2013步步高高考物理大二轮专题复习与增分策略——专题九

合集下载

物理考前辅导及高分策略课件—高三物理二轮专题复习资料

物理考前辅导及高分策略课件—高三物理二轮专题复习资料
比较 6、速度(或速率)-时间、位移(或路程)-时间等图像 7、直尺、游标卡尺与螺旋测微器、电压表电流表读数 8、在电磁场中所涉及到的带电粒子何时考虑重力何时不考虑重力 9、不用题目中给出的字母,不区分物理量的大小写及角码。 10、能量、动量定律中缺少物理量、不注意正号、少力。
三、你应该知道物理中的易混淆点
易错点: 多边切割,电动势怎么写? 多边受力,整体安培力怎么表示?
三、你应该知道物理中的易混淆点
双缝干涉 薄膜干涉
三、你应该知道物理中的易混淆点
干涉条纹与衍射条纹有何不同?
圆孔衍射
单缝衍射
泊松亮斑Biblioteka 注意:衍射条纹也是光叠加的结果!
光盘的衍射光栅
三、你应该知道物理中的易混淆点
(1)利用它的射线:如利用很强的 γ 射线来检查金属内部有没有砂眼和裂纹,这叫 γ 射线探伤。
四、你应知道物理中的冷门知识
2、万有引力中公式的使用最会出现张冠李戴的错误
物理考前辅导及高分策略
2022届高三物理复习资料
1、先审题
一、物理做题五步法
划:重点字词 圈:已知量 建:模型(匀速?匀变速?变加速?类平抛?匀速圆周?变速圆?)
24电磁振荡(LC电路)的周期T=2π ,频率f= (1)发射电磁波的条件:①振荡电路要有足够高的频率.②振荡电路应采用开放电路. (2)发射电磁波需经过调制过程,调制的方法分为调频和调幅.接收电磁波需经过解调过程, 解调是调制的逆过程.
四、你应知道物理中的冷门知识
电磁波谱
无线 电波
红外线
频率 /Hz
物理概念及单位 物理史及物理方法 力的平衡 匀变速直线运动 牛顿三定律 曲线运动 功和能 动量 电场 磁场 恒定电流 电磁感应 交流电 机械振动和机械波 几何光学与波动光学 原子结构与光电效应 原子核物理

新步步高高考物理(全国用)大一轮复习讲义课件:第二章 相互作用 专题强化二

新步步高高考物理(全国用)大一轮复习讲义课件:第二章 相互作用 专题强化二

4
盘查拓展点
生活中平衡问题的实例分析 力的平衡问题在日常生活中有许多实例,解答的关键是要建立正确的物 理模型,选择合适的的解题方法,一般按以下步骤进行:
【典例】 一般教室门上都安装一种暗锁,这种暗锁由外壳A、骨架B、弹 簧C(劲度系数为k)、锁舌D(倾角θ=45°)、锁槽E以及连杆、锁头等部件 组成,如图甲所示.设锁舌D的侧面与外壳A和锁槽E之间的动摩擦因数均为 μ,最大静摩擦力Ffm由Ffm=μFN(FN为正压力)求得.有一次放学后,当某同 学准备关门时,无论用多大的力, 也不能将门关上(这种现 象称为自锁),此刻暗锁 所处的状态的俯视图如 图乙所示,P为锁舌D与 锁槽E之间的接触点,弹 簧由于被压缩而缩短了x.
1 2 3 4 5 6 7 8 9 10 11
2.(多选)如图所示,粗糙水平面上有一长木板,一个人站在木板上用力F 向右推箱子,木板、人、箱子均处于静止状态.三者的质量均为m,下列 说法正确的是 答案 A.箱子受到的摩擦力方向向右
√B.人受到的摩擦力方向向右 √C.箱子对木板的摩擦力方向向右
D.若水平面光滑,人用同样大小的力F推箱子,能使长木板在水平面上 滑动
√A.B对A的摩擦力大小为Ff,方向向左
B.A和B保持静止,C匀速运动
√C.A保持静止,B和C一起匀速运动 √D.C受到地面的摩擦力大小为F-Ff
1 2 3 4 5 6 7 8 9 10 11
√D.支持力小于(M+m)g
Ff
mg
2
命题点二
动态平衡问题
1.共点力的平衡 (1)平衡状态:物体处于 静止 或 匀速直线运动 状态,称为平衡状态. (2)平衡条件:物体所受合力 为零 ,即 F合=0 .若采用正交分解法求平 衡问题,则平衡条件是 Fx合=0,Fy合=0 . (3)常用推论: ①二力平衡:二力等大反向. ②三力平衡:任意两个力的合力与第三个力等大反向. ③多力平衡:其中任意一个力与其余几个力的合力等大反向.

【步步高】高考物理大一轮复习 第二章 1课时 力 重力 弹力课件

【步步高】高考物理大一轮复习 第二章 1课时 力 重力 弹力课件

的运动状态,由共点力的平衡条件或牛顿第二定律
确定弹力的方向.
课堂探究·突破考点
第1课时
3.几种接触弹力的方向
弹力
弹力的方向
面与面接触的弹力 垂直于接触面,指向受力物体

点与面接触的弹力
过接触点垂直于接触面(或接 触面的切面),指向受力物体
课 栏 目 开
球与面接触的弹力
在接触点与球心连线上,指向 受力物体
用长度相同的两根细线悬挂在水平天花板上的同一
点 O,再用长度相同的细线连接 A、B 两小球,如图

4 所示.然后用一水平向右的力 F 拉小球 A,使三线
课 栏
均处于直线状态,此时 OB 线恰好位于竖直方向,且

两小球都静止,小球可视为质点,则拉力 F 的大小
开 关

()
A.0 B. 3mg
图4 3
C. 3 mg
D.mg
课堂探究·突破考点
第1课时
解析 OB恰好竖直,说明AB绳无弹力,对A进行受力 分析如图:
本 课 栏 目 开 关
由图知,F=mgtan 60°= 3mg. 答案 B
课堂探究·突破考点
第1课时
考点三 弹簧模型
考点解读
中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有
如下几个特性:
本 课
(1)弹簧产生的弹力遵循胡克定律 F=kx,其中 x 是弹簧的形
时也是受力(施力)物体.
(3)矢量性:力是矢量,既有大小,又有 方向 ,力的
运算遵循 平行四边形 定则或 三角形 定则.
基础再现·深度思考
第1课时
3.力的图示及示意图
(1)力的图示:从力的作用点沿力的方向画出的有刻

2024年高三物理二轮复习方法策略

2024年高三物理二轮复习方法策略

2024年高三物理二轮复习方法策略一、梳理知识体系在二轮复习中,首先需要对物理知识进行系统的梳理。

由于一轮复习已经对知识点进行了初步的学习和整理,这一阶段的主要任务是将知识点串联起来,形成完整的知识体系。

可以采用以下策略:1. 画思维导图:通过画思维导图的方式,将知识点进行整理和归类,形成知识框架。

2. 对比记忆:对于相似或相关的知识点,可以采用对比记忆的方法,加深理解和记忆。

3. 知识迁移:在梳理知识的过程中,注意知识点之间的联系和迁移,形成知识网络。

二、强化基础知识基础知识是解题的关键,因此强化基础知识是非常重要的。

建议同学们采用以下策略:1. 回归课本:重新阅读课本,加深对基础概念、公式、定理等基础知识的理解和记忆。

2. 做基础题:做一些基础题目,加强基础知识的应用和巩固。

3. 总结归纳:对于重点和难点的基础知识,进行总结归纳,形成自己的笔记和资料。

三、提高解题能力解题能力是高考考察的重点之一,因此提高解题能力是非常必要的。

建议同学们采用以下策略:1. 多做题:通过多做题,提高解题的速度和准确性。

2. 总结解题方法:对于不同类型的题目,总结出解题的方法和技巧,形成自己的解题思路。

3. 讨论交流:与同学、老师或家长讨论交流,分享解题心得和经验,拓展思路和方法。

四、重视实验操作物理是一门实验科学,实验操作对于理解和掌握物理知识非常重要。

建议同学们采用以下策略:1. 复习实验:重新复习实验的目的、原理、步骤、数据处理等,加深对实验的理解和掌握。

2. 动手操作:如果有条件,尽量自己动手操作一些重要的实验,提高实验技能和实践能力。

3. 实验题练习:对于实验相关的题目进行专项练习,提高解决实验问题的能力。

五、反思与总结反思与总结是提高学习效率的重要方法之一。

建议同学们采用以下策略:1. 每日反思:每天复习结束后,花一些时间反思当天的学习内容和方法,找出不足并改进。

2. 每周总结:每周结束后,对本周的学习情况进行总结归纳,找出学习规律和方法。

2013届高考物理二轮复习专题课件:专题六 第1课时 电磁感应问题的综合分析

2013届高考物理二轮复习专题课件:专题六 第1课时 电磁感应问题的综合分析

大小不变;由楞次定律判知 i 方向先顺时针方向,后逆时针方向, 故 A 项正确,B 项错误.cd 边的受力情况:在 0~2 s 内,磁场 B 方
本 向垂直纸面向里,电流方向由 c 到 d,由左手定则得知其受安培力 课 时 向右,2~3 s 内,磁场 B 方向向外,cd 受力方向向左;大小由 F 安= 栏 目 BIL 知,其与 B 的大小成正比,据此分析得 C 项正确,D 项错误. 开 关
知识方法聚焦
第1课时
阻碍磁通量的变化增反减同 (3)“阻碍”的表现阻碍物体间的 相对运动 来拒去留 阻碍 原电流 的变化自感现象 2.感应电动势的计算
ΔB ΔΦ n Δt S ; (1)法拉第电磁感应定律: E=n Δt .若 B 变,而 S 不变,则 E= ΔS nB 若 S 变,而 B 不变,则 E= Δt .常用于计算 平均 电动势.
本 课 时 栏 目 开 关
图4
热点题型例析
第1课时
本 课 时 栏 目 开 关
热点题型例析
解析
第1课时
此类问题可划分几个不同的运动过程:0~L 过程,线框在
磁场外,E=0,F=0,q=0,Q=0; L~2L 过程,线框在磁场中匀速运 动,E1=BLv,E1 恒定,方向沿逆时针方向,感应电流大小恒定,q1= I1t1,q1 恒定,Q=I2Rt,Q 不恒定,选项 A、D 错;2L~3L 过程,线框
答案
B
热点题型例析
第1课时
【以题说法】 段研究.
对于电磁感应中的图象问题,分析的基本思路是
划分几个不同的运动过程,然后应用楞次定律和电磁感应定律分
本 课 时 栏 目 开 关
热点题型例析
第1课时
如图 5 甲所示,正六边形导线框 abcdef 放在匀强磁场中 静止不动,磁场方向与线框平面垂直,磁感应强度 B 随时间 t 的变 化关系如图乙所示.t=0 时刻,磁感应强度 B 的方向垂直纸面向里, 设产生的感应电流以顺时针方向为正、竖直边 cd 所受安培力的

高三物理第二轮专题复习教案[全套]

高三物理第二轮专题复习教案[全套]

第一讲 平衡问题一、特别提示[解平衡问题几种常见方法]1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。

2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。

3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。

值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。

4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。

5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。

在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。

解题中注意到这一点,会使解题过程简化。

6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。

7、相似三角形法:利用力的三角形和线段三角形相似。

二、典型例题1、力学中的平衡:运动状态未发生改变,即0=a 。

表现:静止或匀速直线运动(1)在重力、弹力、摩擦力作用下的平衡例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小?解析 取物体为研究对象,物体受到重力mg ,地面的支持力N ,摩擦力f 及拉力T 四个力作用,如图1-1所示。

由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角:μ==αarcctg Nf arcctg 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。

高中物理二轮复习(人教版新课标)压轴突破策略三步走 物理如何拿满分《 拿下选考题——力争得满分》课件

高中物理二轮复习(人教版新课标)压轴突破策略三步走 物理如何拿满分《 拿下选考题——力争得满分》课件

哪些物体是这个系统中的研究对象.
题型扫描
题型专练
上页 下页 返回
【典例精析】
【例3】 (1)下列说法中正确的是________.
A.太阳辐射的能量主要来源于重核裂变 B.β衰变所释放的电子是原子核内的中 子转化成质子时所产生的 C.X射线是处于激发态的原子核辐射出
来的
D.比结合能越大表示原子核中核子结合 得越松散,原子 核越不稳定
解得x=8 cm
与假设相符,故假设成立.则密闭气体的长度为 (18+10+10-x)=30 cm. ③如上图所示.
题型扫描 题型专练
上页 下页 返回
答案 点评
(1)A
(2)①320 K
②30 cm
③略
(1)本题综合考查了分子动理论、压强的微观解释、气
体状态方程及热力学第一定律. (2)要注意审题:绝热汽缸、活塞的含义就是热传递为零.
点a开始由平衡位置向下振动,t=1 s时质点a第一次到达最
低点,则在4 s<t<5 s这段时间内,下列说法正确的是____. A.质点c的加速度逐渐减小 B.质点d向下运动 C.质点a的速度逐渐减小 D.质点f还未开始振动
题型扫描 题型专练
图3
上页 下页 返回
(2)一棱镜的截面为直角三角形 ABC, ∠A=30°,斜边 AB=a.棱镜材料的 折射率为 n= 2.在此截面所在的平
题型扫描
题型专练
上页 下页 返回
【应对策略】
1.“模型法”:此类方法在估算分子的直径中常常用到,具体 的做法是:通常可以将分子视为立方体或球体,由宏观体 积和分子个数,求出分子体积,进一步计算分子直径,计 算中采用了近似计算的思想.
2.气体压强的计算:通常要利用共点力的平衡知识来进行解

谋定后支事半功倍(二轮复习攻略)

谋定后支事半功倍(二轮复习攻略)

谋定后动事半功倍特级教师王高对于二轮复习,我们必须搞清:我们要做什么?怎么做?怎样才能做得更好?这些都需要我们事先精心谋划,只有谋划好了再付诸行动,在行动中逐步完善,才能收到事半功倍的之效。

一、科学合理的目标定位是搞好二轮复习的前提通过一轮复习,大家基本能掌握物理学中的基本概念、规律及其应用。

但这些知识总体感觉是比较零散的,在知识的综合应用方面仍存在较大的问题。

第二轮复习是检阅、贯通和提升,不仅要把前面复习的知识进一步深化,还要把整个高中的知识网络化、系统化,把所学的知识连成线、铺成面、织成网,梳理出整体知识结构,并使之有机地融合在一起。

要在理解的基础上,综合各部分的内容,进一步提高解题能力。

对于必考模块要做到熟练、准确、深入,对于选考模块要做到熟悉、细致、全面。

所以二轮复习的目标应定位为:融会贯通、锁定高考考点、突破热点重点、强化弱点难点。

二、扎实有效的措施是搞好二轮复习的保障1.二轮复习主要从知识专题和方法专题两方面开展(1)知识专题突破主干内容:牛顿运动定律和运动学公式的应用;功能关系的应用;带电粒子在电场和磁场中的运动;电磁感应和电路;力学和电学实验。

重点:在使知识系统化的同时,培养分析和处理问题的良好习惯,包括缜密审思、规范答题的习惯;注重受力分析、运动过程和状态分析、功能转化分析等。

方法:练、评、变、记,查漏补缺,整理纠错,升华提高。

(2)方法技巧专题训练通过专题训练,进一步强化图像法、类比法、等效法、对称法等常用方法在解决物理问题中的应用,理解这些方法应用的意义和技巧。

例如:图象法在近几年高考中出现频率越来越高,我们可将历年高考中经常出现的考点中的图象题,平时作业或考试中经常出错的图象题以及带有普遍性的模型图象题,作为专题进行训练,仔细地揣摩,可做到有的放矢,强化高考热点训练,使自己的薄弱环节得到强化,同时也增强了触类旁通、知识迁移的能力,对于图象,应从坐标轴、点、线、斜率、截距、面积等六个方面去细心揣摩,领会其物理意义和应用技巧。

高三物理二轮复习专题教案(14个专题)

高三物理二轮复习专题教案(14个专题)

专题1“双基”篇所谓“双基”知识(基本概念、基本规律),就是能举一反三、以不变应万变的知识.只有掌握了“双基”,才谈得上能力的提高,才谈得上知识和能力的迁移.综合分析近几年的高考物理试卷不难看出,虽然高考命题已由“知识立意”向“能力立意”转变,但每年的试卷中总有一定数量的试题是着重考查学生的知识面的,试卷中多数试题是针对大多数考生设计的,其内容仍以基本概念、基本规律的内涵及外延的判断和应用为主.只要考生知道有关的物理知识,就不难得出正确的答案.以2003年我省高考物理试卷为例,属于对物理概念、规律的理解和简单应用考查的试题,就有15题,共90分,占满分的60%.如果考生的基本概念、基本规律掌握得好,把这90分拿到手,就已大大超过了省平均分.许多考生解题能力差,得分低,很大程度上与考生忽视对物理基础知识的理解和掌握有关,对基础知识掌握得不牢固或不全面,就会在解题时难以下手,使应得的分白白丢失. 如果说,我们要求学生高考时做到“该得的分一分不丢,难得的分每分必争”,那么,就要先从打好基础做起,抓好物理基本知识和规律的复习.复习中,首先要求学生掌握概念、规律的“内涵”(例如内容、条件、结论等),做到“理科文学”,对概念、规律的内容,该记该背的,还是要在理解的基础上熟记.其次,要掌握概念和规律的“外延”,例如,对机械能守恒定律,如果条件不满足,即重力或弹力以外的其他力做了功,系统的机械能将如何变化?等等.有一些情况我的感受特别深,一是有些试题看似综合性问题,而学生出错的原因实质是概念问题.二是老师以为很简单的一些概念问题,学生就是搞不清,要反复讲练.下面,就高中物理复习中常遇到的一些基本概念问题,谈谈我的看法.我想按照高中物理知识的五大板块来讲述.一些共同性的概念和规律:1.不能简单地从数学观点来理解用比值定义的物理量(一个物理量与另一个物理量成正比或反比的说法).2.图线切线的斜率.3.变加速运动中,合力为零时,速度最大或最小.一、力学●物体是否一定能大小不变地传力?例1:两物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示.对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于 ( B )A .112m F m m + B .212m F m m + C .F D .21m F m 拓展:如图,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B质量分别为m A =6kg ,m B =2kg ,A 、B 之间的动摩擦因数μ=0.2.开始时水平拉力F =10N ,此后逐渐增加,在增大到45N的过程中,则 ( D )A .只有当拉力F <12N 时,两物体才没有相对滑动B .两物体开始没有相对运动,当拉力超过12N 时,开始相对滑动C .两物体间从受力开始就有相对运动D .两物体间始终没有相对运动●力、加速度、速度间的关系——拓展至与机械能的关系例2:如图所示,轻弹簧一端固定,另一端自由伸长时恰好到达O 点.将质量为m (视为质点)的物体P 与弹簧连接,并将弹簧压缩到A 由静止释放物体后,物体将沿水平面运动并能到达B 点.若物体与水平面间的摩擦力不能忽略,则关于物体运动的下列说法正确的是 (BC )A .从A 到O 速度不断增大,从O 到B 速度不断减小B .从A 到O 速度先增大后减小,从O 到B 速度不断减小C .从A 到O 加速度先减小后增大,从O 到B 加速度不断增大D .从A 到O 加速度先减小后增大,从O 到B 加速度不断增大拓展1:(1991年)一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示.在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法正确的是 ( C ) A .物体从A 下降到B 的过程中,动能不断变小B .物体从B 上升到A 的过程中,动能不断变大C .物体从A 下降到B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D .物体在B 点时,所受合力为零●矢量的合成或分解 1.认真画平行四边形例3:三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳 ( C )A .必定是OAB .必定是OBC .必定是OCD .可能是OB ,也可能是OA2.最小值问题例4:有一小船位于60m 宽的河边,从这里起在下游80m 处河流变成瀑布.假设河水流速为5m/s ,为了使小船能安全渡河,船相对于静水的速度不能小于多少?3.速度的分解——孰合孰分?例5:如图所示,水平面上有一物体A 通过定滑轮用细线与玩具汽车B 相连,汽车向右以速度v 作匀速运动,当细线OA 、OB 与水平方向的夹角分别为α、β时,物体A 移动的速度为 ( D )A .v sin αcos βB .v cos αcos βC .v cos α/cos βD .v cos β/cos α●同向运动的物体,距离最大(或最小)或恰好追上时,速度相等(但不一定为零). 例6:如图所示,在光滑水平桌面上放有长为L 的长木板C ,在C 上左端和距左端s 处各放有小物块A 和B ,A 、B 的体积大小可忽略不计,A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 的质量均为m ,开始时,B 、C 静止,A 以某一初速度v 0向右做匀减速运动,设物体B 与板C 之间的最大静摩擦力等于滑动摩擦力.求:A OBAB(1)物体A 运动过程中,物块B 和木板C 间的摩擦力.(2)要使物块A 、B 相碰,物块A 的初速度v 0应满足的条件. ●匀变速运动的规律及其推论的应用——注意条件例7:已知做匀加速直线运动的物体,第5s 末的速度为10m/s ,则该物体 ( BD )A .加速度一定为2m/s 2B .前5s 内位移可能为25mC .前10s 内位移一定为100mD .前10s 内位移不一定为100m●匀速圆周运动、万有引力定律: 注意公式2r GMm F =①和r mv F 2=②中r 的含义. 例8:今年10月15日9时,中国自行研制的载人航天飞船“神舟”五号,从酒泉航天发射场升空,10分钟后进入预定轨道,绕地球沿椭圆轨道Ⅰ运行,如图.(1)当飞船进入第5圈后,在轨道Ⅰ上A 点加速,加速后进入半径为r 2的圆形轨道Ⅱ.已知飞船近地点B 距地心距离为r 1,飞船在该点速率为v 1,求:轨道Ⅱ处重力加速度大小.(2)飞船绕地球运行14圈后,返回舱与轨道舱分离,返回舱开始返回.当返回舱竖直向下接近距离地球表面高度h 时,返回舱速度约为9m/s ,为实现软着落(着地时速度不超过3m/s ),飞船向下喷出气体减速,该宇航员安全抗荷能力(对座位压力)为其体重的4倍,则飞船至少应从多高处开始竖直向下喷气?(g =10m/s 2)●惯性、离心运动和向心运动例9:如图(俯视图)所示,以速度v 匀速行驶的列车车厢内有一水平桌面,桌面上的A 处有一小球.若车厢中的旅客突然发现小球沿图中虚线从A 运动到B ,则由此可判断列车 ( A )A .减速行驶,向南转弯B .减速行驶,向北转弯C .加速行驶,向南转弯D .加速行驶,向北转弯 例10:卫星轨道速度的大小及变轨问题.●一对作用力和反作用力的冲量或功例11:关于一对作用力和反作用力,下列说法中正确的是 ( D )A .一对作用力和反作用力大小相等,方向相反,作用在同一直线上,是一对平衡力B .一对作用力和反作用力一定可以是不同种性质的力C .一对作用力和反作用力所做功的代数和一定为零D .一对作用力和反作用力的冲量的矢量和一定为零●对动量守恒定律的理解1.内涵——条件及结论2.对表达式的理解3.外延例12:对于由两个物体组成的系统,动量守恒定律可以表达为Δp 1=-Δp 2.对此表达式,沈飞同学的理解是:两个物体组成的系统动量守恒时,一个物体增加了多少动量,另一AB个物体就减少了多少动量.你同意沈飞同学的说法吗?说说你的判断和理由(可以举例说明).例13:总质量为M的小车,在光滑水平面上匀速行驶.现同时向前后水平抛出质量相等的两个小球,小球抛出时的初速度相等,则小车的速度将________(填“变大”、“变小”或“不变”).●对机械能守恒定律的理解1.内涵——条件及结论2.外延——重力(若涉及弹性势能,还包括弹力)以外的其它力做的功,等于系统机械能的增量.例14:如图所示,质量为M=1kg的小车静止在悬空固定的水平轨道上,小车与轨道间的摩擦力可忽略不计,在小车底Array部O点拴一根长L=0.4m的细绳,细绳另一端系一质量m=4kg的金属球,把小球拉到与悬点O在同一高度、细绳与轨道平行的位置由静止释放.小球运动到细绳与竖直方向成60°角位置时,突然撤去右边的挡板P,取g=10m/s2,求:(1)挡板P在撤去以前对小车的冲量;(2)小球释放后上升的最高点距悬点O的竖直高度;(3)撤去右边的挡板P后,小车运动的最大速度.●功和能、冲量和动量的关系1.合外力的功=动能的变化2.重力/弹力/分子力/电场力的功=重力势能/弹性势能/分子势能/电势能变化的负值3.重力(或弹簧弹力)以外的其它力的功=机械能的变化4.合外力的冲量=动量的变化5.合外力=动量的变化率例15:一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于( C )A.物体势能的增加量B.物体动能的增量C.物体动能的增加量加上物体势能的增加量D.物体动能的增加量加上重力所做的功例16:一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则(AC)A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能例17:在光滑斜面的底端静止一个物体,从某时刻开始有一个沿斜面向上的恒力F作用在物体上,使物体沿斜面向上滑去,经过一段时间突然撤去这个力,又经过4倍的时间又返回斜面的底端,且具有250J的动能,则恒力F对物体所做的功为J, 撤去F时物体具有J的动能.若该物体在撤去F后受摩擦力作用,当它的动能减少100J时,机械能损失了40J,则物体再从最高点返回到斜面底端时具有J的动能.例18:如图所示,分别用两个恒力F1和F2先后两次将质量为m的物体从静止开始,沿着同一个粗糙的固定斜面由底端推到顶端,第一次力F 1的方向沿斜面向上,第二次F 2的方向沿水平向右,两次所用时间相同.在这两个过程中 ( BD )A .F 1和F 2所做功相同B .物体的机械能变化相同C .F 1和F 2对物体的冲量大小相同D .物体的加速度相同例19:在光滑斜面的底端静止一个物体,从某时刻开始有一个沿斜面向上的恒力F 作用在物体上,使物体沿斜面向上滑去,经过一段时间突然撤去这个力,又经过4倍的时间又返回斜面的底端,且具有250J 的动能,则恒力F 对物体所做的功为 J, 撤去F 时物体具有 J 的动能。

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

专题强化九动力学和能量观点的综合应用(一)——多运动组合问题学习目标掌握运用动力学和能量观点分析复杂运动的方法,进而利用动力学和能量观点解决多运动组合的综合问题。

1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况。

(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况。

(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解。

2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动情景。

(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律。

(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案。

例1(2022·浙江1月选考,20)如图1所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。

已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度l AB=3m,滑块与轨道FG间的动摩擦因数μ=7 8。

滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。

滑块开始时均从轨道AB上某点静止释放,图1(1)若释放点距B 点的长度l =0.7m ,求滑块到最低点C 时轨道对其支持力F N 的大小;(2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式;(3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值。

答案(1)7N (2)v =12l x -9.6(m/s)(0.85m ≤l x ≤3m)(3)见解析解析(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12m v 2C 在C 点根据牛顿第二定律有F N -mg =m v 2CR代入数据解得F N =7N 。

【步步高】高考物理二轮 复习与增分策略 第二部分 专题一 第3课时 选择题(三)课件

【步步高】高考物理二轮 复习与增分策略 第二部分 专题一 第3课时 选择题(三)课件

答案 D
第17题 对应用动力学和能量观点分析电磁感应问题的考查 题 例4 (2011·山东 山东·22)如图 所示,两固 如图6所示 山东 如图 所示,
定的竖直光滑金属导轨足够长且电 阻不计.两质量、 阻不计.两质量、长度均相同的导 体棒c、 , 体棒 、d,置于边界水平的匀强磁
第3课时
选择题( 选择题(三)
第15题 对带电粒子在磁场中运动问题 Nhomakorabea考查 题 例1 (2011·浙江 浙江·20)利用如图 所示装置可以选择一定速度范 利用如图1所示装置可以选择一定速度范 浙江 利用如图
围内的带电粒子.图中板 围内的带电粒子.图中板MN上方是磁感应强度大小为 上方是磁感应强度大小为 B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别 、方向垂直纸面向里的匀强磁场, 的缝, 一群质量为m、 为2d和d的缝,两缝近端相距为 一群质量为 、电荷量为 和 的缝 两缝近端相距为L.一群质量为 q,具有不同速度的粒子从宽度为2d的缝垂直于板 ,具有不同速度的粒子从宽度为 的缝垂直于板 的缝垂直于板MN进入 进入 磁场,对于能够从宽度为d的缝射出的粒子,下列说法正 磁场,对于能够从宽度为 的缝射出的粒子, 的缝射出的粒子 确的是 ( )
答案 BD
命题研究
带电粒子在有界磁场中的运动问题是高考经常考
查的一类试题,也是带电粒子在磁场中运动问题的难点, 查的一类试题,也是带电粒子在磁场中运动问题的难点,处 理此类问题经常涉及求解相关物理量的极值. 理此类问题经常涉及求解相关物理量的极值.解题的关键是 对临界条件的把握,必要时还要结合数学知识求解. 对临界条件的把握,必要时还要结合数学知识求解.找准圆 弧轨迹的圆心和画出圆弧轨迹是解决本类题的关键, 弧轨迹的圆心和画出圆弧轨迹是解决本类题的关键,同时几 何知识的正确运用也是解答本类题不可忽略的因素. 何知识的正确运用也是解答本类题不可忽略的因素.

《新步步高大二轮专题复习与增分策略(通用)物理》二轮专题突破习题专题10选考部分第2讲..doc

《新步步高大二轮专题复习与增分策略(通用)物理》二轮专题突破习题专题10选考部分第2讲..doc

第2讲机械振动与机械波光岛考题电1机械振动【解题方略】1.简谐运动的对称性:振动质点在关于平衡位置对称的两点,X、F、a、S Ek、Ep的大小均相等,其中回复力只加速度6/与位移x的方向相反,而。

与x的方向可能相同,也可能相反. 振动质点来回通过相同的两点间的时间相等,即t RC = t CB.振动质点通过关于平衡位置对称的等长的两线段的时间相等,即t BC = t B c•如图1所示2.简谐运动的周期性:做简谐运动的物体,其位移、回复力、加速度、速度都随时间按“正弦” 或“余弦”规律变化,它们的周期均相同•其位移随时间变化的表达式为:"/sin(初+ 0咸x =Acos (cot + (p).【例1】简谐运动的振动图线可用下述方法画出:如图2甲所示,在弹簧振子的小球上安装一支绘图笔让一条纸带在与小球振动方向垂肓的方向上匀速运动,笔卩在纸带上画出的就是小球的振动图象•取振子水平向右的方向为振子离开平衡位置的位移正方向,纸带运动的距离代表时间,得到的振动图线如图乙所示•则下列说法中正确的是()A.弹费振子的周期为4sB.弹簧振子的振幅为10cmC./=17s时振子相对平衡位置的位移是10cmD.若纸带运动的速度为2cm/s,振动图线上1、3两点间的距离是4cmE.2.5s时振子正在向x轴正方向运动解析周期是振子完成一次全振动的时间,由图知,弹簧振子的周期为r=4s,故A正确;振幅是振子离开平衡位置的最大距离,由图知,弹簧振子的振幅为10cm,故B正确;振子的周期为4s ,由周期性知r/=17s时振子相对平衡位置的位移与2 Is时振子相对平衡位置的位移相同,为0 ,故C错误;若纸带运动的速度为2cm/s ,振动图线上1、3两点间的距离是s = vt= 2cm/sX2s = 4cm.KD正确;由图乙可知2.5s时振子正在向x轴负方向运动,故E错误.答案ABD预测1 (2015・山东理综・38(1))如图3所示,轻弹•簧上端固定,下端连接一小物块,物块沿竖方?方向做简谐运动•以竖直向上为正方向,物块简谐运动的表达式为尹=0.1sin(2.5M)m./=0时刻,一小球从距物块/?高处自山落卞;/=0.6s时,小球恰好与物块处于同一高度.収重力加速度的大小g=10m/s2.以下判断正确的是__________________ •(双选,填正确答案标号)h图3A.力=1.7mB.简谐运动的周期是0.8sC.0.6s内物块运动的路程是0.2mD.f=0.4s时,物块与小球运动方向相反答案AB 解析/二0.6s时,物块的位移为y = 0.1sin(2.5兀X 0.6)m = - 0.1m ,则对小球h + \y\ = ^,解得2兀2.TLh = 1.7m ,选项A正确;简谐运动的周期是r=^- = y^s = 0.8s ,选项B正确;0.6s内物块运T动的路程是3A = 0.3m ,选项C错误;r = 0.4s = 2 ,此时物块在平衡位置向下振动,则此时物块与小球运动方向相同,选项D错误.预测2某同学用单摆测当地的重力加速度.他测出了摆线长度厶和摆动周期八如图4(a)所示.通过改变摆线长度厶测出对应的摆动周期获得多组八与厶再以尸为纵轴、厶为横轴画出函数关系图象如图(b)所示.由图象可知,摆球的半径r= __________ m,当地重力加速度g=_______ m/s2;由此种方法得到的重力加速度值与实际的重力加速度值相比会 __________ (选填“偏人”“偏小”或“一样”).答案1.0X10—2 7t2一样解析由横轴截距得,球的半径应为1.0X10*2m;图象斜率k = ^= ] °咒一2二4 ,而g 二霁故g 二^~m/s2 = n2 m/s2根据以上推导,斜率不变,重力加速度不变,故对g没有影响,一样.商考题电2机械波▼【解题方略】1.波动图象描述的是在同一时刻,沿波的传播方向上的各个质点偏离平衡位置的位移•在时间上具有周期性、空间上具有重复性和双向性的特点.2.深刻理解波动中的质点振动.质点振动的周期(频率)=波源的周期(频率)=波的传播周期(频率).3.要画好、用好振动图象,并正确地与实际情景相对应.要正确画出波形图,准确写出波形平移距离、质点振动时间与波长、周期的单一解或多解表达式.4.分析简谐运动中各物理量的变化情况时,一定要以位移为桥梁,位移增大时,振动质点的回复力、加速度、势能均增大,速度、动能均减小;反之,则产生相反的变化•另外,各矢量均在其值为零时改变方向.5.“一分、一看、二找”巧解波动图象与振动图象的综合问题(1)分清振动图象与波动图象•只要看清横坐标即可,横坐标为x则为波动图象,横坐标为/则为振动图象.(2)看清横、纵坐标的单位,尤其要注意单位前的数量级.(3)找准波动图象对应的时刻.(4)找准振动图象对应的质点.【例21 (2016-全国甲卷・34⑵)一列简谐横波在介质中沿x轴止向传播,波长不小于lOcm.O和A 是介质中平衡位置分别位于x=0和x=5cm处的两个质点./=0时开始观测,此时质点O的位移为y=4cm,质点力处于波峰位置;时,质点O第一次回到平衡位置,f=ls吋,质点/第一次冋到平衡位置•求:(1)简谐波的周期、波速和波长;(2)质点O的位移随时间变化的关系式.解析(1)设振动周期为卩由于质点力在0到Is内由最大位移处第一次回到平衡位置,经历的是+个周期,由此可知"4s①由于质点O与/的距离Ax = 5cm小于半个波长,且波沿x轴正向传播,O在尸*s时回到平2衡位置,而/在C Is时回到平衡位置,时间相差Az = |s ,可得波的速度D 二右二 7.5cm/s ②由X = vT 得,简谐波的波长2 = 30cm ③(2)设质点O 的位移随时间变化的关系为2兀/ y = A cos(— + go)④将①式及题给条件代入上式得4 = Acos^o< 71 ⑤ 0 = /cos(& + go)JT解得 00 二 3 M 二 8cm®质点O 的位移随时间变化的关系式为或尹二 0.08sin (^/ + 才)m答案(l )4s 7.5cm/s 30cm(2)y=0.08cos (》+f ) m 或 y=0.08sin (》+罟)m预测3 (2016-全国丙卷-34(1))111波源S 形成的简谐横波在均匀介质中向左、右传播.波源振动 的频率为20Hz,波速为16m/s.D 知介质小P 、0两质点位于波源S 的两侧,且P 、。

高三物理二轮复习专题课件精编:专题九 第1课时 热 学

高三物理二轮复习专题课件精编:专题九 第1课时 热 学

热点题型例析
专题九 第1课时
(2)如图 2 所示,两端开口的 U 形玻璃管两边粗细 不同,粗管横截面积是细管的 2 倍.管中装入水
本 课 时 栏 目 开 关
银, 两管中水银面与管口距离均为 12 cm, 大气压 强为 p0=75 cmHg.现将粗管管口封闭,然后将细 管管口用一活塞封闭并将活塞缓慢推入管中,直至 温度不变) 图2 两管中水银面高度差达 6 cm 为止,求活塞下移的距离.(环境
知识方法聚焦
专题九 第1课时
3.气体实验定律
本 课 时 栏 目 开 关
(1)等温变化:pV=C或p1V1=p2V2; p p1 p2 (2)等容变化:T=C或 = ; T1 T2 V V1 V2 (3)等压变化: T=C或 = ; T1 T2 pV p1V1 p2V2 (4)理想气体状态方程: T =C或 = . T1 T2
答案 (1)C
(2)6.625 cm
热点题型例析
专题九 第1课时
题型 2 例2
本 课 时 栏 目 开 关
热力学基本规律与气体实验定律的组合 (2013· 新课标Ⅱ· 33)(1)(5 分)关于一定量的气体,下列说
法正确的是________. A .气体的体积指的是该气体的分子所能到达的空间的体 积,而不是该气体所有分子体积之和 B.只要能减弱气体分子热运动的剧烈程度,气体的温度就 可以降低 C.在完全失重的情况下,气体对容器壁的压强为零 D.气体从外界吸收热量,其内能一定增加 E.气体在等压膨胀过程中温度一定升高
知识方法聚焦
专题九 第1课时
两种微观模型
本 课 时 栏 目 开 关
4 d3 (1)球体模型(适用于固体、液体):一个分子的体积 V0= π( ) 3 2 1 3 = πd ,d 为分子的 直径 . 6 (2)立方体模型(适用于气体):一个分子占据的平均空间 V0= d3,d 为分子间的 距离 .

新课标高考物理二轮总复习第二部分应试高分策略专题一物理模型2113测电阻模型课件

新课标高考物理二轮总复习第二部分应试高分策略专题一物理模型2113测电阻模型课件

(2)根据设计的电路,写出实验步骤:
.
(3)将这种方法测出的电压表内阻记为 R`v, 与电压表内阻的真实值 Rv 相比,
R`v Rv(“>”“<”或“=”),主要理由是
.
[思维分析] 半偏法的本质是根据电路中电压或电流的变化(恰好发生一半变化) 来确定电路中被测电阻阻值的大小.这实质上是根据串联电路的分压或并联电路 的分流来实现的.
数据填入பைடு நூலகம்表.
R/kΩ 0.5 1.0 1.5 2.0 2.5
I/mA 1.48 1.20 1.03 0.86 0.74
1I/mA-1 0.68 0.83 0.97 1.16 1.35
Ⅰ.图甲中A是________(填“红”或“黑”)表笔; Ⅱ.根据表中的数据,在图丙中画出1I-R关系图象;
答案:(1)AC (2)Ⅰ.红 Ⅱ.如图所示
(3)若电池电动势变小、内阻变大,欧姆表重新调零时,由于满偏电流 Ig 不变,由 Ig=RE内可知欧姆表内阻 R 内得调小,待测电阻的测量值是通过电流表的示数体现出 来的,由 I=R内+E Rx=RI内g+R内Rx=1+RIgx/R内,可知当 R 内变小时,I 变小,指针跟原 来的位置相比偏左了,欧姆表的示数变大了.
(1)为使测量尽量准确,电压表选用__________,电流表选用______________,电 源选用______________.(均填器材的字母代号); (2)画出测量 Rx 阻值的实验电路图. (3)该同学选择器材、连接电路和操作均正确,从实验原理上看,待测电阻测量值 会__________其真实值(填“大于”“小于”或“等于”),原因是 ______________________________________. 答案:(1)B C F (2)见解析 (3)大于 电压表的读数大于待测电阻两端实际电 压(其他正确表述也可)

高考物理二轮复习专题归纳—抛体运动(全国版)

高考物理二轮复习专题归纳—抛体运动(全国版)

高考物理二轮复习专题归纳—抛体运动(全国版)考点一运动的合成与分解例1(2022·辽宁卷·1)如图所示,桥式起重机主要由可移动“桥架”“小车”和固定“轨道”三部分组成.在某次作业中桥架沿轨道单向移动了8m,小车在桥架上单向移动了6m.该次作业中小车相对地面的位移大小为()A.6m B.8mC.10m D.14m答案C解析根据位移概念可知,该次作业中小车相对地面的位移大小为x=x12+x22=82+62m=10m,故选C.例2(多选)(2022·广东省高三检测)如图所示,A、B两球分别套在两光滑无限长的水平直杆上,两球通过一轻绳绕过一定滑轮(轴心固定不动)相连,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,A球向左的速度大小为v,下列说法正确的是()A.此时B球的速度大小为v cosαcosβB.此时B球的速度大小为v cosβcosαC.当β增大到等于90°时,B球的速度达到最大D.在β增大到90°的过程中,绳对B球的拉力一直做正功答案ACD解析将A球的速度分解为沿轻绳方向和垂直于轻绳的方向,在沿轻绳方向的分速度等于B球沿轻绳方向的分速度.A球在沿轻绳方向的分速度为v绳=v cosα,所以v B=v绳cosβ=v cosαcosβ,A正确,B错误;当β增大到等于90°时,B球的速度在沿轻绳方向的分速度等于0,所以A沿绳子方向的分速度也是0,而cosα′不等于0,所以A球的速度为0;此时A的动能全部转化为B的动能,所以B球的速度达到最大,C正确;在β增大到90°的过程中,轻绳的方向与B球运动的方向之间的夹角始终是锐角,所以轻绳对B球的拉力一直做正功,D正确.把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.考点二平抛运动1.平抛运动问题的求解方法已知条件情景示例解题策略已知速度方向从斜面外平抛,垂直落在斜面上,如图所示,已知速度的方向垂直于斜面.分解速度tan θ=v 0v y =v 0gt从圆弧形轨道外平抛,恰好无碰撞地进入圆弧形轨道,如图所示,已知速度方向沿该点圆弧的切线方向.分解速度tan θ=v y v 0=gt v 0已知位移方向从斜面上平抛又落到斜面上,如图所示,已知位移的方向沿斜面向下.分解位移tan θ=y x =12gt 2v 0t =gt 2v 0在斜面外平抛,落在斜面上位移最小,如图所示,已知位移方向垂直斜面.分解位移tan θ=x y =v 0t 12gt 2=2v 0gt2.平抛运动的两个推论(1)设做平抛运动的物体在任意时刻的速度方向与水平方向的夹角为θ,位移方向与水平方向的夹角为φ,则有tanθ=2tanφ,如图甲所示.(2)做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙所示.例3(多选)(2022·湖南省高三学业质量第二次联合检测)投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏,《礼记传》中提到:“投壶,射之细也.宴饮有射以乐宾,以习容而讲艺也.”如图所示,甲、乙两人在不同位置沿水平方向各射出一支箭,箭尖插入壶中时与水平面的夹角分别为37°和53°.已知两支箭的质量、竖直方向下落高度均相等,忽略空气阻力、箭长、壶口大小等因素的影响(sin37°=0.6,cos37°=0.8,sin53°=0.8,cos53°=0.6),下列说法正确的是()A.甲、乙两人所射箭的初速度大小之比为16∶9B.甲、乙两人所射箭落入壶口时的速度大小之比为3∶4C.甲、乙两人投射位置与壶口的水平距离之比为9∶16D .甲、乙两人所射箭落入壶口时的动能之比为16∶9答案AD 解析由题知甲、乙两人射箭高度相同,则两支箭在空中的运动时间相同,落入壶口时竖直方向的速度v y 相同.设箭尖插入壶中时与水平面的夹角为θ,箭射出时的初速度为v 0,则tan θ=v y v 0,即v 0=v y tan θ,故两支箭射出时的初速度大小之比为tan 53°∶tan 37°=16∶9,A 正确;设箭尖插入壶中时的速度大小为v ,则v =v y sin θ,故两支箭落入壶口时的速度大小之比为sin 53°∶sin 37°=4∶3,B 错误;因两支箭在空中的运动时间相同,甲、乙两人投射位置与壶口的水平距离之比等于初速度大小之比,为16∶9,C 错误;由E k =12mv 2可知,两支箭落入壶口时的动能之比为16∶9,D 正确.例4(2022·全国甲卷·24)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05s 发出一次闪光.某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示.图中的第一个小球为抛出瞬间的影像,每相邻两个球之间被删去了3个影像,所标出的两个线段的长度s 1和s 2之比为3∶7.重力加速度大小取g =10m/s 2,忽略空气阻力.求在抛出瞬间小球速度的大小.答案255m/s 解析频闪仪每隔0.05s 发出一次闪光,每相邻两个球之间被删去3个影像,故相邻两球的时间间隔为t=4T=4×0.05s=0.2s设抛出瞬间小球的速度大小为v0,每相邻两球间的水平方向上位移为x,竖直方向上的位移分别为y1、y2,根据平抛运动位移公式有x=v0ty1=12gt2=12×10×0.22m=0.2my2=12g(2t)2-12gt2=12×10×(0.42-0.22)m=0.6m令y1=y,则有y2=3y1=3y已标注的线段s1、s2分别为s1=x2+y2 s2=x2+3y2=x2+9y2则有x2+y2∶x2+9y2=3∶7整理得x=255y,故在抛出瞬间小球的速度大小为v0=xt=255m/s.例5(2022·浙江省名校协作体模拟)第24届冬季奥运会于2022年2月在北京召开,如图甲所示为运动员跳台滑雪运动瞬间,运动示意图如图乙所示,运动员从助滑雪道AB上由静止开始滑下,到达C点后水平飞出,落到滑道上的D点,运动轨迹上的E点的速度方向与轨道CD平行,设运动员从C到E与从E到D的运动时间分别为t1与t2,(忽略空气阻力,运动员可视为质点)下列说法正确的是()A.t1<t2B.t1>t2C .若运动员离开C 点时的速度加倍,则落在斜面上的速度方向不变D .若运动员离开C 点时的速度加倍,则落在斜面上距C 的距离也加倍答案C 解析以C 点为原点,以CD 为x 轴,以CD 垂直向上方向为y 轴,建立坐标系如图所示.对运动员的运动进行分解,y 轴方向上的运动类似竖直上拋运动,x 轴方向做匀加速直线运动.当运动员速度方向与轨道平行时,在y 轴方向上到达最高点,根据竖直上拋运动的对称性,知t 1=t 2,A 、B 错误;将初速度沿x 、y 方向分解为v 1、v 2,将加速度沿x 、y 方向分解为a 1、a 2,则运动员的运动时间为t =2v 2a 2,落在斜面上的距离s =v 1t +12a 1t 2,离开C 点时的速度加倍,则v 1、v 2加倍,t 加倍,由位移公式得s 不是加倍关系,D 错误;设运动员落在斜面上的速度方向与水平方向的夹角为α,斜面的倾角为θ,则有:tan α=v y v 0,tan θ=y x =v y 2t v 0t =v y 2v 0,得tan α=2tan θ,θ一定,则α一定,可知运动员落在斜面上的速度方向与从C 点飞出时的速度大小无关,C正确.考点三斜抛运动例6(2022·广东茂名市模拟)铅球运动员采用原地推和滑步推两种推铅球方式,如图为滑步推铅球.推力相同时,滑步推铅球比原地推铅球增加几米的成绩.两种方式铅球出手时相对地面的位置和速度方向都相同,忽略空气阻力,则()A.两种方式推出的铅球在空中运动的时间可能相同B.采用原地推铅球方式推出的铅球上升的高度更高C.两种方式推出的铅球在空中运动到最高点时的速度都相同D.滑步推铅球可以增加成绩,可能是延长了运动员对铅球的作用时间答案D解析两种方式铅球出手时相对地面的位置和速度方向都相同,滑步推铅球成绩更好,所以滑步推铅球初速度更大,竖直和水平方向的分速度更大,到达最高点的时间更长,故根据斜抛的对称性,铅球在空中运动的时间更长,上升的高度更高,在最高点速度更大,A、B、C错误;初速度都是0,滑步推时末速度大,根据动量定理有Ft=mv-0,可知推力相同时,动量变化大的推力作用时间长,D 正确.例7(2022·山东潍坊市一模)在2月8日举行的北京2022年冬奥会自由式滑雪女子大跳台的比赛中,18岁的中国选手谷爱凌顶住压力,在关键的第三跳以超高难度动作锁定金牌,这也是中国女子雪上项目第一个冬奥会冠军.滑雪大跳台的赛道主要由助滑道、起跳台、着陆坡、停止区组成,如图所示.在某次训练中,运动员经助滑道加速后自起跳点C以大小为v C=20m/s、与水平方向成α=37°的速度飞起,完成空中动作后,落在着陆坡上,后沿半径为R=40m的圆弧轨道EF自由滑行通过最低点F,进入水平停止区后调整姿势做匀减速滑行直到静止.已知运动员着陆时的速度方向与竖直方向的夹角为α=37°,在F点运动员对地面的压力大小为所受重力(含装备)的2倍,运动员在水平停止区受到的阻力大小为所受重力(含装备)的二分之一,g 取10m/s 2,sin 37°=0.6,忽略运动过程中的空气阻力.求:(1)水平停止区FG 的最小长度L ;(2)运动员完成空中动作的时间t (结果保留两位有效数字).答案(1)40m (2)3.3s 解析(1)将运动员与装备看成一个质点,总质量为m 总,在F 点时,运动员对地面的压力大小为所受重力(含装备)的2倍,由牛顿第三定律知地面对该运动员整体的支持力大小F N =2m 总g此时支持力与总重力的合力为圆周运动提供向心力,则有F N -m 总g =m 总v 2R解得v =20m/s运动员到达F 点后,在水平停止区有F 阻=0.5m 总g =m 总a ,做加速度大小为a 的匀减速直线运动,水平停止区FG 的最小长度L =v 22a=40m (2)对运动员由C 点起跳的速度进行正交分解,水平方向做匀速直线运动,竖直方向做匀减速直线运动,水平方向速度v x =v C cos α竖直方向速度v y =v C sin α-gt着陆时竖直方向分速度与C 点的竖直方向分速度方向相反,由于运动员着陆时的速度方向与竖直方向的夹角为α,则有tan α=v x -v y =v C cos αgt -v C sin α代入数值得t ≈3.3s.1.斜抛运动是匀变速曲线运动,可分解为水平方向上的匀速直线运动和竖直方向上的加速度为g 的匀变速直线运动,以斜上抛为例(如图所示)速度:v x =v 0cos θ,v y =v 0sin θ-gt位移:x =v 0cos θ·t ,y =v 0sin θ·t -12gt 22.当物体做斜上抛运动至最高点时,运用逆向思维,可转化为平抛运动.1.(2022·江苏省高考考前打靶卷)如图所示,一男孩欲拿石子击打苹果,第一次以抛射角(抛出时速度与水平方向的夹角)θ1抛出石子,第2次以θ2(图中未画出)抛出(θ2>θ1),假设两次抛出时的位置相同,且初速度v 0大小相等,两次均击中苹果.不计空气阻力,则()A .第一次石子在空中运动的时间比第二次长B .若仅减小v 0,欲击中苹果,则抛射角θ1、θ2均变大C .改变v 0大小和抛射角,石子不可能水平击中苹果D .两次击中苹果前瞬间的速度大小相等答案D解析石子做斜抛运动,水平方向做匀速运动,则有v x=v0cosθ,故石子在空中的运动时间t=xv x=xv0cosθ,所以t1t2=cosθ2cosθ1,因为θ2>θ1,故cosθ2<cosθ1,所以t1<t2,第一次运动时间较短,A错误;石子竖直方向做竖直上抛运动,则有v y=v0sinθ,竖直方向上升的高度为h=v y t-12gt2,联立可得h=x tanθ-gx22v02cos2θ,故只需要v0大小和抛射角满足上式即可击中苹果,C错误;由h=x tanθ-gx22v02cos2θ可知,v0减小时,θ不一定增大,B错误;由动能定理有-mgh=12mv2-12mv02,故两次击中苹果前瞬间的速度大小相等,D正确.2.(2022·北京市昌平区高三期末)运动的合成与分解是我们研究复杂运动时常用的方法.如图所示,一高度为h、内壁光滑的圆筒竖直放置,将一个小滑块在圆筒上端O点以水平初速度v0沿圆筒内壁切线方向抛出.小滑块沿圆筒内壁运动了一周后恰好从O′点离开圆筒.已知重力加速度为g,不计空气阻力.(1)求小滑块从抛出到离开圆筒所用的时间t.(2)如果沿虚线OO′将圆筒展开,以小滑块初始位置为坐标原点O,初速度v0方向为x轴正方向,竖直向下为y轴正方向,建立直角坐标系xOy,请在图中定性地画出小滑块在圆筒内表面的运动轨迹.答案(1)2h g(2)见解析图解析(1)由题意可知,小滑块竖直方向做自由落体运动,可得小滑块从抛出到离开圆筒所用的时间为h =12gt 2,解得t =2h g;(2)由题意可知,小滑块在圆筒内表面的运动轨迹如图所示.专题强化练[保分基础练]1.(2022·广东省模拟)《西游记》中,一只大龟浮水作舟,驮着唐僧师徒四人和白龙马渡过了通天河.已知大龟在静水中游动的速度大小与河水的流速大小之比为2∶1,出发点A 到正对岸B 点的距离为d ,河岸平直.若大家以最短的时间渡河,则大家上岸的地点与B 点的距离为()A.d 4B.d 2C .2dD .4d答案B解析要使渡河时间最短,大龟游动的速度方向应垂直河岸,渡河时间为t =dv 1,大家上岸的地点与B 点的距离x =v 2t ,又v 1∶v 2=2∶1,联立解得x =d2,故B 正确.2.(2022·广东卷·6)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L .当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t .不计空气阻力.下列关于子弹的说法正确的是()A .将击中P 点,t 大于L vB .将击中P 点,t 等于L vC .将击中P 点上方,t 大于L v D .将击中P 点下方,t 等于L v答案B解析由题意知枪口与P 点等高,子弹和小积木在竖直方向上均做自由落体运动,当子弹击中积木时子弹和积木的运动时间相同,根据h =12gt 2,可知下落高度相同,所以将击中P 点;又由于初始状态子弹到P 点的水平距离为L ,子弹在水平方向上做匀速直线运动,故有t =Lv,故选B.3.(2022·江苏扬州市高三期末)如图所示,滑板爱好者先后两次从坡道A 点滑出,均落至B 点,第二次的滞空时间比第一次长,则()A.两次滑出速度方向相同B.两次腾空最大高度相同C.第二次滑出速度一定大D.第二次在最高点速度小答案D解析对滑板爱好者运动分析可知,从坡道A点滑出后,水平方向做匀速直线运动,竖直方向做竖直上抛运动,根据竖直上抛运动的对称性,即上升时间等于下降时间,由题知第二次的滞空时间比第一次长,所以第二次下降时间大于第一次,由h=12gt2知,第二次腾空最大高度大于第一次,又因为两次水平位移相等,所以两次位移与水平方向的夹角不同,即两次滑出速度方向不相同,故A、B错误;因为第二次下降时间大于第一次,且两次水平位移相等,由x=v x t知,第二次滑出后水平分速度小于第一次,即第二次在最高点速度小,又由v y=gt可知,第二次滑出后竖直分速度大于第一次,所以第二次滑出速度不一定大,故C错误,D 正确.4.(多选)(2022·广西北海市一模)如图所示,直杆AB斜靠在墙角,∠ABO=53°,∠AOB=90°,AO=5m.现从距A点正下方1.8m的C点以初速度v0水平抛出一小球(可视为质点).已知重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6,空气阻力不计.若使小球不能碰到杆AB,则v0的值可能为()A.4m/s B.4.4m/s C.5m/s D.6m/s答案AB解析若小球刚与杆接触时的末速度与水平方向夹角为53°,即小球运动轨迹与杆相切,设此时小球竖直方向下落高度为h,水平位移为x,则根据平抛运动相关推论有tan53°=2hx,由几何关系可得tan53°=h+h ACx,联立解得h=1.8m,x=2.7m,则由v0<xt,t=2hg,联立解得v0<4.5m/s,C、D错误,A、B正确.5.(2022·安徽合肥市质检)某校秋季运动会分为竞技组和健身组,健身组设置了定点投篮项目.某同学正在进行定点投篮,篮球在空中划出了一道漂亮的弧线.在篮球运动所在的竖直平面内建立坐标系xOy,如图所示,篮球由A点投出,A、B、C、D是篮球运动轨迹上的四点,C为篮球运动的最高点,A、B、D三点的坐标已在图中标出,重力加速度为g,空气阻力忽略不计.则下列说法正确的是()A.篮球经过C点时速度大小为gLB.篮球经过B点和D点的动量相同C.篮球由A到B和由B到C过程,动量的变化量相同D.篮球由B到C和由C到D过程,重力做功相同答案C解析依题意可知篮球抛出后做斜抛运动,利用逆向思维,将篮球从A到C的轨迹看作从C到A的平抛运动,设C点坐标为(0,y C),C点到B点时间为t,由题图可得L=v C t,y C=12gt2,3L-y C=gt2,联立解得y C=L,v C=gL2,故A错误;由题图知B点和D点在同一水平线上,则可知篮球在两点处的速度大小相等,但方向不同,所以两点处的动量不相同,故B错误;由题图知篮球由A到B和由B 到C过程水平方向上发生的位移相等,则所用时间相等,根据动量定理可得mgt =-Δp,所以动量的变化量相同,故C正确;篮球由B到C过程重力做负功,由C到D过程重力做正功,二者不相同,故D错误.6.(2022·广东梅州市一模)如图甲所示是网球发球机,某次室内训练时将发球机在距地面一定的高度的地方放置,然后向竖直墙面发射网球.假定网球水平射出,某两次射出的网球碰到墙面时与水平方向夹角分别为30°和60°,如图乙所示.若不考虑网球在空中受到的阻力,则()A.两次发射的初速度之比为3∶1B.碰到墙面前空中运动时间之比为1∶3C.下降高度之比为1∶3D.碰到墙面时动能之比为3∶1答案C解析在平抛运动过程中,有h =12gt 2,x =v 0t ,位移与水平方向夹角的正切值tanα=h x =gt 2v 0,速度与水平方向夹角的正切值tan β=v y v 0=gtv 0,则tan β=2tan α.在平抛运动中,h =xtan β2,所以h 1h 2=tan 30°tan 60°=13;由h =12gt 2可知,t 1t 2=h 1h 2=33;水平速度v =x t ,可得v 1v 2=t 2t 1=31;由v t =v 0cos β可知,v t 1v t 2=v 1cos 60°v 2cos 30°=11,所以碰到墙面时动能之比E k1E k2=v t 12v t 22=11,故A 、B 、D 错误,C 正确.[争分提能练]7.(2022·湖北武汉市高三期末)活塞带动飞轮转动可简化为如图所示的模型:图中A 、B 、O 三处都是转轴,当活塞在水平方向上移动时,带动连杆AB 运动,进而带动OB 杆以O 点为轴转动.若某时刻活塞的水平速度大小为v ,连杆AB 与水平方向夹角为α,AB 杆与OB 杆的夹角为β,此时B 点做圆周运动的线速度大小为()A.v sin αsin βB.v cos αsin βC.v cos αcos βD.v sin αcos β答案B解析设B 点做圆周运动的线速度大小为v ′,此速度为B 点的实际速度,根据运动合成与分解,可以分解为沿杆方向的分速度和垂直杆方向的分速度,如图,沿杆方向的分速度大小为v B =v ′cos(β-π2)=v ′sin β,A 点速度为水平方向的v ,根据运动合成与分解,可以分解为沿杆方向的分速度和垂直杆方向的分速度,如图,沿杆方向的分速度为v A =v cos α,又有二者沿杆方向的分速度相等,即v ′sin β=v cos α,则v ′=v cos αsin β,故选B.8.(多选)(2022·山东卷·11)如图所示,某同学将离地1.25m 的网球以13m/s 的速度斜向上击出,击球点到竖直墙壁的距离4.8m .当网球竖直分速度为零时,击中墙壁上离地高度为8.45m 的P 点.网球与墙壁碰撞后,垂直墙面速度分量大小变为碰前的0.75倍.平行墙面的速度分量不变.重力加速度g 取10m/s 2,网球碰墙后的速度大小v 和着地点到墙壁的距离d 分别为()A .v =5m/sB .v =32m/sC .d =3.6mD .d =3.9m答案BD解析设网球飞出时的速度为v 0,竖直方向v 0竖直2=2g (H -h ),代入数据得v 0竖直=2×10×8.45-1.25m/s =12m/s ,则v 0水平=132-122m/s =5m/s ,网球击出点到P 点水平方向的距离x 水平=v 0水平t =v 0水平·v 0竖直g =6m ,根据几何关系可得打在墙面上时,垂直墙面的速度分量v 0水平⊥=v 0水平·45=4m/s ,平行墙面的速度分量v0水平∥=v0水平·35=3m/s,反弹后,垂直墙面的速度分量v水平⊥′=0.75·v0水平⊥=3m/s,则反弹后的网球速度大小为v=v水平=v水平⊥′2+v0水平∥2=32m/s,网球落到地面的时间t′=2Hg=2×8.4510s=1.3s,着地点到墙壁的距离d=v水平⊥′t′=3.9m,故B、D正确,A、C错误.9.(2022·安徽蚌埠市高三期末)如图为弹球游戏装置的简化示意图,两块平行挡板竖直固定在水平面上,右侧挡板下端有一小孔B,小亮将弹性小球自右侧挡板顶端A点以一定的水平速度向左抛出,小球经两个挡板多次碰撞最终恰好从B飞出,游戏获胜.已知两挡板的间距为L,A、B的高度差为h,小球直径略小于小孔的内径,小球与挡板碰撞前后的水平和竖直分速度大小均不变,且不与水平面相碰,重力加速度为g.则小球抛出时的速度v和它与两挡板碰撞总次数N分别为()A.v=(N+1)L2gh,N=2n(n=1,2,3,…)B.v=(N+1)L2gh,N=2n-1(n=1,2,3,…)C.v=(N+1)L g2h,N=2n(n=1,2,3,…)D.v=(N+1)L g2h,N=2n-1(n=1,2,3,…)答案B解析小球在两平行挡板间的运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.设运动总时间为t,则水平方向、竖直方向分别有(N+1)L=vt,N=2n-1(n=1,2,3,…),h=12gt2,联立可得v=(N+1)L2gh,N=2n-1(n=1,2,3,…),故A、C、D错误,B正确.10.(2022·山东日照市一模)跳台滑雪是冬奥会的重要项目之一.如图所示,某次比赛中,质量为m的运动员(包括滑雪板)以速度v0从跳台顶端水平飞出,经过一段时间后落在倾斜赛道上,赛道的倾角为θ,重力加速度为g,空气阻力忽略不计,运动员(包括滑雪板)视为质点.则运动员在空中运动的过程中()A.动量变化量的大小为mv0tanθB.位移的大小为v02tanθgC.距离赛道最远时的速度大小为v0tanθD.距离赛道最远时的竖直位移为总竖直位移的14答案D解析根据动量定理,动量变化量等于重力的冲量,即为竖直方向的动量变化,当运动员落至斜面时,分解其位移得tanθ=hx=12gt2v0t=gt2v0,则落至斜面时的竖直分速度为v y=gt=2v0tanθ,因此动量变化量为Δp=mΔv=2mv0tanθ,故A错误;由A得运动员运动的时间为t=2v0tanθg,则水平位移为x=v0t=2v02tanθg,则运动员实际位移大小为x实际=xcosθ=2v02tanθg cosθ,故B错误;将运动分解为沿斜面和垂直斜面两个方向,则垂直斜面方向的初速度方向垂直斜面向上,加速度方向垂直斜面向下,则垂直斜面的速度分量减小为零时运动员离斜面最远,即当运动员的速度方向与斜面平行时,距离赛道最远,在最远处分解其速度得cosθ=v0v,则v=v0cosθ,故C错误;垂直斜面方向的分运动类似于竖直上抛运动,根据竖直上抛运动的对称性,垂直斜面的速度分量减小为零时的运动时间为总时间的一半,再根据自由落体的公式h=12gt2得,距离赛道最远时的竖直位移为总竖直位移的14,故D正确.11.(2022·河北保定市七校联考)如图所示,两人各自用吸管吹黄豆,甲黄豆从吸管末端P点水平射出的同时乙黄豆从另一吸管末端M点斜向上射出.经过一段时间后两黄豆在N点相遇,曲线1和2分别为甲、乙黄豆的运动轨迹.若M点在P 点正下方,M点与N点位于同一水平线上,且PM长度等于MN的长度,不计空气阻力,可将黄豆看成质点,则()A.两黄豆相遇时甲的速度与水平方向的夹角的正切值为乙的两倍B.甲黄豆在P点的速度与乙黄豆在最高点的速度不相等C.两黄豆相遇时甲的速度大小为乙的两倍D.乙黄豆相对于M点上升的最大高度为PM长度的一半答案A解析设甲黄豆做平抛运动的时间为t,那么乙黄豆做斜抛运动的时间也为t,根据斜抛运动的对称性可知,乙黄豆从M点运动至最高点的时间为t2,乙黄豆从M点运动至最高点的水平位移为MN的一半,设PM=MN=L,甲黄豆在P点的速度为v1,乙黄豆到达最高点的速度为v′,在水平方向上由运动学规律:对甲黄豆有L=v1t,对乙黄豆从M点运动至最高点水平方向上有L2=v′·t2,联立解得v1=v′=Lt,故B错误;对甲黄豆到达N点时,在竖直方向上有L=12gt2,v1y=gt=2gL,在水平方向有v1=Lt=gL2,甲黄豆到达N点时的速度为v甲=v12+v1y2=5gL2,对乙黄豆在从M点运动至最高点的过程中,由逆向思维得上升的最大高度为h=12g(t2)2=14·12gt2=14L,所以乙黄豆相对于M点上升的最大高度为PM长度的14,乙黄豆在M点的竖直方向分速度为v2y2=2g·L4,则v2y=gL2,由运动的合成与分解得乙黄豆在N点的速度为v乙=v′2+v2y2=gL,所以两黄豆相遇时甲的速度大小不是乙的两倍,故C、D错误;两黄豆相遇时甲的速度与水平方向的夹角正切值为tanα=v1yv1=2gLgL2=2,乙的速度与水平方向的夹角正切值为tanβ=v2yv′=v2yv1=gL2gL2=1,所以两黄豆相遇时甲的速度与水平方向的夹角不是乙的两倍,甲的速度与水平方向的夹角的正切值为乙的两倍,故A正确.12.(2022·广东开平市模拟)2022年2月8日,18岁的中国选手谷爱凌在北京冬奥会自由式滑雪女子大跳台比赛中以绝对优势夺得金牌,这是中国代表团在北京冬奥会上的第三枚金牌,被誉为“雪上公主”的她赛后喜极而泣.现将比赛某段过程视为如图所示的质点小球的运动,小球从倾角为α=30°的斜面顶端O 点以速度v 0飞出,已知v 0=20m/s ,且与斜面夹角为θ=60°.图中虚线为小球在空中的运动轨迹,且A 为轨迹上离斜面最远的点,B 为小球在斜面上的落点,C 是过A 作竖直线与斜面的交点,不计空气阻力,重力加速度取g =10m/s 2.求:(1)小球从O 点运动到A 点所用时间t ;(2)小球离斜面最远的距离L ;(3)O 、C 两点间距离x .答案(1)2s (2)103m (3)40m 解析(1)将小球在O 点的速度沿斜面和垂直斜面分解,如图所示,垂直斜面方向有v 1=v 0sin θ,a 1=g cos α,t =v 1a 1,联立解得t =2s(2)垂直斜面方向的速度匀减速至0时,有L =v 122a 1,代入数据得L =103m (3)解法1:由垂直斜面方向运动对称性可得,小球从O 到A 与从A 到B 所用时间相等,平行斜面方向有v 2=v 0cos θ,a 2=g sin α,则平行斜面方向有x OB =v 2·2t +12a 2(2t )2,小球在水平方向做匀速直线运动,C 为OB 中点,则x =12x OB。

2019届《新步步高》物理二轮专题复习与增分策略专题突破习题:专题5 动力学 动量和能量观点的综合应用(1)

2019届《新步步高》物理二轮专题复习与增分策略专题突破习题:专题5 动力学 动量和能量观点的综合应用(1)

专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性的选择相应的规律和方法.1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).解题方略1.弹性碰撞与非弹性碰撞碰撞过程遵从动量守恒定律.如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞;如果碰撞过程中机械能不守恒,这样的碰撞叫做非弹性碰撞.2.应用动量守恒定律的解题步骤(1)明确研究对象(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列式求解;(5)必要时对结果进行讨论.例1如图1所示,光滑水平面上有一质量为m=1 kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1 kg的物块,物块与上表面光滑的小车一起以v0=5 m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4 kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.求:(1)碰撞结束时,小车与小球的速度;(2)从碰后瞬间到弹簧被压至最短的过程,弹簧弹力对小车的冲量大小.图1解析 (1)设碰撞后瞬间小车的速度大小为v 1,小球的速度大小为v ,由动量守恒及机械能守恒有:m v 0=M v +m v 1 12m v 20=12m v 21+12M v 2 解得v 1=m -Mm +M v 0=-3 m/s ,小车速度方向向左.v =2m m +M v 0=2 m/s ,小球速度方向向右. (2)当弹簧被压缩到最短时,物块与小车有共同进度, 设小车的速度大小为v 2,根据动量守恒定律有: m 0v 0+m v 1=(m 0+m )v 2,解得v 2=1 m/s.设碰撞后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为I ,根据动量定理有I =m v 2-m v 1,解得I =4 N·s.答案 (1)小车:3 m/s ,方向向左 小球:2 m/s ,方向向右 (2)4 N·s预测1 (2019·全国乙卷·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求: (1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度. 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S2解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV ②其中ΔV 为水柱体积,满足ΔV =ΔlS ③由①②③可得:喷泉单位时间内喷出的水的质量为 ΔmΔt=ρv 0S . (2)设玩具底面相对于喷口的高度为h由玩具受力平衡得F 冲=Mg ④ 其中,F 冲为水柱对玩具底面的作用力 由牛顿第三定律:F 压=F 冲⑤其中,F 压为玩具底面对水柱的作用力,v ′为水柱到达玩具底面时的速度 由运动学公式:v ′2-v 20=-2gh ⑥在很短Δt 时间内,冲击玩具水柱的质量为Δm Δm =ρv 0S Δt ⑦由题意可知,在竖直方向上,对该部分水柱应用动量定理 (F 压+Δmg )Δt =Δm v ′⑧由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为 F 压Δt =Δm v ′⑨由④⑤⑥⑦⑨可得h =v 202g -M 2g 2ρ2v 20S2.解题方略1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.例2 如图2所示,光滑水平面上有一质量M =4.0 kg 的平板车,车的上表面是一段长L =1.5 m 的粗糙水平轨道,水平轨道左侧连一半径R =0.25 m 的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O ′处相切.现将一质量m =1.0 kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5,小物块恰能到达圆弧轨道的最高点A .取g =10 m/s 2,求:图2(1)小物块滑上平板车的初速度v0的大小;(2)小物块与车最终相对静止时,它距点O′的距离.解析(1)平板车和小物块组成的系统在水平方向上动量守恒,设小物块到达圆弧轨道最高点A 时,二者的共同速度为v1由动量守恒得:m v0=(M+m)v1①由能量守恒得:12m v 20-12(M+m)v21=mgR+μmgL②联立①②并代入数据解得:v0=5 m/s③(2)设小物块最终与车相对静止时,二者的共同速度为v2,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得:m v0=(M+m)v2④设小物块与车最终相对静止时,它距O′点的距离为x,由能量守恒得:12m v 20-12(M+m)v22=μmg(L+x)⑤联立③④⑤并代入数据解得:x=0.5 m.答案(1)5 m/s (2)0.5 m预测2 如图3所示,小球A质量为m,系在细线的一端,线的另一端固定在O点,O点到光滑水平面的距离为h.物块B和C的质量分别是5m和3m,B与C用轻弹簧拴接,置于光滑的水平面上,且B物块位于O点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程中B物块受到的冲量大小及碰后轻弹簧获得的最大弹性势能.图3答案54m2gh15128mgh解析设小球运动到最低点与物块B碰撞前的速度大小为v1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh =12m v 21解得:v 1=2gh设碰撞后小球反弹的速度大小为v 1′,同理有: mg h 16=12m v 1′2 解得:v 1′=2gh 4设碰撞后物块B 的速度大小为v 2,取水平向右为正方向,由动量守恒定律有: m v 1=-m v 1′+5m v 2 解得:v 2=2gh 4由动量定理可得,碰撞过程中B 物块受到的冲量大小为:I =5m v 2=54m 2gh碰撞后当B 物块与C 物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有 5m v 2=8m v 3据机械能守恒定律得:E pm =12×5m v 22-12×8m v 23解得:E pm =15128mgh .解题方略力学规律选用的一般原则力学中首先考虑使用两个守恒定律,从两个守恒定律的表达式看出多项都是状态量(速度、位置),所以守恒定律能解决状态问题,不能解决过程(位移x ,时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律. (2)若物体(或系统)涉及到速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及到位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及到位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,运用动能定理解决曲线运动和变加速运动问题特别方便.例3(2019·广东理综·36)如图4所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5 m ,物块A 以v 0=6 m /s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1 m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1 kg(重力加速度g 取10 m/s 2;A 、B 视为质点,碰撞时间极短).图4(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12m v 2-12m v 2解得v =4 m/s >gR = 5 m/s 在Q 点,由牛顿第二定律得 F N +mg =m v 2R解得F N =22 N.(2)A 撞B ,由动量守恒得 m v 0=2m v ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则 -2μmgx =0-12·2m v ′2解得x =4.5 m ,所以k =xL=45.(3)AB 滑至第n 个光滑段上,由动能定理得 -μ·2mgnL =12·2m v 2n -12·2m v ′2所以v n =9-0.2n m/s (n <45). 答案 (1)4 m/s 22 N (2)45 (3)v n =9-0.2n m/s (n <45)预测3 如图5所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切.质量m 2=0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m 1=0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B 时对轨道的压力为小球a 重力的2倍.忽略空气阻力,重力加速度g =10 m/s 2.求:图5(1)小球a 由A 点运动到B 点的过程中,摩擦力做的功W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能E p ; (3)小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 的大小. 答案 (1)-0.4 J (2)0.2 J (3)0.4 N·s解析 (1)小球由静止释放到最低点B 的过程中,根据动能定理得:m 1gR +W f =12m 1v 21,小球在最低点B ,根据牛顿第二定律得:F N -m 1g =m 1v 21R,联立可得:W f =-0.4 J.(2)小球a 与小球b 通过弹簧相互作用,达到共同速度v 2时弹簧具有最大弹性势能,此过程中,由动量守恒定律: m 1v 1=(m 1+m 2)v 2,由能量守恒定律:12m 1v 21=12(m 1+m 2)v 22+E p联立可得:E p =0.2 J.(3)小球a 与小球b 通过弹簧相互作用的整个过程中,a 球最终速度为v 3,b 球最终速度为v 4,由动量守恒定律: m 1v 1=m 1v 3+m 2v 4,由能量守恒定律:12m 1v 21=12m 1v 23+12m 2v 24, 根据动量定理有:I =m 2v 4, 联立可得:I =0.4 N·s.专题强化练1.如图1所示,质量为m 的b 球用长为h 的细绳悬挂于水平轨道BC 的出口C 处,质量也为m 的小球a 从距BC 高h 的A 处由静止释放,沿ABC 光滑轨道滑下,在C 处与b 球正碰并与b 粘在一起,已知BC 轨道距地面有一定的高度,悬挂b 球的细绳能承受的最大拉力为2.8mg .试问:图1(1)a 球与b 球碰前瞬间的速度多大?(2)a 、b 两球碰后,细绳是否会断裂?(要求通过计算回答). 答案 (1)2gh (2)会断裂解析 (1)设a 球与b 球碰前瞬间的速度大小为v C ,由机械能守恒定律得mgh =12m v 2C ,解得v C =2gh ,即a 球与b 球碰前的速度大小为2gh . (2)设b 球碰后的速度为v ,a 、b 碰撞过程中动量守恒,则 m v C =(m +m )v ,故v =12v C =122gh ,假设a 、b 球碰撞后将一起绕O 点摆动,若小球在最低点时细绳拉力为F T ,则F T -2mg =2m v 2h解得F T =3mg ,F T >2.8mg , 故细绳会断裂,小球做平抛运动.2.如图2所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能达到C 板的最右端,已知A 、B 、C 质量均相等,木板C 长为L ,求:图2(1)A 物体的最终速度; (2)A 在木板C 上滑行的时间. 答案 (1)3v 04 (2)4Lv 0解析 (1)设A 、B 、C 的质量为m ,B 、C 碰撞过程中动量守恒,设B 、C 碰后的共同速度为v 1,则m v 0=2m v 1,解得v 1=v 02,B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用的过程中动量守恒,设最终A 、C 的共同速度为v 2, 则m v 0+m v 1=2m v 2,解得v 2=3v 04.(2)在A 、C 相互作用的过程中,根据机械能守恒有 F f L =12m v 20+12m v 21-12·2m v 22(F f 为A 、C 间的摩擦力),代入解得F f =m v 2016L.此过程中对C ,根据动量定理有F f t =m v 2-m v 1, 代入相关数据解得t =4Lv 0.3.如图3所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图3(1)火药爆炸过程中有多少化学能转化为机械能; (2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离. 答案 (1)k +12k m v 20 (2)3πm 2qB (3)2k -2-3π2(k +1)·m v 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向, 在爆炸前后由动量守恒可得:0=m v 0-km v B E =12m v 20+12km v 2B =k +12km v 20 (2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=m v 0-km v B 可得:v B =v 0k由q v 0B =m v 20R 知,R =m v 0qB设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A =2k -2-3π2(k +1)·m v 0qB. 4.如图4所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑.水平段OP 长为L =1 m ,P 点右侧一与水平方向成θ=30°的足够长的传送带与水平面在P 点平滑连接,传送带轮逆时针转动速率为3 m/s ,一质量为1 kg 可视为质点的物块A 压缩弹簧(与弹簧不拴接),使弹簧获得的弹性势能E p =9 J ,物块与OP 段动摩擦因数μ1=0.1,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数μ2=33,传送带足够长,A 与B 的碰撞时间不计,碰后A 、B 交换速度,重力加速度g =10 m/s 2,现释放A ,求:图4(1)物块A 、B 第一次碰撞前瞬间,A 的速率v 0;(2)从A 、B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量;(3)A 、B 能够碰撞的总次数.答案 (1)4 m/s (2)12.25 J (3)6次解析 (1)设物块质量为m ,A 与B 第一次碰前的速率为v 0,则E p =12m v 20+μ1mgL , 解得v 0=4 m/s.(2)设A 、B 第一次碰撞后的速度分别为v A 、v B ,则v A =0,v B =4 m/s ,碰后B 沿传送带向上做匀减速运动直至速度为零,加速度大小设为a 1,则mg sin θ+μ2mg cos θ=ma 1,解得a 1=g sin θ+μ2g cos θ=10 m/s 2.运动的时间t 1=v B a 1=0.4 s. 位移x 1=v B 2t 1=0.8 m. 此过程相对运动路程Δs 1=v t 1+x 1=2 m.此后B 反向加速,加速度仍为a 1,与传送带共速后匀速运动直至与A 再次碰撞,加速时间为t 2=v a 1=0.3 s. 位移为x 2=v 2t 2=0.45 m. 此过程相对运动路程Δs 2=v t 2-x 2=0.45 m ,全过程摩擦生热Q =μ2mg cos θ(Δs 1+Δs 2)=12.25 J.(3)B 与A 第二次碰撞,两者速度再次互换,此后A 向左运动再返回与B 碰撞,B 沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A 、B 和弹簧组成的系统,从第二次碰撞后到不再碰撞:12m v 2=2nμ1mgL ,解得第二次碰撞后重复的过程数为n =2.25.所以碰撞总次数为N =2+2n =6.5=6次(取整数).。

步步高大二轮专题复习与增分策略 化学 专题课时作业

步步高大二轮专题复习与增分策略 化学  专题课时作业

专题八水溶液中的离子平衡一、选择题1.有4种混合溶液,分别由等体积0.1 mol/L的2种溶液混合而成:①CH3COONa与HCl;②CH3COONa 与NaOH;③CH3COONa与NaCl;④CH3COONa与NaHCO3。

以下各项排序正确的选项是( )A.pH:②>③>④>①B.c(CH3COO-):②>④>③>①C.溶液中c(H+):①>③>②>④D.c(CH3COOH):①>④>③>②2.(2021·天津理综,4)以下表达正确的选项是 ( ) A.0.1 mol/L C6H5ONa溶液中:c(Na+)>c(C6H5O-)>c(H+)>c(OH-)B.Na2CO3溶液加水稀释后,恢复至原温度,pH和K W均减小C.pH=5的CH3COOH溶液和pH=5的NH4Cl溶液中,c(H+)不相等D.在Na2S溶液中参加AgCl固体,溶液中c(S2-)下降3.(2021·海南,5):K sp(AgCl)=1.8×10-10,K sp(AgI)=1.5×10-16,K sp(Ag2CrO4)=2.0×10-12,则以下难溶盐的饱和溶液中,Ag+浓度大小顺序正确的选项是 ( )A.AgCl>AgI>Ag2CrO4B.AgCl> Ag2CrO4>AgIC.Ag2CrO4>AgCl>AgID.Ag2CrO4>AgI>AgCl4.(2021·福建理综,10)以下关于电解质溶液的正确判断是 ( ) A.在pH=12的溶液中,K+、Cl-、HCO-3、Na+可以大量共存B.在pH=0的溶液中,Na+、NO-3、SO2-3、K+可以大量共存C.由0.1 mol/L一元碱BOH溶液的pH=10,可推知BOH溶液存在BOH===B++OH-D.由0.1 mol/L一元酸HA溶液的pH=3,可推知NaA溶液存在A-+H2O HA+OH-5.(2021·海南,6)光谱研究说明,易溶于水的SO2所形成的溶液中存在着以下平衡:SO2+x H2O SO2·x H2O H++HSO-3+(x-1)H2OH++SO2-3据此,以下判断中正确的选项是 ( ) A.该溶液中存在着SO2分子B.该溶液中H+浓度是SO2-3浓度的2倍C.向该溶液中参加足量的酸都能放出SO2气体D.向该溶液中参加过量NaOH可得到Na2SO3、NaHSO3和NaOH的混合溶液6.(2021·山东理综,15)某温度下,一样pH值的盐酸和醋酸溶液分别加水稀释,平衡pH值随溶液体积变化的曲线如右图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碰撞. (2)玻意耳定律 内容:一定质量的某种气体,在温度不变的情况下,压强
乘积 p 和体积 V 成反比;或者说,压强和体积的______保持不
变.此即为玻意耳定律. 数学表达式:pV=C(常量)或 p1V1=p2V2.
热点实验例析
专题九
(3)查理定律 内容:一定质量的某种气体,在体积不变的情况下,压强 p 跟____________成正比,这个规律叫做查理定律. 热力学温度T p 数学表达式: =C(常量). T 对于一定质量的理想气体,在两个确定的状态Ⅰ(p1、V0、T1) p1 p2 p1 T1 和Ⅱ(p2、V0、T2)下有 = 或 = . T 1 T 2 p2 T 2
本 课 时 栏 目 开 关
读题 审题 解题
专题九
(2)(5 分)一定质量的理想气体由状态 A 经状态 B 变化到状态 C 的 p-V 图象如图 1 所示.在由状态 A 变化到状态 C 的过程 中,理想气体吸收的热量________它对外界做的功.(填“大 于”、“小于”或“等于”).
本 课 时 栏 目 开 关
子的无规则运动,选项 C、D 错误;水黾停在水面上、露珠 呈球形均是因为液体存在表面张力,选项 A、B 正确.
(2)温度升高时,气体分子平均速率变大,平均动能增大,即 分子速率较大的分子占总分子数的比例较大,所以 T1<T2. VA VB (3)等压变化过程有 = ,对外做的功 W=p(VB-VA) TA TB
本 课 时 栏 目 开 关
热点实验例析
专题九
系统内能增加,ΔU>0,即 ΔU 为正值; 系统内能减少,ΔU<0,即 ΔU 为负值.
本 课 时 栏 目 开 关
温度 (2)对于理想气体来说,只要______不变,则内能不变.
热点实验例析
专题九
两种微观模型 4 d3 (1)球体模型(适用于固体、 液体): 一个分子的体积 V 分 = π( ) 3 2 1 = πd3,d 为分子的______. 直径 6 (2)立方体模型(适用于气体): 一个分子占据平均空间 V 分=d3, d 为分子间的______. 距离
本 课 时 栏 目 开 关
图4
读题 审题 解题
专题九
解析
(3)①由热力学第一定律 ΔU=W+Q
本 课 时 栏 目 开 关
Q=ΔU-W=60 J-(-240 J)=300 J V2 T2 273+87 K ② = = =1.2 V1 T1 273+27 K
答案
(1)AB
②1.2
VNA (2) Vmol
专题九
平均动能 (2)温度是分子__________的标志,物体的内能是物体内所有 势能 分子的动能和______之和.
(3)阿伏加德罗常数 ①分子的大小:直径数量级为______ m. 10-10 ②分子的质量:质量数量级为 10-26 kg. ③阿伏加德罗常数 NA=6.02×1023 mol 1 摩尔质量 固体、液体、气体三种 NA= (适用于________________________情况) 分子质量 摩尔体积 固体和液体 NA= (适用于____________) 分子体积 V ④油膜法测分子的直径:d=______. S
根据热力学第一定律 ΔU=Q-W, 代入数据解得 ΔU=5.0×102 J.
本 课 时 栏 目 开 关
答案 (1)AB
(3)5.0×102 J
(2)平均动能 小于
读题 审题 解题
专题九
(1)下列说法正确的是________. A.晶体和非晶体在一定条件下可以相互转化 B.布朗运动是由于液体分子撞击的不平衡引起的 C.0℃的冰融化成 0℃的水的过程中,分子平均动能增大 D.油膜法测定油酸分子直径时,用一滴油酸酒精溶液的体 积除以油膜的面积就得到油酸分子的直径 (2)某冰箱冷藏室容积为 V,已知此状态下空气的摩尔体积为 Vmol,阿伏加德罗常数为 NA,则该冷藏室内有________个空 气分子,空气分子间的平均距离为________.
本 课 时 栏 目 开 关
1.分子动理论 (1)分子动理论的基本观点是:物体是由大量分子组成的,分子
永不停息的无规则 引力 在 做 __________________ 运 动 , 分 子 间 存 在 着 ________ 和 斥力 布朗运动 ______.扩散现象与__________是分子永不停息地做无规则运
本 课 时 栏 目 开 关
读题 审题 解题
专题九
题型 2 热学基本规律与热力学定律的组合 【例 2】 (2012· 江苏· 12A)(1)下列现象中, 能说明液体存在表 面张力的有________. A.水黾可以停在水面上 B.叶面上的露珠呈球形 C.滴入水中的红墨水很快散开 D.悬浮在水中的花粉做无规则运动
图2
读题 审题 解题
专题九
(3)如图 3 所示,一定质量的理想气体从状态 A 经等压过程到 状态 B.此过程中,气体压强 p=1.0×105 Pa,吸收的热量 Q =7.0×102 J,求此过程中气体内能的增量.
本 课 时 栏 目 开 关
图3
读题 审题 解题
解析
专题九
(1)红墨水散开和花粉的无规则运动直接或间接说明分

本 课 时 栏 目 开 关
热点实验例析
专题九
2.晶体和液晶 (1)晶体的主要特点表现为: ①具有规则的几何形状; ②具 各向异性 有__________;③有确定的熔点.晶体和非晶体并不是绝 对的,它们在适当的条件下可以相互转化. (2)液晶(或者称为液态晶体)是一种特殊的物质状态,所处
固 液 的状态介于____态和____态之间.液晶的物理性质表现 流动 为:①液晶具有液体的______性;②液晶具有晶体的光学 各向异性 __________.它的应用主要表现在显示技术、电子工业、
本 课 时 栏 目 开 关
读题 审题 解题
专题九
(2)封闭在钢瓶中的理想气体,温度升高时压强增大.从分子 动理论的角度分析,这是由于分子热运动的 ________增大 了.该气体在温度 T1、T2 时的分子速率分布图象如图 2 所示, 则 T1________(选填“大于”或“小于”)T2.
本 课 时 栏 目 开 关
本 课 时 栏 目 开 关
专题九
【应考策略】
由于本专题内容琐碎,考查点多,因此
本 课 时 栏 目 开 关
在复习中应注意抓好四大块知识:一是分子动理论;二是从 微观角度分析固体、液体、气体的性质;三是气体实验三定 律;四是热力学定律.以四块知识为主干,梳理出知识点, 进行理解性记忆.
热点实验例析
专题九
图1
读题 审题 解题

专题九
已知阿伏加德罗常数为 6.0×1023 mol 1,在标准状况(压强 p0 =1 atm、温度 t0=0℃)下理想气体的摩尔体积都为 22.4 L, 已知理想气体在状态 C 时的温度为 27℃,求该气体的分子 数.(计算结果保留两位有效数字)
解析 (2)设该理想气体在标准状况下体积为 V,对状态 C→ (1 分) (1 分) (1 分) 标准状况,由气体实验定律得 V VC = T0 TC 3 则 V= ×273 L=2.73 L 300 V 该气体的分子数 N= NA=7.3×1022 个. V0 答案 (1)B (2)等于(2 分) 7.3×102定律
专题九
一个热力学系统的内能增量等于外界向它传递的热量与 外界对它所做的功的和,其表达式为 ΔU=Q+W.ΔU、Q、 W 的符号规定为: 外界对系统做功,W>0,即 W 为正值; 系统对外界做功,也就是外界对系统做负功,W<0,即 W 为负值; 外界对系统传递热量,也就是系统____________热量, 从外界吸收 Q>0,即 Q 为正值; 外界从系统吸收热量, 也就是系统对外界放出热量, Q<0, 即 Q 为负值;
本 课 时 栏 目 开 关
读题 审题 解题
专题九
题型 1 分子动理论与热力学定律的组合 【例 1】 (15 分)(1)(5 分)下列说法中正确的是 ( ) A.扩散现象说明了分子在不停地做无规则运动 B.布朗运动实际是液体分子的运动 C.分子间距离增大,分子间作用力一定减小 D.温度高的物体的内能不一定大
动的实验基础.每个分子的运动都是不规则的,带有偶然性, 大量分子的集体行为受统计规律支配,表现为
中间多,两头少 “________________”的规律.布朗运动既不是固体分子的运 液体分子 动,也不是液体分子的运动,它是由于__________频繁地撞击
固体小颗粒而引起的小颗粒的运动.
热点实验例析
专题九
本 课 时 栏 目 开 关
专题九
【专题定位】 本专题主要解决的是分子动理论和热力学 定律,并从宏观和微观角度理解固、液、气三态的性质.新 课程标准对本部分内容要求较低, 《考试说明》明确指出“在 选考中不出现难题”.此部分高考命题的形式基本上都是小 题的拼盘. 高考对本部分内容考查的重点和热点有以下几个方面: ①分子大小的估算;②对分子动理论内容的理解;③物态变 化中的能量问题;④气体实验定律的理解;⑤固、液、气三 态的微观解释和理解; ⑥热力学第一定律的理解和简单计算; ⑦用油膜法估测分子大小等内容.
本 课 时 栏 目 开 关
读题 审题 解题
专题九
(3)如图 4 所示的导热汽缸固定于水平面上, 缸内用活塞密封一定质量的理想气体,外界 大气压强保持不变.现使汽缸内气体温度从 27℃缓慢升高到 87℃,此过程中气体对活塞 做功 240 J,内能增加了 60 J.活塞与汽缸间 无摩擦、不漏气,且不计气体的重力,活塞 可以缓慢自由滑动.求: ①缸内气体从外界吸收了多少热量? ②升温后缸内气体体积是升温前气体体积的多少倍?
3 V mol NA
(3)①300 J
读题 审题 解题
相关文档
最新文档