[精品]2017年山东省高考数学试卷及解析答案word版(文科)

合集下载

2017年高考山东文科数学试题及答案(word解析版)

2017年高考山东文科数学试题及答案(word解析版)

解法二:若空白判断框中的条件 x 3 ,输入 x 4 ,满足 4 3 ,输出 y 4 2 6 ,不满足,
故 A 错误,若空白判断框中的条件 x 4 ,输入 x 4 ,满足 4 4 ,不满足 x 3 , 输
出 y log2 4 2 ,故 B 正确;若空白判断框中的条件 x 4 ,输入 x 4 ,满足 4 4 , 满足 x 4 ,输出 y 4 2 6 ,不满足,故 C 错误,若空白判断框中的条件 x 5 , 输入 x 4 ,满足 4 5 ,满足 x 5 ,输出 y 4 2 6 ,不满足,故 D 错误,故选 B.
调递增,则称函数 f x 具有 M 性质,下列函数中具有 M 性质的是( )
(A) f x = 2x
(B) f x= x2
(C) f x = 3x
(D) f x= cosx
【答案】A 【解析】D 显然不对,B 不单调,基本排除,A 和 C 代入试一试。(正式解答可求导,选择题你怎么做?)
若 f (x) 2x ,则 ex f (x) ex 2x ( e )x ,在 R 上单调增,故选 A. 2
(B) 1, 2
(C) 0, 2
(D) 1, 2
【答案】C
【解析】 M : 0 x 2 , N、 x 2 ,所以 M I N (0, 2) ,故选 C.
(2)【2017 年山东,文 2,5 分】已知 i 是虚数单位,若复数 z 满足 zi 1 i ,则 z² ( )
(A) 2i
(B) 2i
(D) 3
【答案】D
【解析】可行域如图,在点 A1, 2 z 取最大值: zmax 3 ,故选 D.
(4)【2017 年山东,文 4,5 分】已知 cos x 3 ,则 cos 2x ( ) 4

【数学】2017年高考真题——山东卷(文)(解析版)

【数学】2017年高考真题——山东卷(文)(解析版)

2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟. 考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填 写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动, 用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的 位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂 改液、胶带纸、修正带.不按以上要求作答的答案无效.4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}10=-<M x x ,{}2=<N x x ,则MN =( )A.(-1,1)B.(-1,2)C.(0,2)D.(1,2) (2)已知i 是虚数单位,若复数满足z i=1+i,则z ²=( ) A.-2i B.2i C.-2 D.2(3)已知x ,y 满足约束条件-2+50+302≤⎧⎪≥⎨⎪≤⎩x y x x 则z =x +2y 的最大值是( )A.-3B.-1C.1D.3 (4)已知cos x =34,则cos2x =( )A.14-B.14C.18-D.18(5) 已知命题p :∃∈R x , x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( ) A.∧p q B.∧⌝p q C. ⌝∧p q D. ⌝∧⌝p q(6)执行程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为( )A.x >3B.x >4C.x ≤4D.x ≤5 (7)函数3sin2+cos2=y x x 最小正周期为( ) A.2π B.23πC.πD.2π (8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A 3,5 B 5,5 C 3,7 D 5,7(9)设()(),012-1,1⎧⎪=⎨≥⎪⎩<<x x f x x x ,若f (a )=f (a +1),则1=⎛⎫⎪⎝⎭f a ( )A.2B. 4C.6D.8(10)若函数()()2.71828=……是自然对数的底数x e f x e 在f (x )的定义域上单调递增,则称函数 f (x )具有M 性质,下列函数中具有M 性质的是( ) A. f (x )=2-xB. f (x )=2xC. f (x )=3-xD. f (x )=cos x第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ- ,若a ||b ,则λ= .(12)若直线1(00)x ya b a b+=>,> 过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>,> 的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程 为.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游. (1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中个任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6=-AB AC ,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示,四边形ABCD 为 正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (1)证明:AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.(19)(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+ a 2=6,a 1a 2= a 3 (1)求数列{a n }通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n 知S 2n +1=b n b n+1,求数列{nnb a }的前n 项和T n(20)(本小题满分13分)已知函数2211(),32=-∈R f x x ax a , (1)当a =2时,求曲线()=y f x 在点(3,f (3))处的切线方程;(2)设函数()()()co in s s =+--g x f x x a x x ,讨论()g x 的单调性并判断有无极值,有极值时求出极值.(21)(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a>b>0)的离心率为22,椭圆C截直线y=1所得线段的长度为22.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点, N的半径为|NO|. 设D为AB的中点,DE,DF与 N分别相切于点E,F,求∠EDF的最小值.参考答案(3)【答案】D【解析】由-2+50+302≤⎧⎪≥⎨⎪≤⎩x y x x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线-2+50=x y 与y 2=的交点(1,2)-时,2z x y =+最大为1223z =-+⨯=,选D.(4)【答案】D(6)【答案】B【解析】输入x 为4,要想输出y 为2,则程序经过2log 42y ==,故判断框填4x >, 选B.(7)【答案】C【解析】由题意2sin(2)6π=+y x ,其周期22π==πT ,故选C. (10)【答案】A(11)【答案】3-【解析】62 3.λλ-=⇒=- (12)【答案】8 【解析】12124412(2)()4428b a b aa b a b a b a b a b a b+=∴+=++=++≥+⋅=(13)【答案】π22+【解析】2π1π21121242V ⋅=⨯⨯+⨯⨯=+ (14)【答案】6【解析】6(919)(1)(1)6T f f f =∴==-=(16)解:(1)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.从这6个国家中任选2个,基本事件总数n =15, 这2个国家都是亚洲国家包含的基本事件个数m =3, ∴这2个国家都是亚洲国家的概率P ===.(2)从亚洲国家和欧洲国家中各任选1个,包含的基本事件个数为9个,分别为: (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2), (A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),这2个国家包括A 1但不包括B 1包含的基本事件有:(A 1,B 2),(A 1,B 3),共2个, ∴这2个国家包括A 1但不包括B 1的概率P =.(17)解:2226,cos 613,Sin 323cos =611=3,,tan =,tan =11223sin =3232=,3=-6,=22422=2cos =982322=29,=292→→∆=-∴=-==-⎧⎪∴∴--⎨⎪⎩∈ππ∴⋅⋅∴+-+-⋅⋅⋅ 又(0,),(-)(-)ABC AB AC bc A S bc A c A b A A c A A A c c a b c bc A a(18)解:(1)111111111111111,,////,,//=∴∴∴⊂∴ B D F A F CFABCD A B C D A F OCA FCO AO CF CFB CD AO B CD 取中上连接为四棱柱,为平行四边形,又面面(2)11111111111111111111//,,,,,//,,∴∴⊥∴⊥⊥∴⊥⋂=∴⊥⊂∴⊥⊂∴⊥ E AD M OD EM AO ABCD AO BD EM BDA E ABCD A E BD A E EM E BD A EMB D DC BD B D B D A EM B D B CD A EM B CD 为中点,为中点,为正方形,又面面又面B 面面平面面(19)解:(1)由题意得11221111111211211131216,32222(21)(21)2=22=21)121121)()211113()5()(21)()21)()222213(2-+++++-+=⎧∴=-⎨=⎩===+++==++∴=+=+=++-++= (舍)或=())(由已知即(((n nn bn n n n n n x n n n n n n a a q q q a q a qa a a q nb b n S b b b b n bn b n b n a T n n T ①2311111)5()(21)()21)()2222++-++ (n n n n ②①-②得12T n =3 12 1+2 12 2+⋯2 12 n − 2n +1 12n +112T n =3 12 1+214 1−2 12 n−1 1−12− 2n +1 12 n +1 T n =3+2 1− 12 n−1 − 2n +1 12n +1 ∴ T n =5− 2n +5 12n(20)解:(1)2'()2=-f x x x'(3)3∴==k f(3)0= 又f∴其切线方程为03(3)3--90-=-即=y x x y (2)函数g (x )=f (x )+(x ﹣a )cos x ﹣sin x =x 3﹣ax 2+(x ﹣a )cos x ﹣sin x ,∴g ′(x )=x 2﹣ax +cos x ﹣(x ﹣a )sin x ﹣cos x =x 2﹣ax +(x ﹣a )sin x =(x ﹣a )(x +sin x ), 令g ′(x )=0,解得x =a ,或x =0,当x<0时,x+sin x<0,当x≥0,x+sin x≥0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sin a当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sin a当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sin x),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.(21)(1)∵椭圆C的离心率为,∴=,a2=2b2,∵椭圆C截直线y=1所得线段的长度为2,∴椭圆C过点(,1),∴+=1,∴b2=2,a2=4,∴椭圆C的方程为+=1.(2)设A,B的横坐标为x1,x2,则A(x1,kx1+m),B(x2,kx2+m),D(,+m),联立可得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2=﹣,∴D(﹣,),∵M(0,m),则N(0,﹣m),∴⊙N的半径为|m|,|DN|==,设∠EDF=α,∴sin====,令y=,则y′=,当k=0时,sin取得最小值,最小值为.∴∠EDF的最小值是60°.。

2017届山东高考数学文科试卷及答案解析

2017届山东高考数学文科试卷及答案解析

2017年山东省高考文科数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 集合A={x|x2﹣a≤0},B={x|x<2},若A⊆B,则实数a的取值范围是()A.(﹣∞,4] B.(﹣∞,4) C。

(0,﹣4 )D.(0,4)2. 在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足,则的值为()A.﹣4 B.﹣2 C.2 D.43. 设m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中正确的是()A.若α⊥β,m⊥α,则m∥βB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥α,则m∥n D.若α⊥γ,β⊥γ,则α∥β4. 函数y=Asin(ωx+ϕ)的部分图象如图所示,则其在区间上的单调递减区间是()A.和 B.和C.和 D.和5. 已知圆C的圆心为y=x2的焦点,且与直线4x+3y+2=0相切,则圆C的方程为()A. B.C.(x﹣1)2+y2=1 D.x2+(y﹣1)2=16某程序框图如图所示.该程序运行后输出的S的值是()A .1007B .2015C .2016D .30247. 数0,1,2,3,4,5,…按以下规律排列: …,则从2013到2016四数之间的位置图形为( )A. B. C. D.8. 设0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到下面的图像,则ϕω,的值为( )O ππ3π6211A .3,1πϕω-== B .3,2πϕω-== C .32,1πϕω== D.32,2πϕω== 9. 已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是A. ()()+∞-∞-,11,B. ⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C. ()()+∞-∞-,,2222 D. ()()+∞-∞-,,2210. 定义域是一切实数的函数()y f x =,其图象是连续不断的,且存在常数()R λλ∈使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“λ的相关函数”.有下列关于“λ的相关函数”的结论:①()0f x =是常数函数中唯一一个“λ的相关函数”;②2()f x x =是一个“λ的相关函数”;③ “12的相关函数”至少有一个零点.其中正确结论的个数是( )A .1B .2C .3D .0二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11. 已知数列{a n }满足a n ﹣a n+1=a n+1a n (n ∈N *),数列{b n }满足,且b 1+b 2+…+b 10=65,则a n = .12. 在ABC ∆中,34AE AB =,23AF AC =,设,BF CE 交于点P ,且EP EC λ=, FP FB μ=(,)R λμ∈,则λμ+的值为 .13. 设曲线y=在点(2,3)处的切线与直线ax+y+1=0垂直,则a= .14. 将某班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本,则样本中还有一名学生的编号是 ____________. 15.如图甲,在中,,,为.垂足,则,该结论称为射影定理.如图乙,在三棱锥中,平面,平面,为垂足,且在内,类比射影定理,探究、、这三者之间满足的关系是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16. (本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosA (ccosB+bcosC)=a.(I)求A;(II)若△ABC的面积为,且c2+abcosC+a2=4,求a.17.(本小题满分12分)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取2名,求恰好抽到1名成绩为A的概率.18. (本小题满分12分)已知数列{a n}的前n项和为S n,且S n=2n+1﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=na n,求数列{b n}的前n项和T n.19. (本小题满分12分)如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.(1)求证:平面BDE⊥平面BCD;(2)求三棱锥D﹣BCE的高.20. (本小题满分13分)已知a为常数,函数f(x)=x2+ax﹣lnx,g(x)=e x(其中e 是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.21. (本小题满分14分)平面直角坐标系xoy中,椭圆C1: +=1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)求椭圆的方程;(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.参考答案1【答案】B【解析】a=0时,A={0},满足题意;当a<0时,集合A=∅,满足题意;当a>0时,,若A⊆B,则,∴0<a<4,∴a∈(﹣∞,4),故选B.2【答案】A【解析】由题意可得,且,代入要求的式子化简可得答案.【解答】解:由题意可得:,且,∴===﹣4故选A3【答案】B【解析】A:直线m也可以在平面β内.B:根据线线垂直的判定可得结论是正确的.C:m与n可能平行也可能相交也可能异面.D:α与β也可以相交.可以举出墙角的例子.故选B.4【答案】B【解析】由函数y=Asin(ωx+ϕ)的部分图象可知,A=2, T=﹣(﹣)=,故T=π=,解得ω=2;由“五点作图法”得:2×+φ=,解得:φ=﹣.所以,y=2sin(2x﹣).由2kπ+≤2x﹣≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z).当k=0时,≤x≤;当k=1时,≤x≤;综上所述,函数y=2sin(2x﹣)在区间上的单调递减区间是[,]和[,].故选:B.5【答案】D【解析】的焦点为(0,1),所以圆C 为,所以x 2+(y ﹣1)2=1, 故选:D . 6【答案】D【解析】模拟程序框图的运行过程,得出该程序运行后输出的算式: S=a 1+a 2+a 3+a 4+…+a 2013+a 2014+a 2015+a 2016=(0+1)+(﹣2+1)+(0+1)+(4+1)+…+(0+1)+(﹣2014+1)+(0+1)+=6+…+6=6×=3024;所以该程序运行后输出的S 值是3024. 故选:D . 7【答案】B【解析】由排列可知,4个数字一循环,2014÷4=503×4+2,故2013的位置与1的位置相同,则2014的位置与2相同,2015的位置和3相同,2016的位置和4相同, 故选:B .8.【ks5u 答案】D 【ks5u 解析】试题分析:因为0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到sin ()sin()33y x x ππωφωωφ⎡⎤=++++⎢⎥⎣⎦,由函数的图像可知,2,,22362T T Tπππππω=+=∴=∴== 所以2sin(2)3y x πφ∴=++,又因为函数的图像过点5(,1)sin()1126ππφ-∴+=-,因为πφπ-<< 22,3πωφ==,应选D. 9【答案】 D 10【答案】A11【答案】【解析】∵数列{a n }满足a n ﹣a n+1=a n+1a n (n ∈N *),∴﹣=1,即b n+1﹣b n =1,∴数列{b n }为等差数列,公差为1,又b 1+b 2+…+b 10=65, ∴10b 1+×1=65,解得b 1=2.∴b n =2+(n ﹣1)=n+1=,解得a n=.故答案为:.12【答案】75【解析】试题分析:由题设可得⎪⎩⎪⎨⎧-+=-+=)()(μλ,即⎪⎪⎩⎪⎪⎨⎧-+=-+=)32(32)43(43μλ,也即⎪⎪⎩⎪⎪⎨⎧+-=+-=μμλλ)1(32)1(43,所以⎪⎪⎩⎪⎪⎨⎧=-=-λμμλ)1(32)1(43,解之得⎪⎪⎩⎪⎪⎨⎧==3121μλ,故65=+μλ,应填65.13【答案】﹣ 【解析】∵y=, ∴y ′=,∴曲线y=在点(2,3)处的切线的斜率k==﹣2,∵曲线y=在点(2,3)处的切线与直线直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k ′=﹣a=,即a=﹣.故答案为:﹣. 14【答案】13【解析】系统抽样制取的样本编号成等差数列,因此还有一个编号为5821813+=-=.15【答案】【解析】因为作则,又有相同的底BC,所以,故答案为:16【解答】解:(I)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即cosA=又A∈(0,π),所以A=;(II)∵△ABC的面积为,∴=,∴bc=1∵c2+abcosC+a2=4,∴3a2+b2+c2=8,∵a2=b2+c2﹣bc∴4a2=7,∴a=.17【解答】解:(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为.…则该校高二年级学生获得成绩为B的人数约有1000×=150.…(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20)=59.…且59<60,因此该校高二年级此阶段教学未达标…(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人…则由题意可得:P (X=k )=,k=0,1,2,3.∴P (X=0)=,P (X=1)=,P (X=2)=,P (X=3)=.所以EX=0+1×+2×+3×=.10分)18【解答】解:(Ⅰ)由,当n=1时,,当n ≥2,,则,当n=1时,a 1=2满足上式,所以.(Ⅱ) 由(Ⅰ),.则,所以,则==(1﹣n )2n+1﹣2.所以. 19【解答】(1)证明:取BD 边的中点F ,BC 的中点为G ,连接AG ,FG ,EF , 由题意可知,FG 是△BCD 的中位线所以FG ∥AE 且FG=AE ,即四边形AEFG 为平行四边形,所以AG ∥EF由AG ⊥平面BCD 可知,EF ⊥平面BCD ,又EF ⊂面BDE ,故平面BDE ⊥平面BCD ;(2)解:过B 做BK ⊥AC ,垂足为K ,因为AE ⊥平面ABC ,所以BK ⊥平面ACDE ,且所以V 四棱锥B ﹣ACDE =×V 三棱锥E ﹣ABC =所以V三棱锥D﹣BCE=V四棱锥B﹣ACDE﹣V三棱锥E﹣ABC=因为AB=AC=2,AE=1,所以,又BC=2所以设所求的高为h,则由等体积法得=所以.20【解答】解:(1)f′(x)=2x+a﹣(x>0),过切点P(x0,y0)的切线的斜率k=2x0+a﹣==,整理得x02+lnx0﹣1=0,显然,x0=1是这个方程的解,又因为y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程x2+lnx﹣1=0有唯一实数解.故x0=1;(2)F(x)==,F′(x)=,设h(x)=﹣x2+(2﹣a)x+a﹣+lnx,则h′(x)=﹣2x+++2﹣a,易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2﹣a;①当2﹣a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在区间(0,1]上是减函数.所以,a≤2满足题意;②当2﹣a<0,即a>2时,设函数h'(x)的唯一零点为x0,则h(x)在(0,x0)上递增,在(x0,1)上递减;又∵h(1)=0,∴h(x0)>0.又∵h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣e a+lne﹣a<0,∴h(x)在(0,1)内有唯一一个零点x',当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综合①②得,a≤2.21【解答】解:(1)∵椭圆C1: +=1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6,∴,解得a=2,b=c=,∴椭圆方程为.(2)设直线AB为:y=kx+m,A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),由,得x2﹣4kx﹣4m=0,则x1+x2=4k,x1x2=﹣4m,由x2=4y,得,故切线PA,PB的斜率分别为,k PB=,再由PA⊥PB,得k PA•k PB=﹣1,∴,解得m=1,这说明直线AB过抛物线C1的焦点F,由,得(1+2k2)x2+4kx﹣2=0,∴|CD|=•=≤3.当且仅当k=时取等号,∴弦|CD|的最大值为3.。

2017年_2017山东高考文科数学试题及答案

2017年_2017山东高考文科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N = (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 (2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3(4)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数2cos 2y x x =+最小正周期为 (A )π2 (B )2π3(C )π (D ) 2π (8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是(A )()2x f x -= (B )()2f x x = (C )()-3x f x = (D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x y a b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= . (15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值. 21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心,椭圆C截直线y=1所得线段的长度为.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|. 设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求 EDF的最小值.11。

2017年数学真题及解析_2017年山东省高考数学试卷(文科)

2017年数学真题及解析_2017年山东省高考数学试卷(文科)

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2) D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣ B.C.﹣ D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S=3,求A和a.△ABC18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E ⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n=b n b n+1,求数列+1的前n项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

2017年山东省高考文科数学试卷及答案

2017年山东省高考文科数学试卷及答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}x 2N x =<,则M N =A. (-1,1)B. (-1,2)C. (0,2)D. (1,2)(2)已知i 是虚数单位,若复数满足zi=1+i,则z ²=A.-2iB.2iC.-2D.2 (3)已知x,y 满足约束条件x 2y 50x 302⎧≤⎪≥⎨⎪≤⎩-++y 则z=x+2y 的最大值是 A.-3 B.-1 C.1 D.3(4)已知cosx=34 ,则cos2x= (A)- 14 (B) 14 (C) - 18 (D) 18(5) 已知命题p :x R ∃∈ , x2-x+1≥ 0;命题q :若a2<b2,则a<b.下列命题为真命题的是(A )p Λ q (B)p Λ⌝ q (C) ⌝ p Λ q (D) ⌝ p Λ ⌝ q(6)执行右侧的程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为(A )x>3 (B) x>4 (C)x ≤ 4 (D)x ≤ 5(7)函数sin2cos23+=y x x 最小正周期为 A 2π B 23π C π D 2π (8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件)。

【高考数学】2017年山东卷(文)Word版含解析

【高考数学】2017年山东卷(文)Word版含解析

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}x 2N x =<,则MN =A.(-1,1)B. (-1,2)C. (0,2)D. (1,2) 【答案】C【解析】由|1|1x -<得02x <<,故M N={|02}{|2}{|02}x x x x x x =<<⋂<=<< ,选C.(2)已知i 是虚数单位,若复数满足1zi i =+,则2z = A.-2i B.2i C.-2 D.2 【答案】A【解析】由1zi i =+得22()(1)zi i =+,即22z i -=,故22z i =-,选A.(3)已知x,y 满足约束条件x 2y 50x 30x 2⎧≤⎪≥⎨⎪≤⎩-++则z=x+2y 的最大值是 A.-3 B.-1 C.1 D.3 【答案】D当其经过直线x 2y 50=-+与y 2=的交点(1,2)-时,2z x y =+最大为1223z =-+⨯=,选D.(4)已知34cosx =,则2cos x = (A)-14 (B) 14 (C) - 18 (D) 18【答案】D(5) 已知命题p :x R ∃∈ , 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是(A )p Λ q (B)p Λ⌝ q (C) ⌝ p Λ q (D) ⌝ p Λ ⌝ q 【答案】B【解析】由0x =时210x x -+≥成立知p 是真命题,由222212,1(2)<<-可知q 是假命题,故选B.(6)执行右侧的程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为(A )x>3 (B) x>4 (C)x ≤ 4 (D)x ≤ 5 【答案】B【解析】输入x 为4,要想输出y 为2,则程序经过2log 42y ==,故判断框填4x >,选B. (7)函数sin2cos23+=y x x 最小正周期为A2π B 23π C π D 2π 【答案】C(8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件)。

2017年高考数学山东卷文(附参考答案及详解)

2017年高考数学山东卷文(附参考答案及详解)

故选 )!
% & $!*!


*&槡':+;"#,<=:"#&":+;
"#,
" 4
#C&"""&"!
故选 *!
0!%!解析甲组数据的中位数为42#由甲$乙两组数据的 中 位 数 相
等得*&2!又 甲$乙 两 组 数 据 的 平 均 值 相 等#6
! 2
-
%24,42,
4",$/,$#,#&&
! 2
&L#即36""
&
! "
#6
6 3
&槡""#
6 双曲线的渐近线方程为*&3槡""#!
!4!%!&解由题意知'从4个国家中任选两个国家'其 一 切 可 能 的 结
果 组 成 的 基 本 事 件 有 ,#$!'$"$'#$!'$'$'#$!'"!$'#$!'""$' #$!'"' $'#$"'$' $'#$"'"! $'#$"'"" $'#$"'"' $'#$''"! $' #$''""$'#$''"'$'#"!'""$'#"!'"'$'#""'"'$'共 !2个 ! 所选两个国家都是亚洲国家的事件所包含的基本事件有,#$!'$"$'

2017年 山东省 高考数学 试卷及解析(文科)

2017年 山东省 高考数学 试卷及解析(文科)

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2) D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y 满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A .﹣B .C .﹣D .5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()1A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A .B . C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f ()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域2上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.3三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E ⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n项和T n.420.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C :=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.52017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

【数学】2017年高考真题——山东卷(文)(解析版)

【数学】2017年高考真题——山东卷(文)(解析版)

(9)设 f x A.2 B. 4
x ,0<x< 1
,若 f(a)=f(a+1),则 f = () a 2 x -1 , x 1 C.6 D.8
1
(10)若函数 ex f x e 2.71828……是自然对数的底数 在 f(x)的定义域上单调递增,则称函数 f(x)具有 M 性质,下列函数中具有 M 性质的是() A. f(x)=2-x B. f(x)=2x
(19) (本小题满分 12 分) 已知{an}是各项均为正数的等比数列,且 a1+ a2=6,a1a2= a3 (Ⅰ)求数列{an}通项公式; (Ⅱ) {bn}为各项非零的等差数列, 其前 n 项和为 Sn 知 S2n+1=bnbn+1,求数列{ Tn
bn }的前 n 项和 an
(20) (本小题满分 13 分) 已知函数 f ( x)
(6)执行程序框图,当输入的 x 值时,输入的 y 的值为 2,则空白判断框中的条件可能为()
A.x>3
B.x>4C.xFra bibliotek4D.x≤5
(7)函数 y 3sin2x+cos2x 最小正周期为() A.
2
B.
2 3
C.
D. 2
(8)如图所示的茎叶图记录了甲乙两组各 5 名工人某日的产量数据(单位:件).若这两组 数据的中位数相等,且平均值也相等,则 x 和 y 的值分别为() A 3,5 B 5,5 C 3,7 D 5,7
(17) (本小题满分 12 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 b=3, ABAC 6 ,S△ABC=3,求 A 和 a.

(完整)2017年山东省高考文科数学真题及答案,推荐文档

(完整)2017年山东省高考文科数学真题及答案,推荐文档

2017 年ft东省高考数学试卷(文科)一、选择题:本题共10 小题,每小题5 分,共50 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5 分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5 分)已知i 是虚数单位,若复数z 满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5 分)已知x,y 满足约束条件则z=x+2y 的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5 分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5 分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5 分)若执行右侧的程序框图,当输入的x 的值为4 时,输出的y 的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4C.x≤4D.x≤57.(5 分)函数y=sin2x+cos2x 的最小正周期为()A.B.C.πD.2π8.(5 分)如图所示的茎叶图记录了甲、乙两组各5 名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5 分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5 分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质,下列函数中具有M 性质的是()A.f(x)=2x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5 小题,每小题5 分,共25 分11.(5 分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5 分)若直线=1(a>0,b>0)过点(1,2),则2a+b 的最小值为.13.(5 分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5 分)已知f(x)是定义在R 上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)= .15.(5 分)在平面直角坐标系xOy 中,双曲线=1(a>0,b>0)的右支与焦点为F 的抛物线x2=2py(p>0)交于A,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12 分)某旅游爱好者计划从3 个亚洲国家A1,A2,A3和3 个欧洲国家B1,B2,B3中选择2 个国家去旅游.(Ⅰ)若从这 6 个国家中任选 2 个,求这 2 个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1 个,求这2 个国家包括A1但不包括B1的概率.17.(12 分)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,=﹣6,S△ABC=3,求 A 和a.18.(12 分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A1E⊥ 平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M 是OD 的中点,证明:平面A1EM⊥平面B1CD1.19.(12 分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n} 为各项非零的等差数列,其前n 项和为S n,已知S2n+1=b n b n+1,求数列的前n 项和T n.20.(13 分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2 时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14 分)在平面直角坐标系xOy 中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C 截直线y=1 所得线段的长度为2 .(Ⅰ)求椭圆 C 的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C 于A,B 两点,交y 轴于点M.点N 是M 关于O 的对称点,⊙N 的半径为|NO|.设D 为AB 的中点,DE,DF 与⊙N 分别相切于点E,F,求∠EDF 的最小值.2017 年ft东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10 小题,每小题5 分,共50 分。

2017年山东省高考数学试卷(文科)

2017年山东省高考数学试卷(文科)

2017年省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x ||x ﹣1|<1},N={x |x <2},则M ∩N=( ) A .(﹣1,1) B .(﹣1,2) C .(0,2) D .(1,2)2.(5分)已知i 是虚数单位,若复数z 满足zi=1+i ,则z 2=( ) A .﹣2i B .2i C .﹣2 D .23.(5分)已知x ,y 满足约束条件{x −2y +5≤0x +3≥0y ≤2则z=x +2y 的最大值是( )A .﹣3B .﹣1C .1D .34.(5分)已知cosx=34,则cos2x=( )A .﹣14B .14C .﹣18D .185.(5分)已知命题p :∃x ∈R ,x 2﹣x +1≥0.命题q :若a 2<b 2,则a <b ,下列命题为真命题的是( ) A .p ∧qB .p ∧¬qC .¬p ∧qD .¬p ∧¬q6.(5分)若执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )A .x >3B .x >4C .x ≤4D .x ≤57.(5分)函数y=√3sin2x +cos2x 的最小正周期为( )A .π2B .2π3C .πD .2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,79.(5分)设f (x )={√x ,0<x <12(x −1),x ≥1若f (a )=f (a +1),则f (1a )=( )A .2B .4C .6D .810.(5分)若函数e x f (x )(e=2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( ) A .f (x )=2﹣x B .f (x )=x 2 C .f (x )=3﹣x D .f (x )=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量a →=(2,6),b →=(﹣1,λ),若a →∥b →,则λ= .12.(5分)若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为 .13.(5分)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .14.(5分)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x ﹣2).若当x ∈[﹣3,0]时,f (x )=6﹣x ,则f (919)= .15.(5分)在平面直角坐标系xOy 中,双曲线x 2a −y 2b =1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率; (Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.17.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b=3,AB →⋅AC →=﹣6,S △ABC =3,求A 和a .18.(12分)由四棱柱ABCD ﹣A 1B 1C 1D 1截去三棱锥C 1﹣B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:A 1O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列{bn a n}的前n 项和T n .20.(13分)已知函数f (x )=13x 3﹣12ax 2,a ∈R ,(1)当a=2时,求曲线y=f (x )在点(3,f (3))处的切线方程;(2)设函数g (x )=f (x )+(x ﹣a )cosx ﹣sinx ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy 中,已知椭圆C :x 2a+y 2b =1(a >b >0)的离心率为√22,椭圆C 截直线y=1所得线段的长度为2√2.(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y=kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.2017年省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

2017年山东省高考文科数学真题和答案

2017年山东省高考文科数学真题和答案

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)= .15.(5分)在平面直角坐标系xOy 中,双曲线=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率; (Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.17.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b=3,=﹣6,S △ABC =3,求A 和a .18.(12分)由四棱柱ABCD ﹣A 1B 1C 1D 1截去三棱锥C 1﹣B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:A 1O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n+1=b n b n+1,求数列的前n 项和T n .20.(13分)已知函数f (x )=x 3﹣ax 2,a ∈R ,(1)当a=2时,求曲线y=f (x )在点(3,f (3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

2017年山东文数高考真题(含答案)

2017年山东文数高考真题(含答案)

2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

学.科.网答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;学.科.网如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =(A )()1,1- (B )()1,2-(C )()0,2(D )()1,2(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = (A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3 (4)已知3cos 4x =,则cos2x =(A)14-(B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 (A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤ (7)函数3sin 2cos 2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 (A )()2xf x -=(B )()2f x x=(C )()-3xf x =(D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b -=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为22,椭圆C截直线y =1所得线段的长度为22. (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学试题参考答案一、选择题(1) C (2) A (3) D (4) D (5) B (6) B (7) C (8) A (9) C (10) A 二、填空题 (11)3- (12)8 (13)π22+ (14)6 (15)22y x =± 三、解答题 (16)解:(Ⅰ)由题意知,从6个国家里任选两个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选两个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,,A A A A A A 共3个,学科&网则所求事件的概率为:()31155P A ==. (Ⅱ) 从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B 共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为:29P =. (17)解:因为6AB AC ⋅=-,所以cos 6bc A =-, 又 3ABC S ∆=,所以sin 6bc A =, 因此tan 1A =-, 又0A π<< 所以34A π=,又3b =,所以22c =. 由余弦定理2222cos a b c bc A =+- 得22982322()292a =+-⨯⨯⨯-=, 所以29a =(18) 证明:(Ⅰ)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A B C D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11A OCO 为平行四边形, 所以11//A O O C ,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1//AO 平面11B CD , (Ⅱ)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD ,BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥,又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD ,所以 平面1A EM ⊥平面11B CD 。

2017年山东省高考文科数学真题及答案

2017年山东省高考文科数学真题及答案

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x <2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q 6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2x B.f(x)=x2 C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)= .15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S △ABC=3,求A和a.18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM ⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n} 为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n 项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f (3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C 于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

2017年山东文数高考试题(含答案)

2017年山东文数高考试题(含答案)

2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

学.科.网答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;学.科.网如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =(A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 (2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3(4)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数3sin 2cos2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π (8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e xf x (e=2.71828 ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是(A )()2xf x -= (B )()2f x x = (C )()-3xf x = (D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x y a b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= . (15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=- ,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边。

2017年高考山东卷文数试题解析(解析版)

2017年高考山东卷文数试题解析(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ).试卷解析第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =I (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 【答案】C 【解析】试题分析:由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I ,故选C.【考点】 不等式的解法,集合的运算【点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图. (2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A )-2i (B )2i (C )-2 (D )2 【答案】A【解析】解法一:由于1i1i iz +==-,故22(1i)2i.z =-=-故选A. 解法二:由i 1i z =+得2222(i)(1i)2i 2i z z z =+⇒-=⇒=-.故选A.【考点】复数的运算【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i ;(2)1+i 1-i =i,1-i1+i=-i.(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A )-3 (B )-1 (C )1 (D )3 【答案】D【解析】 解法一:2(2)4583z x y x y y =+=-+-+=„.故选D.解法二:由2+50+302x y x x -⎧⎪⎨⎪⎩„…„画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线2+50x y -==与2y =的交点(1,2)-时,2z x y =+最大为1223z =-+⨯=.故选D.【考点】线性规划【点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值. (4)已知3cos 4x =,则cos2x = (A )14-(B )14 (C )18- (D )18【答案】D【解析】由3cos 4x =得2231cos22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D.【考点】二倍角公式【点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A )p q ∧ (B )p q ∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝ 【答案】B【解析】取0x =,可知p 为真命题;取1,2a b ==-,可知q 为假命题,故p q ⌝∧为真命题.故选B. 【考点】命题真假的判断【点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(6)执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤ 【答案】B【解析】解法一:易知4x =不满足判断框中的条件,只有B 选项符合.故选B. 序经过2log 42y ==,故判解法二:输入x 为4,要想输出y 为2,则程断框填4x >.故选B.【考点】程序框图【点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值(计数变量与累加变量的初始值)、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比较少时,可依次列出;循环次数较多时,可先循环几次,找出规律,最后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误.完善程序框图的试题多为判断框内内容的填写,这类问题常涉及,,,≥>≤<的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”,两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外,还要注意判断框内的条件不是唯一的,如5i >也可写成6i ≥. (7)函数2cos 2y x x =+的最小正周期为(A )π2 (B )2π3(C )π (D )2π 【答案】C【解析】因为π3sin 2cos 22sin 23y x x x ⎛⎫=+=+ ⎪⎝⎭,所以其最小正周期2ππ2T ==,故选C. 【考点】三角变换及三角函数的性质【点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③对于形如sin cos y a x b x ωω=+的函数,一般先把其化为()22sin y a b x ωϕ=++的形式再求周期.(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A )3,5 (B )5,5 (C )3,7 (D )5,7 【答案】A【解析】 由于甲组中位数为65,故5y =,计算得乙组平均数为66,故3x =.故选A. 【考点】茎叶图、样本的数字特征【点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦琐. 利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.(9)设()(),0121,1x x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B )4 (C )6 (D )8 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【考点】分段函数求值【点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.(10)若函数()e xf x (e=2.71828L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M性质.下列函数中具有M 性质的是(A )()2xf x -= (B )()2f x x = (C )()3xf x -= (D )()cos f x x =【答案】A【解析】对A ,e e 22x xx-⎛⎫⋅= ⎪⎝⎭,因为e 12>,所以e e 22xx x -⎛⎫⋅= ⎪⎝⎭在R 上为增函数.故选A.【考点】导数的应用【点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即转化为“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ= .【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=- 【考点】向量共线与向量的坐标运算【点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量. (3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线. (12)若直线1(00)x ya b a b+=>,> 过点(1,2),则2a +b 的最小值为 . 【答案】8【解析】由题意:121a b +=,故()1242248b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭…. 【考点】基本不等式【点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+.【考点】三视图及几何体体积的计算.【点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则. (2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体. (14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .【答案】6【解析】 因为6T =,所以(919)(1)(1)6f f f ==-= 【考点】函数奇偶性与周期性【点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式:将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值:常利用待定系数法,利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .【答案】2y x =±【解析】由抛物线定义可得:||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+=, 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【考点】抛物线的定义与性质、双曲线的几何性质【点睛】若AB 是抛物线()220y px p =>的焦点弦,设A (x 1,y 1),B (x 2,y 2).则(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游. (Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 【答案】(Ⅰ)15;(Ⅱ)2.9【解析】(1)由题意知,从6个国家里任选两个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选两个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,A A A A A A ,共3个, 则所求事件的概率为:()31155P A ==. (2) 从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,A B A B A B ,共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为:29P = 【考点】古典概型【点睛】(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所包含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=mn 求出事件A 的概率,这是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重不漏. (17)(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-u u u r u u u r,3ABC S =△,求A 和a .【答案】3=π,4A a 【解析】因为6AB AC ⋅=-u u u r u u u r,所以cos 6bc A =-,又 3ABC S ∆=,所以sin 6bc A =,因此tan 1A =-, 又0A <<π,所以34A π=,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823292a ⎛⎫=+-⨯⨯-= ⎪ ⎪⎝⎭,所以a =【考点】解三角形【点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. (18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(Ⅰ)证明见解析.(Ⅱ)证明见解析.【解析】证明:(1)取11B D 中点1O ,联结111,CO AO ,由于1111ABCD A B C D -为四棱柱,所以11//AO CO ,11=AO CO ,因此四边形11A OCO 为平行四边形,所以11//AO O C ,又1O C ⊂平面11B CD ,1AO⊄平面11B CD , 所以1//A O 平面11B CD ,(2)因为 AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EM BD ⊥,因为 11//B D BD ,所以11111EM B D A E B D ⊥⊥,又 A 1E , EM ⊂平面1A EM ,1A E EM E =I ,所以11B D ⊥平面1A EM ,又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【考点】空间中的线面位置关系【点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行. (19)(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =;(Ⅱ)2552n nn T +=-【解析】(1)设数列{}n a 的公比为q ,由题意知,1(1)6a q +=,2211a q a q =.又0n a >,解得12a =,2q =,所以2n n a =.(2)由题意知121211(21)()(21)2n n n n b b S n b +++++==+⋅,211n n n S b b ++=,10n b +≠,所以21n b n =+,令n n n b c a =,则212n n n c +=, 因此122313572121 (22222)n n n n n n T c c c --+=+++=+++++L , 又235113572121222222n n n n n T +-+=+++++L , 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭L ,所以2552n n n T +=-. 【考点】等比数列的通项,错位相减法求和.【点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. (20)(本小题满分13分)已知函数()3211,32f x x ax a =-∈R .(Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析. 【解析】(1)由题意()2f x x ax '=-,所以当2a =时,(3)0f =,()22f x x x '=-,所以()33f '=,因此,曲线()y f x =在点()()3,3f 处的切线方程是()33y x =-,即390x y --=. (2)因为 ()()() cos sin g x f x x a x x =+--,所以()()()()()()()cos sin cos sin sin g x x x a x x x x a x a x x a x x f x '=+---=----'=-, 令()sin h x x x =-,则 ()1cos 0h x x '=-…,所以()h x 在R 上单调递增. 因为()00h =.所以当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()()sin g x x a x x '=--,当(),x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(),0x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当()0,x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是()31sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是()0g a =-. (2)当0a =时,()()sin g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '…,()g x 单调递增;所以,()g x 在(),-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()()sin g x x a x x '=--,当(),0x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;当()0,x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(),x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当0x =时,()g x 取到极大值,极大值是()0g a =-; 当x a =时,()g x 取到极小值,极小值是()31sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(),a -∞和()0,+∞上单调递增,在(),0a 上单调递减,函数既有极大值,又有极小值,极大值是()31sin 6g a a a =--,极小值是()0g a =-. 当0a =时,函数()g x 在(),-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(),0-∞和(),a +∞上单调递增,在()0,a 上单调递减,函数既有极大值,又有极小值,极大值是()0g a =-,极小值是()31sin 6g a a a =--. 【考点】导数的几何意义及导数的应用【点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. (21)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y +=;(Ⅱ)EDF ∠的最小值为π3. 【解析】(1) 由椭圆的离心率为22,得()222=2a a b -, 又当1y =时,2222=-a x a b,得2222-=a a b ,所以2=4a ,2=2b .因此椭圆方程为22142+=x y . (2) 设11(,)A x y ,22(,)B x y .联立方程22=+,+2=4,⎧⎪⎨⎪⎩y kx m x y得()222214240kx x kmx m +++-=, 由0∆>,得2242m k <+ ()* 且122421km x x k +=+,因此122221m y y k +=+,所以222,2121kmm D k k ⎛⎫- ⎪++⎝⎭, 又()0,N m -,所以2222222121km m ND m k k ⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭整理得:()()22422241321m k k ND k++=+,因为NF m =,所以()()()2422222224318312121k k ND k NFkk+++==+++.令283,3t k t =+…,故21214t k ++=.所以()22216161+1112ND t t NF t t==++++. 令 1y t t =+,所以211y t'=-. 当 3t …时,0y '>,从而1y t t=+在[)3+∞,上单调递增,因此1103y t t =+…,等号当且仅当3t =时成立,此时0k =,所以 221+3=4ND NF„. 由()*得m <且0m ≠,故12NDNF …, 设2EDF θ∠=,则1sin 2NF ND θ=… ,所以θ得最小值为6π.从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k =,()(m ∈U 时,EDF ∠取得最小值为3π. 【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系【点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.。

2017年高考文科数学山东卷-答案

2017年高考文科数学山东卷-答案

山东省2017年普通高等学校招生全国统一考试 文科数学答案解析第Ⅰ卷 一、选择题1.【答案】C【解析】:02M x <<,2N x :<,所以(0,2)M N =I ,故选C .2.【答案】A【解析】∵i=1+i z ,∴1i 111i i i z +==+=-,∴222(1i)1i 2i=2i z =-=+--.故选A . 3.【答案】D【解析】在点(1,2)A -z 取最大值:max 3z =,故选D .4.【答案】D 【解析】2231cos22cos 12()148x x =-=⨯-=,故选D . 5.【答案】B 【解析】22131()024x x x -+=-+>,p 真;22||||a b a b ⇔<<,q 假,故命题p q ∧,p q ⌝∧,p q ⌝⌝∧均为假命题;命题p q ⌝∧为真命题,故选B .6.【答案】B【解析】解法一:当4x =,输出2y =,则由2log y x =输出,需要4x >,故选B .解法二:若空白判断框中的条件3x >,输入4x =,满足43>,输出426y =+=,不满足,故A 错误,若空白判断框中的条件4x >,输入4x =,满足44=,不满足3x >,输出2log 42y ==,故B 正确;若空白判断框中的条件4x ≤,输入4x =,满足44=,满足4x ≤,输出426y =+=,不满足,故C 错误,若空白判断框中的条件5x ≤,输入4x =,满足45<,满足5x ≤,输出426y =+=,不满足,故D 错误,故选B .7.【答案】C【解析】πcos22sin(2)6y x x x =+=+,所以2ω=,2ππT ω==,故选C .8.【答案】A【解析】中位数65,甲组:所以5y =;乙组:平均数64,所以3x =,故选A .9.【答案】C【解析】由图象可知:011 1.a a ⎧⎨+⎩<<,>∵()(1)f a f a =+,2[(1)1]2a a +-=,解得:14a =, ∴ 1()(4)6f f a ==,故选C .10.【答案】A【解析】D 显然不对,B 不单调,基本排除,A 和C 代入试一试.(正式解答可求导,选择题你怎么做?) 若()2x f x -=,则ee ()e 2()2x x x x f x -==g ,在R 上单调增,故选A . 第Ⅱ卷二.填空题11.【答案】3- 【解析】2631λλ=⇒=--,故为3-. 12.【答案】8【解析】点(1,2)代入直线方程:121a b +=∴1242(2)()448a b a b a b a b b a +=++=+++≥,最小值为8.13.【答案】π22+ 【解析】2π112(π11)4222V =⨯⨯+÷⨯=+g g . 14.【答案】6【解析】由(4)(2)f x f x +=-知周期为6,∴(919)(1)(1)6f f f ==-=.15.【答案】y = 【解析】∵2p OF =,2A p AF y =+,2B p BF y =+由||||4||AF BF OF +=,可得:2A B y y p p ++=, ∴A B y y p +=, 联立:2222221x py x y ab ⎧=⎪⎨-=⎪⎩,,消去x 得:2222220a y b py a b -+=g ,由韦达定理:222A B b p y y a +=g ,∴ 222222b p p a b a =⇒=g ,∴渐近线方程为:b y x a =±=. 三、解答题16. 【答案】(1)P (都是亚洲国家)31155==. (2)P (包括1A 但不包括1B )29=. 【解析】(1)从这6个国家中任选2个,所有可能事件为:12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ;23(,)A A ,21(,)A B ,22(,)A B ,23(,)A B ;31(,)A B ,32(,)A B ,33(,)A B ;12(,)B B ,13(,)B B ;23(,)B B ;共15种 都是亚洲国家的可能事件为:12(,)A A ,13(,)A A ,23(,)A A ,共3种,∴P (都是亚洲国家)31155==. (2)从亚洲国家和欧洲国家中各任选1个,所有可能事件为:11(,)A B ,12(,)A B ,13(,)A B ;21(,)A B ,22(,)A B ,23(,)A B ;31(,)A B ,32(,)A B ,33(,)A B ;共9种.包括1A 但不包括1B 的可能事件为:12(,)A B ,13(,)A B ,共2种,∴P (包括1A 但不包括1B )29=. 17. 【答案】3π4A =,a 【解析】6AB AC =-u u u r u u u r g ,3ABC S =△,∴ cos 61sin 3,2bc A bc A =-⎧⎪⎨=⎪⎩,化简:tan 1A =-,解得:3π4A =,∴bc =由3b =,得:c =2222cos 981229a b c bc A =+-=++=,∴a18.【答案】(1)证明:设11B D 中点为F ,连接1A F ,∵1111ABCD A B C D -为四棱柱,∴1A F OC ∥,且1A F OC =,∴四边形1A FCO 为平行四边形,∴1AO FC ∥,又1AO ⊄平面11B CD ,且FC ⊂平面11B CD , ∴1A O ∥平面11B CD .(2)证明:∵四边形ABCD 为正方形,∴ BD AC ⊥,∵E 为AD 的中点,M 是OD 的中点,∴//EM AC ,∴BD EM ⊥,∵1A E ⊥平面ABCD ,BD ABCD ⊂,∴1A E BD ⊥,∵1A E ⊂平面1A EM ,EM ⊂平面1A EM ,且1A E EM E =I ,∴BD ⊥平面1A EM ,又11//B D BD ,∴11B D ⊥平面1A EM ,∵11B D 平面11B CD ,∴平面11B CD ⊥平面1A EM ,即:平面1A EM ⊥平面11B CD .【解析】证明:(1)设11B D 中点为F ,连接1A F ,∵1111ABCD A B C D -为四棱柱,∴1A F OC ∥,且1A F OC =,∴四边形1A FCO 为平行四边形,∴1AO FC ∥,又1AO ⊄平面11B CD ,且FC ⊂平面11B CD , ∴1A O ∥平面11B CD .(2)证明: ∵四边形ABCD 为正方形,∴ BD AC ⊥,∵E 为AD 的中点,M 是OD 的中点,∴//EM AC ,∴BD EM ⊥,∵1A E ⊥平面ABCD ,BD ABCD ⊂,∴1A E BD ⊥,∵1A E ⊂平面1A EM ,EM ⊂平面1A EM ,且1A E EM E =I ,∴BD ⊥平面1A EM ,又11//B D BD ,∴11B D ⊥平面1A EM ,∵11B D 平面11B CD ,∴平面11B CD ⊥平面1A EM ,即:平面1A EM ⊥平面11B CD .19.【答案】(1)2n n a =(2) 2552n nn T +=- 【解析】解:(1)设{}n a 公比为q ,由题意0,0n a q >>,由12 6a a +=,123a a a =,1121116a a q a a q a q +=⎧⎪⎨=⎪⎩g ,122a q =⎧⎨=⎩,∴2n n a =;(2)设{}n b 首项为1b ,公差为d ,∴21111(21)2(21)(21)()(21)2n n n n S n b d n b nd n b +++=++=++=+g g , 又211n n n S b b ++=,∴21n b n =+,∴212n nn b n a +=, ∴12335721 2222n n n T +=++++L ①, ∴012-135**** ****n n n T +=++++L ② -②①得:1211111211212532()32(1)52222222n n n n n nn n n T --+++=++++-=+--=-L . 20.【答案】(1)39y x =-(2)3211()()cos sin 32g x x ax x a x x =-+--,∴2'()()sin ()(sin )g x x ax x a x x a x x =---=--,∵sin 0 (0),sin 0 (0),sin 0 (0),x x x x x x x x x -⎧⎪-==⎨⎪-⎩>><<令'()0g x =,得:x a =或0x =.①当0a =时,'()0g x ≥恒成立,()g x 单调增,无极值. ②当0a <时在(,)a -∞上,'()0g x >,()g x 单调增;在(,0)a 上,'()0g x <,()g x 单调减;在(0,)+∞上,'()0g x >,()g x 单调增,∴x a =为极大点,()g x 有极大值:3max 1()()sin 6g x g a a a ==--,0x =为极小点,()g x 有极小值:min ()(0)g x g a ==-. ③当0a >时,在(,0)-∞上,'()0g x >,()g x 单调增;在(0,)a 上,'()0g x <,()g x 单调减;在(,)a +∞上,'()0g x >,()g x 单调增,∴ 0x =为极大点,()g x 有极大值:max ()(0)g x g a ==-,x a =为极小点,()g x 有极小值:3min 1()()sin 6g x g a a a ==--. 综上所述,当0a =时,'()0g x ≥恒成立,()g x 单调增,无极值;当0a <时,在(,)a -∞和(0,)+∞上,()g x 单调增;在(,0)a 上,()g x 单调减;3max 1()()sin 6g x g a a a ==--;min ()(0)g x g a ==-,当0a >时,在(,0)-∞和(,)a +∞上,()g x 单调增;在(0,)a 上,()g x 单调减;max ()(0)g x g a ==-;3min 1()()sin 6g x g a a a ==--. 【解析】(1)解:当2a =时,321()3f x x x =-,∴2'()2f x x x =-,∴(3)0f =,'(3)3k f ==,∴切线方程为:()033y x -=-,即39y x =-. (2)3211()()cos sin 32g x x ax x a x x =-+--,∴2'()()sin ()(sin )g x x ax x a x x a x x =---=--,∵sin 0 (0),sin 0 (0),sin 0 (0),x x x x x x x x x -⎧⎪-==⎨⎪-⎩>><<令'()0g x =,得:x a =或0x =.①当0a =时,'()0g x ≥恒成立,()g x 单调增,无极值. ②当0a <时在(,)a -∞上,'()0g x >,()g x 单调增;在(,0)a 上,'()0g x <,()g x 单调减;在(0,)+∞上,'()0g x >,()g x 单调增,∴x a =为极大点,()g x 有极大值:3max 1()()sin 6g x g a a a ==--,0x =为极小点,()g x 有极小值:min ()(0)g x g a ==-. ③当0a >时,在(,0)-∞上,'()0g x >,()g x 单调增;在(0,)a 上,'()0g x <,()g x 单调减;在(,)a +∞上,'()0g x >,()g x 单调增,∴ 0x =为极大点,()g x 有极大值:max ()(0)g x g a ==-,x a =为极小点,()g x 有极小值:3min 1()()sin 6g x g a a a ==--. 综上所述,当0a =时,'()0g x ≥恒成立,()g x 单调增,无极值;当0a <时,在(,)a -∞和(0,)+∞上,()g x 单调增;在(,0)a 上,()g x 单调减;3max 1()()sin 6g x g a a a ==--;min ()(0)g x g a ==-,当0a >时,在(,0)-∞和(,)a +∞上,()g x 单调增;在(0,)a 上,()g x 单调减;max ()(0)g x g a ==-;3min 1()()sin 6g x g a a a ==--. 21.【答案】(1)22142x y += (2)min π3EDF ∠=【解析】解:(1)2e =,可知:222a b =,由题意:椭圆经过点,代入椭圆方程:222112b b +=,∴22b =,24a =,∴椭圆方程为:22142x y +=; (2)(0,)M m ,(0,)N m -,N e 半径||r m =,设11(,)A x y ,22 (,)B x y ,由题意k 存在,直线与椭圆联立: 22,1, 42y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:222(12)4240k x kmx m +++-=,由韦达定理:122412km x x k +=-+, 222222164(12)(24)8(42)0k m k m k m ∆=-+-=-+>,得:2242m k +<,消去x 得:2222(12)240k y my m k +-+-=,由韦达定理:122212m y y k+=+, ∴AB 中点D 的坐标为222(,)1212km m k k -++.由圆的切线性质,12EDN EDF ∠=∠,EDF ∠最小即EDN ∠ 最小.在Rt EDN △中,||sin EN m EDN DN DN ∠==.|2DN m == ∴sin EDN ∠=令2121t k =+≥.∴22422221113()()1311522(2)(12)44t t k k k t t --++++==--++. 当12t <,即12t >时,单调增,1t =时有最大值1.sin EDN ∠最小值为12.min π6EDN ∠=.∴ min π3EDF ∠=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2) D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣ B.C.﹣ D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E ⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n=b n b n+1,求数列+1的前n项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2) D.(1,2)【解答】解:集合M={x||x﹣1|<1}=(0,2),N={x|x<2}=(﹣∞,2),∴M∩N=(0,2),故选:C.2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.2【解答】解:∵复数z满足zi=1+i,∴z==1﹣i,∴z2=﹣2i,故选:A.3.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.3【解答】解:x,y满足约束条件的可行域如图:目标函数z=x+2y经过可行域的A时,目标函数取得最大值,由:解得A(﹣1,2),目标函数的最大值为:﹣1+2×2=3.故选:D.4.(5分)已知cosx=,则cos2x=()A.﹣ B.C.﹣ D.【解答】解:∵根据余弦函数的倍角公式cos2x=2cos2x﹣1,且cosx=,∴cos2x=2×﹣1=.故选:D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【解答】解:命题p:∃x=0∈R,使x2﹣x+1≥0成立.故命题p为真命题;当a=1,b=﹣2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤5【解答】解:方法一:当x=4,输出y=2,则由y=log2x输出,需要x>4,故选B.方法二:若空白判断框中的条件x>3,输入x=4,满足4>3,输出y=4+2=6,不满足,故A错误,若空白判断框中的条件x>4,输入x=4,满足4=4,不满足x>3,输出y=y=log24=2,故B正确;若空白判断框中的条件x≤4,输入x=4,满足4=4,满足x≤4,输出y=4+2=6,不满足,故C错误,若空白判断框中的条件x≤5,输入x=4,满足4≤5,满足x≤5,输出y=4+2=6,不满足,故D错误,故选B.7.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,7【解答】解:由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即y=5,则乙组数据的平均数为:66,故x=3,故选:A.9.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.8【解答】解:当a∈(0,1)时,f(x)=,若f(a)=f(a+1),可得=2a,解得a=,则:f()=f(4)=2(4﹣1)=6.当a∈[1,+∞)时.f(x)=,若f(a)=f(a+1),可得2(a﹣1)=2a,显然无解.故选:C.10.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx【解答】解:当f(x)=2﹣x时,函数e x f(x)=()x在R上单调递增,函数f (x)具有M性质,故选:A二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=﹣3.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)=6.【解答】解:由f(x+4)=f(x﹣2).则f(x+6)=f(x),∴f(x)为周期为6的周期函数,f(919)=f(153×6+1)=f(1),由f(x)是定义在R上的偶函数,则f(1)=f(﹣1),当x∈[﹣3,0]时,f(x)=6﹣x,f(﹣1)=6﹣(﹣1)=6,∴f(919)=6,故答案为:6.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.【解答】解:(Ⅰ)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.从这6个国家中任选2个,基本事件总数n==15,这2个国家都是亚洲国家包含的基本事件个数m=,∴这2个国家都是亚洲国家的概率P===.(Ⅱ)从亚洲国家和欧洲国家中各任选1个,包含的基本事件个数为9个,分别为:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),这2个国家包括A1但不包括B1包含的基本事件有:(A1,B2),(A1,B3),共2个,∴这2个国家包括A1但不包括B1的概率P=.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S=3,求A和a.△ABC【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S=bcsinA=3,②△ABC∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E ⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,∴四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,A1G OC,∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.(Ⅱ)四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,BD B1D1,∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,=(2n+1)b n+1,所以S2n+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.【解答】解:(Ⅰ)∵椭圆C的离心率为,∴=,a2=2b2,∵椭圆C截直线y=1所得线段的长度为2,∴椭圆C过点(,1),∴+=1,∴b2=2,a2=4,∴椭圆C的方程为+=1.(Ⅱ)设A,B的横坐标为x1,x2,则A(x1,kx1+m),B(x2,kx2+m),D(,+m),联立可得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2=﹣,∴D(﹣,),∵M(0,m),则N(0,﹣m),∴⊙N的半径为|m|,|DN|==,设∠EDF=α,∴sin====,令y=,则y′=,当k=0时,sin取得最小值,最小值为.∴∠EDF的最小值是60°.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档