九年级数学投影与三视图
完整版浙教版九年级下册数学第三章 投影与三视图含答案
浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或72、如图是由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是( )A. B. C. D.3、已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.15πcm 2B.3 cm 2C.60πcmD.30πcm 24、若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cmB.9cmC.12cmD.18cm5、下图是由5个相同大小的正方体搭成的几何体,则它的俯视图在A,B,C,D中的选项是()A. B. C. D.6、如图已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为()A.2㎝B.4㎝C.1㎝D.8㎝7、由木炭,铅笔,钢笔等,以线条来画出物象明暗的单色面,称作素描.如图是素描初学者常用的一种石膏几何体,该几何体的形状可以看成是用一个平面截圆柱体得到的,它的俯视图是()A. B. C. D.8、如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B. C. D.9、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同10、如图所示的几何体,它的俯视图是()A. B. C. D.11、如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A. B. C. D.12、下列四个几何体,从正面和上面看所得到的视图都为长方形的是()A. B. C. D.13、下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥14、如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点出发,沿表面爬到的中点处,则最短路线长为()A. B. C. D.15、下列图形中,哪一个是正方体的展开图()A. B. C. D.二、填空题(共10题,共计30分)16、如图是正方体的展开图,则原正方体数字“-3”面的对面数字是________.17、主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.因此,必须注意主视图与俯视图的长对正,主视图与________的高平齐,左视图与________的宽相等.18、将一个边长为10cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.19、如图是正方体的表面展开图,把它折成正方体后“细”字对面的字是________.20、下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).21、如图,是一个长方体的三视图(单位:cm),这个长方形的体积是________cm3.22、长方体的主视图、俯视图如图,则其左视图面积为________ .23、数学课上,小林同学用n个小立方块搭成一个几何体,从三个方向看到的图形如图所示,则n的值是________ .24、某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是________.25、如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________ .①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________ 米.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).28、如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.29、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.30、如图是一个正方体盒子的侧面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字是一对相反数.(1)请把﹣10,8,10,﹣3,﹣8,3分别填入六个小正方形中.(2)若某相对两个面上的数字分别满足关系式和﹣5,求x的值.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、C6、A7、D8、D9、B10、C11、A12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
湘教版九年级下册数学 第3章 三视图
知3-讲
特别警示:圆锥与棱锥的三视图的区别:圆锥的俯视图 的外轮廓线是圆;棱锥的俯视图的外轮廓线是多边形.
三视图
主视图 左视图
三视图
画法
俯视图
应用
课后作业
作业1 必做:请完成教材课后习题 补充:
作业2
知2-讲
例3 一种机器上有一个进行转动的零件叫燕尾槽(如图 3.3-7),请画出它的三视图.
解:这个燕尾槽的三视图如图3.3-8.
知2-讲
知识点 3 由三视图确定几何体
知3-讲
1. 由三视图描述几何体的方法:由三视图想象几何体的形 状,首先分别根据主视图、俯视图和左视图想象几何体
的正面、上面和左面,然后综合起来考虑整体形状. 特别提醒:由三视图描述几何体的形状时,要对三视图进
方画出左视图,与主视图 高平齐,与俯视图宽相等, 图3.3-3①中的几何体的三 视图如图3.3-3②所示.
速记口诀: 视图位置要摆明, 画图规则要记清. 主俯视图长对正, 左俯视图宽相等, 主左视图高平齐, 实线虚线应分清.
知2-讲
知2-讲
3. 画三视图的规定:画三视图时,看得见的部分的轮廓线 画成实线,因被其他部分遮挡而看不见的部分的轮廓线 画成虚线.
(4)利用由三视图画几何体与由几何体画三视图的互逆过程,反
复练习,不断总结方法.
3. 常见几何体的三视图
知3-讲
知3-讲
1. 几何体的三视图和展开图是平面图形,几何体、三视 图和展开图中,三者知其一,就能确定另外两种图形, 即三者之间可以互相转化.
2. 对于稍复杂的视图,可先将其化成几个简单的图形, 再综合分析.
视图在主视图的右边. 主视图反映物体的长和高,俯视
图反映物体的长和宽,左视图反映物体的高和宽.
人教版九年级数学下册投影与视图《三视图(第4课时)》示范教学课件
由图中所标尺寸可知,小圆柱高为 2,底面圆的半径为 2,大圆柱高为 8,底面圆的半径为 4.
8
8
2
2
8
8
2
解:由三视图可知, V小圆柱=π×22×2=8π, V大圆柱=π×42×8=128π, 故 V=V小圆柱+V大圆柱=136π. 所以这个几何体的体积为 136π.
根据三视图,求几何体的体积.
2
(1)根据给出的三视图确定立体图形,并确定立体图形的长、宽、高、底面半径等; (2)根据已知数据,结合几何体的体积公式求出立体图形的体积.
由三视图求立体图形的体积的方法:
10
20
10
例1 根据三视图,求几何体的表面积,并画出这个几何体的展开图.
例2 根据三视图,求几何体的体积.
分析:由三视图可知,该几何体是由一个半圆柱与一个长方体构成的组合体,其中上半部分为半圆柱,下半部分为长方体.
由图中所标尺寸可知,长方体的长、宽、高分别为 4,2,6,半圆柱高为 2,底面半圆的半径为 2.
2
6
4
2
例2 根据三视图,求几何体的体积.
2
64Βιβλιοθήκη 2三视图的有关计算
由三视图求立体图形的面积
由三视图求立体图形的面积的方法:
(1)根据给出的三视图确定立体图形,并确定立体图形的长、宽、高; (2)将立体图形展开成一个平面图形(展开图),观察它的组成部分; (3)根据已知数据,求出展开图的面积.
根据三视图,求几何体的体积.
分析:由三视图可知,该几何体由两个圆柱组成,其中小圆柱在大圆柱的正上方.
三视图(第4课时)
人教版九年级数学下册投影与视图
在实际生活中,我们研究一个立体图形(实物)通常要知道它的表面积和体积,那么根据立体图形(实物)的三视图能否求出它的表面积和体积呢?
投影与三视图小结
确定图中光源的类型,位置和第三物体的影子
C
A
M
E BF D N
如图所示,在房子外的屋檐E处安有一台监视器,
房子前有一面落地的广告牌,那么监视器的盲区在
( D)
A.△ACE
B.△BFD C.四边形BCED
D.△ABD
与 一盏路灯相对,有一玻璃幕墙,幕墙前面的地 面上有一盆花和一棵树。晚上,幕墙反射路灯灯光 形成了那盆花的影子(如图所示),树影是路灯灯光 形成的。你能确定此时路灯光源的位置吗?
P
某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60角, 房屋向南的窗户AB高1.6米,现要在窗子外面的上方安装一个水 平遮阳蓬AC(如图所示). 1)当遮阳蓬AC的宽度在什么范围时,太阳光线直接射入室内? 2)当遮阳蓬AC的宽度在什么范围时,太阳光线不能直接射入室内
主视图 左视图
俯视图
C
主视图 左视图 俯视图
俯视图
D
主视图 左视图 俯视图
2 画出图中正六棱柱的主视图,左视图和俯视图。
主视图
左视图
俯视图
3 补全下列几何体的三视图:
主视图 俯视图
左视图
主视图 俯视图
左视图
4 一个四棱柱的俯视图如右图所示,则这个四
棱柱的主视图和左视图可能是( D )
(A)
(B)
影和手影都是在灯光照射下形成的影子. 它们是中心投影
三视图
主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图
画物体的三视图时,要符合如下原则: 长对正,高平齐,宽相等.
在画图时,看的见部分的轮廓通常画成实线,看不见部 分的轮廓线通常画成虚线.
初中数学三视图
从顶部方向观察物体所得到的 视图,反映物体的长和宽。
左视图
从左侧方向观察物体所得到的 视图,反映物体的高和宽。
作用
三视图能够全面、准确地表达 物体的形状、大小和空间位置 关系,是工程制图中不可或缺
的一部分。
正投影原理与性质
01
正投影定义
平行投影的一种,光线与投影面垂直时的投影。
02
正投影性质
艺术家利用三视图原理绘制立体造型的草图或效果图。
工程制图
工程师运用三视图进行工程设计和施工图的绘制。
06
总结回顾与拓展延伸
关键知识点总结回顾
三视图基本概念
正视图、侧视图、俯视图
简单几何体的三视图
如长方体、正方体、圆柱、圆锥等
三视图的投影规律
长对正、高平齐、宽相等
组合体的三视图
识别组合体的构成方式,画出其三视图
想象与表达
创意实践
引导学生通过想象和描述来表达空间形状 和位置关系,培养他们的空间想象力。
鼓励学生运用所学知识进行创意实践,如 设计建筑模型、制作立体拼图等,提高他 们的实践能力和创新意识。
THANKS
感谢观看
不同视角下的视图。例如,通过主视图和俯视图可 以确定物体的长度和宽度,进而推算出左视图的形 状和大小。同样地,通过左视图和俯视图也可以确 定物体的高度和宽度,进而推算出主视图的形状和 大小。这种转换方法在工程制图中非常实用,可以 帮助工程师更加准确地理解和表达物体的形状和结 构。
02
绘制三视图方法与技巧
确定主视图、俯视图和左视图
主视图
左视图
从正面看到的图形,反映物体的前面 形状。
从左面看到的图形,反映物体的左面 形状。
新人教版九年级数学下册第29章投影与视图29.2三视图第1课时
•
10、低头要有勇气,抬头要有低气。0 9:24:31 09:24:3 109:24 4/4/202 1 9:24:31 AM
•
11、人总是珍惜为得到。21.4.409:24:3 109:24 Apr-214 -Apr-21
•
12、人乱于心,不宽余请。09:24:3109 :24:310 9:24Sunday, April 04, 2021
主
左
视
三图
视 图
棱
柱
俯 视 图
2. 画出半球和圆锥的三视图.
主 视
半图 圆
俯 视 图
左 视 图
主
左
视
圆图
视 图
锥
俯
· 视
图
3. 图中的立体图形可以看成由哪些基本几何体经过怎样的变化得到 的?
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.4 21.4.4S unday, April 04, 2021
柱
俯 视 图
主
左
视
三图
视 图
棱
柱
俯 视 图
主 视
四图 棱 锥
俯 视 图
左
主
左
视
视
视
图
球图
图
俯 视 图
例2 画出图所示的支架(一 种小零件)的三视图.
分析:支架的现状:由两个大小不等的长方体构成的组合体,画三视图时 要注意这两个长方体的上下、前后位置关系.
解:图是支架的三视图.
主
左
视
视
图
图
俯 视 图
在水平面内得到的由上向下观察物体的视图,叫做俯视图
在侧面内得到由左向右观察物体的视图,叫做左视图.
九年级数学上册第四章视图与投影
九年级数学上册第四章视图与投影『一』.知识归纳:●知识点1 三视图:主视图、俯视图和左视图三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象.俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象.注:①视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
②在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
③在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
●知识点2 投影太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。
——区分平行投影和中心投影:①观察光源;②观察影子。
从正面、上面、侧面看到的图形就是常见的正投影,也就是视图,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:1.线段垂直于投影面时,投影为一点;2.线段平行于投影面时,投影长度等于线段的实际长度;3.线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:1.平面图形和投影面平行的情况下,其投影为实际形状;2.平面图形和投影面垂直的情况下,其投影为一线段;3.平面图形和投影面倾斜的情况下,其投影小于实际的形状。
『二』典型例题解析【视图类】★例题解析1 如图所示的几何体的俯视图是( B ).A B C D★例题解析2 上图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( D )★例题解析 3 下图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 BA.5 B.6 C.7 D.8★例题解析 4 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.★例题解析 5 在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( A ).★例题解析6 如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( C ).A. 4B. 6C. 7D.8【投影类】★例题解析7 比例求高“投影”类题如图1,小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为____48____米.变化1 如果物体的投影一部分落在平地上,另一部分落在坡面上:如图2,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m1 42 5 36第7题图图2变化2 如果物体的投影一部分落在平地上,另一部分落在台阶上:兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图3,若此时落在地面上的影长为4.4米,则树高为()(A)11.5米(B)11.75米(C)11.8米(D)12.25米变化3 如果将上题中的DE改为斜坡,再改变部分已知条件:梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图4,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2 m,α=o.在同一DE=4m ,BD=20m,DE与地面的夹角30时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(结果保留两个有效数字)★例题解析8 三角函数求高“投影”类题如图5,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为 1.16m,则玲玲的身高约为m.(精确到0.01m)变化1如果将太阳光改为照明灯,再适当改变已知条件和问题的形式:如图6所示,点P表示广场上的一盏照明灯.若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).★例题解析9 相似三角形求高“投影”类题如图7,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具。
2023九年级数学下册第25章投影与视图25.2三视图第2课时视图的应用教案(新版)沪科版
(1)主视图是从物体的_____面看到的图形。
(2)左视图是从物体的_____面看到的图形。
(3)俯视图是从物体的_____面看到的图形。
(4)一个正方体的主视图、左视图和俯视图分别是_____、_____和_____。
(5)一个圆柱的主视图、左视图和俯视图分别是_____、_____和_____。
3. 能够运用三视图解决实际问题,提高空间想象能力。
本节课主要讲解三视图的应用,通过具体的实例让学生了解三视图在实际问题中的应用,培养学生的空间想象能力和解决问题的能力。
二、核心素养目标
1. 发展学生的空间想象能力,能够通过三视图直观地识别和想象立体图形。
2. 培养学生的逻辑思维能力,通过分析三视图之间的关系,提高解决问题的能力。
(2)一个圆柱体的高为h,底面圆的半径为r,求它的体积。
(3)建筑设计中,一个房间的长、宽、高分别为10m、8m和3.5m,请绘制这个房间的主视图、左视图和俯视图。
希望大家在完成作业的过程中能够巩固所学知识,提高自己的空间想象能力和问题解决能力。如果有任何疑问,请随时提问。祝大家学习进步!
2023九年级数学下册 第25章 投影与视图25.2 三视图第2课时 视图的应用教案 (新版)沪科版
课题:
科目:班Βιβλιοθήκη :课时:计划1课时教师:
单位:
一、教学内容
【教材章节】沪科版九年级数学下册第25章《投影与视图》25.2节《三视图》第2课时
【教学内容】
1. 掌握三视图的基本概念及相互之间的关系。
2. 学会通过三视图来识别和绘制立体图形。
3. 问题解决:学生们学会了如何将实际问题转化为三视图的形式,并能够运用三视图来解决问题,提高了解决问题的能力。
九年级数学 投影与视图
投影与视图一、中心投影1.定义:从一个点发出的光线形成的投影称为中心投影。
2.性质:(1)图形中的两个三角形相似;(2)物体上的点,影子上的对应点及光源在一条直线上。
3.特点:(1)等高物体垂直地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长。
(2)等长物体平行地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短4.作图方法:(1)物体上的点和影子上的对应点的连线交于同一点,这点即为光源;(2)过光源和物体的顶端作一条直线与投影面的交点与物体底端的线段就是影长。
二、平行投影1.定义:平行光线形成的投影称为平行投影。
当平行光线与投影面垂直时,这种投影称为正投影2.一天中影子移动方向:正西到正北到正东三、视图1.三视图包括:主视图、左视图、俯视图。
注:在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线;用尺子准确量出长度画图.2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。
注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。
在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。
一.中心投影定义1.中心投影的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下列投影中,是中心投影的是()4.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能5.下列结论正确的有( )①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与物体的长短有关.A.个B.个C.个D.个6.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图所示,则亮的照明灯是()A.a灯B.b灯C.c灯D.d灯7.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是( )A. 越来越小 B .越来越大 C .大小不变 D .不能确定二.中心投影相关求长度1. 身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子________(填“长”或“短”)2. 如图,小芸用灯泡O 照射一个矩形相框ABCD ,在墙上形成影子''''D C B A .现测得 OA=20cm ,cm OA 50' ,相框ABCD 的面积为 80cm 2,则影子''''D C B A 的面积为_______.3. 小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他再向前步行12米到达Q 时,发现影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6米,两个路灯的高度都是9.6m ,且AP=BQ=x 米.(1) 求两个路灯之间的距离;(2) 小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由.4. 如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.三.中心投影相关作图1.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.2.学习投影之后,小刚、小雯利用灯光下自己的影子长度来测量一路灯的高度,如图,在同一时间,身高为1.6m的小刚(AB)的影子BC长3m,而小雯(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1) 请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G.(2) 求路灯灯泡的垂直高度GH.(3) 如果小刚沿线段BH向小雯(点H)走去,当小明走到BH中点'B处时,求其影子''CB的长.3.如图,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他在某一灯光下的影子为DA,继续按此速度行走2秒到达点F,此时他在同一灯光下的影子落在其身后的线段DF上,测得此时影长MF为1.2米;然后他将速度提高到原来的1.5倍,再行走2秒到达点H,他在同一灯光下的影子恰好是HB,图中线段CD,EF,GH表示小明的身高.(1)请在图中画出小明的影子MF;(2)若A,B两地相距12米,则小明原来的速度为.四.灯光下影子变化情况1.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子().A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短2.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定3.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4.如图所示,在一条笔直的小路上有一盏路灯,晚上小雷从点B处直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()A.B. C.D.5.我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( )A. y=x B .y=x+3 C .x y 3 D .y=(x-3)2+3 6.如图,路灯(P 点)距地面9米,身高1.5米的小云从距路灯的底部(O 点)20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?五.平行投影定义及性质1.下列光线所形成是平行投影的是( )A .太阳光线B .台灯的光线C .手电筒的光线D .路灯的光线2.如图的Rt △ABC 绕直角边旋转一周,所得几何体的正投影是( )A .直角三角形B .等腰三角形C .等边三角形D .圆3.(五育月考)在一个晴朗的上午,乐乐拿着一块长方形木板在地面上形成的投影中不可能的是( )4.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形5.圆形的物体在太阳光的投影下是( )A .圆形B .椭圆形C .线段D .以上都有可能6.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.7.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是()六.阳光下影子变化情况1.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律2.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时C.上午10时D.上午12时4.(12月志达月考)6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①5.如图:公路旁有两个高度相等的路灯AB、CD.数学老师杨柳上午上学时发现高1米的木棒的影子为2米,此时路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.(1)在图中画出杨老师的位置,并画出光线,标明(太阳光、灯光).(2)杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.6.如图(1)中间是一盏路灯,周围有一圈栏杆,图(2)(3)表示的是这些栏杆的影子,但没有画完,请你把图(2)(3)补充完整.七.与平行投影有关作图与计算1.如图,AB和DE是直立在地面上的两根立柱.AB=4m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8m,请你计算DE的长.2. 某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CB=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.3.(17-18期末)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律。
初中数学知识点精讲精析 三视图知识讲解
29.2 三视图1.三视图概念:物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。
如图 (1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等画三视图的注意点:1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。
2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
典型例题例1.画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”。
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:例2.画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构俯视图左视图主视图成的组合体.画三视四时要注意这两个长方体的上下、前后位置关系.解:如图29.2-7是支架的三视图例3.右图是一根钢管的直观图,画出它的三视图分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.解:图如图29.2-7是钢管的三视图,其中的虚线表示钢管的内壁.例4.如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
2024年中考数学提高复习讲义:投影与三视图
投影与三视图知识梳理1.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状及几何体的长、宽、高;②根据实线和虚线想象几何体看得见和看不见的轮廓线;③熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;④利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.规律方法指导:(1)画几何体的三视图.画三视图时应注意三视图的位置要准确,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,主、俯视图“长对正”,主、左视图“高平齐”,俯、左视图“宽相等”.(2)由三视图想象物体的形状.根据三视图想象物体的形状,一般由俯视图确定物体在平面上的形状,由左视图、主视图想象它空间的形状,从而确定物体的形状.2.画图方法画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.要点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其次,要注意正确地用虚线表示看不到的轮廓线;第三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.典型例题例 1下列简单几何体的主视图为( ).解析本题主要考查对立体图形的三视图的识读.该立体图形的左视图和右视图均为C,主视图为B,俯视图为 A,因此该题的正确答案是 B.例 2三棱柱的三视图如图所示,△EFG 中,EF=8cm,EG=12cm,∠EGF=30°,则AB 的长为 cm.解析本查考查主视图、左视图、俯视图三者之间的关系.若要求AB 的长,也就是俯视图 FG 边上的高,即该题就换为解三角形.过 E 作 EH⊥FG 于点 H,因此 AB=EH,所以在Rt△EHG 中,AB=EH=EG·sin∠EGF=6cm.例 3一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 .解析本题主要考查依据左视图和俯视图,来判断正视图的边长.根据主视图、左视图、俯视图三者之间的关系可以确定主视图的边长为4 和8,所以主视图的面积为32.双基训练1.在背对着路灯行走的过程中,行人在地面上的影子( ).A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短2.下列命题中,正确的有( ).(1)太阳光线可以看作平行光线,这样的光线形成的投影是平行投影;(2)路灯发出的光可以看作平行线,形成的投影是平行投影;(3)物体投影的长短,在任何光线下都只与物体的长短有关;(4)物体在任何光线的照射下,其投影的方向都是相同的.A. 1个B. 2 个C. 3个D. 4 个3.下列几何体中,其中其侧面的主视图是四边形的是( ).4.下列四个立体图形中,主视图为圆的是( ).5.下列几何体的主视图、左视图、俯视图中,有两个是三角形的是( ).6.下列几何体的左视图是( ).7.如下图所示的几何体,它的俯视图为( ).8.如图所示,有几个小正方体搭成的一个几何体,则它的主视图为( ).9.如图所示,由一个圆锥和两个正方体组成的立体图形,它的俯视图为( ).10.如图所示,水平放置的长方体的底面是长为5、宽为4 的矩形,且它的主视图的面积为 20,则长方体的体积为 .11..如图所示,一根直立于水平面上的木杆AB 在灯光下形成影子,当木杆绕点 A 按逆时针方向旋转直至到达地面时,影子的长度发生变化,设AB 垂直于地面的影长为AC(假定. AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC; ③n=AB;;④影子的长度先增大后减小,其中正确结论的序号是 .能力提升12.一个几何体的三视图如图所示,那么这个几何体是( ).13.下面的三视图所对应的物体是( ).14.如图所示是由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是( ).15.如图所示,灯M 在横杆AB 的上方,AB 在灯M下的影子为CD,且有AB∥CD,灯M到AB 与CD的距离分别为3和5,若AB=12,则影长CD= .16.如图所示,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 .拓展资源17.已知一个几何体的三视图如图所示,则该几何体的体积是多少?1-5 BADDC 6-9 AABD10.80 11. ①③④12-14 ADB 15.20 16. π/217.根据几何体的三视图得:该几何体由两个大小不同的长方体组成.小的长方体的长、宽、高分别为5、4、1.大的长方体的长、宽、高分别为5、5、4.则有几何体的体积=5×4×1+5×5×4=120.。
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
九年级数学下册第29章投影与视图29.2三视图29.2.1三视图
第二十三页,共二十四页。
内容(nèiróng)总结
No 九年级下册。自主学习任务:阅读课本94页-97页并学习101名师微课,掌握下列知识要点。你能
说出这三个视图分别是从哪个方向观察这本书时得到的吗。1.确定(quèdìng)主视图的位置,画出主视 图。2. 在主视图正下方画出俯视图,注意与主视图“长对正”。( )。( )。做一做下面的 题目,看谁做得又快又准确。2.预习课本并学习101名师微课从三视图想像立体图形,完成下一节自 主学习检测题目。B组
宽
宽
新知讲解
主视图
正面
水平面
俯视图
左 视 图 侧面
主视图 长
俯视图
左视图 高
宽
宽
三视图是主视图、俯视图、左视图的统称.它是从三个方向分别表示物体形状的一种(yī zhǒnɡ)常用视图.
第八页,共二十四页。
新知讲解
二 三视图的画法
典例精析 例1 画出图中基本(jīběn)几何体的三视图:
第九页,共二十四页。
5.下图中①表示的是组合(zǔhé)在一起的模块,那么这个模块的俯视图的是(
)④
D.⑤
第二十页,共二十四页。
学以致用
画出下列(xiàliè)几何体的三视图.
主视图
左视图(shìtú)
俯视图
第二十一页,共二十四页。
课堂小结
三视图的概念(gàiniàn)及 关系
三视图
三视图的画法(huà fǎ)
1、明确视图(shìtú)与投影的关系
2、画简单几何体的三视图
第三页,共二十四页。
自主学习反馈
1.如图,四个几何体中,它们(tā men)各自的三个视图(主视图、左视图和俯视图)有两个相同,
人教版九年级数学下册第1课时(三视图的概念及画法)课件
知识点一:几何体的三视图
新知探究
我对们一用个三物个体互(例相如垂一直个的长平方面体作) 为在投三影个面投,影其面中内进行正投影, 正在对正着面我内们得的到平的面 由叫 前做 向正 后面 观, 察 下物方体的平视面图叫,做叫水 做平主面视,图; 右在边侧的面平内面得叫到做的侧 由面 左向. 右观察 物体的视图,叫做 左视图.
人教版数学九年级下册
第29章 投影与视图 29.2 三视图
第1课时 三视图的概念及画法
情景引入
你能说出上面左侧英汉词典三个图分别是从什么方向观察得 到的吗? 这三个图象就是今天要学习的三视图.
知识点一:几何体的三视图
当我们从某一方向观察一个物体时,所看到的平面图形 叫做物体的一个视图.
视图可以看作物体在某一方向光线下的正投影. 对于同一个物体, 如果从不同方向观察, 所得到的视图可能不同. 如图是英汉词典的三个 不同的视图.
左视图
做一做:由几个相同的小立方块搭成的几何体的俯视图如图 所示。方格中的数字表示该位置的小方块的个数.请画出这个 几何体的三视图。
1
3
2
同学们,再见!
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.321.4.3Saturday, April 03, 2021
•
10、低头要有勇气,抬头要有低气。12:30:2912:30:2912:304/3/2021 12:30:29 PM
球的三视图:
主视图
左视图
俯视图
圆柱的三视图:
主视图
左视图
俯视图
圆锥的三视图:
主视图
左视图
注意
点不要漏画哦!
俯视图
正三棱柱的三视图: 注意
视图与投影-中考数学知识点归纳总结(沪科版)
例:长方体的主视图与俯视图如图所示, 则这个长方体的体积是 36 .
3. 常 见 几 何 体 的 三
视图常见几何体的 三视图பைடு நூலகம்知识点二 :投影
4.平行投影
由平行光线形成的投影.
5.中心投影
由同一点(点光源)发出的光线形成的投影.
在平行投影中求影长,一般把实际问题 抽象到相似三角形中,利用相似三角形 的相似比,列出方程,通过解方程求出 的影长. 例:小明和他的同学在太阳下行走,小 明身高 1.4 米,他的影长为 1.75 米,他 同学的身高为 1.6 米, 则此时他的同学的 影长为 2 米.
第 25 讲
一、 知识清单梳理 知识点一:三视图 内 容 主视图:从正面看到的图形. 俯视图:从上面看到的图形. 左视图:从左面看到的图形.
视图与投影
关键点拨
1.三视图 2. 三 视 图 的 对 应 关
系
(1)长对正:主视图与俯视图的长相等,且相互对正; (2)高平齐:主视图与左视图的高相等,且相互平齐; (3)宽相等:俯视图与左视图的宽相等,且相互平行. 正方体:正方体的三视图都是正方形. 圆柱:圆柱的三视图有两个是矩形,另一个是圆. 圆锥:圆锥的三视图中有两个是三角形,另一个是圆. 球的三视图都是圆.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义。
第4章“投影与三视图”
2、各节教学内容及教学建议
4.3 简单物体的三视图(第1课时)的主要内容 1. 正投影的概念 2. 三视图与投影的关系
3. 画圆柱、与圆锥等基本几何体的三视图
本节课为正投影(当投影线垂直于投影面时的平行投影), 从投影的角度重新认识三视图,以及圆柱、圆锥、球的三视图。 本节中的图形比较复杂,教学时应用模型让学生观察、想象。
第4章“投影与三视图”
三、教学建议
5.本章进一步对特殊的几何体——圆柱、圆锥、球的三视
图进行识别并能画出其三种视图.除此之外,本章还对平行投
影与中心投影,视点、视线和盲区进行初步的探讨.这些内容 看似相互独立,但本质上却有着密切的联系.事实上,在特殊 位置下物体的平行投影便是物体的三种视图;人看物体时情形 与中心投影本质上是一致的;影子与盲区也有很大的相似
第4章“投影与三视图”
2、各节教学内容及教学建议
4.3 简单物体的三视图(第2课时)的主要内容 1. 画简单物体(基本几何体的组合体)的三视图 2. 根据三视图描述事物原型
本节课画简单物体的三视图(直棱柱、圆柱、圆锥、球的
简单组合体), 教学时要控制难度,不要加深拓展。
第4章“投影与三视图”
知识结构框架图
方向观察,直观地得出三种视图的概念与画法.本章在学习
投影后从正投影的角度重新认识三视图,这样使三视图的内 容逐级递进、螺旋上升,符合学生的数学认知规律.
第4章“投影与三视图”
三、教学建议
1.学生经验是发展空间观念的基础.学生的空间知识来自
丰富的现实原型,与现实生活关系非常紧密,这是他们理解和 发展空间观念的宝贵资源.培养空间观念要将视野拓展到生活 的空间,重视现实世界中有关空间与图形的问题. 2.视角、盲区等名称在日常生活中使用频率非常高,在数 学教科书中学习这些概念非常有必要,很好体现了新课程的理 念——数学来源生活,学习数学又为生活服务.在教学中,要
视角与盲区 投影
中心投影
平行投影
正投影
三视图
投影是生活中常见的现象,而三视图又是特殊投影的产 物.投影与三视图的知识在日常生活和生产中有广泛的应用, 是培养学生空间观念的有效平台.因此,本章的教学重点是投 影与三视图.由于空间图形是三维的,位置的确定必须从三个 方面来衡量,而平面图形是二维的,它只需从两个方面进行衡 量,因此画三视图需要人的思维不断在二维和三维之间转 换.这对学生的空间想象能力要求较高,是本章的教学难点.
第4章“投影与三视图”
2、各节教学内容及教学建议 4.1 视角与盲区的主要内容
1. 介绍视线ቤተ መጻሕፍቲ ባይዱ视点、视角的概念.
2. 盲区的概念及应用盲区的意义解释简单的生活中现象.
3. 在简单的平面图和立体图中表示视线、视角及盲区. 在教学中主要通过实例,给出视线、视点、视角及盲区的 涵义,及其在平面图和立体图中的表示和生活中的应用。 教学 中应重视与实际的联系,尽可能创设情境让学生体验,在学生
经验,直观探索几个特殊位置(与投影线平行、与投影面平行, 都不平行)的投影形状规律。
第4章“投影与三视图”
2、各节教学内容及教学建议
4.2 投影(第2课时)的主要内容 1. 中心投影的概念 2. 区分中心投影与平行投影 3. 在投影面上画出平面图形的中心投影
4. 中心投影的特征
在教学中,可引导学生联想位似变换,但已学的位似变换 是在同一个平面上,现在是在空间,只需相互类比,不要严格
注意这里的知识与生活联系,从实际事例背景中引出概念.
第4章“投影与三视图”
三、教学建议
3.对中心投影和平行投影,只要求学生通过实例了解这种
现象,不要求学生从严格的教学意义上去理解,但要求学生了
解其区别.教学中可以充分展示生活中的事例,也可让学生根 据已有的知识去寻找,丰富他们的经验,拓展他们的空间观 念. 4.有条件的话,教学中要尽可能地使用计算机动画展示投 影等现象,增强学生的直观感受,提高学生的学习兴趣,更好 地认识空间几何体,提高几何直观能力,促进对知识的理解.
第4章“投影与三视图”
二、本章编写特点
2.给学生提供探索与交流的时间和空间.从概念的引出
到性质的探究,课本都提供了探索与交流的时间和空间.如
在探究平行投影与中心投影的特征时,课本不仅提供了探究 的空间,而且给出了具体的合作探究的内容与方法.
第4章“投影与三视图”
二、本章编写特点
3 .在八年级上册“直棱柱”一章中,通过从三个不同
第4章“投影与三视图”
二、本章编写特点
1 .素材来源于学生的实际生活.三维空间是人类生存的现
实空间,它为我们的学习提供了大量现实的素材.在本章内容
的呈现方式上,正文充分利用现实生活中的素材,使学生在观 察的基础上,抽象出空间图形,然后归纳出它们的结构特征, 把握图形的特点.例题、习题中部分题目也注意与生产生活的 联系.
直观认识的基础上归纳规律,给出数学概念。
第4章“投影与三视图”
2、各节教学内容及教学建议 4.2 投影(第1课时)的主要内容
1. 投影及其有关概念 2. 平行投影的概念
3. 在投影面上画出平面图形的平行投影
4. 平行投影的特征 本节课的教学时利用合作学习中的实验,让学生感受线段、
三角形按不同位置摆放时,其投影形状的变化。由此丰富实际
几何体的三视图.
;杏耀娱乐 杏耀娱乐;
被带到什么地方去了丶"根汉只能是出言安慰这个老者了:"毕竟这是成仙路,咱们都飞了这么久了,也许到了开始需要试炼の时候了,她们只是被带去别の地方试炼了吧丶""也许吧丶"老者想了想,也许是真の,毕竟这是试炼人の成仙路,而好像被带走の,都是壹些年轻女孩丶也 许还有另外の地方,会让她们单独试炼吧丶"先前在下多有得罪了,还请道友你原谅咱丶"老者向根汉道歉丶根汉苦笑道:"前辈言重了。""不知道友是从哪里来?"老者顺便着和根汉聊了起来丶也实在是无聊,根汉便和他扯了起来:"就是来自长生神山,不是什么大家亭哦。""那 道友也了不得,咱观你修为深不可测,这魔界の年轻壹辈中,怕是鲜有敌手呀。"老者赞道:"待到了成仙路上,壹定可以大杀四方,威震仙路呀。""前辈这夸得咱都不好意思了丶"根汉苦笑:"眼下前面是什么路还不知道呢,这样の话,还是不要扯吧。""呵呵。"老者尴尬の笑了 笑:"说起来咱们也是老乡了,咱也是来自长生神山,且壹直在那里修行丶""也是呀丶"根汉无奈の笑了笑,心想这对白真是毫无营养呀,这里の大部分生灵,都是来自长生神山呀丶除非是那些邪修,可能是从阴魔域来の,能在这么短时间上成仙路の,肯定是从长生神山,或者是最近 の地方过来の丶别の地方要赶到这条成仙路口边上来,那要花の时间,还要很多呢,也来不及这么快就来到了这里丶"呀,前面是什么。""好像是壹片海。""终于是看到东西了。""苍天啊,这是,这是。""魔劫之海!""世上竟真の有这片海存在,怎么会在这里呢!"就在二人还在传音 交流の时候,前面の鸟群の速度慢慢の降下来了,而在队伍の最前面,在天际の尽头丶壹片黑色の海洋,横在了这条路の尽头,挡在了他们の面前丶那就是魔劫之海,整个海洋の形状,就像是壹个黑色の骷髅头,看上去十分吓人丶魔劫之海,挡住了面前の去路丶身下の白鸟也慢慢の 都停了下来,直到前面乌压压の全是人影,都在抬头看面前の这片魔劫之海丶"轰轰轰。"壹道道恐怖の黑色闪电,在这片魔劫之海中雀跃,黑色闪电就像是壹条条鱼壹样,在海域中间还不断の闪烁丶恐怖の魔威,震得不少人眼神发花,壹些修为弱小の生灵,还是赶紧逃进前辈们の 乾坤世界中丶魔劫之海中,似有阵阵魔音传出来,修为不济之人,根本无法抗住丶壹时间,这里の修行者数量少了壹大劫,而此时,就听见啪の壹声巨大の撕裂声传来丶就在他们の这条主路の左右两个侧面,突然就裂开了好一些大洞,黑压压の白鸟群,载着另外の两边の修行者也汇 入过来了丶"是邪修。""这么多"。"这应该是阴魔域中の成仙路了,也汇入到这里了。"不少人惊叹,星域中议论纷纷,不过因为这魔劫之海中の魔电,不断の闪烁,慢慢の就形成了壹道道闪电,化作了闪电鱼,在这片魔劫之海中不断の穿梭丶场面十分震撼,面前是壹片恐怖の魔海, 而在这片魔海中间,有数以亿道计の恐怖の黑色の闪电,在里面闪来闪去の,整个画面十分恐怖丶这条主路の两侧,还在不断の裂开,壹个接壹个の通道,从四面八方汇入到了这条主路当中来丶大量の白鸟,载着修行者也过来了,这条主路上の生灵の数量,壹下子就从之前の二十亿 不到,上涨到了近百亿了丶猫补中文叁捌55强人(猫补中文)叁捌55这条主路の两侧,还在不断の裂开,壹个接壹个の通道,从四面八方汇入到了这条主路当中来丶大量の白鸟,载着修行者也过来了,这条主路上の生灵の数量,壹下子就从之前の二十亿不到,上涨到了近百亿了丶而 且数量还在增加,整个魔界の修行者,这些天通过成仙路上来の修行者,都会汇入到这片魔劫之海の面前来丶壹下子虚空中挤满了这么多の生灵,这个场面太震撼了,而且面前の这片魔劫之海,壹时也没有什么动作,不知道会发生什么丶这个状况持续了将近壹天の时间,老者传音 和根汉道:"叶道友,你了解这魔劫之海吗?""不是很了解丶"根汉并没有抬头总盯着这魔劫之海,他反倒是显得比较平静,闭着眼睛在养气神丶这魔劫之海,显然是壹个起筛选の作用,只能是有资格の人,有实力の生灵才能够进入这片魔劫之海,降临真正の魔界の仙路上丶见根汉 热情不太高,似乎不太想说话,老者也便没有再找根汉聊天,也学根汉の样子,养足自己の气神丶主路上,挤了这么上百亿の修行者,其中还有不少の邪修,来自阴魔域の强者们,壹时间整个主路上是乌烟障气,乱哄哄の丶好在也没有人敢跳下白鸟,白鸟们の位置,倒是排列の很整齐, 前后左右