距离为y (m),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A .M 点B .N 点C .P 点D .Q 点 答案 D解析 由图知,固定位置到A 点的距离大于到C 点的距离,所以舍去N ,M 两点,排除A ,B ;若是P 点,则从最高点到C 点依次递减,与图2矛盾,因此取Q 点.故选D.21.(多选)(2022·江苏苏州中学月考)下列各组函数中,两个函数是同一函数的有( )A .f (x )=|x |与g (x )=x 2B .f (x )=x +1与g (x )=x 2-1x -1C .f (x )=|x |x 与g (x )=⎩⎨⎧1,x >0,-1,x <0D .f (x )= x 2-1与g (x )=x +1·x -1答案 AC解析 对于A ,g (x )=x 2=|x |,故A 正确;对于B ,f (x )=x +1的定义域为R ,g (x )=x 2-1x -1的定义域为{x |x ≠1},故B 错误;对于C ,f (x )=|x |x =⎩⎨⎧1,x >0,-1,x <0,故C 正确;对于D ,f (x )=x 2-1的定义域为{x |x 2-1≥0}={x |x ≤-1或x ≥1},由⎩⎨⎧x +1≥0,x -1≥0,得x ≥1,即g (x )=x +1·x -1的定义域为{x |x ≥1},故D 错误.故选AC.22.(多选)(2022·海南中学高三第六次月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E. J. Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎨⎧2x 2-1,x ≤1,|2-x |,x >1D .f (x )=1x -x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD.23.(2022·湖南郴州模拟)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,则f (x )的解析式为________. 答案 f (x )=x 2-2(x ≥2或x ≤-2)解析(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2).24.(2022·湖北荆州模拟)已知函数f (x )=22x +1+sin x ,则f (-2)+f (-1)+f (0)+f (1)+f (2)=________.答案 5解析 ∵f (x )+f (-x )=22x +1+sin x +22-x +1-sin x =22x +1+2x +11+2x=2,且f (0)=1,∴f (-2)+f (-1)+f (0)+f (1)+f (2)=5.25.(2022·新乡模拟)∀x ,y ∈R ,都有f (x +y )=f (x )f (y ),且f (1)=2.则f (4)=________,f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2022)f (2022)+f (2022)f (2022)+f (2022)f (2022)=________. 答案 16 2022解析 因为∀x ,y ∈R ,f (x +y )=f (x )f (y ),且f (1)=2,所以f (2)=f (1+1)=f (1)f (1)=22=4,f (3)=f (1+2)=f (1)f (2)=23=8,f (4)=f (1+3)=f (1)f (3)=24=16.f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2022)f (2022)=2,故原式=2×1011=2022.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·昆明质量检测)已知f (x )=⎩⎪⎨⎪⎧f (x +1),-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f ⎝ ⎛⎭⎪⎫-32的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫-32+1=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32.当a ≥2时,由f (a )=a 2-1=4,得a =5或-5(舍去).故a =32或 5.2.(2022·山西太原五中月考)已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,所以f (x )=ax 2+bx +1.因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,所以⎩⎨⎧2a =2,a +b =0, 解得⎩⎨⎧a =1,b =-1,所以f (x )=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.设g (x )=x 2-3x +1-m ,其图象的对称轴为直线x =32, 所以g (x )在[-1,1]上单调递减.故只需g (1)>0,即12-3×1+1-m >0,解得m <-1.故实数m 的取值范围是(-∞,-1).3.(2022·甘肃兰州模拟)已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1)上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解 (1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1)时,f (x )=x 2;当x ∈[1,2)时,x -1∈[0,1),f (x )=-12f (x -1)=-12(x -1)2,f (2)=-12f (1)=14f (0)=0;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧0,x =2,-12(x -1)2,x ∈[1,2),x 2,x ∈[0,1),-2(x +1)2,x ∈[-1,0),4(x +2)2,x ∈[-2,-1).。

第2章函数与基本初等函数练习(苏教版必修1)

第2章函数与基本初等函数练习(苏教版必修1)

第二编 函数与基本初等函数Ⅰ§2.1 函数及其表示基础自测1.与函数f(x)=|x|是相同函数的有 (写出一个你认为正确的即可). 答案2x y =2.设M={x|0≤x ≤2},N={y|0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关系的是 .(填序号).答案 ②③3.若对应关系f:A →B 是从集合A 到集合B 的一个映射,则下面说法正确的是 (填序号). ①A 中的每一个元素在集合B 中都有对应元素②A 中两个元素在B 中的对应元素必定不同③B 中两个元素若在A 中有对应元素,则它们必定不同④B 中的元素在A 中可能没有对应元素答案 ①③④4.如图所示,①②③三个图象各表示两个变量x,y 的对应关系,则能表示y 是x 的函数的图象是 (填序号).答案 ②③ 5.已知f (x 1)=x 2+5x,则f(x)= .答案 251xx +(x ≠0)例1给出下列两个条件:(1)f(x +1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2. ∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3.例2(1)求函数f(x)=229)2(1xx x g --的定义域;(2)已知函数f(2x)的定义域是[-1,1],求f(log 2x)的定义域.解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x)的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2.∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]例3(14分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x<1),则出厂价相应提高的比例为0.75x, 同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?解 (1)依题意,本年度每辆摩托车的成本为1+x (万元),而出厂价为1.2×(1+0.75x ) (万元), 销售量为1 000×(1+0.6x )(辆).故利润y =[1.2×(1+0.75x )-(1+x )]×1 000×(1+0.6x ), 5分 整理得y =-60x 2+20x +200 (0<x <1). 7分(2)要保证本年度利润比上一年有所增加,则y -(1.2-1)×1 000>0, 10分即-60x 2+20x +200-200>0,即3x 2-x <0. 12分解得0<x <31,适合0<x <1.故为保证本年度利润比上年有所增加,投入成本增加的比例x 的取值范围是0<x <31. 13分答 (1)函数关系式为y =-60x 2+20x +200 (0<x <1). (2)投入成本增加的比例x 的范围是(0,31). 14分例4 已知函数f(x)=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x (1)画出函数的图象;(2)求f(1),f(-1),f [f(-1)]的值.解 (1)分别作出f (x )在x >0,x =0, x <0段上的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lgx ,求f (x );(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞).(2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (x 1)=3x , ① 把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1.2. 求下列函数的定义域: (1)y=2)3(log 2+-x x +(2x-3)0;(2)y=log (2x+1)(32-4x).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠+>+>-021,251120120432x ,x x ,x x x 得∴定义域为(-21,0)∪(0,25).3.等腰梯形ABCD 的两底分别为AD=2a ,BC=a ,∠BAD=45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM=x,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.解 作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =2a ,AG =23a .(1) 当M 位于点H 的左侧时, N ∈AB ,由于AM =x ,∠BAD =45°. ∴MN =x . ∴y =S △AMN =21x 2(0≤x ≤2a ).(2)当M 位于HG 之间时,由于AM =x ,∴MN =2a ,BN =x -2a.∴y =S 直角梯形AMNB=2·21a [x +(x -2a )]=21ax -).232(82a x a a ≤<(3)当M 位于点G 的右侧时,由于AM =x ,MN =MD =2a -x .∴y =S 梯形ABCD -S △MDN=).223(45221)44(2143)2(21)2(2·21222222a x a a ax x x ax a a x a a a a ≤<-+-=+--=--+ 综上:y =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-+-⎥⎦⎤ ⎝⎛∈-⎢⎣⎡⎥⎦⎤∈a a x a ax x a a x a ax a x x 2,2345221.23,28212,02122224.如右图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x=t(0≤t ≤2)截这个三角形可得位于此直线左方的图形的面积为f(t),则函数y=f(t)的图象(如下图所示)大致是 (填序号).答案④一、填空题1.设函数f 1(x)=x 21,f 2(x)=x -1,f 3(x)=x 2,则[]))0072((123f f f = .答案007212.(2008·安徽文,13)函数f(x)=)1(log 1|21|2---x 的定义域为 .答案[)+∞,33.若f(x)=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f(-1)的值为 .答案 34.已知f(2211)11x x x x +-=+-,则f(x)的解析式为 .答案 f(x)=212x x +5.函数f(x)=xx -132 +lg(3x+1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y ∈R ),f(1)=2,则f(-3)= . 答案 67.已知函数f(x),g(x)分别由下表给出x 1 2 3 f(x) 131则f [g(1)]的值为 ,满足f [g(x)]>g [f(x)]的x 的值是 . 答案 1 2x1 2 3 g(x)3218.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且ϕ(31)=16, ϕ (1)=8,则 ϕ(x)= .答案 3x+x5二、解答题 9.求函数f(x)=21)|lg(|xx x --的定义域.解 由,110010||2⎩⎨⎧<<-<⎩⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f(x)是定义在实数集R 上的函数,满足f(0)=1,且对任意实数a 、b,有f(a-b)=f(a)-b(2a-b+1),求f(x); (2)函数f(x) (x ∈(-1,1))满足2f(x)-f(-x)=lg(x+1),求f(x). 解 (1)依题意令a =b =x ,则f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有2f (-x )-f (x )=lg(1-x ) ① 又2f (x )-f (-x )=lg(1+x ) ②两式联立消去f (-x )得3f (x )=lg(1-x )+2lg(1+x ), ∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1).11.如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.解 AB =2R ,C 、D 在⊙O 的半圆周上,设腰长AD =BC =x ,作DE ⊥AB ,垂足为E ,连接BD ,那么∠ADB 是直角, 由此Rt △ADE ∽Rt △ABD.∴AD 2=AE ×AB ,即AE =Rx 22,∴CD =AB -2AE =2R -R x 2,所以y =2R +2x +(2R -Rx 2),即y =-Rx 2+2x +4R.再由⎪⎪⎪⎩⎪⎪⎪⎨⎧>->>0202022R x R R x x ,解得0<x <2R .所以y =-Rx 2+2x +4R ,定义域为(0,2R ).12.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解 (1)当每辆车的月租金定为3 600元时,未租出的车辆数为5000036003-=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-500003)150)(500003----x x x ×50. 整理得f (x )=-502x +162x -21 000=-501(x -4 050)2+307 050.所以,当x =4 050时,f (x )最大,最大值为f (4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.§2.2函数的单调性与最大(小)值基础自测1.已知函数y=f(x)是定义在R 上的增函数,则下列对f(x)=0的根说法不正确的是 (填序号). ①有且只有一个 ②有2个 ③至多有一个 ④没有根答案 ①②2.已知f (x )是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f(x)=x 2+(a 2-4a+1)x+2在区间(-∞,1]上是减函数,则a 的取值范围是 .答案 [1,3]4.(2009·徐州六县一区联考)若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)<2f(4)的解集为 . 答案 (0,2)5.已知函数f(x)=x 2-2x+3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]例1 已知函数f(x)=a x+12+-x x (a>1). 证明:函数f(x)在(-1,+∞)上为增函数.证明 方法一 任取x 1,x 2∈(-1,+∞), 不妨设x 1<x 2,则x 2-x 1>0,12x x a ->1且a1x >0,∴a,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0,∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0,于是f (x 2)-f (x 1)=a12x x a -+12121122+--+-x x x x >0,故函数f (x )在(-1,+∞)上为增函数. 方法二 f (x )=a x+1-13+x (a >1),求导数得f ′(x )=a xln a +2)1(3+x ,∵a >1,∴当x >-1时,a xln a >0,2)1(3+x >0,f ′(x )>0在(-1,+∞)上恒成立,则f (x )在(-1,+∞)上为增函数. 方法三 ∵a >1,∴y =a x为增函数,又y =13112+-+=+-x x x ,在(-1,+∞)上也是增函数.∴y =a x+12+-x x 在(-1,+∞)上为增函数.例2 判断函数f(x)=12-x 在定义域上的单调性.解 函数的定义域为{x |x ≤-1或x ≥1}, 则f (x )=12-x ,可分解成两个简单函数. f (x )=)(,)(x u x u =x 2-1的形式.当x ≥1时,u (x )为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x )为减函数,)(x u 为减函数,∴f (x )=12-x 在(-∞,-1]上为减函数.例3 求下列函数的最值与值域:(1)y=4-223x x -+;(2)y=2x-x 21-;(3)y=x+x4;(4)y=4)2(122+-++x x .解 (1)由3+2x -x 2≥0得函数定义域为[-1,3],又t =3+2x -x 2=4-(x -1)2.∴t ∈[0,4],t∈[0,2],从而,当x =1时,y min =2,当x =-1或x =3时,y max =4.故值域为[2,4].(2) 方法一 令x 21-=t (t ≥0),则x =212t -.∴y =1-t 2-t =-(t +)212+45.∵二次函数对称轴为t =-21,∴在[0,+∞)上y =-(t +)212+45是减函数, 故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y =2x 与y=-x 21-均为定义域上的增函数,∴y =2x -x 21-是定义域为{x |x ≤21}上的增函数, 故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1].(3)方法一 函数y =x +x4是定义域为{x |x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值.∴当x >0时,y =x +x4≥2x x 4⋅=4,等号当且仅当x =2时取得.当x <0时,y ≤-4,等号当且仅当x =-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值. 方法二 任取x 1,x 2,且x 1<x 2, 因为f (x 1)-f (x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f (x )递增,当-2<x <0或0<x <2时,f (x )递减. 故x =-2时,f (x )最大值=f (-2)=-4,x =2时,f (x )最小值=f (2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值. (4)将函数式变形为y =2222)20()2()10()0(++-+-+-x x ,可视为动点M (x ,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点. y min =|AB |=13)21()20(22=++-,可求得x=32时,y min=13.显然无最大值.故值域为[13,+∞).例4 (14分)函数f(x)对任意的a 、b ∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3. 解 (1)设x 1,x 2∈R ,且x 1<x 2, 则x 2-x 1>0,∴f (x 2-x 1)>1. 2分 f(x 2)-f(x 1)=f ((x 2-x 1)+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. 5分∴f (x 2)>f(x 1).即f (x )是R 上的增函数. 7分 (2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3, 10分∴原不等式可化为f(3m 2-m-2)<f(2),∵f(x)是R 上的增函数,∴3m 2-m-2<2, 12分 解得-1<m<34,故解集为(-1, 34). 14分1.讨论函数f (x )=x+xa(a>0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,则f (x 1)-f (x 2) =(x 1+1x a )-(x 2+2x a )=(x 1-x 2)·(1-21x x a).∴当0<x 2<x 1≤a 时,21x x a >1,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,a ]上是减函数.当x 1>x 2≥a 时,0<21x x a <1,则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在[a ,+∞)上是增函数.∵f (x )是奇函数,∴f (x )分别在(-∞,-a ]、[a ,+∞)上为增函数;f (x )分别在[-a ,0)、(0,a ]上为减函数.方法二 由f ′(x )=1-2x a =0可得x =±a当x >a 时或x <-a 时,f ′(x )>0,∴f (x )分别在[a ,+∞)、(-∞,-a ]上是增函数.同理0<x <a 或-a <x <0时,f ′(x )<0即f (x )分别在(0,a ]、[-a ,0)上是减函数.2.求函数y=21log (4x-x 2)的单调区间.解 由4x -x 2>0,得函数的定义域是(0,4).令t =4x -x 2,则y = 21log t .∵t =4x -x 2=-(x -2)2+4,∴t =4x -x 2的单调减区间是[2,4),增区间是(0,2]. 又y =21log t 在(0,+∞)上是减函数,∴函数y =21log (4x -x 2)的单调减区间是(0,2],单调增区间是[2,4).3.在经济学中,函数f(x)的边际函数Mf(x)定义为Mf (x )=f (x+1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x>0)台的收入函数为R (x )=3 000x-20x 2(单位:元),其成本函数为C (x )=500x+4 000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x );(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?解 (1)P (x )=R (x )-C (x )=(3 000x -20x 2)-(500x +4 000) =-20x 2+2 500x -4 000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2 500(x +1)-4 000-(-20x 2+2 500x -4 000) =2 480-40x (x ∈[1,100]且x ∈N ). (2)P (x )=-20(x -)21252+74 125,当x =62或63时,P (x )max =74 120(元).因为MP (x )=2 480-40x 是减函数,所以当x =1时,MP (x )max =2 440(元). 因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值. 4.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2. 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1,由于当x >1时,f (x )<0, 所以f )(21x x <0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (21x x )=f (x 1)-f (x 2)得f ()39=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.一、填空题1.函数f(x)=ln(4+3x-x 2)的单调递减区间是 .答案 [23,4) 2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号).①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①②③3.函数y=lg(x 2+2x+m)的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f(x)(x ∈R )的图象如下图所示,则函数g(x)=f(log a x) (0<a<1)的单调减区间是 . 答案 [a ,1]5.已知f(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x x x ax a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31) 6.若函数f (x )=(m -1)x 2+mx +3 (x ∈R )是偶函数,则f (x )的单调减区间是 . 答案 [0,+∞)7.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是 . 答案 (-)32,21 8.已知下列四个命题:①若f(x)为减函数,则-f(x)为增函数;②若f(x)为增函数,则函数g(x)=)(1x f 在其定义域内为减函数;③若f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b )上的增函数;④若f(x)与g(x)在(a,b)上分别是递增与递减函数,且g(x)≠0,则)()(x g x f 在(a,b)上是递增函数.其中命题正确的是 (填序号) 答案 ① 二、解答题9.已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2. 解 根据题意,由f (3)=1,得f (9)=f (3)+f (3)=2. 又f (x )+f (x -8)=f [x (x -8)],故f [x (x -8)]≤f (9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f(x)对任意的实数m 、n 有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0. (1)求证:f(x)在(-∞,+∞)上为增函数;(2)若f(1)=1,解不等式f [log 2(x 2-x-2)]<2. (1)证明 设x 2>x 1,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 2)>f (x 1),f (x )在(-∞,+∞)上为增函数. (2)解 ∵f (1)=1,∴2=1+1=f (1)+f (1)=f (2). 又f [log 2(x 2-x -2)]<2,∴f [log 2(x 2-x -2)]<f (2).∴log 2(x 2-x -2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x |-2<x <-1或2<x <3}. 11.已知f(x)=ax x-(x ≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f(x 2)=.)2)(2()(22221212211++-=+-+x x x x x x x x∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f(x 1)<f(x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=.))(()(21122211a x a x x x a a x x a x x ---=---∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.综上所述知0<a ≤1.12.已知函数y=f(x)对任意x,y ∈R 均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-32.(1)判断并证明f(x)在R 上的单调性; (2)求f(x)在[-3,3]上的最值. 解 (1)f (x )在R 上是单调递减函数证明如下:令x =y =0,f (0)=0,令x =-y 可得:f (-x )=-f (x ),在R 上任取x 1<x 2,则x 2-x 1>0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又∵x >0时,f (x )<0,∴f (x 2-x 1)<0,即f (x 2)<f (x 1).由定义可知f (x )在R 上为单调递减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f (3)最小.f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(-)32=-2.∴f (-3)=-f (3)=2.即f (x )在[-3,3]上最大值为2,最小值为-2.§2.3 函数的奇偶性基础自测1.(2008·福建理,4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .答案02.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为 . 答案03.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1) f (b +2)(用“≤”,“≥”,“<”,“>”填空).答案>4.已知f (x )=122)12(+-+xx a 是奇函数,则实数a 的值为 . 答案15.函数f (x ),g (x )在区间[-a ,a ] (a >0)上都是奇函数,则下列结论:①f (x )-g (x )在[-a ,a ]上是奇函数;②f (x )+g (x )在[-a ,a ]上是奇函数;③f (x )·g (x )在[-a ,a ]上是偶函数;④f (0)+ g (0)=0,则其中正确结论的个数是 . 答案 4例1判断下列函数的奇偶性. (1)f(x)=2211x x -⋅-;(2)f(x)=log 2(x+12+x ) (x ∈R );(3)f(x)=lg|x-2|.解 (1)∵x 2-1≥0且1-x 2≥0,∴x =±1,即f (x )的定义域是{-1,1}. ∵f (1)=0,f (-1)=0,∴f (1)=f (-1),f (-1)=-f (1), 故f (x )既是奇函数又是偶函数.(2)方法一 易知f (x )的定义域为R , 又∵f (-x )=log 2[-x +1)(2+-x ]=log2112++x x =-log 2(x +12+x )=-f (x ),∴f (x )是奇函数.方法二 易知f (x )的定义域为R ,又∵f (-x )+f (x )=log 2[-x +1)(2+-x ]+log 2(x +12+x )=log 21=0,即f (-x )=-f (x ),∴f (x )为奇函数. (3)由|x -2|>0,得x ≠2.∴f (x )的定义域{x |x ≠2}关于原点不对称,故f (x )为非奇非偶函数.例2已知函数f(x),当x,y ∈R 时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数;(2)如果x ∈R +,f (x )<0,并且f(1)=-21,试求f(x)在区间[-2,6]上的最值.(1)证明∵函数定义域为R ,其定义域关于原点对称,∵f (x +y )=f (x )+f (y ),令y =-x,∴f (0)=f (x )+f (-x ).令x =y =0, ∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ), ∴f (x )为奇函数.(2)解 方法一 设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0, ∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值. ∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1, f(6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 方法二 设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3. ∴所求f(x )在区间[-2,6]上的最大值为1,最小值为-3. 例3(16分)已知函数f(x)的定义域为R ,且满足f(x+2)=-f(x). (1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x ≤1时,f(x)=21x,求使f(x)=-21在[0,2 009]上的所有x 的个数.(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), 2分 ∴f (x )是以4为周期的周期函数, 4分(2)解 当0≤x ≤1时,f (x )=21x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=21(-x )=-21x .∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-21x ,即f (x )=21x . 7分 故f (x )=21x (-1≤x ≤1) 8分又设1<x <3,则-1<x -2<1, ∴f (x -2)=21(x -2), 10分 又∵f (x -2)=-f (2-x )=-f ((-x )+2)=-[-f (-x )]=-f (x ),∴-f (x )=21(x -2), ∴f (x )=-21(x -2)(1<x <3). 11分∴f (x )=⎪⎪⎩⎪⎪⎨⎧<<--≤≤-)31()2(21)11(21x x x x 12分由f (x )=-21,解得x =-1.∵f (x )是以4为周期的周期函数.∴f (x )=-21的所有x =4n -1 (n ∈Z ). 14分令0≤4n -1≤2 009,则41≤n ≤20051,又∵n ∈Z ,∴1≤n ≤502 (n ∈Z ), ∴在[0,2 009]上共有502个x 使f (x )=-21. 16分1.判断下列各函数的奇偶性:(1)f (x )=(x-2)xx -+22;(2)f (x )=2|2|)1lg(22---x x ;(3)f (x )=⎪⎩⎪⎨⎧>+-≤-<+.1(2),1|(|0),1(2)x x x x x解 (1)由xx-+22≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数.(2)由⎪⎩⎪⎨⎧≠-->-.02|2|0122x x ,得定义域为(-1,0)∪(0,1).这时f (x )=2222)1lg(2)2()1lg(x x x x --=----.∵f (-x )=-[]),()1lg()()(1lg 2222x f xx x x =--=---∴f (x )为偶函数.(3)x <-1时,f (x )=x +2,-x >1, ∴f (-x )=-(-x )+2=x +2=f (x ). x >1时,f (x )=-x +2,-x <-1,f (-x )=x +2=f (x ).-1≤x ≤1时,f (x )=0,-1≤-x ≤1, f (-x )=0=f (x ).∴对定义域内的每个x 都有f (-x )=f (x ). 因此f (x )是偶函数.2.已知函数y=f(x)的定义域为R ,且对任意a,b ∈R ,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3. (1)证明:函数y=f(x)是R 上的减函数; (2)证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n ](m,n ∈Z )上的值域.(1)证明 设∀x 1,x 2∈R ,且x 1<x 2,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1). ∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1). 故f (x )是R 上的减函数.(2)证明 ∵f (a +b )=f (a )+f (b )恒成立,∴可令a =-b =x ,则有f (x )+f (-x )=f (0),又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而∀x ∈R ,f (x )+f (-x )=0,∴f (-x )=-f (x ).故y =f (x )是奇函数. (3)解 由于y =f (x )是R 上的单调递减函数,∴y =f (x )在[m ,n ]上也是减函数,故f (x )在[m ,n ]上的最大值f (x )max =f (m ),最小值f (x )min =f (n ). 由于f (n )=f (1+(n -1))=f (1)+f (n -1)=…=nf (1),同理f (m )=mf (1). 又f (3)=3f (1)=-3,∴f (1)=-1,∴f (m )=-m ,f (n )=-n . ∴函数y =f (x )在[m ,n ]上的值域为[-n ,-m ].3.设f (x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1、x 2∈[0,21]都有f (x 1+x 2) =f (x 1)·f (x 2),且f(1)=a>0. (1)求f(21)及f(41) (2)证明:f (x )是周期函数;(3)记a n =f(2n+)21n,求a n.(1)解 ∵对x 1、x 2∈⎥⎦⎤⎢⎣⎡21,0, 都有f (x 1+x 2)=f (x 1)·f (x 2),∴f (x )=f ()2()2()22xf x f x x ⋅=+≥0,x ∈[0,1].∴f (1)=f (,)21()21()21()21212⎥⎦⎤⎢⎣⎡=⋅=+f f ff (2)41()41()41()4141()21⎥⎦⎤⎢⎣⎡=⋅=+=f f f f .∵f (1)=a >0, ∴f (.)41(,)214121a f a ==(2)证明 ∵y =f (x )的图象关于直线x =1对称, ∴f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知,f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R .将上式中-x 用x 代换,得f (x )=f (x +2),x ∈R . 这表明f (x )是R 上的周期函数,且2是它的一个周期. (3)解 由(1)知f (x )≥0,x ∈[0,1]. ∵f (⎥⎦⎤⎢⎣⎡⋅-+=⋅=n n nf nn f 21)1(21)21()21=f (=⎥⎦⎤⎢⎣⎡⋅-⋅n n f n 21)1()21…=f (⋅⋅)21()21n f n …·f (.)21()21nn f n ⎥⎦⎤⎢⎣⎡=又f (.2121)21(,)21n a n f a =∴=∵f (x )的一个周期是2,∴a n=f (2n +n 21)=f (n21),∴a n=a n 21.一、填空题1.f(x),g(x)是定义在R 上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的 条件.答案 充分不必要2.设函数f(x)=(x+1)(x+a)为偶函数,则a= . 答案 -13.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x-1),若f (0)=2,则f (2 008)的值为 .答案 24.已知函数y=f(x)是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y=f(|x|);②y=f(-x);③y=x ·f(x);④y=f(x)+x. 答案 ②④5.(2009·徐州六县一区联考)设f(x)是定义在R 上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)= .答案 -16.已知y=f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-2x ,则在R 上f(x)的表达式为 .答案 f(x)=x(|x|-2)7.已知函数f(x)=g(x)+2,x ∈[-3,3],且g(x)满足g(-x)=-g(x),若f(x)的最大值、最小值分别为M 、N ,则M+N= . 答案 48.f(x)、g(x)都是定义在R 上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)= . 答案 -b+4二、解答题9.已知f(x)是实数集R 上的函数,且对任意x ∈R ,f(x)=f(x+1)+f(x-1)恒成立. (1)求证:f(x)是周期函数. (2)已知f(3)=2,求f(2 004).(1)证明 ∵f(x)=f(x+1)+f(x-1),∴f(x+1)=f(x)-f(x-1),则f(x+2)=f []).1()()1()()()1(1)1(--=---=-+=++x f x f x f x f x f x f x∴f(x+3)=f [][]).(1)1(2)1(x f x f x -=-+-=++ ∴f(x+6)=f[]).()3(3)3(x f x f x =+-=++∴f(x)是周期函数且6是它的一个周期. (2)解 f(2 004)=f(334×6)=f(0)=-f(3)=-2.10.已知f(x)是R 上的奇函数,且当x ∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 解 ∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg (2+x ), 即f (x )=-x lg (2+x )(x >0).∴f (x )=⎩⎨⎧≥+-<--).0()2lg(),0()2lg(x x x x x x即f (x )=-x lg(2+|x |) (x ∈R ). 11.已知函数f(x)=x 2+|x-a|+1,a ∈R . (1)试判断f(x)的奇偶性; (2)若-21≤a ≤21,求f(x)的最小值. 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x ) 为非奇非偶函数. (2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43, ∵a ≤21,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43,∵a ≥-21,故函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1.综上得,当-21≤a ≤21时,函数f (x )的最小值为a 2+1.12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0. (1)试判断函数y=f (x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论. 解 (1)由),10()()14()4()14()()4()()7()7()2()2(+=⇒-=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-x f x f x f x f x f x f x f x f x f x f x f x f从而知函数y =f (x )的周期为T =10.又f (3)=f (1)=0,而f (7)≠0,故f (-3)≠0. 故函数y =f (x )是非奇非偶函数. (2)由(1)知y =f (x )的周期为10.又f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2 005]上有402个解,在[-2 005, 0]上有400个解,所以函数y =f (x )在[-2 005,2 005]上有802个解.§2.4指数与指数函数基础自测 1.已知a<41,则化简42)14(-a 的结果是 .答案a 41-2.设指数函数f(x)=a x(a>0且a ≠1),则下列等式正确的有 (填序号). ①f(x+y)=f(x)·f(y) ②f((xy)n)=f n(x)·f n(y) ③f(x-y)=)()(y f x f ④f(nx)=f n(x) 答案 ①③④3.函数f(x)=a x-b的图象如图所示,其中a 、b 为常数,则下列结论不正确的有 (填序号). ①a>1,b<0 ②a>1,b>0 ③0<a<1,b>0 ④0<a<1,b<0 答案①②③4.关于函数f(x)=2x-2-x(x ∈R ),有下列三个结论:①f(x)的值域为R ; ②f(x)是R 上的增函数;③对任意x ∈R ,有f(-x)+f(x)=0成立. 其中正确结论的序号是 .答案 ①②③ 5.已知集合M={}⎭⎬⎫⎩⎨⎧∈<<=-+Z x x N x ,4221|,1,11,则M N = . 答案 {}1-例1已知a=91,b=9.求: (1);315383327a a a a⋅÷--(2)111)(---+ab b a .数学试卷及试题71 31(8 )1151解 (1)原式= a 2 3 . a 2 3 ÷[a 3 2 · a 3 2 ]7 1 (4 5 ) 1= a 6 2 3 2 =a 2 .1∵a= ,∴原式=3.9(2)方法一 化去负指数后解.a 1 b1 (ab) 11 a 11 babab 1a b. ∵a=1 ,b 9 9, ∴a+b= 82 . 9ab ab方法二 利用运算性质解.a 1 b1 (ab) 1a 1 a 1b1b 1 a 1b11 b 11 a 1 b a.∵a= 1 ,b 9, ∴a+b= 82 .99例 2 函数 f(x)=x2-bx+c 满足 f(1+x)=f(1-x)且 f(0)=3,则 f(bx)答案 ≤例 3 求下列函数的定义域、值域及其单调区间:f(cx).(用“≤”,“≥”,“<”,“>”填空)(1)f(x)= 3 x2 5x 4 ;(2)g(x)=-( 1 ) x 4( 1 ) x 5 .42解 (1)依题意 x2-5x+4≥0,解得 x≥4 或 x≤1,∴f(x)的定义域是(-∞,1]∪[4,+∞).令 u= x 2 5x 4 (x 5 )2 9 , ∵x∈(-∞,1]∪[4,+∞), 24∴u≥0,即 x2 5x 4 ≥0,而 f(x)= 3 x2 5x 4 ≥30=1,∴函数 f(x)的值域是[1,+∞).∵u= (x 5 )2 9 ,∴当 x∈(-∞,1]时,u 是减函数, 24当 x∈[4,+∞)时,u 是增函数.而 3>1,∴由复合函数的单调性可知,f(x)= 3 x2 5x 4 在(-∞,1]上是减函数,在[4,+∞)上是增函数.故 f(x)的增区间是[4,+∞),减区间是(-∞,1].(2)由 g(x)=-( 1)x 4(1)x 5 (1)2x 4(1)x 5,4222∴函数的定义域为 R,令 t=( 1 ) x (t>0),∴g(t)=-t2+4t+5=-(t-2)2+9, 2数学试卷及试题21数学试卷及试题∵t>0,∴g(t)=-(t-2)2+9≤9,等号成立条件是 t=2,即 g(x)≤9,等号成立条件是( 1 ) x =2,即 x=-1,∴g(x)的值域是(-∞,9]. 2由 g(t)=-(t-2)2+9 (t>0),而 t=( 1 ) x 是减函数,∴要求 g(x)的增区间实际上是求 g(t)的减区间, 2求 g(x)的减区间实际上是求 g(t)的增区间.∵g(t)在(0,2]上递增,在[2,+∞)上递减,由 0<t=( 1 ) x ≤2,可得 x≥-1, 由 t=( 1 ) x ≥2,可得 x≤-1.22∴g(x)在[-1,+∞)上递减,在(-∞,-1]上递增,故 g(x)的单调递增区间是(-∞,-1],单调递减区间是[-1,+∞).ex例 4(14 分)设 a>0,f(x)=aa ex是 R 上的偶函数.(1)求 a 的值;(2)求证:f(x)在(0,+∞)上是增函数.(1)解 ∵f(x)是 R 上的偶函数,∴f(-x)=f(x),2分e x∴aa exex aa ex,∴(a-1 )(ex a1 ex)=0对一切x均成立,∴a- 1 =0,而 a>0,∴a=1. a(2)证明 在(0,+∞)上任取 x1、x2,且 x1<x2,则 f(x1)-f(x2)= e x11+e x1- e x2-1 e x2= (ex2 e x1 )1(e x1 x2 1).e ∵x1<x2,∴ x1 e x2 , 有 ex2 ex1 0.4分 6分 8分10 分∵x1>0,x2>0,∴x1+x2>0,∴ e x1x2 >1,12 分1 e x1x2 -1<0.∴f(x1)-f(x2)<0,即 f(x1)<f(x2),故 f(x)在(0,+∞)上是增函数.14 分1.化简下列各式(其中各字母均为正数):(1)2(a 3b1)1 21a21b3;6 a b5数学试卷及试题22(2)51a3 b 2(3a1 2b1)2(4a 31 b3 ) 2.6解1 1 1 1a 3b2 a2b3(1)原式=15111 115 a 3 2 6 b2 3 6 a0 b0 1.a6b6(2)原式=-5a1 6b32 (4a 31 b3 ) 25a1 6b31 3 (a3b 2 )2451a23b 25441 ab35 ab 4ab2.2.已知实数 a、b 满足等式 ( 1 )a (1)b ,下列五个关系式: 23①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的有(填序号).答案 ③④3.求下列函数的单调递增区间:(1)y=( 1 )6x2 x2 ;(2)y=2 x2 x6 . 2解 (1)函数的定义域为 R.令 u=6+x-2x2,则 y=( 1 )u . 2∵二次函数 u=6+x-2x2 的对称轴为 x= 1 , 4在区间[ 1 ,+∞)上,u=6+x-2x2 是减函数, 4又函数 y=( 1 ) u 是减函数, 2∴函数 y=( 1 )6x2x2 在[ 1 ,+∞)上是增函数.24故 y=( 1 )6x2x2 的单调递增区间为[ 1 ,+∞).24(2)令 u=x2-x-6,则 y=2u,∵二次函数 u=x2-x-6 的对称轴是 x= 1 , 2在区间[ 1 ,+∞)上 u=x2-x-6 是增函数. 2又函数 y=2u 为增函数,∴函数 y=2 x2 x6 在区间[ 1 ,+∞)上是增函数. 2故函数 y=2 x2 x6 的单调递增区间是[ 1 ,+∞). 2数学试卷及试题23数学试卷及试题数学试卷及试题2x4.已知定义在 R 上的奇函数 f(x)有最小正周期 2,且当 x∈(0,1)时,f(x)=.4x 1(1)求 f(x)在[-1,1]上的解析式; (2)证明:f(x)在(0,1)上是减函数. (1)解 当 x∈(-1,0)时,-x∈(0,1).∵f(x)是奇函数,∴f(x)=-f(-x)=-2x 4x 12x 4x . 1由 f(0)=f(-0)=-f(0),且 f(1)=-f(-1)=-f(-1+2) =-f(1),得 f(0)=f(1)=f(-1)=0.∴在区间[-1,1]上,有 2x 4x1f(x)= 2x 4x 10x (0,1)x (1,0)x 1,0,1(2)证明当x∈(0,1)时,f(x)=42x x. 1设 0<x1<x2<1,则f(x1)-f(x2)=2 x1 4x1 12 x2 4x2 1(2x2 (4 x12x1 )(2 x1x2 1) 1)(4x2 1),2 2 ∵0<x1<x2<1,∴2 x2 - x1 >0, x1x2 -1>0,∴f(x1)-f(x2)>0,即 f(x1)>f(x2),故 f(x)在(0,1)上单调递减.一、填空题1.21 2,(2)1,31 3的大小顺序为.3答案21 2313(2) 132.若 a<0,则 2a, ( 1 )a , (0.2)a 的大小顺序为.2答案 (0.2)a> ( 1 )a >2a 23.若函数 y=4x-3·2x+3 的定义域为集合 A,值域为[1,7],集合 B=(-∞,0]∪[1,2],则集合 A 与集合 B 的关系为.答案 A=B数学试卷及试题24数学试卷及试题4.若 f(x)=-x2+2ax 与 g(x)=(a+1)1-x 在区间[1,2]上都是减函数,则 a 的取值范围是.答案 (0,1]5.(2009·常州二中期中)当函数 f(x)=2-|x-1|-m 的图象与 x 轴有公共点时,实数 m 的取值范围是.答案 (0,1]6.当 x>0 时,函数 f(x)=(a2-1)x 的值总大于 1,则实数 a 的取值范围是.答案 a> 2 或 a<- 27.若函数 f(x)=ax-1 (a>0,a≠1)的定义域和值域都是[0,2],则实数 a 等于.答案 38.函数 y=ax(a>0,且 a≠1)在[1,2]上的最大值比最小值大 a ,则 a 的值是.213答案 或22二、解答题9.要使函数 y=1+2x+4xa 在 x∈(-∞,1]上 y>0 恒成立,求 a 的取值范围.1 2x解 由题意得 1+2x+4xa>0 在 x∈(-∞,1]上恒成立,即 a>-在 x∈(-∞,1]上恒成立.4x1 2x又∵-4x=-(1)2x 2(1)x 2(1 2)x12 2 1 4,∵x,1,∴(1)x 21 2, .令t=(1)x 2,则f(t)(t1)2 21 4,t1 2,. 1则 f(t)在[ ,+∞)上为减函数,2 f(t)≤f( 1 ) =-( 1 1 )2 1 3 ,2 22 4 4即f(t)∈ ,3 4 .3∵a>f(t),∴a∈(- ,+∞).411310.已知函数 f(x)=( )x .2x 1 2(1)求 f(x)的定义域;(2)判断 f(x)的奇偶性;(3)证明:f(x)>0.(1)解 由 2x-1≠0 x≠0,∴定义域为(-∞,0)∪(0,+∞).(2)解f(x)=(1 2x 11)x3 2可化为 f(x)= 2 x 1 x3 , 2 (2x 1)数学试卷及试题25。

高中数学 第三章 函数概念与性质 3.1 函数的概念及其表示 3.1.2 第2课时 分段函数精品练习

高中数学 第三章 函数概念与性质 3.1 函数的概念及其表示 3.1.2 第2课时 分段函数精品练习

第2课时 分段函数必备知识基础练知识点一分段函数求值1.设函数f (x )=⎩⎨⎧x -1,x ≥1,1,x <1,则f {f [f (2)]}=( )A .0B .1C .2 D. 22.已知函数f (x )=⎩⎪⎨⎪⎧1x,x >0,x -1,x <-1,则函数f (x )的定义域是( )A .(0,+∞) B.(-∞,-1)C .(-1,0)D .(-∞,-1)∪(0,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,1-x 2,x >1,若f (x )=-3,则x =________.知识点二分段函数的图象4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )5.下列图形是函数y =x |x |的图象的是( )6.已知函数f (x )的图象如图所示,则f (x )的解析式是________.知识点三 分段函数的实际应用7.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米8.电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元;超过3分钟后,每增加1分钟收费0.1元,不足1分钟按1分钟计费.通话收费S (元)与通话时间t (分钟)的函数图象可表示为下图中的( )关键能力综合练 一、选择题1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-1002.若函数f (x )=⎩⎪⎨⎪⎧2,x >0,x 2,x ≤0,则满足f (a )=1的实数a 的值为( )A .-1B .1C .-2D .23.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )4.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13等于( ) A .-13 B.13 C .-23 D.235.函数f (x )=x +|x |x的图象是( )6.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫-43+f ⎝ ⎛⎭⎪⎫43等于( )A .-2B .4C .2D .-4 二、填空题7.函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,2-x ,-2≤x <0的值域是________.8.(易错题)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.9.函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值X 围是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧2x +2,x ∈[-1,0],-12x ,x ∈0,2,3,x ∈[2,+∞.(1)求f (-1),f ⎝ ⎛⎭⎪⎫32,f (4)的值; (2)求函数的定义域、值域.学科素养升级练1.(多选题)已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2若f (x )=1,则x 的值是( )A .-1 B.12C .- 3D .12.(情境命题—生活情境)某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r (单位:元)与时间t (1≤t ≤20,t ∈N ,单位:天)之间的函数关系式为r =14t +10,且日销售量y (单位:箱)与时间t 之间的函数关系式为y =120-2t①第4天的销售利润为________元;②在未来的这20天中,公司决定每销售1箱该水果就捐赠m (m ∈N *)元给“精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间t 的增大而增大,则m 的最小值是________.3.某市出租车的现行计价标准是:路程在2 km 以内(含2 km)按起步价8元收取,超过2 km 后的路程按1.9元/km 收取,但超过10 km 后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(1)将某乘客搭乘一次出租车的费用f (x )(单位:元)表示为行程x (0<x ≤60,单位:km)的分段函数;(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)第2课时分段函数必备知识基础练1.解析:由题意,f(2)=2-1=1,f[f(2)]=f(1)=1-1=0,f{f[f(2)]}=f(0)=1,故选B.答案:B2.解析:分段函数的定义域是各段上“定义域”的并集,即(0,+∞)∪(-∞,-1),选D.答案:D3.解析:若x≤1,由x+1=-3得x=-4.若x>1,由1-x2=-3得x2=4,解得x=2或x=-2(舍去).综上可得,所求x的值为-4或2.答案:-4或24.解析:当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.答案:A5.解析:∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.答案:D6.解析:由图可知,图象由两条线段(其中一条不含右端点)组成, 当-1≤x <0时,设f (x )=ax +b (a ≠0), 将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.当0≤x ≤1时,设f (x )=kx (k ≠0), 将(1,-1)代入,则k =-1.∴f (x )=-x .即f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤17.解析:该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13.答案:A8.解析:结合题意,易知B 正确,故选B. 答案:B关键能力综合练1.解析:因为f (-7)=10,所以f [f (-7)]=f (10)=10×10=100,故选A. 答案:A2.解析:当a >0时,f (a )=2不符合,当a ≤0时,a 2=1, ∴a =-1,故选A. 答案:A3.解析:根据题意,知这列火车从静止开始匀加速行驶,所以排除A ,D ,然后匀速行驶一段时间后又停止了一段时间,排除C ,故选B.答案:B4.解析:由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝ ⎛⎭⎪⎫13=13-1=-23,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.答案:B5.解析:f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,故选C.答案:C6.解析:∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=23×2=43,f ⎝ ⎛⎭⎪⎫43=2×43=83,∴f ⎝ ⎛⎭⎪⎫-43+f ⎝ ⎛⎭⎪⎫43=43+83=4. 答案:B7.解析:当x ≥0时,f (x )≥1; 当-2≤x <0时,2<f (x )≤4. ∴值域为[1,+∞). 答案:[1,+∞)8.易错分析:题目中f (x )为分段函数,在求值时需要根据定义域取值X 围不同代入不同的解析式,本题极易误以为1-a <1+a 而忘记分类讨论导致结果错误.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不符合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a ,解得a =-34,满足题意.答案:-349.解析:当a ≤-2时,f (a )=a <-3,此时不等式的解集是(-∞,-3);当-2<a <4时,f (a )=a +1<-3,此时不等式无解; 当a ≥4时,f (a )=3a <-3,此时不等式无解. 所以a 的取值X 围是(-∞,-3). 答案:(-∞,-3)10.解析:(1)易知f (-1)=0,f ⎝ ⎛⎭⎪⎫32=-12×32=-34,f (4)=3. (2)作出图象如图所示.利用“数形结合”,易知f (x )的定义域为[-1,+∞),值域为(-1,2]∪{3}.学科素养升级练1.解析:根据题意,f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2若f (x )=1,分3种情况讨论:①当x ≤-1时,f (x )=x +2=1,解可得x =-1; ②当-1<x <2时,f (x )=x 2=1,解可得x =±1, 又由-1<x <2,则x =1;③当x ≥2时,f (x )=2x =1,解可得x =12,舍去.综合可得:x =1或-1; 故选AD. 答案:AD2.解析:①因为r (4)=14×4+10=11,y (4)=120-2×4=112,所以该天的销售利润为11×112=1 232;②设捐赠后的利润为W 元,则W =y (r -m )=(120-2t )⎝ ⎛⎭⎪⎫14t +10-m ,化简可得,W =-12t 2+(2m +10)t +1 200-120m .令W =f (t ),因为二次函数的开口向下,对称轴为t =2m +10,为满足题意, 所以⎩⎪⎨⎪⎧2m +10≥20,f 1>0,n ∈N *解得m ≥5,故答案为:①1232;②5. 答案:①1232 ②53.解析:(1)由题意得,车费f (x )关于路程x 的函数为: f (x )=⎩⎪⎨⎪⎧8,0<x ≤2,8+1.9x -2,2<x ≤10,8+1.9×8+2.85x -10,10<x ≤60=⎩⎪⎨⎪⎧8,0<x ≤2,4.2+1.9x ,2<x ≤10,2.85x -5.3,10<x ≤60.(2)只乘一辆车的车费为:f (16)=2.85×16-5.3=40.3(元);换乘2辆车的车费为:2f (8)=2×(4.2+1.9×8)=38.8(元).∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示方法-基础
1.函数y =( )
A .{}|1x x ≤
B .{}|0x x ≥
C .{}
|10x x x ≤≥或 D .{}|01x x ≤≤ 2.设函数
2()31f x x x =-+,则()()f a f a --等于( )
A .0
B .6a -
C .2
22a + D .2
262a a -+ 3.函数24
x
y x =-的值域是( ) A .(-∞,
12)∪(2,+∞) B .(-∞,12)∪(1
2
,+∞) C .R D .(-∞,2)∪(2,+∞)
4.对于集合A 到集合B 的映射,有下述四个结论 ( )
①B 中的任何一个元素在A 中必有原象; ②A 中的不同元素在B 中的象也不同;
③A 中任何一个元素在B 中的象是唯一的; ④A 中任何一个元素在B 中可以有不同的象. 其中正确结论的个数是( )
A .1个
B .2个
C .3个
D .4个 5.设{}{}|02,|12
M x x N y y =≤≤=≤≤,
给出下列四个图形,如下图所示,其中能表示从集合M 到N 的函数关系的有 ( )个.
A .1个
B .2个
C .3个
D .4个 6.已知函数2,0
(),()(1)0,1,0x x f x f a f x x >⎧=+=⎨+≤⎩
若则实数a 的值等于( )
A .-3
B .-1
C .1
D .3
7.设函数221,1,
()2, 1.
x x f x x x x ⎧-≤⎪=⎨+->⎪⎩则1(
)(2)f f 的值为( ) A .
89 B .2716- C . 15
16
D .18 8.汽车经过启运、加速行驶、匀速行使、减速行使之后停车,若把这一过程中汽车的行使路程s 看做
是时间t 的函数,其图象可能是( )
9.设函数.)().0(1),0(12
1
)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨
⎧<≥-=若则实数a 的取值范围是 . 10.函数21
2
y x =
+的值域是_________. 11.如图,有一块边长为acm 的正方形铁皮,将其四个角各截去一个边长为xcm
的小正方形,然后折成一个无盖的长方体盒子.设长方体盒子的体积是3ycm ,则y 关于x 的函数关系式为 ;此函数的定义域是 . 12.已知函数()()x g x f ,分别由下表给出:
则()[]1g f 的值 ;满足()[]()[]x f g x g f >的x 的值 .
13.设函数2
2,1,(),122, 2.x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩

(1)求3(2),()2f f f ⎡⎤-⎢⎥⎣⎦
的值;(2)若()3f x =,求x 的值.
14.作出下列函数的图象:
(1)|21|y x =-;(2)2
243(03)y x x x =--≤<.
15.建一个容积为83
m 、深为2m 的长方体无盖水池,如果池底造价是120元/2
m ,池避的造价是80元/2
m ,求水池的总造价y (元)与池底x (m )之间的函数关系式.
【答案与解析】
1.【答案】D .
【解析】由题意1-x ≥0且x ≥0,解得01x ≤≤,故选D . 2.【答案】B .
【解析】把a 和a -代入函数解析式相减求得. 3.【答案】B . 【解析】法一:由y=
24x x -,∴x=421
y
y - ∴y ≠12, 应选B . 法二:2211110.242(2)2222
x x y y x x x x -+=
==+≠∴≠---- ,,
4.【答案】A .
【解析】由映射的概念知,只有③正确. 5.【答案】A .
【解析】由函数的定义知选A . 6.【答案】A .
【解析】该分段函数的二段各自的值域为(](),1,0-∞+∞,,()(1)2f a f =-=- ∴()12,3f a a a =+=-=-∴ 3a =-. 7.【答案】C
【解析】 (2)4f =,11(2)4f =,故2
11115
()()1(2)4416
f f f ⎛⎫==-= ⎪⎝⎭. 8. 【答案】A. 9.【答案】(),1-∞- 【解析】当10,()1,22a f a a a a ≥=-><-时,这是矛盾的;当1
0,(),1a f a a a a
<=><-时. 10. 【答案】10,2

⎤ ⎥⎝

. 【解析】2
211
22,022
x x +≥∴<
≤+ 11.【答案】2
(2),|02a y x a x x x ⎧
⎫=-<<
⎨⎬⎩⎭
【解析】设(2)(4)y a x x =+-,对称轴1x =,当1x =时,max 99,1y a a =-==-. 12.【答案】1,2
13.【答案】(1)0,
9
2
(2
【解析】(1)(2)220f -=-+= ;399922442
f f f ⎡⎤
⎛⎫⎛⎫==⨯
= ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎣⎦.
(2)1,
23,x x ≤-⎧⎨+=⎩或212,3,x x -<<⎧⎨=⎩或2,2 3.
x x ≥⎧⎨=⎩解得x =
14.【解析】
15.【答案】1280
480320,(0)y x x x
=++
> 【解析】设池底矩形宽x (m ),则池底矩形长为
4
x
(m ). 底面积为42
m ,造价为1204480⨯=(元).左、右两侧面造价为8022320x ⨯⨯=(元),前、后两侧面造价为41280
8022x x ⎛⎫⨯⨯⋅=
⎪⎝⎭
(元). ∴水池的总造价y 与池底宽x 之间的函数关系式为
1280
480320,(0)y x x x
=++>.。

相关文档
最新文档