2014年东海县中考数学模拟试题(二)

合集下载

2014届中考二模数学试题含答案

2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。

2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。

3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卷的整洁。

考试结束时,将试卷和答题卷一并交回。

一、选择题(本大题共10小题,每小题3分,共30分。

在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

江苏省连云港市东海县2014届九年级中考模拟(二)化学试题

江苏省连云港市东海县2014届九年级中考模拟(二)化学试题

东海县2014年中考模拟考试(二)化学试题可能用到的相对原子质量:H-1 C-12 N-14 O-16 S-32 Fe-56一、选择题(本题包括12小题,每小题2分,共24分。

每小题只有一个选项符合题意)1、下列民间制作属于化学变化的是()A.佛山剪纸B.潮州木雕C.信宜竹编D.客家米酒2、下列实验操作正确的是()A.滴加液体B.取用固体C.测溶液pH D.过滤3、下列物质中,属于纯净物的是()A.矿泉水B.蒸馏水C.白醋D.苏打水4、小勇同学根据已有的化学知识,向家人提出了下列建议,其中不合理的是()A.用燃烧闻气味的方法鉴别棉纤维和真丝B.用加热煮沸的方法降低水的硬度C.胃酸过多时,可服用适量的小苏打D.用煤炉取暖时,为防止热量散失,应紧闭门窗5、下列化学用语中,数字“2”的说法正确的是()A.表示离子个数的是⑤⑥B.表示离子所带电荷数的是④⑤C.表示分子中原子个数的是③⑦D.表示分子个数的是①②6、某化学兴趣小组为验证Ag、Fe、Cu三种金属的活动性顺序,设计了如下图所示的实验操作。

其中可以达到实验目的的组合是()A.①③B.②④C.④⑤D.②③7、工业上用甲、乙制备化学肥料丙,同时有丁生成。

根据下列微观示意图得出的结论中,正确的是()①甲的化学式为NH3②乙、丙、丁都是氧化物③丙中氮、氢元素质量比为7:1 ④参加反应的甲、乙质量比为17:44A . ①B . ①③C . ①④D . ②④ 8、右图是甲、乙两种固体物质的溶解度曲线,下列说法正确的是( )A .甲物质的溶解度一定大于乙物质的溶解度B .t 2℃时,甲、乙饱和溶液的溶质质量分数相等C .将甲溶液从t 2℃降温到t 1℃时,一定有晶体析出D .将t 2℃时乙的饱和溶液变为不饱和溶液,可采用降温的方法9、现有铁、氧化铁、稀硫酸、氢氧化钙溶液、碳酸钠溶液等五种物质,存在着如图所示的相互反应或转化关系(图中“一”表示物质间可以发生化学反应,“→”表示物质间存在相应的转化关系)。

2014中考数学二模试卷及答案(最新两套)

2014中考数学二模试卷及答案(最新两套)
12.在△ABC中,∠C=90°,tanA=1,那么cosB=▲.
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,

2014中考数学模拟试卷(附详细答案)(3份)-1

2014中考数学模拟试卷(附详细答案)(3份)-1

2014年中考数学模拟试卷二(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.-12的绝对值是( )A .12B .-12C .2D .-2 2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分).176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为( )A .180,180,178B .180,178,178C .180,178,176.8D .178,180,176.8 3.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC 4.不等式组⎩⎪⎨⎪⎧2x +12>12x -4,32x -12≤x的解集在数轴上表示正确的是( )5.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形6.计算:1÷1+m 1-m ·(m 2-1)的结果是( )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-17.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位8.如图,在平面直角坐标系中,正方形ABCO 的顶点A ,C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A .(-4,5)B .(-5,4)C .(5,-4)D .(4,-5)9.如图,所有正方形的中心均在坐标原点,且各边均与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A .(13,13)B .(-13,-13)C .(14,14)D .(-14,-14)10.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝ ⎛⎭⎪⎫-45,y 1,⎝ ⎛⎭⎪⎫-54,y 2,⎝ ⎛⎭⎪⎫16,y 3,y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④ 12.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2 011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 二、填空题(每小题4分,共20分)13.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__________. 14.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=__________度.15.对于任意不相等的两个实数a ,b ,定义运算*如下:a *b =a +ba -b,如32*==8*12=___________. 16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin∠CAM =35,则tan B的值为__________.17.Rt△ABC 中,∠BAC =90°,AB =AC =2.以AC 为一边,在△ABC 外部作等腰直角△ACD ,则线段BD 的长为__________.三、解答题(共64分)18.(5分)已知:2x 2+6x -4=0,求代数式3-x 2x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x -2的值. 19.(6分)我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为__________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有__________个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.图1 图220.(7分)远洋电器城中,某品牌电视有A,B,C,D四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是2 500,4 000,6 000,10 000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电视共售出240台,每台的销售利润占其价格的百分比如下表:型号 A B C D利润10% 12% 15% 20%请根据以上信息,解答下列问题:(1)请补全统计图;(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大;(3)谈谈你的建议.21.(7分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台.甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.22.(8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(9分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为t秒.(1)用含t的代数式表示△DEF的面积S;(2)当t为何值时,⊙O与直线BC相切?24.(10分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E,F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.25.(12分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x 轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P 作垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.参考答案一、1.A2.176,180,因此中位数是176+1802=178;平均数为164+170+172+176×2+180×3+184+18610=176.8.3.D4.A 解不等式2x +12>12x -4,得x >-3;解不等式32x -12≤x ,得x ≤1,∴不等式组的解集为-3<x ≤1.故选A.5.D6.B 1÷1+m 1-m ·(m 2-1)=1-m 1+m·(m +1)(m -1)=-m 2+2m -1.7.B y =(x +2)2-3的顶点为(-2,-3),抛物线y =x 2的顶点为(0,0),所以平移的过程是先向左平移2个单位,再向下平移3个单位.8.A 设⊙M 与x 轴的切点为F ,连接FM ,并延长交AB 于E ,连接AM .∵⊙M 与x 轴相切,∴MF ⊥x 轴,ME ⊥AB .∵A 的坐标为(0,8),∴OA =AB =OC =BC =EF =8.∴AE =BE =4.设MF =AM =x ,∴ME =8-x .在Rt △AME 中,AE 2+ME 2=AM 2,即42+(8-x )2=x 2,解得x =5.即MF =5,∴M 的坐标为(-4,5),故选A.9.C ∵55÷4=1334,∴点应在第一象限,且坐标为(14,14).10.A 把x =-3代入方程,得9-3b -3=0,b =2,二次函数y =x 2+2x -3的对称轴为x =-1, ∵⎪⎪⎪⎪⎪⎪-45--=15,⎪⎪⎪⎪⎪⎪-54--=14, ⎪⎪⎪⎪⎪⎪16--=76,15<14<76,∴y 1<y 2<y 3. 11.B 12.B二、13.±7 把x =2代入方程,得22-2-a 2+5=0,解得a =±7.14.25 15.-5216.23设MC 为3x ,则AM 为5x ,∴AC 为4x .∴tan B =AC BC =AC 2MC =4x 6x =23.17.4或25或10 首先要结合题意,画出相应的图形.因为以AC 为一边在△ABC 外部作等腰Rt △ACD ,则AC 可以是直角边,也可以是斜边,所以有三种情况.如图(1),BD =4;如图(2),BD =22+42=25;如图(3),∠ADC =90°,BC =22,CD =2,BD =22+22=10.图(1) 图(2) 图(3)三、18.解:原式=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x +21=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫-x 2+9x -2=12x 2+6x. 当2x 2+6x -4=0时,2x 2+6x =4,原式=14.19.解:(1)1:2 121 (2)正三角形或正六边形 (3)如图.20.解:(1)补全统计图如右.(2)10%×2 500×50=12 500,12%×4 000×100=48 000,15%×6 000×70=63 000,20%×10 000×20=40 000,∴商场在这一周内该品牌C 型号的电视总销售利润最大.(3)从进货角度、宣传角度等方面答对即可.21.解:(1)共有8种等可能情况:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB. (2)由(1)知共有8种等可能情况,其中出现“两同一异”的情况有6种.∴P (两同一异)=68=34. 22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎪⎨⎪⎧80x +-x ,50x +-x ,解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案.方案一:中型图书角18个,小型图书角12个;方案二:中型图书角19个,小型图书角11个;方案三:中型图书角20个,小型图书角10个.(2)方案一的费用是860×18+570×12=22 320(元); 方案二的费用是860×19+570×11=22 610(元); 方案三的费用是860×20+570×10=22 900(元). 故方案一的费用最低,最低费用是22 320元. 23.解:(1)∵DE ∥BC ,∴∠ADE =∠B =60°.在△ADE 中,∵∠A =90°,∴tan ∠ADE =AE AD= 3.∵AD =1×t =t ,∴AE =3t .又∵四边形ADFE 是矩形,∴S △DEF =S △ADE =12AD ×AE =12×t ×3t =32t 2(0<t <3).∴S =32t 2(0<t <3).(2)如图,过点O 作OG ⊥BC 于点G ,过点D 作DH ⊥BC 于点H ,∵DE ∥BC ,∴OG =DH ,∠DHB =90°.在△DBH 中,sin B =DH BD.∵∠B =60°,BD =AB -AD ,AD =t ,AB =3,∴DH =32(3-t ),∴OG =32(3-t ). 当OG =12DE 时,⊙O 与BC 相切,在△ADE 中,∵∠A =90°,∠ADE =60°,∴cos ∠ADE =AD DE =12.∵AD =t ,∴DE =2AD =2t .∴2t =32(3-t )×2.∴t =63-9<3. ∴当t =63-9时,⊙O 与直线BC 相切. 24.(1)证明:∵四边形ABCD 为矩形, ∴∠C =∠BAD =90°,AB =CD ,由图形的折叠性质,得CD =C ′D ,∠C =∠C ′=90°, ∴∠BAD =∠C ′,AB =C ′D .又∵∠AGB =∠C ′GD ,∴△ABG ≌△C ′DG .(2)解:设AG 为x .∵△ABG ≌△C ′DG ,AD =8,AG =x , ∴BG =DG =AD -AG =8-x .在Rt △ABG 中,有BG 2=AG 2+AB 2,∵AB =6,∴(8-x )2=x 2+62,解得x =74.∴tan ∠ABG=AG AB =724. (3)由图形的折叠性质,得∠EHD =90°,DH =AH =4, ∴AB ∥EF ,∴△DHF ∽△DAB , ∴HF AB =DH AD ,即HF 6=12,∴HF =3. 又∵△ABG ≌△C ′DG ,∴∠ABG =∠HDE ,∴tan ∠ABG =tan ∠HDE =EH HD ,即724=EH4,∴EH =76,∴EF =EH +HF =76+3=256.25.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴令y =0,得mx 2+(m -3)x -3=0.图①解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为⎝ ⎛⎭⎪⎫3m ,0,∵二次函数的图象与y 轴交于点C ,∴点C 的坐标为(0,-3).∵∠ABC =45°(如图①), ∴3m=3.∴m =1.(3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1.故一次函数的解析式为y =-2x +1.。

2014年春泉州市东海中学八年级期中考数学试卷_2

2014年春泉州市东海中学八年级期中考数学试卷_2

相信自己一定行!2012年春市东海中学八年级期中考数学试卷(满分:150分,考试时间:120分钟) 一、选择题(每小题3分,共21分) 1. 下列代数式中,是分式的是( )A.32-B.πxy 2C.7x D.x + 652.在平面直角坐标系中,点P (-1,3)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.方程12=x的解是( ) A .=x 1 B .=x 2 C .=x 21D .=x -2 4.双曲线6y x=-经过点A (m ,3),则m 的值为( ) A .3 B .-3 C .2 D .-2 5.如果把分式yx x-2中的x 、y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 6.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )7.如图,坐标平面一点A (2,-1),O 是原点,P 是x 轴上一个动点,如果以点P 、O 、A 为顶点的等腰三角形,那么符合条件的动点P 的个数为( ) A .2B . 3C .4D .5二、填空题(每小题4分,共40分)8.当x = 时,分式21-x 无意义;9.某种感冒病毒的直径是0.00 000 012米,用科学记数法表示为_____________ 米;OAxyP10.正比例函数x y 3=的图象经过第一象限与第 象限;11.计算:=⋅ab b a 2.2422---x x x =_________; 12.直线12-=x y 向上平移4个单位得到的直线的解析式为_____ ____; 13.若解分式方程441+=+-x mx x 产生增根,则=m ________; 14.点(4,-3)关于原点对称的点的坐标是 _____________;15.已知等腰△ABC 的周长为12,设它的腰长为x ,底边长为y ,则y 与x 的函数关系式为___________________,自变量x 的取值围为______ ________; 16.如图:根据图象回答问题:当x 时,0<y ; 17.如图,已知点A 在双曲线xy 6=上,且4=OA ,过A 作x AC ⊥轴于C ,OA 的垂直平分线交OC 于B . (1)则AOC ∆的面积= ,(2)ABC ∆的周长为 .2012年春市东海中学八年级期中考数学试卷O 2 3xy第16题成绩(考试日期:2012年4月15日 时间:7:30—9:30,共120分钟)-----------------------------密--------------------封--------------------线---------------------------------一.选择题(每小题3分,共21分)8.________ 9.________ 10.________ 11.__ ______ ________ 12._____ ___ 13._____ ___ 14.____ ___ 15._______ ______ __ 16.____ 17.(1)_____ _ (2)____ ____ 三.解答题(本大题共9小题,共89分)18.(9分)计算:421|3|)13(2+⎪⎭⎫ ⎝⎛--+--19.(9分)先化简1)111(2-÷-+x xx ,然后选择一个合适的你最喜欢的x 的值,代入求值.20.(9分)解分式方程:23222x x x -=+-21.(9分)已知一次函数3+=kx y 的图象经过点(2,7) (1)求k 的值;(2)判断点(-2,1)是否在所给函数图象上。

2014年中考二模数学试卷及答案

2014年中考二模数学试卷及答案

xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。

东海县中考题数学试卷

东海县中考题数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. -3.14C. πD. √92. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像与x轴有两个交点,且a > 0,则下列结论正确的是()A. b > 0B. b < 0C. b = 0D. b的符号不能确定4. 在三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 45°C. 75°D. 90°5. 已知等差数列{an}中,a1 = 2,公差d = 3,则前10项的和S10是()A. 110B. 130C. 150D. 1706. 若函数y = kx + b(k ≠ 0)的图像经过点(2,3),则k与b的关系是()A. k = 3,b = 2B. k = 2,b = 3C. k = 1,b = 3D. k = 3,b = 17. 在平面直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标是()A. (0,0)B. (-2,-3)C. (2,3)D. (0,6)8. 已知一元二次方程x^2 - 4x + 3 = 0,则它的解是()A. x1 = 1,x2 = 3B. x1 = 3,x2 = 1C. x1 = -1,x2 = -3D. x1 = -3,x2 = -19. 若函数y = log2x的图像向右平移2个单位,则得到的函数图像对应的函数解析式是()A. y = log2(x-2)B. y = log2(x+2)C. y = log2(x)D. y = log2(2x)10. 已知等比数列{an}中,a1 = 3,公比q = 2,则前5项的乘积P5是()A. 48B. 96C. 192D. 384二、填空题(每题4分,共40分)11. 若sinα = 0.6,则cosα = _______。

江苏省连云港市东海县2014届九年级中考模拟(一)数学试题 ( )

江苏省连云港市东海县2014届九年级中考模拟(一)数学试题 ( )

东海县2014年中考模拟考试(一)数 学 试 题(请考生在答题纸上作答)温馨提示:1.本试卷共6页,27题.全卷满分150分,考试时间为120分钟. 2.请在答题卡规定的区域内作答,在其它位置作答一律无效.3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列各数中是有理数的是A.3.14C.2πD.22. 据介绍,今年连盐铁路连云港段将完成征地拆迁和工程总投资元.将30亿用科学记数法表示应为 A .9103⨯ B . 10103⨯ C . 81030⨯ D .91030⨯ 3.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是A. B. C. D.4.下列计算正确的是 A.+= B . ﹣=﹣1 C .×=6 D .÷=35.在一次中学生田径运动会上,参加男子跳高的这些运动员跳高成绩的中位数和众数分别是A .1.70,1.65B . 1.65,1.70C .1.70,1.70D .3,56.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,尺寸如图.如果两个三角形的面积分别记作S △ABC 、S △DEF ,那么它们的大小关系是A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定7.如图,将□ABCD 折叠,使顶点D 恰落在AB 边上的点M 处,折痕为AN ,那么对于A B C D E F 第6题图A BC DM N 第7题图结论 ①MN ∥BC ,②MN AM =,下列说法正确的是A. ①②都错B. ①②都对C. ①对②错D. ①错②对8.时钟在正常运行时,时针和分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从3:00开始到3:30止,下列图中能大致表示y 与t 之间的函数关系的图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.相反数等于2的数是 ▲ . 10.16的平方根是 ▲ . 11.已知0>x 时,函数xky =的图象在第二象限,则k 的值可以是 ▲ . 12.袋中有4个红球,x 个黄球,从中任摸一个恰为黄球的概率为43,则x 的值为 ▲ . 13.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为 ▲ .14.如图,已知AB 、CD 是⊙O 的两条直径,∠ABC =28°,那么∠BAD = ▲ . 15.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ▲ . 16.如图,矩形ABCD 中,AB =6,BC =8,E 是BC 边上的一定点, P 是CD 边上的一动点(不与点C 、D 重合),M 、N 分别是AE 、 PE 的中点,记MN 的长度为a ,在点P 运动过程中,a 不断 变化,则a 的取值范围是 ▲ .第13题图第14题图第15题图第16题图三、解答题(本题共11小题,共102分.解答时写出必要的文字说明、证明过程或演算步骤) 17.(6分)计算 02014130tan 3512)(-︒+--.18.(6分)先化简,再求值:⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1),其中x =2.19.(8分)解不等式组254(2)213x x x x +<+⎧⎪⎨-<⎪⎩,并将它的解集在数轴上表示出来.20.(8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;(2)本次抽样调查的样本容量是______▲______;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.21.(8分)如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏. (1)随机翻一个杯子,翻到黄色杯子的概率是 ▲ ;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.xyO A BD22.(8分)已知:如图,在△ABC 中,∠ACB =90°,∠CAB 的平分线交BC 于D ,DE ⊥AB ,垂足为E ,连结CE ,交AD 于点H . (1)求证:AD ⊥CE ;(2)如果过点E 作EF ∥BC 交AD 于点F ,连结CF ,猜想四边形CDEF 是什么图形?并证明你的猜想.23.(10分)如图,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),经过B 点的直线交抛物线于点D (-2,-3). (1)求抛物线的解析式和直线BD 解析式;(2)过x 轴上点E (a ,0)(E 点在B 点的右侧)作直线EF ∥BD ,交抛物线于点F ,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.24.(10分)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.我县某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼太阳高度角 不影响采光 稍微影响 完全影响 (1)我县的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为第23题图第22题图第21题图34.88度。

东海县数学中考模拟考试试题

东海县数学中考模拟考试试题

2012-2013学年度九年级期中考试数学试题(请考生在答题纸上作答)温馨提示:1.本试卷共6页,28题.全卷满分150分,考试时间为120分钟. 2.请在答题卡规定的区域内作答,在其它位置作答一律无效.3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.-3的倒数是A .3B .-3C .31 D .-312.下列运算中,正确的是A .222()a b a b +=+ B3= C .3412a a a ⋅= D .2236()(0)a a a=≠ 3.在如图的几何体中,它的左视图是4.不等式组{2139x x -≥->的解集在数轴上可表示为5.下列四边形中,两条对角线一定不相等的是A .正方形B .矩形C .等腰梯形D .直角梯形 6.△ABC 为⊙O 的内接三角形,若∠BOC =140°,则∠BAC 的度数是 A .40° B .70° C .70°或110° D .140°7.如图,是一次函数42+=x y 的图象,点),1(m P -在该直线的下方,则m 的取值范围是 A. 1-<m B. 0<m C.2<m D.4<m8.在“2x □xy 2□2y ”的空格“□”中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是A.21B. 41C. 43 D. 1 9.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2).将△ABO绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线(0)ky x x=>上,则k 的值为A .B .C .D .第3题图A .2B .3C .4D .610.如图是小亮家里地面上铺设的正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少A .6块B .8块C .10块D .12块二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.计算:﹣1﹣1= . 12.要使函数关系式11y x =+有意义,x 的取值范围是 ▲ 13.分解因式:32a ab -= .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为20.01S ≈甲,20.002S ≈乙,则产量较为稳定的品种是_____________(填“甲”或“乙”).15.如图,将一块含30º角的直角三角尺与一直尺按如图所示放置,三角尺的两个顶点恰好在直尺边沿上,若︒=∠752,则∠1的度数为 .16.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表所示:点),(11y x A 、),(22y x B 在函数的图象上,则当211<<x ,432<<x 时,1y 与2y 的大小关系是 .17.矩形ABCD 中,AB=6,BC=8,以矩形的中心O 为端点,引两条相互垂直的射线,分别与矩形的边交于E 、F 两点,则线段EF 的最小值是 ▲ .18.在边长为1的正方形网格中,按如图方式得到“⊥”形图形,第①个“⊥”形图形的周长是10,则第n 个“⊥”形图形的周长是____________.第9题图 第10题图第8题图 1 第15题图30º 2F第17题图第18题图2012—2013学年第二学期期中调研考试一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)11. 12.______ __ 13.14.15. 16. 17. 18.三、解答题(本题共9小题,共96分.解答时写出必要的文字说明、证明过程或演算步骤) 19.(10分)计算:(1)201()2tan 45(2π--︒+; (2)221()a ba b a b b a-÷-+-.20.(6分)解方程组⎩⎨⎧=--=+.523,23y x y x21.(8分)今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”.为了解某校九年级同学此项目平时的训练情况,随机抽取了该校部分九年级同学进行测试.根据测试结果,制作了如表1所示的尚不完整的频数分布表:(1)表1中a = ▲ ,b = ▲ ; (2)这个样本数据的中位数落在第 ▲ 组;(3)表2为《体育与健康》中考查“排球30秒对墙垫球”的中考评分标准.若该校九年级有500名同学,请你估计该校九年级同学在这一项目中得分在7分以上(包括7分)同学约有多少人 .表122.(8分)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD 中,AB AD =,BC DC =,AC ,BD 相交于点O , (1)求证:DAC BAC ∠=∠;(2)如果6AC =,4BD =,求筝形ABCD 的面积.23.(10分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是_____________;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.24. (10分)如图,已知二次函数y= -x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B .(1)求此二次函数关系式及其图象的顶点坐标;(2)在x 轴的正半轴上是否存在点P ,使得△P AB 是以AB 为底的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.25.(8分)周末,小亮一家在西双湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)26.(10分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以整百米为单位)的方案有几种?请你帮助设计出来.27.(12分)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2.(1)求CF的长;(2)延长EF交正方形中∠BCD的外角平分线CP于点P(如图2),试判断AE与EP大小关系,并说明理由;(3)在图2的AB边上有一点M,试探索说明,当点M处于何位置时,四边形DMEP是平行四边形?28.(14分)如图,在平面直角坐标系中,直线63+=x y 与两坐标轴分别交于A 、B 两点,M 为y 轴正半轴上一点,⊙M 过A 、B 两点,过B 作x 轴的平行线l ,N 点的坐标为(-12,5),⊙N 与直线l 相切于点D . (1)求∠ABO 的度数及圆心M 的坐标;(2)若⊙N 以每秒1个单位的速度沿直线l 向右平移,当⊙N 与⊙M 相切时,求此时点N的坐标?(3)若⊙N 以每秒1个单位的速度沿直线l 向右平移的同时,直线AB 也沿x 轴负方向匀速平移,当⊙N 与⊙M 相切时,直线AB 恰好与⊙N 第一次...相切,求直线AB 每秒平移多少个单位长度?.备用图。

江苏省东海西部2014届九年级数学上学期第二次联考试题

江苏省东海西部2014届九年级数学上学期第二次联考试题

东海西部联考九年级数学阶段性测试(二)时间:90分钟 满分:150分一、选择题(每小题3分,共24分)1.下列运算正确的是 ( )A .822÷=B .233256+=C .()266-=-D .535256⨯=2.对甲、乙两同学100米短跑进行5次测试,通过计算,他们成绩的平均数相等,方差20.025S =甲,20.246S =乙,下列说法正确的是 ( )A .甲短跑成绩比乙好B .乙短跑成绩比甲好C .甲比乙短跑成绩稳定D .乙比甲短跑成绩稳定3.若两圆直径分别为4和6,圆心距为5,则两圆位置关系为 ( )A .外离B .相交C .外切D .内切4.一个底面半径为5㎝,母线长为16㎝的圆锥,它的侧面展开扇形的面积是 ( )A .280cm πB .240cm πC .280cmD .240cm6.如第6题图,AB 是⊙O 的直径,点C 在⊙O 上,弦BD 平分∠ABC ,则下列结论错误..的是 ( ) A .AD=DC B .AD DC = C .∠ADB=∠ACB D .∠DAB=∠CBA7.如第7图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于点O ,连结AO ,下列结论不正确...的是 ( ) A .△AOD ≌△BOC B .△BOC ≌△EOD C .△AOD ≌△EOD D .△AOB ≌△BOC 8.如第8题图,平面直角坐标系中,⊙O 半径长为1,点P(a ,0) ,⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为 ( ) A .3B .1C .1,3D .±1,±3二、填空题(每题4分,共32分) 9.当x 时,代数式2x -有意义.10.5名运动员身高分别是(单位:厘米):179,176,180,177,175.则这5个数据的极差是 ,平均数是___________________.11.当m =时,一元二次方程240x x m -+=(m 为常数)有两个相等的实数根. 12.若1x =是方程220x bx +-=的一个根,则b=,方程的另一个根是.13.如第13题图,在梯形ABCD 中,AD ∥BC ,∠B=50°,∠C=80°,AE ∥CD 交BC 于点E ,若AD=2,BC=5,则边CD 的长是.14.如第14题图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________________厘米.15.如第15题图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE+DC >DE ; ④B E 2+D C 2=DE 2,其中不一定...正确..的结论的序号是____________________.第15题 第16题 16.如第16题图,正方形ABCD 的边长为4,点E 在BC 上,四边形EFGB 也是正方形,以B 为圆心,BA 长为半径画AC ,连结AF ,CF ,则图中阴影部分面积为.2013--2014学年度九年级阶段性测试数学试卷答题纸一.选择题(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案二.填空题(每题4分,共32分)三.解答题(本大题共94分) 17.(本题满分10分)计算: (1))()(2362422-+-- (2)(2-3)0 ―9―(-1)2014 +(-13)-2学校_________________ 班级_____________ 某某_________________ 考场______________ 考号_______________18.(本题满分10分)解方程:(1)x2-4x-12=0 (2)(x+3)2=2(x+3)19.(本题满分8分)为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下:(单位:分)甲成绩76 84 90 84 81 87 88 81 85 84乙成绩82 86 87 90 79 81 93 90 74 78(1)请填写下表:平均数中位数众数方差85分以上的次数甲84 84乙84 84 5(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.20.(本题满分8分)东海小商品市场一经营者将每件进价为80元的某种小商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种小商品单价每降低1元,其销量可增加10件.(1)该经营者经营这种商品原来一天可获利润元.(2)若该经营者经营该商品一天要获利润2090元,则每件商品应降价多少元?21.(本题10分)如图,△ABC,按要求答题:(1)作△ABC的外接圆O(用圆规和直尺作图,不写作法,但要保留作图痕迹)(2)若AB=AC=10,BC=16,试求⊙O的半径.22.(本题满分10分)如图,在菱形ABCD中,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)若∠DAB=60°,当点M位于何处时,四边形AMDN是矩形?并说明理由.(请在备用图中画出符合题意的图形)23.(本题满分12分)已知:如图1,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB与⊙O相切.(2)如图2,连接PA、OP,OP与AB交与点D,且OP∥BC.①判断PA与⊙O的位置关系,并说明理由.②若OP=8,BC=4.求⊙O的半径.24.(本题满分12分)小明和同桌小聪在课后预习时,对课本中的一道思考题,进行了认真的探索:如图1,一架5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为3米.如果梯子的顶端沿墙下滑2米,那么点B将向外移动几米?(1)请你将小明对“思考题”的解答补充完整:解:在Rt△ABC中,由勾股定理得AB2=AC2+BC2,即52=AC2+32∴AC=___________.∵AA1=2,∴A1C=___________.在Rt△A1B1C中,由勾股定理得A1B12=A1C2+B1C2,∴B1C=___________.∴点B将向外移动_____________ 米.(2)解完“思考题”后,小聪提出了如下两个问题,请你解答:①如图1,在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?②若某人站在梯子的正中间P处(即梯子AB的中点),试问在梯子下滑过程中,请你在备用图中画出此人移动的路程(即点P移动的轨迹),并求出这个路程.25.(本题满分14分)(1)如图(1),点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;(2)如图(2),直线EP交AD于F,连接BF,FC.FC与BP交与点G.①若点P是CD中点时,判断CF与BP的关系,并说明理由.②若CD=4,CP=1,求△BPF的面积和△DPE的面积.③若CD=n•PC(n 是大于1的实数)时,记△BPF 的面积为S 1,△DPE 的面积为S 2.则______21s s (不需要证明)东海西部联考九年级数学阶段性测试(二)参考答案一、选择题:题号 1 2 3 4 5 6 7 8 答案ACCAADDD二、填空题:9. ≥2 10. 5, 177.4 11. 4 12. 1, -2 13. 3 14. 41315. ② 16. 4π 三、简答题:24.(1)4,2,21,21-3 (4分) (2)可能相等(4分) π45 (4分) 25.(1)略 (4分) (2)CF=BP,CF ⊥BP (4分)△BPF 的面积为7.5,△DPE 的面积为1.5 (4分) n+1 (2分)。

东海县初级中学九年级数学模拟试卷

东海县初级中学九年级数学模拟试卷

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

1.“噢,居然有土龙肉,给我一块!”东海县初级中学九年级数学模拟试卷一、选择题(本大题共8题,每小题3分,共计24分)1.已知半径分别为4cm 和7cm 的两圆相交,则它们的圆心距可能是( ▲ )A .1cmB .3cmC .10cmD .15cm2.2的值( ▲ )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间3.2010年冬季,中国五省市遭遇世纪大旱,截止1月底,约有60 000 000同胞受灾,这个数据用科学记数法可表示为 ( ▲ )A .6×105B .6×106C .6×107D .6×1084.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完.全对称式....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ▲ )A .①②B .①③C . ②③D .①②③5已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为(▲ ) A .43 B .45 C .54 D .346.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( ▲ )A .10cmB .20cmC .30cmD .60cm7如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )8.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为 ( ▲ ) (第8题) 第7题图B A O A BC D5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

江苏省连云港市东海县2014届九年级下学期六校联考数学试题(无答案)

江苏省连云港市东海县2014届九年级下学期六校联考数学试题(无答案)

东海县2014届九年级下学期六校联考数学试题考试时间:90分钟 卷面总分:150分 考试形式:闭卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1. 我国最长的河流长江全长约为6300千米,用科学记数法表示为A. 21063⨯ 千米B. 3103.6⨯千米C. 4103.6⨯千米D. 6103.6⨯千米2. 如果a 的倒数是﹣1.那么2013a 等于A .1B .﹣1C .2013D .﹣20133.下列运算中,正确的是A. x 2·x 3=x 6B. x 3÷x=x 3C. 2x 2–x 2=x 2D. (x 3y 2)2=x 9y 44. 下列运算正确的是 A.13×(-3)=1 B.5-8=-3 C.2-3=6 D.(-2013)0=0 5.已知一元二次方程0122=+-x x ,下列判断正确的是A. 该方程无实数根B. 该方程有一个实数根C. 该方程有两个不相等的实数根D. 该方程有两个相等的实数根6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如A .平均数是58B .中位数是58C .极差是40D .众数是607.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x+10C .120x -10=100xD .120x+10=100x8. 7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.当x= ▲ 时,分式13x -无意义. 10.因式分解:4x 2-= ▲ .11.甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲x x =,方差22乙甲<S S ,则成绩较稳定的同学是 ▲ (填“甲”或“乙”). 12.若实数a 、b 满足04|2|=-++b a ,则ba 2= ▲ . 13.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作 ▲ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)连接BP,记△BPQ面积为S△BPQ,△ABP面积为S△ABP.
①当S△BPQ≤S△ABP时,求t的取值范围;
12.请任意写出一个既是轴对称,又是中心对称的图形是▲.
13.如图,直线l∥m,将含有45°角的三角板ABC的
直角顶点C放在直线m上,若∠1=25°,则∠2的
度数为▲°.
14.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,
过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为▲.
3.地球上水的总储量为1.39×1018立方米,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018立方米,因此我们要节约用水.请将0.0107×1018用科学记数法表示是
A.
1.07×1016
B.
0.107×1017
C.
10.7×1015
D.
1.07×1017
4.下列各式的运算结果为a6的是
(1)求所抽的2人都是A大学志愿者的概率;
(2)求所抽的2人是不同大学志愿者的概率.
24.(10分)某地发生台风,山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.
(1)求∠DAC的度数;
(2)求这棵大树折断前的高度.
(结果精确到个位,参考数据: , , ).
25.(10分)如图,在平面直角坐标系中,二次函数 的图象与x轴交于A、B两点,B
点的坐标为(3,0),与y轴交于 点,点P是直线BC下方抛物线上的动点.
(1)求这个二次函数表达式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形 ,
二.填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.16的平方根是▲.
10.分解因式: ▲.
11.某科研机构对欧龙小区400户有两个孩子的家庭进行了调查,得到了右边表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计欧龙小区两个孩子家庭中男孩与女孩的人数比为▲:▲.
A. cm B. cm C. cm D.7πcm
8.如图,⊙O是以原点为圆心, 为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为
A.3B.4C.6﹣ D.3 ﹣1
类别
数量(户)
(男,男)
101
(男,女)
99
(女,男)
116
(女,女)
84合计Biblioteka 400A.(a3)3
B.
a9÷a3
C.
a2•a3
D.
a3+a3
5.下列函数中,自变量x可以取1和2的函数是
A.y=B.y=C.y=D.y=
6.若正比例函数y=3x与反比例函数y= (k≠0)的图像相交,则当x>0时,交点位于
A.
第一象限
B.
第二象限
C.
第三象限
D.
第四象限
7.如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90º,则“蘑菇罐头”字样的长度为)
三.解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)计算:
18.(8分)解不等式组:并把解集在数轴上表示出来.
19.(8分)先化简,再求值: ,其中 .
20.(8分)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.
(1)求证:四边形AECF是菱形.
(2)若AB=2,BF=1,求四边形AECF的面积.
21.(8分)春夏交接之际,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:
(1)抽查了▲个班级,并将该条形统计图补充完整;
那么是否存在点P,使四边形 为菱形?若存在,求出此
时点P的坐标;若不存在,请说明理由.
26.(14分)(1)问题探究:
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)扇形图中患流感人数为4名所在扇形的圆心角的度数为▲;
(3)若该校有60个班级,请估计该校此次患流感的人数.
22.(8分)如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点.
(1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线;
(2)结合图②,说明你这样画的理由.
23.(8分)2014年第二届夏季青奥会将于08月16日在中国江苏南京市举行,运动会期间将从A大学2名和B大学4名的大学生志愿者中,随机抽取2人到体操比赛场馆服务,
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?
15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量为▲件(用含x的代数式表示).
16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=▲.
东海县2014年中考模拟考试(二)
数学试题
(请考生在答题纸上作答)
温馨提示:
1.本试卷共6页,27题.全卷满分150分,考试时间为120分钟.
2.请在答题卡规定的区域内作答,在其它位置作答一律无效.
3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.
(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
27.(14分)如图,已知射线AB与x轴和y轴分别交于点A(-3,0)和点B(0,3).动点P从点A出发,以1个单位长度/秒的速度沿x轴向右作匀速运动,过点P作PQ⊥AB于Q.设运动时间为t秒,且第一象限内有点N(n,n-2).
(1)当n=3时,若PQ恰好经过点N,求t的值;
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.-2的相反数是
A. B. C. D.
2.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为
相关文档
最新文档