故城县第二高级中学2018-2019学年高三上学期12月月考数学试卷
河北省故城县高级中学2018届高三年级上学期第一次月考(数学)
河北省故城县高级中学2018届高三年级上学期第一次月考数学一、单选题(共12题;共60分)1、设集合A={y|y=log2x,x>1},B={y|y=()x,0<x<1},则A∩B等于()A、{y| <y<1}B、{y|0<y }C、∅D、{y|0<y<1}2、某程序图如图所示,该程序运行后输出的结果是()A、3B、4C、5D、63、函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论不正确的是()A、在(1,2)上函数f(x)为增函数B、在(3,4)上函数f(x)为减函数C、在(1,3)上函数f(x)有极大值D、x=3是函数f(x)在区间[1,5]上的极小值点4、设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A、+B、+C、﹣D、﹣5、下列函数中,既不是奇函数,也不是偶函数的是()A、y=0B、y=sin2xC、y=x+lgxD、y=2x+2﹣x6、log0.72,log0.70.8,0.9﹣2的大小顺序是()A、log0.72<log0.70.8<0.9﹣2B、log0.70.8<log0.72<0.9﹣2C、0.9﹣2<log0.72<log0.70.8D、log0.72<0.9﹣2<log0.70.87、如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为.则该几何体的俯视图可以是()A、B、C、D、8、函数f(x)=Asin(ωx+φ)的部分图象如图所示,若,且f(x1)=f(x2)(x1≠x2),则f(x1+x2)=()A、1B、C、D、9、已知f(x)= ,则f()+f(﹣)的值为()A、﹣2B、﹣1C、1D、210、已知数{a n}满a1=0,a n+1=a n+2n,那a2016的值是()A、2014×2015B、2015×2016C、2014×2016D、2015×201511、如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM= AB,则等于()A、﹣1B、1C、﹣D、12、一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角保型函数”,给出下列函数:①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,其中是“三角保型函数”的是()A、①②B、①③C、②③④D、③④二、填空题(共4题;共20分)13、log a<1(a>0且a≠1),a的取值范围为________.14、已知圆(x+2)2+(y﹣2)2=a截直线x+y+2=0所得弦长为6,则实数a的值为________.15、已知直线l⊥平面α,直线m⊂平面β,则下列四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β其中正确命题的序号是________.16、设函数,其中[x]表示不超过x的最大整数,若直线y=kx+k(k >0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是________.三、解答题(共6题;共70分)17、设命题p:∀x∈[1,2],﹣lnx﹣a≥0,命题q:∃x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.18、已知f(x)= • ,其中=(2cosx,﹣sin2x),=(cosx,1)(x∈R).(1)求f(x)的周期和单调递减区间;(2)在△ABC 中,角A、B、C的对边分别为a,b,c,f(A)=﹣1,a= ,• =3,求边长b和c的值(b>c).19、已知方程C:x2+y2﹣2x﹣4y+m=0,(1)若方程C表示圆,求实数m的范围;(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m 的值.20、如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于点D.(Ⅰ)求证:PB1∥平面BDA1;(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.21、设数列{a n}的前项n和为S n,若对于任意的正整数n都有S n=2a n﹣3n.(1)设b n=a n+3,求证:数列{b n}是等比数列,并求出{a n}的通项公式.(2)求数列{na n}的前n项和T n.22、已知函数f(x)=x﹣1+ (a∈R).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值;(3)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.参考答案一、单选题1、【答案】A【考点】交集及其运算【解析】【解答】解:∵集合A={y|y=log2x,x>1}={y|y>0},B={y|y=()x,0<x<1}={y| },∴A∩B={y| }.故选:A.【分析】由已知分别求出集合A和B,由此能求出A∩B.2、【答案】C【考点】程序框图【解析】【解答】解:执行程序框图,有S=1,k=1满足条件S<2014,有S=2,k=2;满足条件S<2014,有S=4,k=3;满足条件S<2014,有S=16,k=4;满足条件S<2014,有S=4049,k=5;不满足条件S<2014,输出k的值为5.故选:C.【分析】执行程序框图,写出每次循环得到的S,k的值,当S=4049,k=5时不满足条件S <2014,输出k的值为5.3、【答案】D【考点】利用导数研究函数的极值【解析】【解答】解:根据导函数图象知,x∈(1,2)时,f′(x)>0,x∈(2,4)时,f′(x)<0,x∈(4,5)时,f′(x)>0;∴f(x)在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x=2是f(x)在[1,5]上的极大值点,x=4是极小值点;∴A正确.故选:A.【分析】显然由图象可看成x∈(1,2)时,有f′(x)>0,从而得出f(x)在(1,2)上单调递增,这样便可选出正确选项.4、【答案】C【考点】复数的代数表示法及其几何意义,几何概型【解析】【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:= .故选:C.【分析】判断复数对应点图形,利用几何概型求解即可.5、【答案】C【考点】函数奇偶性的判断【解析】【解答】解:y=0是既是奇函数也是偶函数,y=sin2x是奇函数,y=x+lgx的定义域为(0,+∞),关于原点不对称,为非奇非偶函数,f(﹣x)=2x+2﹣x=f(x),则y=2x+2﹣x为偶函数,故选:C【分析】根据函数奇偶性的定义进行判断即可.6、【答案】A【考点】对数值大小的比较【解析】【解答】解:∵log0.72<log0.71=0,0=log0.71<log0.70.8<log0.70.7=1,0.9﹣2>0.90=1,∴log0.72<log0.70.8<0.9﹣2.故选:A.【分析】由已知利用对数函数和指数函数的单调性直接求解.7、【答案】C【考点】简单空间图形的三视图【解析】【解答】解:解法1:由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选C.解法2:当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是,高为1,则体积是;当俯视是C时,该几何是直三棱柱,故体积是,当俯视图是D时,该几何是圆柱切割而成,其体积是.故选C.【分析】解法1:结合选项,正方体的体积否定A,推出正确选项C即可.解法2:对四个选项A求出体积判断正误;B求出体积判断正误;C求出几何体的体积判断正误;同理判断D的正误即可.8、【答案】D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】【解答】解:由图象可得A=1,= ,解得ω=2,∴f(x)=sin(2x+φ),代入点(,0)可得sin(+φ)=0∴+φ=kπ,∴φ=kπ﹣,k∈Z又|φ|<,∴φ= ,∴f(x)=sin(2x+ ),∴sin(2×+ )=1,即图中点的坐标为(,1),又,且f(x1)=f(x2)(x1≠x2),∴x1+x2= ×2= ,∴f(x1+x2)=sin(2×+ )= ,故选:D【分析】由图象可得A=1,由周期公式可得ω=2,代入点(,0)可得φ值,进而可得f(x)=sin(2x+ ),再由题意可得x1+x2= ,代入计算可得.9、【答案】B【考点】分段函数的解析式求法及其图象的作法,函数的值【解析】【解答】解:∵f(﹣)=cos(﹣π)=﹣cos π=﹣.又∵f()=f()+1=f(﹣)+2=cos(﹣π)+2=﹣cos π+2=﹣+2.∴则的值为1.故选C.【分析】欲求的值,可分别求f(﹣)和f()的值,前者利用分段函数的第一个式子求解,后者利用第二个式子后转化为第一个式子求解.10、【答案】B【考点】数列递推式【解析】【解答】解:∵a n+1=a n+2n,∴a n+1﹣a n=2n,∴a n﹣a n﹣1=2(n﹣1),a n﹣1﹣a n﹣2=2(n﹣2),a n﹣2﹣a n﹣3=2(n﹣3),…a2﹣a1=2,累加得:a n﹣a1=2[1+2+3+…+(n﹣1)]=2• =n(n﹣1),又∵a1=0,∴a n=n(n﹣1),∴a2016=2016(2016﹣1)=2015×2016,故选:B.【分析】通过a n+1=a n+2n可知a n﹣a n﹣1=2(n﹣1),a n﹣1﹣a n﹣2=2(n﹣2),a n﹣2﹣a n﹣3=2(n﹣3),…,a2﹣a1=2,累加计算,进而可得结论.11、【答案】B【考点】平面向量数量积的运算,向量在几何中的应用【解析】【解答】解:∵AM= AB,AB=2,AD=1,∠A=60°,∴∴=()•()===1+ ×4=1故选B【分析】由题意可得,,代入=()•()=,整理可求12、【答案】B【考点】函数的值【解析】【解答】解:任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,对于①,f(x)= ,由a+b>c,可得a+2 +b>c,两边开方得+ >,因此函数f(x)= 是“保三角形函数”.对于②,f(x)=x2,3,3,5可作为一个三角形的三边长,但32+32<52,不存在三角形以32,32,52为三边长,故f(x)=x2不是“保三角形函数”.对于③,f(x)=2x,由于f(a)+f(b)=2(a+b)>2c=f(c),所以f(x)=2x是“保三角形函数”.对于④,f(x)=lgx,1,2,2可以作为一个三角形的三边长,但lg1=0,不能作三角形边长,故f(x)=lgx不是“保三角形函数”.故选:B.【分析】利用“保三角形函数”的概念,对所给的四个函数一一验证,能求出结果.二、填空题13、【答案】a>1,或0<a<【考点】对数函数的单调性与特殊点【解析】【解答】解:∵<1,当a>1 时,∵<0,故不等式成立.当0<a<1 时,不等式即<log a a,∴0<a<,综上,a的取值范围为a>1,或0<a<,故答案为:a>1,或0<a<.【分析】当a>1 时,∵<0,故不等式成立,当0<a<1 时,不等式即<log a a,依据单调性解a的取值范围.14、【答案】11【考点】直线与圆的位置关系【解析】【解答】解:圆(x+2)2+(y﹣2)2=a,圆心(﹣2,2),半径.故弦心距d== .再由弦长公式可得a=2+9,∴a=11;故答案为:11.【分析】求出弦心距,再由条件根据弦长公式求得a的值.15、【答案】①③【考点】平面的基本性质及推论【解析】【解答】解:直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥m,故①正确当α⊥β有l∥m或l与m异面或相交,故②不正确当l∥m有α⊥β,故③正确,当l⊥m有α∥β或α∩β,故④不正确,综上可知①③正确,故答案为:①③【分析】直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥m,当α⊥β有l∥m或l与m异面或相交,当l∥m有α⊥β,当l⊥m有α∥β或α∩β,得到结论16、【答案】[ ,)【考点】函数的零点与方程根的关系【解析】【解答】解:∵函数,∴函数的图象如下图所示:∵y=kx+k=k(x+1),故函数图象一定过(﹣1,0)点若f(x)=kx+k有三个不同的根,则y=kx+k与y=f(x)的图象有三个交点当y=kx+k过(2,1)点时,k= ,当y=kx+k过(3,1)点时,k= ,故f(x)=kx+k有三个不同的根,则实数k的取值范围是[ ,)【分析】画图可知f(x)就是周期为1的函数,且在[0,1)上是一直线y=x的对应部分的含左端点,不包右端点的线段,要有三解,只需直线y=kx+k过点(3,1)与直线y=kx+k 过点(2,1)之间即可.三、解答题17、【答案】解:命题p:,令,= ,∴f min(x)=f(1)= ,∴.命题q:x2+2ax﹣8﹣6a≤0解集非空,△=4a2+24a+32≥0,∴a≤﹣4,或a≥﹣2.命题“p或q”是真命题,命题“p且q”是假命题,p真q假或p假q真.(Ⅰ)当p真q假,﹣4<a<﹣2;(Ⅱ)当p假q真,综合,a的取值范围【考点】复合命题的真假【解析】【分析】命题p:,令,利用导数研究其单调性极值与最值,即可得出;命题q:x2+2ax﹣8﹣6a≤0解集非空,△=≥0,基础a的范围.命题“p或q”是真命题,命题“p且q”是假命题,p真q假或p假q真.即可得出.18、【答案】(1)解:由题意知:f(x)= =,∴f(x)的最小正周期T=π.由2kπ≤2x+ ≤2kπ+π,k∈z,求得,k∈z.∴f(x)的单调递减区间,k∈z(2)解:∵f (A)= =﹣1,∴,又<2A+<,∴2A+ =π,A= .∵即bc=6,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc,7=(b+c)2﹣18,b+c=5,又b>c,∴b=3,c=2【考点】三角函数的化简求值,三角函数的周期性及其求法,正弦函数的单调性,余弦定理【解析】【分析】(Ⅰ)利用两个向量的数量积公式,利用三角函数的恒等变换化简f(x)的解析式为,由此求出最小正周期和单调减区间.(Ⅱ)由f (A)=1求得,再根据2A+ 的范围求出2A+ 的值,从而求出A的值,再由和余弦定理求得b和c的值.19、【答案】(1)解:∵方程C:x2+y2﹣2x﹣4y+m=0表示圆,∴D2+E2﹣4F>0,即4+16﹣4m>0解得m<5,∴实数m的取值范围是(﹣∞,5).(2)解:∵方程C:x2+y2﹣2x﹣4y+m=0,∴(x﹣1)2+(y﹣2)2=5﹣m,圆心(1,2)到直线x+2y﹣4=0的距离d= = ,∵圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,∴,解得m=4.【考点】圆的一般方程【解析】【分析】(1)由圆的一般方程的定义知4+16﹣4m>0,由此能法语出实数m的取值范围.(2)求出圆心到直线x+2y﹣4=0的距离,由此利用已知条件能求出m的值.20、【答案】解:以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系,则A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),P(0,2,0)(Ⅰ)在△PAA1中,C1D= AA1,则D(0,1,)∴=(1,0,1),=(0,1,),=(﹣1,2,0)设平面BDA1的一个法向量为=(a,b,c)则令c=﹣1,则=(1,,﹣1)∵• =1×(﹣1)+ ×2+(﹣1)×0=0∴PB1∥平面BDA1(Ⅱ)由(I)知平面BDA1的一个法向量=(1,,﹣1)又=(1,0,0)为平面AA1D的一个法向量∴cos<,>= = =故二面角A﹣A1D﹣B的平面角的余弦值为【考点】直线与平面平行的判定,直线与平面平行的性质【解析】【分析】以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系,则我们易求出各个点的坐标,进而求出各线的方向向量及各面的法向量.(I)要证明PB1∥平面BDA1,我们可以先求出直线PB1的向量,及平面BDA1的法向量,然后判断证明这两个向量互相垂直(II)由图象可得二面角A﹣A1D﹣B是一个锐二面角,我们求出平面AA1D与平面A1DB的法向量,然后求出两个法向量夹角的余弦值,得到结论.21、【答案】(1)证明:由已知S n=2a n﹣3n.n=1时,a1=2a1﹣3,解得a1=3.n≥2时,a n=S n ﹣S n﹣1=2a n﹣3n﹣[2a n﹣1﹣3(n﹣1)].∴a n+1=2a n+3,变形为a n+1+3=2(a n+3),即b n+1=3b n.∴数列{b n}是等比数列,首项为6,公比为2.∴b n=a n+3=6×2n﹣1,解得a n=3×2n﹣3(2)解:na n=3n×2n﹣3n.设数列{n•2n}的前n项和为A n=2+2×22+3×23+…+n•2n,2A n=22+2×23+…+(n﹣1)•2n+n•2n+1,∴﹣A n=2+22+…+2n﹣n•2n+1= ﹣n•2n+1,∴A n=(n﹣1)•2n+1+2.∴数列{na n}的前n项和T n=(3n﹣3)•2n+1+6﹣【考点】数列的求和,数列递推式【解析】【分析】(1)利用递推关系可得:a n+1=2a n+3,变形为a n+1+3=2(a n+3),即b n+1=3b n.即可证明.(2)利用“错位相减法”、等差数列与等比数列的求和公式即可得出.22、【答案】(1)解:由,得f′(x)=1﹣,∴f′(1)=1﹣,由曲线y=f(x)在点(1,f(1))处的切线平行于x轴,得,即a=e(2)解:由f′(x)=1﹣,知若a≤0,则f′(x)>0,函数f(x)在实数集内为增函数,无极值;若a>0,由f′(x)=1﹣=0,得x=lna,当x∈(﹣∞,lna)时,f′(x)<0,当x∈(lna,+∞)时,f′(x)>0.∴f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增(3)解:当a=1时,f(x)=x﹣1+ ,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+ ,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+ <0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)= >0,知方程g(x)=0在R上没有实数解.∴k的最大值为1【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程【解析】【分析】(1)求出原函数的导函数,依题意f′(1)=0,从而可求得a的值;(2)f′(x)=1﹣,分①a≤0时②a>0讨论,可知f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(3)令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+ ,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案。
故城县高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
故城县高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .2. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .13. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 4.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B. C .15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 5. 某几何体的三视图如图所示,则此几何体不可能是( )A .B .C .D .6. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.7. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .568. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.9. 已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( ) A .{x|x >3} B .{x|﹣1<x <1} C .{x|﹣1<x <1或x >3} D .{x|x <﹣1}10.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥11.设复数z 满足z (1+i )=2,i 为虚数单位,则复数z 的虚部是( )A1 B ﹣1 CiD ﹣i12.已知向量=(﹣1,3),=(x ,2),且,则x=( )A. B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC的重心和外心,且•=5,则△ABC 的形状是直角三角形.14.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.15.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .16.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.三、解答题(本大共6小题,共70分。
阜城县第二高级中学2018-2019学年高三上学期12月月考数学试卷
阜城县第二高级中学2018-2019学年高三上学期12月月考数学试卷 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.2. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .3. 函数的零点所在区间为( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)4. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数5. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .6. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91527. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.8. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .29. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .310.已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°二、填空题11.已知A (1,0),P ,Q 是单位圆上的两动点且满足,则+的最大值为 .12.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 15.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.16.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.三、解答题17.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .18.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间; (2)当时,求f (x )的最大值,并求此时对应的x 的值.19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望.21.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.22.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.阜城县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,2. 【答案】B【解析】解:如果水瓶形状是圆柱,V=πr 2h ,r 不变,V 是h 的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D 错;由已知函数图可以看出,随着高度h 的增加V 也增加,但随h 变大, 每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓, 其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A 、C 错. 故选:B .3. 【答案】B【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,∵f (2)=log 32﹣1<0,f (3)=log 33﹣>0, ∴函数f (x )的零点一定在区间(2,3),故选:B .【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.4. 【答案】C【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.5. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y 轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.6. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .7. 【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 8. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.9. 【答案】C【解析】解:∵a+b=3,b >0, ∴b=3﹣a >0,∴a <3,且a ≠0.①当0<a <3时, +==+=f (a ),f ′(a )=+=,当时,f ′(a )>0,此时函数f (a )单调递增;当时,f ′(a )<0,此时函数f (a )单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.10.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.二、填空题11.【答案】.【解析】解:设=,则==,的方向任意.∴+==1××≤,因此最大值为.故答案为:.【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.12.【答案】56 27【解析】13.【答案】201614.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-115.【答案】y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.16.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d . 考点:数列与不等式综合.三、解答题17.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 3=2,S 8=22.∴,解得,∴{a n }的通项公式为a n =1+(n ﹣1)=.(2)∵b n ===﹣,∴T n =2+…+=2=.18.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f(x)取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.19.【答案】【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.20.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为5 6 7【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.21.【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k 值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)22.【答案】【解析】解:(1)可设P 的坐标为(c ,m ),则c 2a 2+m 2b 2=1, ∴m =±b 2a, ∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k P A ·k PB =-12得 b 2a c +a ·b2a c -a=-12,即b 2=12a 2,② 由①②解得a =2,b =2,∴椭圆C 的方程为x 24+y 2=1. (2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =12×22×2=2.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±21+2k2, ∴y =±2k 1+2k2, 即M (21+2k 2,2k 1+2k 2),N (-21+2k 2,-2k 1+2k 2), ∴|MN |=⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭⎪⎫4k 1+2k 22 =41+k 21+2k 2, 点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =12· 41+k 21+2k 2·|2k -1|k 2+1=2·|2k -1|1+2k2=2 2k 2+1-22k1+2k 2 =2 1-22k 1+2k 2,当k >0时,22k 1+2k 2≤22k 22k=1, 此时S ≥0显然成立,当k =0时,S =2.当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1, 当且仅当2k 2=1,即k =-22时,取等号. 此时S ≤22,综上所述0≤S ≤2 2. 即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22x .。
故城县二中2018-2019学年上学期高二数学12月月考试题含解析
故城县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)2. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)3. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .4. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种 5. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 6. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)7. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 8. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)10.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(11.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .212.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.二、填空题13.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .14.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .15.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .16.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.18.已知某几何体的三视图如图所示,则该几何体的体积为 .三、解答题19.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB .Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.20.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P FQ =+,求直线m 的方程.21.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=﹣对称,且f ′(1)=0 (Ⅰ)求实数a ,b 的值 (Ⅱ)求函数f (x )的极值.22.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a,b;(2)解不等式ax2﹣(ac+b)x+bc<0.23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)故城县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.2.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.3.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.4.【答案】 C【解析】排列、组合及简单计数问题. 【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,有A 33=6种情况,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,有A 33×A 22=12种情况,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,有C 32×2=6种情况,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,有C 31=3种情况,则共有6+12+6+3=27种乘船方法,故选C .【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式. 5. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.6. 【答案】C【解析】解:f (x )=e x+x ﹣4, f (﹣1)=e ﹣1﹣1﹣4<0, f (0)=e 0+0﹣4<0, f (1)=e 1+1﹣4<0, f (2)=e 2+2﹣4>0, f (3)=e 3+3﹣4>0, ∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2). 故选:C .7. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即s i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题.8. 【答案】A【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件,若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件; 故选:A .【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.9. 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x 上但不在阴影区域内,故不成立;故选D .【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.10.【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是003060α<<且045α≠,所以直线的斜率为00tan 30tan 60a <<且0tan 45α≠,即13a <<或1a << C.考点:直线的倾斜角与斜率.11.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.12.【答案】A二、填空题13.【答案】4.【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.14.【答案】6.【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.15.【答案】﹣3.【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值.当x=2时,f(x)=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.16.【答案】4.【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.17.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;对于③若实数x ,y 满足x 2+y 2=1,则=,可以看作是圆x 2+y 2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,即π﹣A ﹣B <,即A+B >,B >﹣A ,则cosB <cos (﹣A ),即cosB <sinA ,故④不正确.对于⑤在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点为D ,连接AD 、OD 、GD ,如图:则OD ⊥BC ,GD=AD ,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0, 即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③18.【答案】 .【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2.∴棱锥的体积V==.故答案为.三、解答题19.【答案】【解析】ⅠPA 是⊙O 的切线,切点为A ∴PAE ∠=45ABC ∠=︒又∵PE PA = ∴PEA ∠=45︒,APE ∠=90︒由于1=PD ,8=DB ,所以由切割线定理可知92=⋅=PB PD PA ,既3==PA EP故ABP ∆的面积为12PA BP ⋅=272.Ⅱ在Rt APE ∆APE中,由勾股定理得AE =由于2=-=PD EP ED ,6=-=DE DB EB ,所以由相交弦定理得EC EA EB ED ⋅=⋅ 12= 所以222312==EC ,故=AC . 20.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q 直接计算知29PQ =,225||||2121=+Q F P F ,22211PQ F P FQ ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =- 由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,222143124kk x x +-=⋅ 由22211PQ F P FQ =+得,110F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k代入得0438)1()143124)(1(222222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(773-±=x y 21.【答案】【解析】解:(Ⅰ)因f (x )=2x 3+ax 2+bx+1,故f ′(x )=6x 2+2ax+b从而f ′(x )=6y=f ′(x )关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f ′(x )=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f (x )=2x 3+3x 2﹣12x+1f ′(x )=6x 2+6x ﹣12=6(x ﹣1)(x+2) 令f ′(x )=0,得x=1或x=﹣2当x ∈(﹣∞,﹣2)时,f ′(x )>0,f (x )在(﹣∞,﹣2)上是增函数; 当x ∈(﹣2,1)时,f ′(x )<0,f (x )在(﹣2,1)上是减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上是增函数.从而f (x )在x=﹣2处取到极大值f (﹣2)=21,在x=1处取到极小值f (1)=﹣6.22.【答案】【解析】解:(1)因为不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},所以x 1=1与x 2=b 是方程ax 2﹣3x+2=0的两个实数根,且b >1.由根与系的关系得,解得,所以得. (2)由于a=1且 b=2,所以不等式ax 2﹣(ac+b )x+bc <0,即x 2﹣(2+c )x+2c <0,即(x ﹣2)(x ﹣c )<0.①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|2<x <c}; ②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|c <x <2}; ③当c=2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};当c<2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|c<x<2};当c=2时,不等式ax2﹣(ac+b)x+bc<0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.23.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.24.【答案】【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;∵(,)在回归直线上,∴选择=﹣20x+250;(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,∴当x=8.75元时,利润W最大为281.25(万元),∴当单价定8.75元时,利润最大281.25(万元).。
故城县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
(3)试确定函数 m( x) f ( x) g ( x) 6 的零点个数,并说明理由.
21.(本小题满分 10 分)选修 4-1:几何证明选讲 如图,直线 PA 与圆 O 相切于点 A , PBC 是过点 O 的割线, APE CPE ,点 H 是线段 ED 的中 点. (1)证明: A、E、F、D 四点共圆; (2)证明: PF PB PC .
1 1 t 6 3
)
B、 t
2 4 t 3 3
1 3 1 C、 t t 6
)
D、 t
2 1 t 3 3
+ ,则 x、y 的值分别
2. 已知正方体 ABCD﹣A1B1C1D1 中,点 E 为上底面 A1C1 的中心,若 为(
x
A.(0,1) B.(1,2) C.(2.3) A. x y z 8. (理)已知 tanα=2,则
D.(3,4)
7. 已知 x, y, z 均为正实数,且 2 log 2 x , 2 B. z x y =(
log 2 y , 2 z log 2 z ,则(
C. z y z
故城县第二高级中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知奇函数 f ( x) 是 [ 1,1] 上的增函数,且 f (3t ) f ( t ) f (0) ,则 t 的取值范围是( A、 t 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
故城县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
故城县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .42. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+183. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.4. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}5. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)6.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.1997.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()A.B.C.D.8.直线x+y﹣1=0与2x+2y+3=0的距离是()A. B.C. D.9.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()A.(1,4] B.(0,1] C.[﹣1,1] D.(4,+∞)10.“1<m<3”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.求值:=()A.tan 38°B.C.D.﹣12.抛物线y2=8x的焦点到双曲线的渐近线的距离为()A.1 B.C.D.二、填空题13.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为.14.下列说法中,正确的是.(填序号)①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称;③y=()﹣x是增函数;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0.15.数列{a n}是等差数列,a4=7,S7=.16.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)17.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .18.设函数f (x )=则函数y=f (x )与y=的交点个数是 .三、解答题19.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE =-F BCD 的体积.20.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的 最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.21.设A (x 0,y 0)(x 0,y 0≠0)是椭圆T :+y 2=1(m >0)上一点,它关于y 轴、原点、x 轴的对称点依次为B ,C ,D .E 是椭圆T 上不同于A 的另外一点,且AE ⊥AC ,如图所示.(Ⅰ) 若点A 横坐标为,且BD ∥AE ,求m 的值;(Ⅱ)求证:直线BD 与CE 的交点Q 总在椭圆+y 2=()2上.22.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.23.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.24.如图,四边形ABEF 是等腰梯形,,2,42,22AB EF AF BE EF AB ====,四边形ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .故城县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.2. 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D3. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .4.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.5.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.6.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.7.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.8.【答案】A【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=.故选:A.9.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.10.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即,即1<m<3且m≠2,此时1<m<3成立,即必要性成立,当m=2时,满足1<m<3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m<3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.11.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.12.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.二、填空题13.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.14.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.15.【答案】49【解析】解:==7a4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.16.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.17.【答案】16.【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.18.【答案】4.【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.三、解答题19.【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.(2)在EAD △中,EA ED =,2AD =,20.【答案】【解析】(1)当111,12n a a =+=时,解得11a =.(1分) 当2n ≥时,2n n S n a +=, ①11(1)2n n S n a --+-=, ②①-②得,1122n n n a a a -+=-即121n n a a -=+,(3分) 即112(1)(2)n n a a n -+=+≥,又112a +=.所以{}1n a +是以2为首项,2为公比的等比数列. 即12n n a +=故21n n a =-(*n N ∈). (5分)21.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】 试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤. 试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩, 解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲.23.【答案】(1)1,1==q p ;(2)2)1(221++-=-n n S n n .考点:等差,等比数列通项公式,数列求和.24.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.。
故城县高中2018-2019学年上学期高二数学12月月考试题含解析
=1 的两个焦点,点
D.
9. 某几何体的三视图如图所示,则该几何体的体积为( A . 16
)
16 3
B . 16
32 3
C. 8
16 3
D. 8
32 3
第 1 页, 共 16 页
【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 10.下列命题中正确的是( ) a=c 且 b=d
2. 设 a=sin145 ° , b=cos52 ° , c=tan47° ,则 a, b , c 的大小关系是( A . a< b < c B. c< b< a C. b< a< c D . a< c < b
)
3. 设偶函数 f ( x )在 [0 , + ∞)单调递增,则使得 A .( , 1) B .(﹣ ∞,
= ,由勾股定理可得:
= = .
故选: C . 【点评】本题考查椭圆的简单性质的应用,考查计算能力. 9. 【答案】 D 【解析】 由三视图知几何体为一个底面半径为 因此该几何体的体积为 10. 【答案】 C 【解析】 解: A .未注明 a, b , c, d ∈ R. B .实数是复数,实数能比较大小. C.∵ = ,则 z1=z 2,正确; z 1, z 2 有无数多个,如单位圆上的点对应的复数的模都是 1,因此不正确. 2 高为 4 的半圆柱中挖去一个以轴截面为底面高为 2 的四棱锥,
20.已知函数 f ( x ) =ax +2x ﹣ lnx ( a∈ R). ( Ⅰ )若 a=4,求函数 f ( x )的极值; ( Ⅱ )若 f ′ ( x )在( 0 , 1 )有唯一的零点 x 0,求 a 的取值范围;
2
第 3 页, 共 16 页
故城县高中2018-2019学年上学期高二数学12月月考试题含解析
故城县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=2. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .a <c <b3. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)4. 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ){}n a A .1 B .2C .4D .65. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是()A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=56. 在复平面内,复数所对应的点为,是虚数单位,则( )1zi+(2,1)-i z =A .B .C .D .3i--3i -+3i -3i +7. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .8. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .9. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.10.下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=11.已知角α的终边上有一点P (1,3),则的值为()A .﹣B .﹣C .﹣D .﹣412.已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 的一个交点,若y x 82=l l ,则( )FQ PF 2==QF A .6B .3C .D .3834第Ⅱ卷(非选择题,共100分)二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 14.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .15.圆心在原点且与直线相切的圆的方程为_____.2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +17.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .18.已知为常数,若,则_________.,a b ()()224+3a 1024f x x x f x b x x =++=++,5a b -=三、解答题19.(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF .(1)求证EF ∥BC ;(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.20.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ).(Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.21.已知二次函数的最小值为1,且.()f x (0)(2)3f f ==(1)求的解析式;()f x (2)若在区间上不单调,求实数的取值范围;()f x []2,1a a +(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.[]1,1-()y f x =221y x m =++m 22.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3.(1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.23.已知函数f (x )=xlnx ,求函数f (x )的最小值.24.如图所示,两个全等的矩形和所在平面相交于,,,且ABCD ABEF AB M AC ∈N FB ∈,求证:平面.AM FN =//MN BCE故城县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:对于A ,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目. 2. 【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx 在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a <b <c 故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题. 3. 【答案】A【解析】解:因为f (x )为偶函数,所以f (x )>f (2x ﹣1)可化为f (|x|)>f (|2x ﹣1|)又f (x )在区间[0,+∞)上单调递增,所以|x|>|2x ﹣1|,即(2x ﹣1)2<x 2,解得<x <1,所以x 的取值范围是(,1),故选:A . 4. 【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.5. 【答案】B【解析】解:线段AB 的中点为,k AB ==﹣,∴垂直平分线的斜率 k==2,∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,故选B .【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法. 6. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,,,选D .21zi i=-+(1)(2)3z i i i =+-=+7.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B 8. 【答案】C【解析】解:F 1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力. 9. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D .21132244428233V =π⨯⨯-⨯⨯⨯=π-10.【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R .B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C . 11.【答案】A【解析】解:∵点P (1,3)在α终边上,∴tan α=3,∴====﹣.故选:A . 12.【答案】A解析:抛物线C :的焦点为F (0,2),准线为:y=﹣2,y x 82=l 设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .二、填空题13.【答案】2【解析】14.【答案】 异面 .【解析】解:把展开图还原原正方体如图,在原正方体中直线AB 与CD 的位置关系是异面.故答案为:异面. 15.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为2x y +=r d ===.222x y +=16.【答案】5627【解析】17.【答案】 3x﹣y﹣11=0 .【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),即有k AB====3,则直线方程为y﹣1=3(x﹣4),即为3x﹣y﹣11=0.将直线y=3x﹣11代入抛物线的方程,可得9x2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x﹣y﹣11=0.故答案为:3x﹣y﹣11=0.18.【答案】【解析】试题分析:由,得,()()224+3a 1024f x x x f x b x x =++=++,22()4()31024ax b ax b x x ++++=++即,比较系数得,解得或222224431024a x abx b ax b x x +++++=++22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩1,7a b =-=-,则.1,3a b ==5a b -=考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.()f ax b +三、解答题19.【答案】【解析】解:(1)证明:∵AE =AF ,∴∠AEF =∠AFE .又B ,C ,F ,E 四点共圆,∴∠ABC =∠AFE ,∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC .(2)由(1)与∠B =60°知△ABC 为正三角形,又EB =EF =2,∴AF =FC =2,设DE =x ,DF =y ,则AD =2-y ,在△AED 中,由余弦定理得DE 2=AE 2+AD 2-2AD ·AE cos A .即x 2=(2-y )2+22-2(2-y )·2×,12∴x 2-y 2=4-2y ,①由切割线定理得DE 2=DF ·DC ,即x 2=y (y +2),∴x 2-y 2=2y ,②由①②联解得y =1,x =,∴ED =.3320.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f (x )=4x 2+2x ﹣lnx ,x ∈(0,+∞),.…(1分)由x ∈(0,+∞),令f ′(x )=0,得.当x 变化时,f ′(x ),f (x )的变化如下表:xf ′(x )﹣0+f (x )↘极小值↗故函数f (x )在单调递减,在单调递增,…(3分)f (x )有极小值,无极大值.…(4分)(Ⅱ),令f ′(x )=0,得2ax 2+2x ﹣1=0,设h (x )=2ax 2+2x ﹣1.则f ′(x )在(0,1)有唯一的零点x 0等价于h (x )在(0,1)有唯一的零点x 0当a=0时,方程的解为,满足题意;…(5分)当a >0时,由函数h (x )图象的对称轴,函数h (x )在(0,1)上单调递增,且h (0)=﹣1,h (1)=2a+1>0,所以满足题意;…(6分)当a <0,△=0时,,此时方程的解为x=1,不符合题意;当a <0,△≠0时,由h (0)=﹣1,只需h (1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x ,则t ∈(0,1),p (t )=g (1﹣t )=at 2+2t ﹣3﹣lnt ,…(9分),由,故由(Ⅱ)可知,方程2at 2+2t ﹣1=0在(0,1)内有唯一的解x 0,且当t ∈(0,x 0)时,p ′(t )<0,p (t )单调递减;t ∈(x 0,1)时,p ′(t )>0,p (t )单调递增.…(11分)又p (1)=a ﹣1<0,所以p (x 0)<0.…(12分)取t=e ﹣3+2a ∈(0,1),则p (e ﹣3+2a )=ae ﹣6+4a +2e ﹣3+2a ﹣3﹣lne ﹣3+2a =ae ﹣6+4a +2e ﹣3+2a ﹣3+3﹣2a=a (e ﹣6+4a ﹣2)+2e ﹣3+2a >0,从而当t ∈(0,x 0)时,p (t )必存在唯一的零点t 1,且0<t 1<x 0,即0<1﹣x 1<x 0,得x 1∈(0,1),且x 0+x 1>1,从而函数g (x )在(0,1)内有唯一的零点x 1,满足x 0+x 1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f ′(x )=0,由2ax 2+2x ﹣1=0,得.…(5分)设,则m ∈(1,+∞),,…(6分)问题转化为直线y=a 与函数的图象在(1,+∞)恰有一个交点问题.又当m ∈(1,+∞)时,h (m )单调递增,…(7分)故直线y=a 与函数h (m )的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t →0时,p (t )→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.21.【答案】(1);(2);(3).2()243f x x x =-+102a <<1m <-试题解析:(1)由已知,设,2()(1)1f x a x =-+由,得,故.(0)3f =2a =2()243f x x x =-+(2)要使函数不单调,则,则.211a a <<+102a <<(3)由已知,即,化简得,2243221x x x m -+>++2310x x m -+->设,则只要,2()31g x x x m =-+-min ()0g x >而,得.min ()(1)1g x g m ==--1m <-考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:;(2)顶点式:若二次函数的顶点坐标为,则其解析式为()()20f x ax bx c a =++≠(),h k ;(3)两根式:若相应一元二次方程的两根为,则其解析式为()()()20f x a x h k a =-+≠()12,x x .()()()()120f x a x x x x a =--≠22.【答案】【解析】解:(1)由|2x ﹣1|+|2x+2|<x+3,得:①得x ∈∅;②得0<x ≤;③得…综上:不等式f (x )<g (x )的解集为…(2)∵a >,x ∈[,a],∴f (x )=4x+a ﹣1…由f (x )≤g (x )得:3x ≤4﹣a ,即x ≤.依题意:[,a]⊆(﹣∞,]∴a ≤即a ≤1…∴a 的取值范围是(,1]…23.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题. 24.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.。
河北省衡水市故城高中2018届高三上学期第二次月考数学
2018-2018学年河北省衡水市故城高中高三(上)第二次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=()A.55 B.155 C.350 D.4002.已知向量=(4,2),=(x,3),且∥,则x等于()A.9 B.6 C.5 D.33.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18 B.6 C.2 D.24.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行5.数列{(﹣1)n(2n﹣1)}的前2 016项和S2018等于()A.﹣2 016 B.2 016 C.﹣2 015 D.2 0156.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.67.如果实数x、y满足,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为()A.2 B.﹣2 C.D.不存在8.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.89.已知向量=(cosθ,sinθ),向量=(,﹣1)则|2﹣|的最大值,最小值分别是()A.4,0 B.4,4C.16,0 D.4,010.数列a n=,其前n项之和为,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.﹣10 B.﹣9 C.10 D.911.平面四边形ABCD中,AD=AB=,CD=CB=,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A′BD,则在△A′BD折起至转到平面BCD内的过程中,直线A′C与平面BCD所成的最大角的正切值为()A.1 B.C.D.12.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是()A.(3,8)B.(4,7)C.(4,8)D.(5,7)二、填空题(本大题共4小题,每小题5分,共20分)13.设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.14.已知点x,y满足不等式组,若ax+y≤3恒成立,则实数a的取值范围是.15.已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为.16.已知数列{a n}满足a1=0,a2=1,a n+2=3a n+1﹣2a n,则{a n}的前n项和S n=.三、解答题(本大题共6小题,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.18.(12分)已知三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)连结BC1,求异面直线AA1与BC1所成角的大小;(2)连结A1C、A1B,求三棱锥C1﹣BCA1的体积.19.(12分)已知数列{a n}的前n项和为S n,且S n=﹣1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=5,b n+1=b n+a n,求数列{b n}的通项公式.20.(12分)设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足.(Ⅰ)求角B的大小;(Ⅱ)若,试求的最小值.21.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,A点在PD上的射影为G点,E点在AB上,平面PEC⊥平面PDC.(Ⅰ)求证:AG∥平面PEC;(Ⅱ)求AE的长;(Ⅲ)求二面角E﹣PC﹣A的正弦值.22.(12分)祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商在第一年初到大陆创办一座120万元的蔬菜加工厂M,M的价值在使用过程中逐年减少,从第二年到第六年,每年初M的价值比上年初减少10万元;从第七年开始,每年初M的价值为年初的75%.(1)求第n年初M的价值a n的表达式;(2)设A n=,若A n大于80万元,则M继续使用,否则须在第n 年初对M更新,证明:必须在第九年初对M更新.2018-2018学年河北省衡水市故城高中高三(上)第二次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=()A.55 B.155 C.350 D.400【考点】等差数列的前n项和.【分析】根据已知等差数列{a n}中,a2=5,a4=11,我们易构造出基本量(首项与公差)的方程组,解方程组后,即可得到首项与公差,代入等差数列前n项和公式,即可得到答案.【解答】解:∵等差数列{a n}中,a2=5,a4=11,a1+d=5,a1+3d=11,解得a1=2,d=3,则S10=2×10+=155故选C【点评】本题考查的知识点是等差数列的性质和数列与函数的综合,属于中档题.其中根据已知构造出基本项(首项与公差)的方程组,是解答本题的关键.2.已知向量=(4,2),=(x,3),且∥,则x等于()A.9 B.6 C.5 D.3【考点】平行向量与共线向量.【分析】利用向量共线定理即可得出.【解答】解:∵,∴2x﹣12=0,解得x=6.故选B.【点评】熟练掌握向量共线定理是解题的关键.3.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18 B.6 C.2 D.2【考点】基本不等式.【分析】先判断3a与3b的符号,利用基本不等式建立关系,结合a+b=2,可求出3a+3b的最小值【解答】解:由于3a>0,3b>0,所以3a+3b===6.当且仅当3a=3b,a=b,即a=1,b=1时取得最小值.故选B【点评】本题主要考查了均值不等式的性质和应用,解题时要注意公式的正确应用,属于基础题.基本不等式求最值时要注意三个原则:一正,即各项的取值为正;二定,即各项的和或积为定值;三相等,即要保证取等号的条件成立.4.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【考点】棱柱的结构特征.【分析】先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D【解答】解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D【点评】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键5.数列{(﹣1)n(2n﹣1)}的前2 016项和S2018等于()A.﹣2 016 B.2 016 C.﹣2 015 D.2 015【考点】数列的求和.【分析】由相邻两项之和为2,可求和【解答】解析S2018=﹣1+3﹣5+7+…﹣(2×2 015﹣1)+(2×2 016﹣1)=2×1018=2 016.故选B.【点评】本题考查了数列求和,探究规律是关键,属于基础题.6.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.6【考点】基本不等式在最值问题中的应用.【分析】将x+3y=5xy转化成=1,然后根据3x+4y=()(3x+4y),展开后利用基本不等式可求出3x+4y的最小值.【解答】解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选:C【点评】本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.7.如果实数x、y满足,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为()A.2 B.﹣2 C.D.不存在【考点】简单线性规划.【分析】先画出可行域,得到角点坐标.再通过对斜率的分类讨论得到最大最小值点,与原题相结合即可得到答案.【解答】解:可行域如图:得:A(1,4.4),B(5,2),C(1,1).所以:l1:x﹣4y+3=0的斜率k1=;L2:3x+5y﹣25=0的斜率k2=﹣.①当﹣k∈(0,)时,C为最小值点,A为最大值点;②当﹣k>时,C为最小值点,A为最大值点,;③当﹣<﹣k<0时,C为最小值点,A为最大值点,;④当﹣k<﹣时,C为最小值点,B为最大值点,由④得k=2,其它情况解得不符合要求.故k=2.故选:A.【点评】本题主要考查简单线性规划以及分类讨论思想.解决本题计算量较大.也可以利用选择题的特点把答案直接代入,看哪个答案符合要求即可.8.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 C.D.8【考点】由三视图求面积、体积.【分析】三视图复原的几何体是长方体的三分之二,依据三视图的数据,得出长方体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二,如图所示,则这个几何体的体积为12×=8.故选D.【点评】此题考查了由三视图判断几何体,考查三视图的读图能力,计算能力,空间想象能力,本题是基础题,常考题型.9.已知向量=(cosθ,sinθ),向量=(,﹣1)则|2﹣|的最大值,最小值分别是()A.4,0 B.4,4C.16,0 D.4,0【考点】平面向量数量积的运算;三角函数的最值.【分析】先表示2﹣,再求其模,然后可求它的最值.【解答】解:2﹣=(2cosθ﹣,2sinθ+1),|2﹣|==,最大值为4,最小值为0.故选D.【点评】本题考查平面向量数量积的运算,三角函数的最值,是中档题.10.数列a n=,其前n项之和为,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.﹣10 B.﹣9 C.10 D.9【考点】数列与解析几何的综合.【分析】由题意因为数列a n=,其前n项之和为,有数列通项的特点利用裂项相消得方法得到n的方程解出n的值是直线(n+1)x+y+n=0的方程具体化,再利用直线在y轴上的截距求出所求.【解答】解:因为数列{a n}的通项公式为且其前n项和为:++…+=1﹣==,∴n=9,∴直线方程为10x+y+9=0.令x=0,得y=﹣9,∴在y轴上的截距为﹣9.故选B【点评】此题考查了裂项相消求数列的前n项和,及直线y轴截距,此外还考查了学生利用方程的思想解问题.11.平面四边形ABCD中,AD=AB=,CD=CB=,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A′BD,则在△A′BD折起至转到平面BCD内的过程中,直线A′C与平面BCD所成的最大角的正切值为()A.1 B.C.D.【考点】直线与平面所成的角.【分析】连结AC,BD,交于点O,由题设条件推导出OA=1,OC=2.将△ABD 沿着对角线BD翻折成△A′BD,当A′C与以O为圆心,OA′为半径的圆相切时,直线A′C与平面BCD所成角最大,由此能求出结果.【解答】解:如图,平面四边形ABCD中,连结AC,BD,交于点O,∵AD=AB=,CD=CB=,且AD⊥AB,∴BD==2,AC⊥BD,∴BO=OD=1,∴OA=1,OC==2.将△ABD沿着对角线BD翻折成△A′BD,当A′C与以O为圆心,OA′为半径的圆相切时,直线A′C与平面BCD所成角最大,此时,Rt△OA′C中,OA′=OA=1,OC=2,∴∠OCA′=30°,∴直线A′C与平面BCD所成的最大角为30°,其正切值为tan30°=.故选C.【点评】本题考查直线与平面所成角的正弦值的最大值的求法,解题要注意等价转化思想和数形结合思想的合理运用.12.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是()A.(3,8)B.(4,7)C.(4,8)D.(5,7)【考点】归纳推理.【分析】根据括号内的两个数的和的变化情况找出规律,然后找出第60对数的两个数的和的值以及是这个和值的第几组,然后写出即可.【解答】解:(1,1),两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个…∵1+2+3+4+5+6+7+8+9+10=55,∴第60个数对在第11组之中的第5个数,从而两数之和为12,应为(5,7).故选D.【点评】本题是对数字变化规律的考查,规律比较隐蔽,观察出括号内的两个数的和的变化情况是解题的关键.二、填空题(本大题共4小题,每小题5分,共20分)13.设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ【解答】解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣cosθ=0,∴tanθ=,故答案为:.【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.14.已知点x,y满足不等式组,若ax+y≤3恒成立,则实数a的取值范围是(﹣∞,3] .【考点】简单线性规划.【分析】画出不等式满足的平面区域,由ax+y≤3恒成立,结合图形确定出a的范围即可.【解答】解:满足不等式组的平面区域如右图所示,由于对任意的实数x、y,不等式ax+y≤3恒成立,根据图形,可得斜率﹣a≥0或﹣a>k AB==﹣3,解得:a≤3,则实数a的取值范围是(﹣∞,3].故答案为:(﹣∞,3].【点评】此题考查了简单线性规划,画出正确的图形是解本题的关键.15.已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为的球面上,若PA ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 .【考点】球内接多面体.【分析】先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算【解答】解:∵正三棱锥P ﹣ABC ,PA ,PB ,PC 两两垂直,∴此正三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接圆O ,∵圆O 的半径为,∴正方体的边长为2,即PA=PB=PC=2球心到截面ABC 的距离即正方体中心到截面ABC 的距离设P 到截面ABC 的距离为h ,则正三棱锥P ﹣ABC 的体积V=S △ABC ×h=S △PAB ×PC=××2×2×2=△ABC 为边长为2的正三角形,S △ABC =×∴h==∴正方体中心O 到截面ABC 的距离为﹣=故答案为【点评】本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题16.已知数列{a n}满足a1=0,a2=1,a n+2=3a n+1﹣2a n,则{a n}的前n项和S n=2n﹣n﹣1.【考点】数列的求和;数列的概念及简单表示法.【分析】由a1=0,a2=1,a n+2=3a n+1﹣2a n,可得a n+2﹣a n+1=2(a n+1﹣a n),利用等比数列的通项公式可得a n﹣a n﹣1,再利用“累加求和”即可得到a n,再利用等比数列的前n项和公式即可得出S n.【解答】解:由a1=0,a2=1,a n+2=3a n+1﹣2a n,可得a n+2﹣a n+1=2(a n+1﹣a n),∴数列{a n+1﹣a n}是以a2﹣a1=1为首项,2为公比的等比数列,∴(n≥2).∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣2+2n﹣3+…+2+1+0==2n﹣1﹣1.∴S n=(1+2+22+…+2n﹣1)﹣n==2n﹣n﹣1..故答案为:2n﹣n﹣1.【点评】数列掌握等比数列的通项公式和前n项和公式、“累加求和”等是解题的关键.三、解答题(本大题共6小题,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)(2018秋•蚌埠校级期中)已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.【考点】一元二次不等式的应用.【分析】(1)当m=0时,经检验不满足条件;解得m≠0时,设f(x)=mx2﹣2x﹣m+1,则由题意可得有,解得m∈∅.综合可得结论.(2)由题意﹣2≤m≤2,设g(m)=(x2﹣1)m+(1﹣2x),则由题意可得,由此求得x的取值范围.【解答】解:(1)当m=0时,1﹣2x<0,即当时不等式恒成立,不满足条件.…(2分)解得m≠0时,设f(x)=mx2﹣2x﹣m+1,由于f(x)<0恒成立,则有,解得m∈∅.综上可知,不存在这样的m使不等式恒成立.…(6分)(2)由题意﹣2≤m≤2,设g(m)=(x2﹣1)m+(1﹣2x),则由题意可得g(m)<0,故有,即,解之得,所以x的取值范围为.…(12分)【点评】本题主要考查一元二次不等式的应用,函数的恒成立问题,体现了分类讨论和转化的数学思想,属于中档题.18.(12分)(2018•黄浦区一模)已知三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)连结BC1,求异面直线AA1与BC1所成角的大小;(2)连结A1C、A1B,求三棱锥C1﹣BCA1的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)根据异面直线所成的角的定义找出异面直线AA1与BC1所成的角,再求出异面直线AA1与BC1所成角的大小.(2)由题意,先求出三棱柱ABC﹣A1B1C1的体积,在求得的大小,从而得的大小.【解答】解:如图,;(1)联结AO,并延长与BC交于点D,则AD是BC边上的中线.点O是正△ABC 的中心,且A1O⊥平面ABC,∴BC⊥AD,BC⊥A1O,且AD∩A1O=O.∴BC⊥平面ADA1.∴BC⊥AA1.又AA1∥CC1,∴异面直线AA1与BC1所成的角为∠BC1C.∴CC1⊥BC,即四边形BCC1B1为正方形.∴异面直线AA1与BC1所成角的大小为.(2)∵三棱柱ABC﹣A1B1C1的所有棱长都为2,∴AD=,AO=AD=,A1O==.•A1O=×22×=2,∴=S△ABC∴=﹣=.∴===.【点评】本题考查了空间中的异面直线所成的角以及求几何体的体积等问题,解题时应画出图形,数形结合,适当地转化计算方法,是中档题.19.(12分)(2018•河北模拟)已知数列{a n}的前n项和为S n,且S n=﹣1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=5,b n+1=b n+a n,求数列{b n}的通项公式.【考点】数列递推式;数列的求和.【分析】(I)当n=1时,,a1=2.当n≥2时,∵,,由此得a n=3a n﹣1,从而能够得到数列{a n}的通项公式.(II)由b n+1=b n+a n,得b n=b n﹣1+2•3n﹣2,b3=b2+2×3,b2=b1+2×30,相加得b n=b1+2×(3n﹣2+…+3+30)=5+,由此能求出数列{b n}的通项公式.【解答】解:(I)当n=1时,,∴a1=2.(2分)当n≥2时,∵①②①﹣②得:,即a n=3a n﹣1,(3分)∴数列{a n}是首项为2,公比为3的等比数列.(4分)∴a n=2×3n﹣1.(6分)(II)∵b n+1=b n+a n,∴当n≥2时,b n=b n﹣1+2•3n﹣2,b3=b2+2×3,b2=b1+2×30,(8分)相加得b n=b1+2×(3n﹣2+…+3+30)=5+.(11分)(相加(1分),求和(1分),结果1分)当n=1时,31﹣1+4=5=b1,(12分)∴b n=3n﹣1+4.(13分)【点评】第(Ⅰ)题考查迭代法求数列通项公式的方法,第(II)考查累加法求通项公式的方法,解题时要认真审题,仔细解答.20.(12分)(2018•盐城三模)设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足.(Ⅰ)求角B的大小;(Ⅱ)若,试求的最小值.【考点】平面向量数量积的运算;正弦定理;余弦定理.【分析】(1)根据题目中所给的向量的数量积写出数量积的公式,得到关于三角形边和角的等式关系,根据正弦定理把变化为角,逆用两角和的正弦公式,得到角B的余弦值,根据角的范围写出角.(2)本题要求向量的数量积的最值,而这两个向量的夹角是上一问求出的B,在表示向量数量积时,只有两边之积是一个变量,因此要表示出两边之积,根据余弦定理和基本不等式得到ac的范围,得到结果.【解答】解:(Ⅰ)∵,∴(2a+c)accosB+cabcosC=0,即(2a+c)cosB+bcosC=0,则(2sinA+sinC)cosB+sinBcosC=0∴2sinAcosB+sin(C+B)=0,即,B是三角形的一个内角,∴(Ⅱ)∵,∴12=a2+c2+ac≥3ac,即ac≤4∴=,即的最小值为﹣2【点评】本题是一个三角函数同向量结合的问题,是以向量的数量积为条件,得到三角函数的关系式,在高考时可以以解答题形式出现,本题又牵扯到解三角形,是一个综合题.21.(12分)(2018•安徽模拟)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,A点在PD上的射影为G点,E点在AB上,平面PEC⊥平面PDC.(Ⅰ)求证:AG∥平面PEC;(Ⅱ)求AE的长;(Ⅲ)求二面角E﹣PC﹣A的正弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)通过证明CD⊥平面PAD,AG⊥平面PCD,作EF⊥PC于F,证明EF∥AG,利用直线与平面平行的判定定理证明AG∥平面PEC.(Ⅱ)证明AE∥平面PCD,推出AE=GF,通过PA2=PG•PD,求出PG,利用求出AE,即可.(Ⅲ)过E作EO⊥AC于O点,说明∠EFO即为二面角E﹣PC﹣A的平面角,利用求出结果即可.【解答】解:(Ⅰ)证明:∵CD⊥AD,CD⊥PA∴CD⊥平面PAD∴CD⊥AG,又PD⊥AG∴AG⊥平面PCD …(2分)作EF⊥PC于F,因面PEC⊥面PCD∴EF⊥平面PCD∴EF∥AG又AG⊄面PEC,EF⊂面PEC,∴AG∥平面PEC …(4分)(Ⅱ)由(Ⅰ)知A、E、F、G四点共面,又AE∥CD∴AE∥平面PCD∴AE∥GF∴四边形AEFG为平行四边形,∴AE=GF …∵PA=3,AB=4∴PD=5,AG=,又PA2=PG•PD∴PG=…(6分)又∴∴…(8分)(Ⅲ)过E作EO⊥AC于O点,易知EO⊥平面PAC,又EF⊥PC,∴OF⊥PC∴∠EFO即为二面角E﹣PC﹣A的平面角…(10分),又EF=AG=∴…(13分)【点评】本题考查二面角的平面角的求法,直线与平面垂直与平行的判定定理的应用,考查空间想象能力以及计算能力.22.(12分)(2018秋•故城县校级月考)祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商在第一年初到大陆创办一座120万元的蔬菜加工厂M,M的价值在使用过程中逐年减少,从第二年到第六年,每年初M的价值比上年初减少10万元;从第七年开始,每年初M的价值为年初的75%.(1)求第n年初M的价值a n的表达式;(2)设A n=,若A n大于80万元,则M继续使用,否则须在第n 年初对M更新,证明:必须在第九年初对M更新.【考点】数列的应用;数列的函数特性.【分析】(1)根据题意,当n≤6时,数列{a n}是一个等差数列,当n≥7时,数列{a n}中从a6开始的项构成一个等比数列,分别确定它们的首项和公差,公差,写出通项公式,然后进行合并即可.(2)先对n进行公类,表示出A n,利用数列的单调性质确定其最佳项,并与80比较大小,确定n的值.【解答】解:(1)当n≤6时,数列{a n}是首项为120,公差为﹣10的等差数列,故a n=120﹣10(n﹣1)=130﹣10n,当n≥7时,数列{a n}从a6开始的项构成一个以a6=130﹣60=70为首项,以为公比的等比数列,故,∴第n年初M的价值a n=.(2)设S n表示数列{a n}的前n项和,由等差数列和等比数列的求和公式,得:当1≤n≤6时,S n=120n﹣5n(n﹣1),=120﹣5(n﹣1)=125﹣5n,当n≥7时,由于S6=570,故S n=570+(a7+a8+…+a n)=570+70×=780﹣210×,=,∵{a n}是递减数列,∴{A n}是递减数列,∵≈82.734>80,≈76.823<80,所以必须在第九年初对M更新.【点评】本题考查函数模型的建立问题,关键要理解题意,通过相应的数学知识建立数学模型,通过不等式工具、函数最值的思想和方法达到求解的目的.考查转化与化归的思想.。
故城县三中2018-2019学年上学期高二数学12月月考试题含解析
故城县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣42. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 3. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)4. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣5. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β D .若α⊥β,m ⊥β,m ⊄α,则m ∥α6. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)7.=( )A .﹣iB .iC .1+iD .1﹣i8. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.9. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°10.设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 11.设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .2 12.459和357的最大公约数( )A .3B .9C .17D .51二、填空题13.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .14.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .15.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .16.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 17.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .18.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 三、解答题19.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.20.设函数f (x )=lnx+a (1﹣x ). (Ⅰ)讨论:f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.21.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个”(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.22.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .23.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.故城县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,∴====﹣.故选:A .2. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.3. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5]. ∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2].故选:C .4. 【答案】B【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B5. 【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:D .6. 【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.7. 【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.8. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 9. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b , ∴A <B , ∴A=45°,∴C=180°﹣A ﹣B=75°,故选:D .10.【答案】A【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,∴,解得:﹣3<a <﹣1.故选:A .【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.11.【答案】B【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12.【答案】D【解析】解:∵459÷357=1…102, 357÷102=3…51, 102÷51=2,∴459和357的最大公约数是51, 故选:D .【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.二、填空题13.【答案】12()()f x f x >] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.14.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=15.【答案】 平行 .【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.16.【答案】[,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M , ∴2a ﹣1≤1 且4a ≥2,解得 2≥a≥,故实数a 的取值范围是[,1], 故答案为[,1].17.【答案】.【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,∵mn ﹣m ﹣n=3,∴(m ﹣1)(n ﹣1)=4,(m ﹣1>0,n ﹣1>0), ∴(m ﹣1)+(n ﹣1)≥2,∴m+n ≥6, 则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.18.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方的最值转化为直线与圆相切是解答的关键,属于中档试题.法,本题的解答中把yx三、解答题19.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.20.【答案】【解析】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.21.【答案】【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知n=,∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,;(Ⅱ)因为第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是:.【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.22.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.23.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.24.【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.。
故城县第二中学2018-2019学年上学期高二数学12月月考试题含解析
故城县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .42. =( )A .2B .4C .πD .2π3. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 4. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 5. 函数f (x )=2x ﹣的零点个数为( ) A .0B .1C .2D .36. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .7. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .128. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=29.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B. C.D.10.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题12.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()A.9 B.11 C.13 D.15二、填空题13.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。
故城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析
故城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2-B.1-C. 1D.2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 2. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 3. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .4. “x >0”是“>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.7. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)8. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 9. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.10.已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6πB 、3πC 、56π D 、23π 11.已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.12.已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .二、填空题13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .14.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( ) A .2 B .3 C .2 D .5【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.15.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.16.已知tan()3αβ+=,tan()24πα+=,那么tan β= .17.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .三、解答题19.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.20.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.21.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长.(2)若连接OP并延长交圆O于,A B两点,CD OP22.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.23.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;(Ⅱ)证明:B1F∥平面A1BE;(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.24.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.故城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B. 2. 【答案】C 【解析】考点:真子集的概念. 3. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A .4. 【答案】A【解析】解:当x >0时,x 2>0,则>0∴“x >0”是“>0”成立的充分条件;但>0,x 2>0,时x >0不一定成立∴“x >0”不是“>0”成立的必要条件;故“x >0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.5. 【答案】B【解析】因为所以,对应的点位于第二象限 故答案为:B 【答案】B6. 【答案】D 【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.7. 【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .8. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 9. 【答案】A 【解析】10.【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min52,2,66x k x k x x ππππ∴=-+=+∴+11.【答案】B【解析】由复数的除法运算法则得,i i z z 33121=++=的虚部为54. 12.【答案】D 【解析】解:∵2S n =a n +,∴当n=2时,2(1+a 2)=,化为=0,又a 2>0,解得,同理可得. 猜想.验证:2S n =…+=,==,因此满足2S n =a n +, ∴.∴S n =.∴S 2015=.故选:D .【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.二、填空题13.【答案】cm 2 .【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,OC1==,1∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.14.【答案】A【解析】15.【答案】 2【解析】解:由,消去t 得:2x ﹣y+5=0,由ρ=8cos θ+6sin θ,得ρ2=8ρcos θ+6ρsin θ,即x 2+y 2=8x+6y ,化为标准式得(x ﹣4)2+(y ﹣3)2=25,即C 是以(4,3)为圆心,5为半径的圆.又圆心到直线l的距离是,故曲线C 上到直线l 的距离为4的点有2个, 故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.16.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++134313133-==+⨯. 考点:两角和与差的正切公式. 17.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
故城县外国语学校2018-2019学年上学期高二数学12月月考试题含解析
故城县外国语学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)2. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .86403. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.254. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要5. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .46. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.7.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.8.已知圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,则直线l的方程为()A.x+y=0 B.x+y=2 C.x﹣y=2 D.x﹣y=﹣29.长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是()A.30°B.45°C.60°D.120°10.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.11.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>12.已知a>b>0,那么下列不等式成立的是()A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.二、填空题13.已知集合{}|03,A x x x R=<∈≤,{}|12,B x x x R=-∈≤≤,则A∪B=▲.14.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.15.已知正四棱锥O ABCD-的体积为23则该正四棱锥的外接球的半径为_________16.设函数 则______;若,,则的大小关系是______.17.S n =++…+= .18.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.三、解答题19.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边72c =,且tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=a b +的值.22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)23.函数f (x )=sin 2x+sinxcosx .(1)求函数f (x )的递增区间;(2)当x ∈[0,]时,求f (x )的值域.24.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.故城县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.2.【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.故选C3.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310.4.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.5.【答案】A【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.6.【答案】D7.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.8.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.9.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.10.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.11.【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数 ∴⇒0<a ≤综上所述0≤a ≤ 故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a 的范围的问题,以及分类讨论的数学思想,属于基础题.12.【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,故选C .【点评】本题主要考查不等式的基本性质的应用,属于基础题.二、填空题13.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.14.【答案】 .【解析】解:由题意△ABE 的面积是平行四边形ABCD 的一半, 由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.15.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)8R R R =-+∴= 16.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数 【试题解析】,因为,所以又若,结合图像知:所以:。
故城县实验中学2018-2019学年上学期高二数学12月月考试题含解析
故城县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .2. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}4. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b << 5. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图6. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .7. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D 8. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 79. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .110.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,911.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .B .C .D .12.已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为() A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}二、填空题13.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .15.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .17.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .18.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .三、解答题19.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
故城县第二中学2018-2019学年高二上学期第二次月考试卷数学(1)
故城县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 2. 抛物线y 2=2x 的焦点到直线x﹣y=0的距离是( )A.B.C.D.3. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .34. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心 5. 函数y=(x 2﹣5x+6)的单调减区间为( )A.(,+∞) B .(3,+∞) C .(﹣∞,) D .(﹣∞,2)6. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0 B .1 C .2 D .3 7. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( ) A .1B .2C .3D.8. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2;其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个 9. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1210.下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=11.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 712.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.二、填空题13.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .14.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .15.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .16.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.18.设,则三、解答题19.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围.20.已知函数g (x )=f (x )+﹣bx ,函数f (x )=x+alnx 在x=1处的切线l 与直线x+2y=0垂直.(1)求实数a 的值;(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;(3)设x 1、x 2(x 1<x 2)是函数g (x )的两个极值点,若b ,求g (x 1)﹣g (x 2)的最小值.21.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.22.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.23.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点A到平面PMB的距离.24.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.故城县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e cos 0x h x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .2. 【答案】C【解析】解:抛物线y 2=2x 的焦点F (,0),由点到直线的距离公式可知:F 到直线x ﹣y=0的距离d==,故答案选:C .3. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.4.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
故城县一中2018-2019学年上学期高二数学12月月考试题含解析
故城县一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.62.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π3.若a>0,b>0,a+b=1,则y=+的最小值是()A.2 B.3 C.4 D.54.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π5.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关6. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .57. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.8. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数9. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( ) A .x 2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.在△ABC 中,已知a=2,b=6,A=30°,则B=( )A .60°B .120°C .120°或60°D .45°11.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( ) A .1B.C.D. 12.与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 14.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .15.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.设变量x ,y 满足约束条件,则的最小值为 .17.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.20.已知命题p :∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,命题q :f (x )=x 2﹣ax+1在区间上是增函数.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.21.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.22.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.23.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.24.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.故城县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.2.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.3.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4.故选:C.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.4.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×25.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.6.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.7.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.8.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.9.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.11.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.12.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.二、填空题13.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.14.【答案】(0,5).【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.15.【答案】2【解析】16.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率, 由图象可知,OC 的斜率最小,由,解得,即C (4,1),此时=4, 故的最小值为4, 故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.17.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e -'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23.18.【答案】(1,2 【解析】三、解答题19.【答案】【解析】解:(1)由已知得:f′(x)=.要使函数f(x)在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a>0可知,只需a,x∈[1,+∞)即可.易知,此时=1,所以只需a≥1即可.(2)结合(1),令f′(x)==0得.当a≥1时,由(1)知,函数f(x)在[1,e]上递增,所以f(x)min=f(1)=0;当时,,此时在[1,)上f′(x)<0,在上f′(x)>0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1﹣lna﹣;当时,,故此时f′(x)<0在[1,e]上恒成立,所以f(x)在[1,e]上递减,所以f(x)min=f(e)=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.20.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).21.【答案】【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.22.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.23.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.24.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.。
故城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
故城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对 2. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内3. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-4. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .405. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .366.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.20+2πB.20+3πC.24+3πD.24+3π7.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()8.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.9. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假10.三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]11.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 312.一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.二、填空题13.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .14.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .17.已知α为钝角,sin (+α)=,则sin (﹣α)= .18.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .三、解答题19.已知函数3()1xf x x =+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.20.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.21.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.22.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.将数据按照[)[)[)(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.23.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.24.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.故城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】D【解析】解:∵PD ⊥矩形ABCD 所在的平面且PD ⊆面PDA ,PD ⊆面PDC , ∴面PDA ⊥面ABCD ,面PDC ⊥面ABCD , 又∵四边形ABCD 为矩形 ∴BC ⊥CD ,CD ⊥AD ∵PD ⊥矩形ABCD 所在的平面 ∴PD ⊥BC ,PD ⊥CD ∵PD ∩AD=D ,PD ∩CD=D∴CD ⊥面PAD ,BC ⊥面PDC ,AB ⊥面PAD , ∵CD ⊆面PDC ,BC ⊆面PBC ,AB ⊆面PAB ,∴面PDC ⊥面PAD ,面PBC ⊥面PCD ,面PAB ⊥面PAD 综上相互垂直的平面有5对 故答案选D2. 【答案】D【解析】解:对A ,当三点共线时,平面不确定,故A 错误; 对B ,当两条直线是异面直线时,不能确定一个平面;故B 错误;对C ,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C 错误; 对D ,由C 可知D 正确. 故选:D .3. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F =,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 4. 【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 5. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6. 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.7. 【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 8. 【答案】C 【解析】考点:几何体的结构特征.9.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C10.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.11.【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.12.【答案】C. 【解析】二、填空题13.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率. 14.【答案】[]1,1- 【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1816.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.17.【答案】﹣.【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.18.【答案】cm2.【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,OC1==,1∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.三、解答题19.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.120.【答案】【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.21.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC1E是平行四边形.所以,EF∥C1D.又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,所以,EF∥平面B1BCC1.(III)解:因为,AB⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.a ;(2)3.6万;(3)2.9.22.【答案】(1)0.3【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.23.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 24.【答案】【解析】解:(1)∵A={x|3≤x <10},B={x|2<x ≤7},∴A ∩B=[3,7];A ∪B=(2,10);(C U A )∩(C U B )=(﹣∞,3)∪[10,+∞); (2)∵集合C={x|x >a},∴若A ⊆C ,则a <3,即a 的取值范围是{a|a <3}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 4 页,共 16 页
22.(本小题满分 13 分) 在四棱锥 P ABCD 中,底面 ABCD 是梯形, AB / / DC , ABD
2
, AD 2 2 , AB 2 DC 2 ,
F 为 PA 的中点.
(Ⅰ)在棱 PB 上确定一点 E ,使得 CE / / 平面 PAD ; (Ⅱ)若 PA PB PD
.
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 14.已知函数 f(x)= (写出你认为正确的所有结论的序号) ①k=0 时,F(x)恰有一个零点.②k<0 时,F(x)恰有 2 个零点. ③k>0 时,F(x)恰有 3 个零点.④k>0 时,F(x)恰有 4 个零点.
2 2
,则关于函数 F(x)=f(f(x))的零点个数,正确的结论是 .
15.已知圆 C 的方程为 x y 2 y 3 0 ,过点 P 1, 2 的直线与圆 C 交于 A, B 两点,若使 AB 最小则直线的方程是 ①当 i=1,j=3 时,x=2; ②当 i=3,j=1 时,x=0; ③当 x=1 时,(i,j)有 4 种不同取值; ④当 x=﹣1 时,(i,j)有 2 种不同取值; ⑤M 中的元素之和为 0. . 且 i,j∈{1,2,3,4}},则对于下列命题: 16.若正方形 P1P2P3P4 的边长为 1,集合 M={x|x=
1+
a2+…+
7. 已知直线 x﹣y+a=0 与圆心为 C 的圆 x2+y2+2 值为( A. 或﹣ ) B. 或3 C. 或5
=4,则实数 a 的
8. (m+1)x2﹣(m﹣1)x+3(m﹣1)<0 对一切实数 x 恒成立,则实数 m 的取值范围是( A.(1,+∞) C. B.(﹣∞,﹣1) D.
时,kx+1>0,此时 f(f(x))=f(kx+1)=
,令 f(f(x))=0,可得 :
,此时 f(f(x))=f(
)=
,令 f(f(x))=0,
(Ⅳ)当 x>1 时, >1,满足;
,此时 f(f(x))=f(
)=k
+1,令 f(f(x))=0 得 x= :
综上可得:当 k>0 时,函数有 4 个零点.故③错误,④正确. 故答案为:②④. 【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题. 15.【答案】 x y 3 0 【解析】 试题分析:由圆 C 的方程为 x y 2 y 3 0 ,表示圆心在 C (0,1) ,半径为的圆,点 P 1, 2 到以点 P 1, 2 在圆内,所以当 AB CP 时, AB 最小,此时
kCP 1, k1 1 ,由点斜式方程可得,直线的方程为 y 2 x 1 ,即 x y 3 0 .
﹣1 D .
二、填空题
11.已知等差数列{an}中,a3= ,则 cos(a1+a2+a6)= . 恒有公共点,则 m 的取值范围是 .
12.若直线 y﹣kx﹣1=0(k∈R)与椭圆
13.已知 x , y 为实数,代数式 1 ( y 2) 2 9 (3 x) 2
x 2 y 2 的最小值是
∴cos∠ACB= , ∴∠ACB=60° ∴圆心到直线的距离为 ∴ ∴a= 或5 . = , ,
故选:C. 8. 【答案】C 【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0 对一切 x∈R 恒成立, 即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0 对一切 x∈R 恒成立 若 m+1=0,显然不成立 若 m+1≠0,则 解得 a .
第 9 页,共 16 页
14.【答案】 ②④ 【解析】解: ①当 k=0 时, 此时有无穷多个零点,故①错误; ②当 k<0 时,(Ⅰ)当 x≤0 时,f(x)=kx+1≥1, 此时 f(f(x))=f(kx+1)= (Ⅱ)当 0<x≤1 时, f(f(x))=f( (Ⅲ)当 x>1 时, )= ,此时 ,令 f(f(x))=0,可得:x= ,满足; ,此时 f(f(x))=f( )=k +1>0,此时无零点. ,令 f(f(x))=0,可得:x=0; ,当 x≤0 时,f(x)=1,则 f(f(x))=f(1)= =0,
第 7 页,共 16 页
故选 C. 【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于 0 只需 9. 【答案】C 【解析】 .
考点:三视图. 10.【答案】A 【解析】解:如图,根据题意知,D 在线段 AB 上,过 D 作 DE⊥AC,垂足为 E,作 DF⊥BC,垂足为 F;
若设 AC=BC=a,则由 根据题意,∠ACD=60°,∠DCF=30°; ∴ 即 解得 故选:A. 【点评】考查当满足 ,平面向量基本定理,余弦函数的定义. . ; ;
第 2 页,共 16 页
其中正确的结论序号为 .(填上所有正确结论的序号)
三、解答题
17.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.已知 b2+c2=a2+bc. (Ⅰ)求 A 的大小; (Ⅱ)如果 cosB= ,b=2,求 a 的值.
18.如图,在四棱柱 (Ⅰ)求证: (Ⅱ)求证: (Ⅲ)若 平面 ; ,判断直线 ;
得,CE=ta,CF=(1﹣t)a;
时,便说明 D,A,B 三点共线,以及向量加法的平行四边形法则
二、填空题
11.【答案】 .
第 8 页,共 16 页
【解析】解:∵数列{an}为等差数列,且 a3= ∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3× ∴cos(a1+a2+a6)=cos 故答案是: . = . =
)
9. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于(
)
第 1 页,共 16 页
A. 12 3
B. 16 3 =t +(1﹣t)
C. 20 3 ,若∠ACD=60°,则 t 的值为( )
D. 32 3
10.已知 AC⊥BC,AC=BC,D 满足 A. B. ﹣ C.
第 6 页,共 16 页
6. 【答案】B 【解析】解法一:∵ ∴ 取 x=1 得 再取 x=0 得 ∴ 故选 B. 解法二:∵ ∴ ∴ 故选 B. 【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用. 7. 【答案】C 【解析】解:圆 x2+y2+2 ∵ • =4,∴2 •2 x﹣4 y+7=0,可化为(x+ )2+(y﹣2 )2=8. cos∠ACB=4 , , , ,即得 , , , , (C 为常数),
2. 已知数列 an 是各项为正数的等比数列,点 M (2, log 2 a2 ) 、 N (5, log 2 a5 ) 都在直线 y x 1 上,则数列
an 的前 n 项和为(
A. 2 2
n
B. 2
2
C. 2 1
n
D. 2
n 1
1
3. 函数 A.(﹣∞,2) A.1:2:3
6 ,求三棱锥 P BDF 的体积.
P
F D
C
A
B
第 5 页,共 16 页
故城县第二高级中学 2018-2019 学年高三上学期 12 月月考数学试卷(参考答案) 一、选择题
1. 【答案】B 【解析】【知识点】平面向量坐标运算 【试题解析】若 O,A,B 三点能构成三角形,则 O,A,B 三点不共线。 若 O,A,B 三点共线,有:-m=4,m=-4. 故要使 O,A,B 三点不共线,则 。 故答案为:B 2. 【答案】C 【解析】解析:本题考查等比数列的通项公式与前 n 项和公式. log 2 a2 1 , log 2 a5 4 ,∴
中,
底面
,
,
,
.
与平面
是否垂直?并说明理由.
19.已知二次函数 f ( x) 的最小值为 1,且 f (0) f (2) 3 .
第 3 页,共 16 页
(1)求 f ( x) 的解析式; (2)若 f ( x) 在区间 2a, a 1 上不单调,求实数的取值范围; (3)在区间 1,1 上, y f ( x) 的图象恒在 y 2 x 2m 1 的图象上方,试确定实数 m 的取值范围.
a2 2 , a5 16 ,∴ a1 1 , q 2 ,数列 an 的前 n 项和为 2n 1 ,选 C.
3. 【答案】D 【解析】解:根据函数有意义的条件可知 ∴x>2 故选:D 4. 【答案】D 【解析】解:设球的半径为 R,则圆柱、圆锥的底面半径也为 R,高为 2R, 则球的体积 V 球= 圆柱的体积 V 圆柱=2πR3 圆锥的体积 V 圆锥= 故圆柱、圆锥、球的体积的比为 2πR3: 故选 D 【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱 、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键. 5. 【答案】B 【解析】解:∵集合 A={x|x∈N|x>1}, ∴集合 A 就是由全体大于 1 的自然数构成的集合, 显然,1∉A, 故选:B. : =3:1:2
的定义域是(
)
B.[2,+∞) C.(﹣∞,2] D.(2,+∞) ) B.2:3:4 ) a2014=( C.3:2:4 D.3:1:2
4. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( 5. 设集合 A={x|x∈N|x>1},则( A.∅∉A B.1∉A C.1∈A D.{1}⊆A 6. 若等式(2x﹣1)2014=a0+a1x+a2x2+…+a2014x2014 对于一切实数 x 都成立,则 a0+ ) A. B. C. D.0 x﹣4 D.3 y+7=0 相交于 A,B 两点,且 或5 •