梅州市梅江XX中学2016-2017年七年级上期末数学试卷含解析

合集下载

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案


2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(

A.a 元; B.0.8a

C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(

A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,

A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D

2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。

广东省梅州市七年级上学期期末数学试题

广东省梅州市七年级上学期期末数学试题

广东省梅州市七年级上学期期末数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·胶州模拟) 下列四个数中,其倒数是正整数的数是()A . 2B . ﹣2C .D . ﹣2. (2分)(2017·襄州模拟) 2017年4月8日,中国财经新闻报道中国3月外汇储备30090.9亿,这个数据用科学记数法表示为()A . 3.00909×104B . 3.00909×105C . 3.00909×1012D . 3.00909×10133. (2分)下列运算错误的是()A . -|-2|=2B . (6.4×106)÷(8×103)=800C . (-1)2015-12016=-2D .4. (2分)下列运算正确的是A . x3•x2=x6B . 3a2+2a2=5a2C . a(a﹣1)=a2﹣1D . (a3)4=a75. (2分) (2016七上·莘县期末) 下列各组中,不是同类项的是()A . 12a3y与B . 2abx3与﹣C . 6a2mb与﹣a2bmD . 与6. (2分)下列方程中,一元一次方程是()A . 2x=1B . 3x﹣5C . 3+7=10D . x2+x=17. (2分)图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个的近似正方形图案.当得到完整的菱形共221个时,n的值为()A . 12B . 11C . 10D . 98. (2分)计算|﹣5|﹣5的结果是()A . 0B . -5C . 10D . -109. (2分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 .则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°10. (2分) (2020七上·苏州期末) 如图,已知是直角,OM平分,ON平分,则的度数是()A . 30°B . 45°C . 50°D . 60°11. (2分) (2019七上·增城期中) 一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A . 15℃B . 18°CC . -3℃D . -18°C12. (2分)小明在公路上行走,速度是6千米/时,一辆车身长20米的汽车从背后驶来,并从小明身旁驶过,驶过小明身旁的时间是1.5秒,则汽车行驶的速度是()A . 54千米/时B . 60千米/时C . 72千米/时D . 66千米/时二、填空题 (共6题;共6分)13. (1分) (2019七上·万州月考) 如果向北走6步记作+6步,那么向南走8步记作________步.14. (1分)把多项式4x3y3﹣xy+2x4﹣8按字母x的降幂排列:________.15. (1分) (2019七上·桦南期中) 已知3x-8与2互为相反数,则x=________.16. (1分)(2016·余姚模拟) 如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P 上的动点,点C是MB的中点,则AC的最小值是________.17. (1分) (2018七上·湖州期中) 点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A 对应的数是-2,则点B对应的数是________.18. (1分)王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了________包.三、解答题 (共8题;共76分)19. (10分) (2019七上·鼓楼期末) 计算:(1)(2)20. (10分) (2018七上·天台期末) 解方程:(1);(2).21. (10分) (2017九上·渭滨期末) 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t 秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.22. (5分) (2018八上·甘肃期末) 先化简,再求值:求代数式(a+2b)(a﹣2b)+(a+2b)2﹣4ab的值,其中a=1,b=2018.23. (10分) (2020七上·天桥期末)(1)如图1所示,已知线段AB=20cm,在AB上取一点P,M是AB的中点,N是AP中点,若MN=3cm,求线段AP的长;(2)如图2所示,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.则∠COE是多少度?24. (10分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.25. (10分) (2018七下·明光期中) 如图是某学校草场一角,在长为b米,宽为a米的长方形场地中间,有并排两个大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为c米.(1)用代数式表示这两个篮球场的占地面积.(2)当a=30,b=40,c=3时,计算出一个篮球场的面积.26. (11分)用“ ”和“ ”分别代表甲种植物和乙种植物,为了美化环境,采用如图所示的方案种植.(1)观察图形,寻找规律填写下表:图序①②③④⑤⑥…149…4916…(2)求出图○n中甲种植物和乙种植物的株数.(3)是否存在一种种植方案,使得乙种植物的株数是甲种植物的株数的2倍?若存在,请你写出是第几种方案;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七上·点军期中) 如果把上升3m记作+3m,那么下降5m记作()A . -3mB . -5C . -5mD . +5m2. (2分) (2018七上·铁岭月考) 下列各数表示正确的是()A .B . 用四舍五入法精确到C . 用四舍五入法精确到十分位D . 近似数和精确度相同3. (2分) (2018七上·银川期末) 如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是().A . 4B . 6C . 7D . 84. (2分) (2020七上·合肥月考) 如果a、b互为相反数,c、d互为倒数,m的绝对值是2,那么-cd的值()A . 2B . 3C . 4D . 不确定5. (2分)(2017·海曙模拟) 下列计算正确的是()A . 2a﹣a=2B . a2+a=a3C . (x﹣1)2=x2﹣1D . (a2)3=a66. (2分)下列各组方程中,解相同的是()A . x=3与4x+12=0B . x+1=2与2(x+1)=2xC . 7x-6=25与D . x=9与x+9=07. (2分) (2016七上·东阳期末) 若方程的解为x=5,则a等于()A . 80B . 4C . 16D . 28. (2分)若a=-2,则a2+的值为()A . 0B . 2C . 4.25D . 69. (2分)下列说法正确的是()A . 两点之间直线最短B . 连接两点间的线段叫做两点间的距离C . 如果两个角互补,那么这两个角中,一个是锐角,一个是钝角D . 同角的补角相等10. (2分) (2016七下·宝坻开学考) 文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A . 不赚不赔B . 亏8元C . 盈利3元D . 亏损3元11. (2分) (2019七下·马山月考) 如下图,已知a⊥b.垂足为O.直线c经过点O,则∠1与∠2的关系一定成立的是()A . 相等B . 互余C . 互补D . 对顶角12. (2分)如图4,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1 ,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2 ,……,如此下去,得到四边形A2011B2011C2011D2011的面积用含a、b的代数式表示为()A .B .C .D .二、填空题 (共10题;共10分)13. (1分)(2020·无锡模拟) 某公益机构设立了网站接受爱心捐助,旨在推动社会和谐,发展公益慈善事业,据网站统计,目前已有大约2451000人献爱心,将“2451000”用科学记数法表示是________.14. (1分)(2020·嘉兴模拟) 已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于________°15. (1分) (2019七上·大东期末) 去括号合并:=________.16. (1分) (2018七上·西华期末) 已知,则的值为________.17. (1分) (2018七上·宿州期末) 已知线段AB=15cm,反向延长线段AB到C,使AC=7cm,若M、N两点分别是线段AB、AC的中点,则MN=________cm.18. (1分) (2017七上·东莞期中) 若x2+3x=2,那么多项式2x2+6x﹣8=________.19. (1分)一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头到甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,设船在静水中的平均速度为x千米/时,则可列方程为________.20. (1分) (2018七上·揭西月考) 如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C 处在B处的北偏东80°方向,则∠ACB=________.21. (1分) (2019八下·端州月考) 对于任意不相等的两个数a、b,定义运算“※”如下:a※b= ,如3※2= = ,那么8※6=________ .22. (1分)某班有a名男生和b名女生,为帮助患病儿童献爱心,全班同学积极捐款.其中男生每人捐10元,女生每人捐8元,则该班学生共捐款________ 元.(用含有a、b的代数式表示)三、解答题 (共8题;共75分)23. (15分) (2019七上·榆次期中) 计算:(1) 12-(-18)+(-12)-15(2)-24×(-+)(3)-12-〔4-(-)2〕÷(-)24. (5分) (2016七上·龙湖期末) 解方程: =2﹣.25. (5分) (2017七上·绍兴月考) 先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b =.26. (10分) (2019七上·花都期中) 为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为: +2,-3,+2,+1,-2,-1,-2(1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?(2)已知巡逻车每千米耗油0.25升,这次巡逻一共耗油多少升?27. (5分) (2019七上·盐津月考) 一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合作8天后,余下的工程由甲队单独完成.甲队还需要多少天才能完工?28. (10分) (2019七上·咸阳月考) 计算:(1)48°39′+67°41′(2)90°-78°19′40″29. (15分)如图,A、B、C是一条公路上的三个村庄.A、B间的路程为100千米,A、C间的路程为40千米.在A、B之间设一个车站P,设P、C间的路程为x米.(1)用含x的代数式表示车站到三个村庄的路程之和;(2)若车站到三个村庄的路程的和为102千米,车站设在何处?(3)要使车站到三个村庄的路程总和最小,车站应设在何处?30. (10分)(2016·深圳) 荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共10题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、三、解答题 (共8题;共75分) 23-1、23-2、23-3、24-1、25-1、26-1、26-2、27-1、28-1、28-2、29-1、29-2、29-3、30-1、30-2、。

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2016七上·腾冲期中) 在﹣1,﹣2,0,1四个数中最小的数是()A . ﹣1B . ﹣2C . 0D . 12. (2分) (2018七上·南京期中) 下列各组数中,数值相等的是().A . (-2)3和(-3)2B . -32和(-3)2C . -33和(-3)3D . -3×23和(-3×2)33. (2分)已知等腰三角形的一个内角等于50º,则该三角形的一个底角的余角是()A . 25ºB . 40º或30ºC . 25º或40ºD . 50º4. (2分) (2019七上·苍南期中) 若,b的相反数是-1,则a+b的值是()A . 6B . 8C . 6或-8D . -6或85. (2分)不改变式子a﹣(2b﹣3c)的值,把它括号前面的符号变成相反的符号应为()A . a+(﹣2b+3c)B . a+(﹣2b)﹣3cC . a+(2b+3c)D . a+[﹣(2b+3c)]6. (2分) (2019八上·扬州期末) 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A . 25或20B . 25C . 20D . 以上答案均不对7. (2分) (2017七上·灯塔期中) 下列各组代数式中,是同类项的是()A . 与B . 与C . 与D . 与8. (2分) (2019七上·平顶山月考) 方程2-去分母得().A . 2-2(2x-4)=-(x-7)B . 12-2(2x-4)=-x-7C . 24-4(2x-4)=-(x-7)D . 12-4x+4=-x+79. (2分) (2019七上·宜兴期末) 陈华以8折的优惠价钱买了一双鞋子,节省了20元,那么他买鞋子时实际用了A . 60元B . 80元C . 100元D . 150元二、解答题 (共8题;共50分)10. (5分) (2019七下·长春月考) 已知:,B=3-x,当x取何值时,A与B相等?11. (5分) (2019七上·鄞州期中) 计算(要写出详细步骤)(1)(2)(3)(4)12. (5分)(2018·安徽模拟) 计算:(m-n)(m+n)+(m+n)2-2m2.13. (2分)如图所示,在两个村庄A,B附近的河流可以近似地看成一条折线段(图中m)A,B分别在河的两旁,现要在河边修一个水泵站,同时向A,B两村供水,为了节约建设的费用,就要使所铺设的管道最短,某人甲提出了这样的建议:从点B向河道作垂线交m于点P,则点P为水泵站的位置.(1)你认为甲的建议符合要求吗?(管道总长最短)(2)若认为合理,请说明理由,若不认同,那么你认为水泵站应该建在哪里?请在图中标出来,并说明作图的依据.14. (7分) (2019七上·南山期末) 我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将化为分数形式由于=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x= ,于是得 = .同理可得 = , =1+ =1+ ,根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(基础训练)(1) =________, =________;(2)将化为分数形式,写出推导过程;(能力提升)(3) =________, =________;(注:=0.315315…,=2.01818…)(探索发现)(4)①试比较与1的大小: ________1(填“>”、“<”或“=”)②若已知 = ,则 =________.(注: =0.285714285714…)15. (5分) (2018七上·深圳期中) 如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为________.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为▲.②设点A的移动距离AA′=x.ⅰ.当S=4时,x= ▲;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE= OO′,当点D,E所表示的数互为相反数时,求x 的值.16. (10分) (2018七上·江门期中) 春节某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?17. (11分) (2017七上·拱墅期中) 东南中学租用两辆小轿车(设速度相同)同时送二名带队老师及名七年级的学生到育才中学参加数学竞赛,每辆车限坐人(不包括司机).其中一辆小轿车在距离育才中学的地方出现故障,此时距离竞赛开始还有分钟,唯一可利用的交通工具是另一辆小轿车,且这辆车的平均速度是,人步行的速度是(上、下车时间忽略不计).(1)小李提议:可以让另一辆小轿车先送名学生走,再返回来接我们.你认为小李的提议合理吗?通过计算说明理由.(2)小罗提议:可以让另一辆小车先送名学生走,而其它名师生同时步行前往,小轿车到达考场后再返回途中接送其他人.你认为小罗的提议合理吗?通过计算说明理由.三、填空题 (共5题;共5分)18. (1分) (2017七上·新乡期中) 地球上陆地的面积约为148 000 000平方千米,其中148 000 000用科学记数法表示为________;19. (1分) (2018七上·深圳期中) 若整式化简的结果是单项式,则m+n的值是________。

北师大版七年级数学上广东省梅州市梅江区实验中学测试题3.docx

北师大版七年级数学上广东省梅州市梅江区实验中学测试题3.docx

初中数学试卷桑水出品2016-2017年七年级(上)数学试卷(2) 班级:姓名:座号:成绩:一、选择题1、在下面的图形中,()是正方体的展开图.A .B .C . D.2、如图是由()图形绕虚线旋转一周形成的.A. B. C. D.3、圆锥的侧面展开图是()A.长方形 B.正方形 C.圆 D.扇形4、下列关于数0的说法错误的是()A.0的相反数是0 B.0没有倒数 C.0不能做除数 D.0除以任何数仍得0 5、下列运算结果等于1的是()A.(﹣3)+(﹣3)B.(﹣3)﹣(﹣3)C.﹣3×(﹣3) D .(﹣3)÷(﹣3)6、下列数轴的画法正确的是()A. B. C. D.7、|a﹣3|+|b+2|=0,则a+b﹣3=()A.3 B.﹣2 C.﹣3 D.28、若=a+b﹣c﹣d,则=()A.0 B.1 C.﹣3 D.﹣49、下列各组数中,互为相反数的是()A.和B.﹣(+3)和+|﹣3| C.﹣(﹣3)和+(+3)D.﹣4和﹣(+4)10、下列式子成立的是()A.(+5)﹣(﹣5)=0 B.0﹣5=5 C.(﹣5)﹣(﹣5)=0 D.(﹣5)﹣0=5二、填空题11、把正午记作0小时,午后3点钟记作+3小时,那么上午9点可表示为______小时.12、把(﹣2)+(﹣3)﹣(+3)﹣(﹣10)写成省略括号的和的形式为______.13、﹣的相反数是______;倒数是______;绝对值是______.14、如果a的相反数是最大的负整数,b是绝对值最小的数,则a+b=______.15、一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是______.16、如果|x|=6,则x=______.三、解答下列各题17、计算:(1)(﹣34)+(+8)+(+5)+(﹣23)(2)(﹣7)+6﹣(﹣20)﹣(﹣25)(3).(4)(﹣8)+(+0.25)﹣(﹣9)+(﹣)(5).(6).18、在数轴上表示下列各数:,|﹣7|,﹣(﹣1),并将它们的相反数用“<”符号连接起来.19、下表记录的是漳州市某中学图书馆上周借书情况:(规定:超过100册记为正,少于100册记为负). 请你列式计算以下问题:(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?20、下图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.21、小虫从某点A 出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行路程记为负数,爬行的各段路程依次为(单位厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A ?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?星期一 星期二 星期三 星期四 星期五 +21 +10 ﹣17 +8 ﹣1222、a,b互为相反数,c、d互为倒数,数轴上表示m的点到原点距离为8,求的值.。

广东省梅州市梅江实验中学2016-2017学年七年级(上)月考数学试卷(11月份)(解析版)

广东省梅州市梅江实验中学2016-2017学年七年级(上)月考数学试卷(11月份)(解析版)

2016-2017学年广东省梅州市梅江实验中学七年级(上)月考数学试卷(11月份)一、选择题(每小题3分,共30分)1.如图中的俯视图是()A. B.C.D.2.下列运算正确的是()A.(﹣2)3=﹣6 B.(﹣1)10=﹣10 C.D.﹣22=﹣43.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0 B.2 C.4 D.84.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,35.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.一个两位数,个位上的数字为x,十位上的数字为y,则这个两位数可表示为()A.xy B.x+y C.10x+y D.x+10y7.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个 B.2个 C.3个 D.4个8.如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短9.时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8二.填空题(每小题3分,共18分)11.若﹣2a m b4与3a2b n+2是同类项,则m+n=.12.如图中,请在横线上直接写出相应的几何体的名称;图1.图2.图3.13.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=.14.2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为.15.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是.16.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…三、解答题(8题共52分)17.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣14﹣×[3﹣(﹣3)2]+3×(﹣2)18.化简:(1)﹣3x+2y﹣5x﹣7y(2)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)19.先化简,再求值:(3a2﹣2a﹣6)﹣2(2a2﹣2a﹣5),其中a=﹣1.20.如图是一个正方体盒子的展开图,要把﹣6、、﹣1、6、﹣、1这些数字分别填入六个小正方形中,使得按虚线折成的正方体相对面上的两个数互为相反数.21.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.22.小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.23.已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD的长.24.如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填出下表:(2)如果剪了100次,共剪出个小正方形?(3)如果剪n次,共剪出个小正方形?2016-2017学年广东省梅州市梅江实验中学七年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.如图中的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形事俯视图,可得答案.【解答】解:从上面看是一层三个小正方形,故选:C.2.下列运算正确的是()A.(﹣2)3=﹣6 B.(﹣1)10=﹣10 C.D.﹣22=﹣4【考点】有理数的乘方.【分析】根据乘方的定义和性质即可作出判断.【解答】解:A、(﹣2)3=﹣8,故选项错误;B、(﹣1)10=1,故选项错误;C、(﹣)3=﹣,故选项错误;D、正确.故选D.3.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0 B.2 C.4 D.8【考点】代数式求值.【分析】首先化简﹣2a+14b+4,然后把a﹣7b=﹣2代入化简后的算式,求出算式的值是多少即可.【解答】解:∵a﹣7b=﹣2,∴﹣2a+14b+4=﹣2(a﹣7b)+4=﹣2×(﹣2)+4=4+4=8.故选:D.4.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.一个两位数,个位上的数字为x,十位上的数字为y,则这个两位数可表示为()A.xy B.x+y C.10x+y D.x+10y【考点】列代数式.【分析】根据两位数字的表示方法=十位数字×10+个位数字.【解答】解:根据题意,这个两位数可表示为10y+x,故选:D.7.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个 B.2个 C.3个 D.4个【考点】比较线段的长短.【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.8.如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短【考点】线段的性质:两点之间线段最短.【分析】利用线段的性质进而直接得出答案.【解答】解:由A到B有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选:D.9.时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,则它们所夹的角为2×30°+×30°.【解答】解:8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+×30°=75°.故选C.10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8【考点】有理数的乘方.【分析】本题需先根据已知条件,找出题中的规律,即可求出220的末位数字.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴220的末位数字是6.故选C.二.填空题(每小题3分,共18分)11.若﹣2a m b4与3a2b n+2是同类项,则m+n=4.【考点】同类项.【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【解答】解:∵﹣2a m b4与3a2b n+2是同类项,∴,解得:则m+n=4.故答案为:4.12.如图中,请在横线上直接写出相应的几何体的名称;图1圆锥.图2长方体.图3四棱锥.【考点】认识立体图形.【分析】根据所给图形的特征进行判断.【解答】解:图1圆锥.图2长方体.图3四棱锥.故答案为:圆锥;长方体;四棱锥.13.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB= 80°.【考点】角平分线的定义.【分析】两次利用角平分线的性质计算即可求解.【解答】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故答案为:80°.14.2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为9.4×106.【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:9 400 000=9.4×106;故答案为:9.4×106.15.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是﹣4℃.【考点】有理数的加减混合运算.【分析】根据题意列出代数式,根据有理数的加减混合运算法则计算即可.【解答】解:﹣3+(+7)+(﹣8)=﹣4,则这天的夜间的气温是﹣4℃.故答案为:﹣4℃.16.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…【考点】规律型:数字的变化类.【分析】分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n 个数为(﹣1)n +1,由此代入求得答案即可.【解答】解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.三、解答题(8题共52分)17.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣14﹣×[3﹣(﹣3)2]+3×(﹣2)【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=﹣1﹣×(9﹣3)+(﹣6)=﹣1﹣×6+(﹣6)=﹣1﹣1﹣6=﹣8.18.化简:(1)﹣3x +2y ﹣5x ﹣7y(2)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1)【考点】整式的加减.【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【解答】解:(1)原式=﹣8x ﹣5y ;(2)原式=6x 2﹣4xy ﹣8x 2+4xy +4=(6x 2﹣8x 2)+(﹣4xy +4xy )+4=﹣2x 2+4.19.先化简,再求值:(3a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5),其中a=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a2﹣4a﹣6﹣2a2+4a+10=a2+4,当a=﹣1时,原式=(﹣1)2+4=1+4=5.20.如图是一个正方体盒子的展开图,要把﹣6、、﹣1、6、﹣、1这些数字分别填入六个小正方形中,使得按虚线折成的正方体相对面上的两个数互为相反数.【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:如图:21.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.【考点】作图﹣三视图;由三视图判断几何体.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4,左视图有2列,每列小正方形数目分别为4,3.据此可画出图形.【解答】解:如图所示:.22.小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.【考点】多项式.【分析】代数式合并后,根据其值与x取值无关,确定出a与b的值,即可求出所求式子的值.【解答】解:原式=(2﹣2b)x2+(a+3)x﹣6y+5,由代数式的值与字母x的取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则(a﹣b)2=16.23.已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD 的长.【考点】比较线段的长短.【分析】由已知条件可知,因为C是AB的中点,则AC=AB,又因为点D在AC的中点,则DC=AC,故BD=BC+CD可求.【解答】解:∵AB=6厘米,C是AB的中点,∴AC=3厘米,∵点D在AC的中点,∴DC=1.5厘米,∴BD=BC+CD=4.5厘米.24.如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填出下表:(2)如果剪了100次,共剪出301个小正方形?(3)如果剪n次,共剪出3n+1个小正方形?【考点】规律型:图形的变化类.【分析】根据题意可以发现:每一次剪的时候,都是把上一次的图形中的一个进行剪.所以在4的基础上,依次多3个,继而解答各题即可.【解答】解:(1)填表如下:(2)结合图形,不难发现:在4的基础上,依次多3个.如果剪了100次,共剪出3×100+1=301个小正方形;(3)如果剪了n次,共剪出3n+1个小正方形;故答案为:(1)4、7、10、13、16、19;(2)301;(3)(3n+1).2017年3月26日。

【名师精编】梅州市梅江XX中学年七年级上期末数学试卷含解析

【名师精编】梅州市梅江XX中学年七年级上期末数学试卷含解析

广东省梅州市梅江中学七年级(上)期末数学试卷一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×10103.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(﹣3y)=﹣2+3yC.D.52﹣22=326.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.已知23y2m和﹣n y是同类项,则m n的值是()A.1 B.C.D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.69.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>110.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大二、填空题(每小题3分,共18分):11.单项式的系数是.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣42+2﹣8y)﹣(﹣﹣2y)19.解方程(1)3(2﹣1)=5+2(2).20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于度.(3)请将图2的统计图补充完整.(4)通过计算得出类礼盒销售情况最好.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.广东省梅州市梅江实验中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.【解答】解:912亿=912000 000 000=9.12×1010.故选C.3.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,故选:A.4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.【考点】简单几何体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选B.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(﹣3y)=﹣2+3yC.D.52﹣22=32【考点】有理数的混合运算;合并同类项;去括号与添括号.【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【解答】解:因为﹣2﹣1=﹣3,﹣2(﹣3y)=﹣2+6y,3÷6×=3×,52﹣22=32,故选D.6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【考点】直线的性质:两点确定一条直线.【分析】依据两点确定一条直线解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.7.已知23y2m和﹣n y是同类项,则m n的值是()A.1 B.C.D.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.【解答】解:∵23y2m和﹣n y是同类项,∴2m=1,n=3,∴m=,∴m n=()3=.故选D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.6【考点】两点间的距离.【分析】根据MN=CM+CN=AC+CB=(AC+BC)=AB即可求解.【解答】解:∵M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=4.故选C.9.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1【考点】数轴.【分析】根据数轴可以得到b<﹣1<0<a<1,从而可以判断各选项中式子是否正确.【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选D.10.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值、线段的中点和角的定义判断即可.【解答】解:A、绝对值等于它本身的数是非负数,错误;B、何有理数的绝对值都不是负数,正确;C、线段AC=BC,则线段上的点C是线段AB的中点,错误;D、角的大小与角两边的长度无关,错误;故选B.二、填空题(每小题3分,共18分):11.单项式的系数是﹣.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式的系数为﹣.故答案为:﹣.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=1.【考点】有理数的混合运算.【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.【解答】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是100元.【考点】一元一次方程的应用.【分析】设这种服装每件的成本是元,根据题意列出一元一次方程(1+20%)•90%•﹣=8,求出的值即可.【解答】解:设这种服装每件的成本是元,由题意得:(1+20%)•90%•﹣=8,解得:=100.答:这种服装每件的成本是100元.故答案为:100元.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是ab﹣.【考点】列代数式.【分析】根据题意和图形,可以用相应的代数式表示出阴影部分的面积.【解答】解:由图可得,阴影部分的面积是:ab﹣π=ab﹣,故答案为:ab﹣.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1根小棒.【考点】规律型:图形的变化类.【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,16可得出第n个图案需要的小棒数.【解答】解:图案(2)比图案(1)多了5根小棒,图案(3)比图案(2)多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().【考点】有理数的混合运算.【分析】(1)先化简,再分类计算即可;(2)先算乘方,再算乘除,最后算加法.【解答】解:(1)原式=10+5﹣9+6=12;(2)原式=﹣1+10÷4×=﹣1+=﹣.18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣42+2﹣8y)﹣(﹣﹣2y)【考点】整式的加减.【分析】(1)、(2)先去括号,再合并同类项即可.【解答】解:(1)原式=2m+1﹣3m2+3m﹣9=5m﹣3m2﹣8;(2)原式=﹣2+﹣2y++2y=﹣2+.19.解方程(1)3(2﹣1)=5+2(2).【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣3=5+2,移项合并得:=5;(2)去分母得:10+15﹣3+3=15,移项合并得:7=﹣3,解得:=﹣.20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有250盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于126度.(3)请将图2的统计图补充完整.(4)通过计算得出A类礼盒销售情况最好.【考点】条形统计图;扇形统计图.【分析】(1)从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;(2)从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A 部分所对应的圆心角的度数;(3)用销售总量分别减去A、B、D类得销售量得到C类礼盒的数量,然后补全条形统计图;(4)由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.【解答】解:(1)商场中的D类礼盒的数量为1000×25%=250(盒);(2)A部分所对应的圆心角的度数为360°×35%=126°;(3)C部分礼盒的销售数量为500﹣168﹣80﹣150=102(盒);如图,(4)A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【考点】一元一次方程的应用.【分析】设小明家到西湾公园距离千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.【解答】解:设小明家到西湾公园距离千米,根据题意得:=+1.6,解得:=16.答:小明家到西湾公园距离16千米.22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.【考点】角平分线的定义;角的计算;翻折变换(折叠问题).【分析】(1)由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC ﹣∠A′BC,可得结果;(2)由(1)的结论可得∠DBD′=70°,由折叠的性质可得==35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)由折叠的性质可得,,∠2=∠EBD=∠DBD′,可得结果.【解答】解:(1)∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;(2)由(1)的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.。

北师大版七年级数学上广东省梅州市梅江区实验中学测试题1.docx

北师大版七年级数学上广东省梅州市梅江区实验中学测试题1.docx

初中数学试卷桑水出品2016-2017年七年级(上)数学试卷(1) 班级:姓名:座号:成绩: 2016.9一、选择题1、﹣3的相反数是()A.3 B.﹣3 C.±3 D.2、﹣的倒数是()A.﹣B. C.﹣2 D.23、绝对值等于1的数是()A.±1 B.﹣1 C.1 D.无数个4、下面几个有理数最大的是()A.2 B.﹣9 C.﹣3 D.65、下列几何体没有曲面的是()A.圆锥 B.圆柱 C.球 D.棱柱6、下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹 B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星 D.汽车雨刷在挡风玻璃上面画出的痕迹7、如果a+b=0,那么a,b两个实数一定是()A.都等于0 B.一正一负 C.互为相反数 D.互为倒数8、小明做了以下3道计算题:①﹣2﹣2=0;②﹣2﹣(﹣2)=﹣4;③﹣3+5﹣6=﹣4,请你帮他检查一下,他一共做对了()A.1道 B.2道 C.3道 D.0道9、已知a,b两数在数轴上的位置如图所示,则下列结果错误的是()A.a>0 B.a>1 C.b<﹣1 D.a>b10、图中是正方体的展开图的个数是()A.5个B.3个 C.4个 D.6个11、在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()A.9箱 B.10箱 C.11箱 D.12箱二、填空题12、如果将“收入50元”记作“+50元”,那么“﹣20元”表示______.13、﹣的相反数是______,倒数是______,绝对值是______.绝对值是8的数是______14、已知﹣6,2013,11,﹣2014四个有理数在数轴上所对应的点分别为A、B、C、D,则这四个点从左到右的顺序为______.15、如果a的相反数是最大的负整数,b是绝对值最小的数,则a+b=______.16、一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是______.三、解答题18、计算:(1)﹣7+3﹣5+20 (2)2+(﹣2)+(5)﹣(﹣5)(3)4.25+(﹣2.18)﹣(﹣2.75)+5.18 (4)﹣(﹣)﹣2﹣().19、画出下面几何体的主视图、左视图与俯视图.20、定义新运算.a⊗b=a2﹣|b|,如3⊗(﹣2)=32﹣|﹣2|=9﹣2=7,计算下列各式.(1)(﹣2)⊗ 3 (2)(﹣3)⊗(0⊗(﹣1))21、请在数轴上画出表示下列各数的点5,1,﹣4,﹣3,﹣5,0,并用“<”号把它们连接起来.22、已知a,b互为相反数,c,d互为倒数,x的相反数是﹣3,求2x﹣(a+b﹣cd)x﹣cd的值.23、厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?。

广东省梅州市七年级上学期期末数学试卷

广东省梅州市七年级上学期期末数学试卷

广东省梅州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2013·百色) ﹣2013的相反数是()A . ﹣2013B . 2013C .D . ﹣2. (2分) (2017七上·南宁期中) 下列说法中错误的是()A . 正整数、负整数、零统称为整数B . 正分数、负分数统称为分数C . 整数、分数和零统称为有理数D . 0是偶数,也是自然数3. (2分) (2016九上·金华期末) 分别把下列图形围起来得到的立体图形是圆锥的是()A .B .C .D .4. (2分) (2018七上·黑龙江期末) 由四舍五入法得到的近似数6.8×103 ,下列说法正确的是().A . 精确到十分位B . 精确到个位C . 精确到百位D . 精确到千位5. (2分)已知∠α=35°,那么∠α的余角的补角等于()A . 35°B . 65°C . 125°D . 145°6. (2分) (2017七上·台州期中) 如果多项式3x3﹣2x2+x+|k|x2﹣5中不含x2项,则k的值为()A . ±2B . ﹣2C . 2D . 07. (2分) (2017七上·温江期末) 下列方程中是一元一次方程的是()A . 4x﹣5=0B . 2x﹣y=3C . 3x2﹣14=2D . ﹣2=38. (2分)一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是()A . 60秒B . 30秒C . 40秒D . 50秒二、填空题 (共6题;共7分)9. (1分) (2020八下·正安月考) 比较大小:4________ (填“>”、“<”或“=”).10. (1分)若3x2+x﹣6=0,那么10﹣x﹣3x2=________ .11. (1分) (2016七上·金华期中) 财政部近日公开的情况显示,2014年中央本级“三公”经费财政款预算比去年年初预算减少8.18亿元,用科学记数法表示8.18亿元为________12. (1分)若x的相反数是3,|y|=5,则x﹣y=________.13. (2分)102°43′32″+77°16′28″=________;98°12′25″÷5=________.14. (1分)若将弯曲的河道改直,可以缩短航程,根据是________三、解答题 (共10题;共85分)15. (20分) (2019七上·阳高期中) 计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)()×(﹣24)(4)(﹣2)3﹣(﹣13)÷(﹣)16. (20分)解方程(1) 2﹣3x=6﹣5x(2) 2(x﹣2)﹣3(1﹣2x)=0(3)(4).17. (5分)已知如图,D是线段CB的中点,AC:CD=7:13,且DB=9cm,求AB的长.18. (5分) (2016七上·磴口期中) 若(a+1)2+|b﹣2|=0,求a2000•b3的值.19. (5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.20. (5分) (2018七上·中山期末) 一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A部件和B部件的钢材各需多少m3?21. (5分) (2019七下·沙雅月考) 已知与互为相反数,求ab的算术平方根.22. (5分)已知x2+y2+6x+4y=-13,求yx的值.23. (10分) (2018七上·沈河期末) 一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元。

2016—2017初一年级期末考试数学题答案

2016—2017初一年级期末考试数学题答案

2016—2017初一年级期末考试数学题答案
◆◆◆第一篇
同学们如果想要在考试中取得优异的成绩就一定要在平时加强练习,秋季学期七年级数学期末复习试题(有答案)希望大家取得优异的成绩。

◆◆◆第二篇
学期时间马上就要完结,请同学们愉快的度过整个学期生活,不要忽视对考试的练习哦,七年级上学期数学期末模拟试题(附答案)是您想要的!!!
◆◆◆第三篇
1.﹣2的倒数是( )
A. ﹣2
B. 2
C. ﹣ D点击阅读gt;gt;gt;七年级上册数学期末复习考试卷(带答案)
数学是其他学科的学习基础,试题对朋友们的学习非常重要,大家一定要认真掌握,初一年级期末考试数学题答案希望大家能够使用~。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·凤庆期中) 一个数的平方和它的倒数相等,则这个数是()A . 1B . ﹣1C . ±1D . ±1和02. (2分) (2018七上·栾城期末) 如果a的倒数是﹣1,那么a2等于()A . 1B . ﹣1C . 3D . ﹣33. (2分)(2019·柳州模拟) 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中周长最小的是()A . 主视图B . 左视图C . 俯视图D . 三种一样4. (2分) -3的相反数是A . 3B .C . -3D .5. (2分)(2017·老河口模拟) 下列各数中,最小的数是()A . ﹣3B . |﹣2|C . (﹣3)2D . 2×10﹣56. (2分)(2016·江西模拟) 如图,有一个正方体纸巾盒,它的平面展开图是()A .B .C .D .7. (2分)下列命题中,为真命题的是()A . 对角线互相垂直的四边形是菱形B . 四边相等的四边形是正方形C . 对角线相等的四边形是矩形D . 两组对角分别相等的四边形是平行四边形8. (2分) (2019七上·栾川期末) 下面图形中,射线是表示北偏东60°方向的是()A .B .C .D .9. (2分)(2018·香洲模拟) 如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A . 100°B . 110°C . 130°D . 140°10. (2分)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A . 55B . 42C . 41D . 29二、填空题 (共8题;共12分)11. (5分)最近,被称为“史上最大尺度反腐剧”的《人民的名义》引发全民追剧热潮,据统计某周日该剧平台单天播放量超过了惊人的45亿,请将数据45亿用科学记数法表示为________.12. (1分) (2017七上·衡阳期中) 已知a、b互为相反数,c、d互为倒数,则(a+b)2016+(﹣cd)2017的值为________.13. (1分) (2019七上·阳东期末) 计算:70°﹣32°=________.14. (1分) (2019七下·朝阳期中) 方程的解是 ________.15. (1分) (2019七上·武汉月考) 如图,B、C、D依次是线段AE上的三点,已知AE=8.8cm,BD=3cm,则图中以A、B、C、D、E这5个点为端点的所有线段的长度之和为________cm.16. (1分) (2020七上·兴化期末) 北京时间上午5点整,时针与分针所成的角的度数是________.17. (1分) (2019七上·武威月考) 某次知识竞赛共有道题,每一题答对得分,答错或不答都扣分.小明考了分,那么小明答对了________道题.18. (1分) (2018七上·邗江期中) 一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。

2016-2017年七年级上册数学期末测试卷

2016-2017年七年级上册数学期末测试卷

2016-2017学年度七年级数学试卷梅冲湖中学程爱一、选择题(每题只有一个正确的答案 3 分×12= 36 分) 1.以下各对数互为相反数的是,,,,,,,,,,,,,,,,,,()A、-(-8)与+(+8) B 、-(+8)与 -︱- 8︱22C、- D 、-︱-8︱与+(- 8) 2 与(- 2) 2. - 3 的绝对值与 5 的相反数的和是,,,,,,,,,,,() A.2 B .-2 C . 8,,,,,,,,,,,,,,,,,,,, ()D.- 8 3.以下说法正确的选项是A.全部的正数都是整数B.不是正数的数必定是负数 C.最小的自然数是1D.0 不是最小的有理数 4. 一种面粉的质量表记为“25±0.25千克”,则下列面粉中合格的 , () A. 24.70 千克B. 25.30 千克C. 24.80 千克 D . 25.51千克 5、底数是,指数是 2 的幂能够表示为 ,,,,,,,,,,,, ()522A5、B、C、D、2552(5)为有6.理数,以下式子建立的是,,,,,,,,,,,,,() a、b233 A. B. C. D. ≥1 a aa13a2aa(a)学校7.、家、书店挨次座落在一条南北走向的大街上,学校在家的南边20 米,书店在家北边100 米,张明同学从家里出发,向北走了50米,接着又向北走了-70 米,此时张明的地点在,,,,,,,,,,,,,,,,() A.在家 B. 在学校 C. 在书店 D.不在上述地方8、以下说法正确的选项是,,,,,,,,,,,,,,,,,,,,() A、0.720有两个有效数字B、 3.61 万精准到百分位C、 5.078精准到千分位 D 、3000有一个有效数字9. 一个有理数的平方是正数,那么这个有理数的立方是 ,,,,,() A.整数 B.正数 C.负数 D.正数或负数10、有一张厚度是0.1mm 的纸,将它对折20 次后,其厚度可表示为,, () A、(0.1 ×20) mm B、(0.1×40)mm202、C (0.1 ×2)mm D 、 (0.1 × 20)mm11.以下说法中错误的选项是,,,,,,,,,,,,,,,,,,,() A、—a的绝对值为 a B、—a 的相反数为 a1C、的倒数是 a D、—a 的平方等于 a 的平方a12、近似数 2.60 所表示的精确值 x 的取值范围是 ,,,,,,,,() A、2.595 ≤x<2.605 B、 2.50 ≤x<2.70C、2.595< x≤ 2.605D、2.600<x≤ 2.605二、填空( 3 分×8= 24 分)413、中,底数是_________,指数是 _________。

北师大版七年级数学上广东省梅州市梅江区实验中学测试题3

北师大版七年级数学上广东省梅州市梅江区实验中学测试题3

初中数学试卷2016-2017年七年级(上)数学试卷(2) 班级:姓名:座号:成绩:一、选择题1、在下面的图形中,()是正方体的展开图.A. B. C. D.2、如图是由()图形绕虚线旋转一周形成的.A. B. C. D.3、圆锥的侧面展开图是()A.长方形 B.正方形 C.圆 D.扇形4、下列关于数0的说法错误的是()A.0的相反数是0 B.0没有倒数 C.0不能做除数 D.0除以任何数仍得0 5、下列运算结果等于1的是()A.(﹣3)+(﹣3)B.(﹣3)﹣(﹣3)C.﹣3×(﹣3) D.(﹣3)÷(﹣3)6、下列数轴的画法正确的是()A. B. C. D.7、|a﹣3|+|b+2|=0,则a+b﹣3=()A.3 B.﹣2 C.﹣3 D.28、若=a+b﹣c﹣d,则=()A.0 B.1 C.﹣3 D.﹣49、下列各组数中,互为相反数的是()A.和B.﹣(+3)和+|﹣3| C.﹣(﹣3)和+(+3)D.﹣4和﹣(+4)10、下列式子成立的是()A.(+5)﹣(﹣5)=0 B.0﹣5=5 C.(﹣5)﹣(﹣5)=0 D.(﹣5)﹣0=5二、填空题11、把正午记作0小时,午后3点钟记作+3小时,那么上午9点可表示为______小时.12、把(﹣2)+(﹣3)﹣(+3)﹣(﹣10)写成省略括号的和的形式为______.13、﹣的相反数是______;倒数是______;绝对值是______.14、如果a的相反数是最大的负整数,b是绝对值最小的数,则a+b=______.15、一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是______.16、如果|x|=6,则x=______.三、解答下列各题17、计算:(1)(﹣34)+(+8)+(+5)+(﹣23)(2)(﹣7)+6﹣(﹣20)﹣(﹣25)(3).(4)(﹣8)+(+0.25)﹣(﹣9)+(﹣)(5).(6).18、在数轴上表示下列各数:,|﹣7|,﹣(﹣1),并将它们的相反数用“<”符号连接起来.19、下表记录的是漳州市某中学图书馆上周借书情况:(规定:超过100册记为正,少于100册记为负).请你列式计算以下问题:(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?20、下图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.星期一 星期二 星期三 星期四 星期五 +21 +10 ﹣17 +8 ﹣1221、小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行路程记为负数,爬行的各段路程依次为(单位厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?22、a,b互为相反数,c、d互为倒数,数轴上表示m的点到原点距离为8,求的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省梅州市梅江XX中学七年级(上)期末数学试卷一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣ B.C.﹣2 D.22.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×10103.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x26.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1 B.C.D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.69.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>110.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大二、填空题(每小题3分,共18分):11.单项式的系数是.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣4x2+2x﹣8y)﹣(﹣x﹣2y)19.解方程(1)3(2x﹣1)=5x+2(2).20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于度.(3)请将图2的统计图补充完整.(4)通过计算得出类礼盒销售情况最好.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.2016-2017学年广东省梅州市梅江实验中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣ B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.【解答】解:912亿=912000 000 000=9.12×1010.故选C.3.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,故选:A.4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.【考点】简单几何体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选B.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x2【考点】有理数的混合运算;合并同类项;去括号与添括号.【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【解答】解:因为﹣2﹣1=﹣3,﹣2(x﹣3y)=﹣2x+6y,3÷6×=3×,5x2﹣2x2=3x2,故选D.6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【考点】直线的性质:两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.7.已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1 B.C.D.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.【解答】解:∵2x3y2m和﹣x n y是同类项,∴2m=1,n=3,∴m=,∴m n=()3=.故选D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.6【考点】两点间的距离.【分析】根据MN=CM+CN=AC+CB=(AC+BC)=AB即可求解.【解答】解:∵M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=4.故选C.9.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1【考点】数轴.【分析】根据数轴可以得到b<﹣1<0<a<1,从而可以判断各选项中式子是否正确.【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选D.10.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值、线段的中点和角的定义判断即可.【解答】解:A、绝对值等于它本身的数是非负数,错误;B、何有理数的绝对值都不是负数,正确;C、线段AC=BC,则线段上的点C是线段AB的中点,错误;D、角的大小与角两边的长度无关,错误;故选B.二、填空题(每小题3分,共18分):11.单项式的系数是﹣.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式的系数为﹣.故答案为:﹣.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)= 1.【考点】有理数的混合运算.【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.【解答】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是100元.【考点】一元一次方程的应用.【分析】设这种服装每件的成本是x元,根据题意列出一元一次方程(1+20%)•90%•x﹣x=8,求出x的值即可.【解答】解:设这种服装每件的成本是x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本是100元.故答案为:100元.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是ab﹣.【考点】列代数式.【分析】根据题意和图形,可以用相应的代数式表示出阴影部分的面积.【解答】解:由图可得,阴影部分的面积是:ab﹣π=ab﹣,故答案为:ab﹣.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1根小棒.【考点】规律型:图形的变化类.【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,16可得出第n个图案需要的小棒数.【解答】解:图案(2)比图案(1)多了5根小棒,图案(3)比图案(2)多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().【考点】有理数的混合运算.【分析】(1)先化简,再分类计算即可;(2)先算乘方,再算乘除,最后算加法.【解答】解:(1)原式=10+5﹣9+6=12;(2)原式=﹣1+10÷4×=﹣1+=﹣.18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣4x2+2x﹣8y)﹣(﹣x﹣2y)【考点】整式的加减.【分析】(1)、(2)先去括号,再合并同类项即可.【解答】解:(1)原式=2m+1﹣3m2+3m﹣9=5m﹣3m2﹣8;(2)原式=﹣x2+x﹣2y+x+2y=﹣x2+x.19.解方程(1)3(2x﹣1)=5x+2(2).【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x﹣3=5x+2,移项合并得:x=5;(2)去分母得:10x+15﹣3x+3=15,移项合并得:7x=﹣3,解得:x=﹣.20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有250盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于126度.(3)请将图2的统计图补充完整.(4)通过计算得出A类礼盒销售情况最好.【考点】条形统计图;扇形统计图.【分析】(1)从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;(2)从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A部分所对应的圆心角的度数;(3)用销售总量分别减去A、B、D类得销售量得到C类礼盒的数量,然后补全条形统计图;(4)由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.【解答】解:(1)商场中的D类礼盒的数量为1000×25%=250(盒);(2)A部分所对应的圆心角的度数为360°×35%=126°;(3)C部分礼盒的销售数量为500﹣168﹣80﹣150=102(盒);如图,(4)A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【考点】一元一次方程的应用.【分析】设小明家到西湾公园距离x千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.【解答】解:设小明家到西湾公园距离x千米,根据题意得:=+1.6,解得:x=16.答:小明家到西湾公园距离16千米.22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.【考点】角平分线的定义;角的计算;翻折变换(折叠问题).【分析】(1)由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC﹣∠A′BC,可得结果;(2)由(1)的结论可得∠DBD′=70°,由折叠的性质可得==35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)由折叠的性质可得,,∠2=∠EBD=∠DBD′,可得结果.【解答】解:(1)∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;(2)由(1)的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.2017年4月5日。

相关文档
最新文档