第二章 第三节 匀变速直线运动规律
第二章 匀变速直线 第三节 匀变速直线运动的位移与时间的关系
C
A.9m/s
C.20m/sLeabharlann B.18m/s D.12m/s
6、一个物体由静止开始做匀加速直线
运动,第1 s末的速度达到4 m/s,物体 在第2 s内的位移是 ( A )
A.6 C.4
m m
B.8 m D.1.6 m
7、一物体以5
m/s的初速度、-2 m/s2的 加速度在粗糙水平面上匀减速滑行,在 4 s内物体通过的路程为 ( )
作业:
1、完成课后练习;
2、完成课时作业。
加
B.速度和加速度都随时间减小 C.速度和位移都随时间减小 D.速度与加速度的方向相反
2、一物体在水平面上做匀变速直线
运动,其位移与时间的关系为:
x=24t-6t2,则它的速度等于零
的时刻t 为 ( B ) A. s B.2 s
C.6
s
D.24 s
3、如图所示为一物体做匀变速直线运动的速
C
A.4
m
m
B.36
C.6.25
m
D.以上答案都不对
8、从车站开出的汽车,做匀加速直线
运动,走了12s时,发现还有乘客没上 来,于是立即做匀减速运动直至停车, 汽车从开出到停止总共历时20s,行进 了50 m。则汽车的最大速度为 ( A )
A.5m/s
C.3m/s
B.2m/s D.1m/s
2
1、掌握位移公式的推导;
1 x ( v 0 v t) t 2
v v0 v 2
例:以18m/s的速度行驶的汽车,
制动后做匀减速运动,在3s内前进 36m,求汽车的加速度。
2 4m/s
1、物体做匀减速直线运动,最后停
《第2章__匀变速直线运动规律的研究》知识点归纳和学习指导
《第2章 匀变速直线运动规律的研究》1. 匀变速直线运动的特点:在直线运动过程中a 是一恒量(等a 运动)2. 匀变速直线运动的基本规律(5选4公式):0t v v at =+、2012x v t at =+、2202t v v ax -=、02t v v x t +=、212t x v t at =-3. 几个重要推论:(1)连续相等时间间隔T 内的位移之差为一恒量(等时邻距差公式):2S aT ∆=22132431...n n S S S S S S S S S aT -∆=-=-=-==-=推广通式(等时隔距差公式):2k n S S S k n aT ∆=-=-()(2)中间时刻的瞬时速度等于这段时间内的平均速度(中时速度):022tt v v v v +==(3)中间位置的瞬时速度与这段位移的初、末速度的关系(中点速度):2x v =无论在匀加速或匀减速直线运动中,关系式22x t v v >恒成立(恒定不等式)(4)初速度为0的匀加速直线运动规律(匀变速直线运动的特例公式)22122t t v atx at v ax=⎧⎪⎪=⎨⎪⎪=⎩1)ts 末、2ts 末、3ts 末······nts 末的瞬时速度之比1234::::...:1:2:3:4:...:n v v v v v n = 2)ts 内、2ts 内、3ts 内······nts 内的位移之比为222221234::::...:1:2:3:4:...:n x x x x S n = 3)第1个ts 内、第2个ts 内、第3个ts 内······第n 个ts 内的位移之比(等时奇)1234::::...:1:3:5:7:...:(21)n S S S SS n =-4)连续等位移历时比为根差比1:121)4. 自由落体运动(一个特殊的匀变速直线运动)(1)自由落体运动的特点:初速度为零,只受重力作用(2个特点:00,v a g ==) (2) 自由落体运动规律(3公式):t v gt = 212h g t = 22t v g h =。
匀变速直线运动 知识点整理
第二章 匀变速直线运动第一节 匀变速直线运动的速度与时间的关系一.匀变速直线运动的速度与时间的关系式由 000t t v v v v v a t t t--∆===∆- 得 = ― 解得0t v v at =+,两种特殊情况:(1) 当a =0时,v =v 0,做匀速直线运动.(2) 当v 0=0时,v =at ,做初速为零的匀加速直线运动.二.中间时刻的速度 : =推导: 0~= +①~t, = +②②—①得— = — 2 = +所以 =第二节 匀变速直线运动的位移与时间的关系一.匀速直线运动位移与时间的关系由xv t∆=∆得△x=v △t, 即x=vt x 为v-t 图像围成矩形的面积二.匀变速直线运动的位移与时间的关系:△x=( )t= t+①把△t 等分成n 份,每一份时间为△t/n,当n 很大时,每一份△t/n 时间内v 与△t/n 所围成的小梯形面积就近似等于小矩形面积,小矩形面积就是△t/n 内的位移,所以△t 时间内所有小梯形面积加起来就近似等于所有小矩形面积,所有小矩形面积加起来就是△t 时间内总位移,所以△t 时间内所有小梯形面积加起来就近似等于总位移②当n 趋向无穷大时,△t/n 趋向无穷小,在无穷小时间内,小梯形面积严格等于小矩形面积,所以△t 时间内所有小梯形面积加起来就等于总位移,所以匀变速直线运动v-t 图像围成的梯形面积就是位移 ③位移公式推导 △x= =( )①△x =21201122S S S OA OQ AR RP v t at =+=⨯+⨯=+ ② (1)当a =0时,△x= v 0 (2)当v 0=0时,△x=三.匀变速直线运动平均速度:=由xvt∆=∆得△x=t又因为△x=()t所以t=()t消掉t得=四.纸带问题⑴判断物体是否做匀变速直线运动时:利用公式如图是相邻两计数点间的距离,△x是两个连续相等的时间内的位移之差,即,…T是相邻两计数点间的时间间隔,对两段距离进行分析则任意相邻两计数点间的位移差为:拓展公式:-= (m-n)²(2)用逐差法求加速度由-=(4-1)²可得:同理可得:加速度的平均值为:第三节 匀变速直线运动的位移与速度的关系一.匀变速直线运动的位移与速度的关系:△x==由 =得 =把 △x=( )t 中t 替换得△x=( ) ( ) =公式习惯写成: △x=二.中间位移的速度:因为 ==所以=所以 = 所以2 =所以<第四节自由落体运动一.自由落体运动1定义:物体只在重力作用下,从静止开始下落的运动叫做自由落体运动。
高一物理必修一第二章匀变速直线运动规律三个基本的推论
高一物理必修一第二章匀变速直线运动规律三个基本的推论第二章匀变速直线运动规律三个基本的推论匀变速直线运动基本规律公式:1、速度公式:v=v0+at2 2 v 3、位移与速度关系:v 0 2 ax2x 2、位移公式:v 0 t1at2说明(1)公式适用于所有匀变速直线运动;(2)注意矢量性,公式中v0、v、a、x都是矢量,先确定正方向,常以v0的方向为正方向,然后确定v、a、x 方向(3) “知三求二”。
21、物体做匀变速直线运动的平均速度等于初末速度矢量和的一半已知物体做匀变速直线运动,加速度为a,通过A点得速度是V0,经过时间t 通过B点的速度是V,t时间内物体运动的平均速度等于t时间的初末速度矢量和的一半解:t时间内的平均速度:v x AB t V0 V0 V 2V0t t 1 2 at2V0AV Bat V 01 2(V V 0 )2V 0 (V V 0 ) 2vV0 V 23汽车进行刹车试验,若速度从8 m/s匀减速到零所用的时间为1 s,按规定速率为8 m/s的汽车刹车后位移不得超过5.9 m,那么下列叙述正确的是( ) A.位移为8 m,符合规定 B.位移为8 m,不符合规定 C.位移为4 m,符合规定 D.位移为4 m,不符合规定选C。
v v 8 0 t 1 m 2 由公式x= 2 =4m5.9 m,所以该刹车试验符合规定0做匀变速直线运动的物体在中间时刻的瞬时速度等于这段时间的平均速度vtv0t 22t 2vtAvx AB tV01 2at总之;做匀变速直线运动的物体在一段时间t内的平均速度等于这段时间初末速度矢量和的一半,还等于这段时间的中间时刻的瞬时速度。
即:5/14应用典例下图某同学在测定匀变速运动的加速度时用打点计时器打出的一条纸带,其计数周期为T,打D点时的瞬时速度用vD表示,下列选项正确的是( )A、vD=( d4-d2)/2TB、vD=( d3+d4)/2TC、vD=( x2+x3)/2TD、vD=( x3+x4)/2T答案:AD一个做匀加速直线运动的物体,初速度v0=2.0 m/s,它在第3 s 内通过的位移是4.5 m,则它的加速度为( ) A.0.5 m/s2 B.1.0 m/s2 C.1.5 m/s2 D.2.0 m/s2选B。
匀变速直线运动规律
匀变速直线运动规律匀变速直线运动规律:匀变速直线运动是物体沿直线运动,速度恒定不变的一种运动规律。
它包括物体在任意时刻应具有恒定的速度,且连续变化。
1、位移s与时间t的关系:在匀变速直线运动中,物体在每一小段时间内的位移都是一样的,比如说物体的速度为v(m/s),那么每一小段的速度也是一样的。
所以,在某一时刻t的位移s等于t时刻之前的位移s0 加上t时刻之间时间内的位移,即:s = s0 + v*t 。
2、速度v与时间t的关系:关于速度与时间的关系可以从第一条关系s = s0 + v*t 来理解,由于物体在每一小段时间内的位移都是一样的,而这一小段时间的位移取决于当前的速度与时间的乘积,所以我们可以推出速度与时间的关系v = (s-s0) / t。
3、加速度a与时间t的关系:加速度a与时间t的关系也是可以从第一条关系s = s0 + v*t 来推出的,我们可以将该关系展开后得到:s = s0 + v0*t + 1/2 * a*t^2 ,这里的a就是物体变化的加速度,因此可以推出:a = 2*(s-s0 - v0*t)/t^2 。
4、位移s与速度v的关系:在匀变速直线运动中,物体的速度恒定不变,所以可以简单得知:s = s0 + v*t 。
5、加速度a与速度v的关系:从加速度a与时间t的关系可以得到:a = 2*(s-s0 - v0*t)/t^2 ,因此可以推出:v = v0 + a*t 。
总结而言,匀变速直线运动的规律就是:物体的速度是恒定的,其位移、速度、加速度之间存在着密切的关系,利用上述关系可以得出物体的位移、速度、加速度随时间的变化情况,从而得出物体的完整的运动轨迹。
2.3匀变速直线运动的规律(三)必修第一册
初速度为零的匀加速直线运动具备以下特点:
v
2. 前1个T内,前2个T内,前3个T内···前n 个T的位移之比:
x1 : x2 : x3 : xn 12 : 22 : 32 : n2
o 前1秒
t
等时间全位移
前2秒
前3秒
前4秒 前5秒
初速度为零的匀加速直线运动具备以下特点:
v
3. 在第1个T内 、第2个T、第3个
o
t
第1秒内 第2秒内 第3秒内 第4秒内 第5秒内
=
= = = =
T
T
T
vⅠ
vⅡ
vⅢ
T
vⅣ
T
vⅥ
典型例题1一质点从静止开始做匀加速直线运动,若质点在第3 s内的位移 为15 m,求:
(1)质点在前6 s内的位移大小。 (2)质点在第6 s内的位移大小。 (3)质点由第3 s末继续运动21 m时的速度大小。 (4)质点运动的加速度大小。
等位移全时间
初速度为零的匀加速直线运动具备以下特点:
v
o
1 √2 √3√4√5 t
1份位移 1份位移 1份位移
1份位移
√1- √0 √2- √1
1份位移
√3- √2
√4- √3
等位移分段时间
√5- √4
6. 经过第1个x、第2个x 、第3个x 、第n个x的时间之比为
tⅠ: tⅡ : tⅢ : tN
初速度为零的匀加速直线运动具备以下特点:
v
5. 经过1个x,2个x,3个x···n个x的时间之比:
x 1 at2 t 2x
o
1 √2 √3 √4√5 t
2
a
1份位移 2份位移
t1 : t2 : t3 : tn
02第二章匀变速直线运动(含答案)
第二章匀变速直线运动的研究第一节匀变速直线运动的基本规律【学习目标】1、熟练掌握匀变速直线运动速度、位移的规律2、能熟练地应用匀变速直线运动速度、位移的规律解题。
【自主学习】一、匀速直线运动:1、定义:2、特征:速度的大小和方向都,加速度为。
二、匀变速直线运动:1、定义:2、特征:速度的大小随时间,加速度的大小和方向3、匀变速直线运动的基本规律:设物体的初速度为v0、t秒末的速度为v t、经过的位移为S、加速度为a,则两个基本公式:、【典型例题】例1、几个作匀变速直线运动的物体,在ts秒内位移最大的是()A.加速度最大的物体B.初速度最大的物体C.末速度最大的物体D.平均速度最大的物体例2、一物体作匀变速直线运动,某时刻速度的大小为4m/s,1s后速度的大小变为10m/s。
在这1s内该物体的( )A.位移的大小可能小于4m B.位移的大小可能大于10mC.加速度的大小可能小于4m/s2D.加速度的大小可能大于10m/s2.例3、甲、乙两个质点同时同地向同一方向做直线运动,它们的v—t图象如图所示,则()A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远例4、一列火车作匀变速直线运动驶来,一人在轨道旁观察火车的运动,发现在相邻的两个10s内,火车从他面前分别驶过8节车厢和6节车厢,每节车厢长8m(连接处长度不计)。
求:⑴火车的加速度a;0.16m/s2⑵人开始观察时火车速度的大小。
v0=7.2m/s1.骑自行车的人沿着直线从静止开始运动,运动后,在第1 s、2 s、3 s、4 s内,通过的路程分别为1 m、2 m、3 m、4 m,有关其运动的描述正确的是()A.4 s内的平均速度是2.5 m/sB.在第3、4 s内平均速度是3.5 m/sC.第3 s末的瞬时速度一定是3 m/sD.该运动一定是匀加速直线运动2.汽车以20 m/s的速度做匀速直线运动,刹车后的加速度为5m/s2,那么开始刹车后2 s与开始刹车后6 s汽车通过的位移之比为()A.1∶4 B.3∶5 C.3∶4 D.5∶93.作匀变速直线运动的物体,在两个连续相等的时间间隔T内的平均速度分别为V1和V2,则它的加速度为___________。
匀变速直线运动规律
第2单元 匀变速直线运动规律及应用1、匀速直线运动:沿着一条直线,且速度不变的运动,叫做匀速直线运动。
2、匀变速直线运动:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
匀变速直线运动是一种理想化的运动模型。
当速度与加速度方向相同时,物体的速度随时间均匀增大,物体做匀加速直线运动;当速度与加速度方向相反时,物体的速度随时间均匀减小,物体做匀减速直线运动。
一、速度与时间的关系式:公式的推导:一个物体做匀变速直线运动,设初始时刻(t=0)速度为0v ,t 时刻速度为v ,a 是定值(不变),则由加速度的定义得tv v t v v t v a 000-=--=∆∆=,整理得at v v +=0。
此式就是匀变速直线运动的速度公式。
理解:①公式中0v 表示物体运动的初速度,at 表示t 时间内速度的变化量,用开始时物体的速度0v 加上运动过程中速度的变化量at 就得到t 时刻的瞬时速度v 。
此公式中有四个物理量,只要知道其中的任意三个物理量,就可以确定最后一个物理量。
注:该公式仅适用于匀变速直线运动,对曲线运动或加速度变化的运动均不适用。
②速度公式中0v 、v 、a 都是矢量,用速度时间公式进行运算时,必须先规定正方向,通常规定初速度的方向为正方向。
加速度与初速度方向相同,则物体做匀加速直线运动,加速度为正值,at 表示t ~0时间内的速度增加量,t 时刻的速度等于初速度0v 加上at ,加速度与初速度方向相反,则物体做匀减速直线运动,加速度取负值,at 表示t ~0时间内速度的减小量,t 时刻的速度等于初速度0v 减去at ;若计算出v 为正值,则表示末速度与初速度的方向相同,v 为负值,则表示末速度与初速度方向相反。
③如果一个物体的运动分为几个阶段,全过程不是匀变速运动,但各小段均做匀变速直线运动,则可以在每小段应用匀变速运动的速度公式求解。
④当00=v 时,at v =,表示物体做初速度为0的匀加速直线运动。
必修1第二章第三节从自由落体运动到匀变速直线运动
解物理习题要注意物理情景,切忌死套公式。
第三节 从自由落体到匀变速直线运动
二.匀变速直线运动规律小结:
速度公式: vt v0 at
位移公式:
s
v0t
1 2
at 2
重要推论: vt2 v02 2as
纸带分析重要结论:
v
vt
v0
2
1. 匀变速直线运动的物体在相邻的相等的时间间隔T内的位移 之差△s是相同的。即:△s = aT 2 ——常用来求加速度。
a
vt
0 t
vt
v0
at
v
结论:匀变速直线运动的 v—t 图中面积表示物体的位移。
位移公式:
s
v0t
1 2
at
2
平均速度:v
v0
vt
2
第三节 从自由落体到匀变速直线运动
【例题1】一艘快艇以2 m/s2的加速度在海面上作匀加速直线运 动,快艇的初速度是6 m/s。求这艘快艇在8 s末的速度和8s内的 位移。 【讨论与交流】 1.此题还有其他方法求解吗? 2.若快艇熄火后,以2m/s2的加速度作匀减速运动,其解如何呢? 【特别提醒】
证明:如图所示,根据题意有:
s1
v0T
1 2
aT
2
s1
s2
v0 2T
1 a2T 2
2
s1
s2
s3
v0 3T
1 2
a3T 2
s1
s2
s3
sn 1
v0 n
1T
1 2
an
1T 2
s1
s2
s3
sn1
sn
v0 nT
1 2
anT 2
第二章匀变速直线运动的研究知识梳理高一物理
第二章匀变速直线运动的研究知识梳理第1节实验:探究小车速度随时间变化的规律一、实验原理1.利用纸带计算瞬时速度:以纸带上某点为中间时刻取一小段位移,用这段位移的平均速度表示这点的瞬时速度。
2.用v-t图像表示小车的运动情况:以速度v为纵轴、时间t为横轴建立直角坐标系,用描点法画出小车的v-t图像,图线的倾斜程度表示加速度的大小,如果v-t图像是一条倾斜的直线,说明小车的速度是均匀变化的。
二、实验器材打点计时器、学生电源、复写纸、纸带、导线、一端带有滑轮的长木板、小车、细绳、槽码、刻度尺、坐标纸。
三、实验步骤1.如图所示,把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路。
2.把一条细绳拴在小车上,使细绳跨过滑轮,下边挂上合适的槽码,放手后,看小车能否在木板上平稳地加速滑行,然后把纸带穿过打点计时器,并把纸带的另一端固定在小车后面。
3.把小车停在靠近打点计时器处,先接通电源,后释放小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列小点。
4.换上新纸带,重复实验两次。
5.增减所挂槽码,按以上步骤再做两次实验。
四、数据处理1.纸带的选取与测量(1)在三条纸带中选择一条点迹最清晰的纸带。
(2)为了便于测量,一般舍掉开头一些过于密集的点迹,找一个适当的点作计时起点(0点)。
(3)每5个点(相隔0.1 s)取1个计数点进行测量(如图所示,相邻两点中间还有4个点未画出)。
(4)采集数据的方法:不要直接去测量两个计数点间的距离,而是要量出各个计数点到计时零点的距离d1、d2、d3…然后再算出相邻的两个计数点的距离x1=d1;x2=d2-d1;x3=d3-d2;x4=d4-d3…2.瞬时速度的计算瞬时速度的求解方法:时间间隔很短时,可用某段时间的平均速度表示这段时间内中间时刻的瞬时速度,即v n =x n +x n +12T。
3.画出小车的v -t 图像(1)定标度:坐标轴的标度选取要合理,应使图像大致分布在坐标平面中央。
匀变速直线运动的基本规律
匀变速直线运动的基本规律
匀变速直线运动:
1、概念:匀变速直线运动是指运动物体的速度不断变化的直线运动,其中速度的大小和方向一直沿着运动方向一致。
2、基本性质:
(1)直线运动:匀变速直线运动是物体在给定时间内移动的路线是一条实线,没有曲线,且运动方向不会发生变化。
(2)速度不断变化:物体的运动,其瞬时速度不一定相等,而是随实际情况而变化,沿着一个恒定的方向变化,这种运动叫做匀变速直线运动。
(3)时间长度:匀变速直线运动是指运动物体在任意时间段内,其速度沿着一个恒定的方向变化。
它可以是瞬时运动,也可以是短时段内的运动或长时段内的运动。
3、基本公式:
(1)速度公式:v=v_0+at,其中v表示物体在某一时刻的速度,v_0是初始速度,a表示加速度值,t表示时间;
(2)位移公式:S′=S+v_0t+½at²,其中S为物体经过一段时间t后的位移,v_0为瞬时速度。
4、示意图:
5、应用:
(1)万有引力:万有引力即物体试图沿着空间的直线运动,匀变速直线运动就是由于物体受到外力影响而在不断变化的速度下沿着一定的方向移动的过程。
(2)电路:电子运行的路径是直线的,所以电路中的电子经过适当的装置,能够通过变调和运行速度,实现匀变速直线运动。
(3)机床加工:机床的加工是试图沿着某一指定方向运动,匀变速直线运动能够得到按照指定方向平稳运动的状态,以满足机床加工时的要求。
高中物理人教版必修第二章第三节匀变速直线运动位移和时间关系
例3、在平直公路上,一汽车的速度为15m/s。 从某时刻开始刹车,在阻力作用下,汽车以2m/s2
的加速度运动,问刹车后10s末车离开始刹车点
多远?
1.反映了位移随时间的变化规律,公式适用匀变速直线运动. 2.因为 v0、a、x 均为 矢量,使用公式时应先规定正方向。 (一般以 v0 的方向为正方向)若物体做匀加速运动,a 取正值, 若物体做匀减速运动,则 a 取负值.
3.若v0=0,则x= —12 at2
4.代入数据时,各物理量的单位要统一.
先用字母代表物
v0
x t
1 2
at
180 m/s 理1量1进1行2m运/s算 9m/s
12
2
高中物理人教版必修1第二第章二第章三第节三匀节变匀速变直速线直运线动运位动移位和移时和间时关间系关〔系P(PT共上21课张课P P件T)〕 高中物理人教版必修1第二第章二第章三第节三匀节变匀速变直速线直运线动运位动移位和移时和间时关间系关〔系P(PT共上21课张课P P件T)〕
甲
的2
t/s
位0
移
-2 1 2 3 4 5 6 -4
乙
X甲
X乙
x
思 考
匀变速直线运动的位移与 它的v-t图象所围成的面 积是否也有类似的关系?
思考与讨论
以下为“探究小车的运动规律”的测量 记录,表中“速度v”一行是这位同学用某种 方法得到的物体在0、1、2……5几个位置的 瞬时速度。原始的纸带没有保存。
高中物理人教版必修1第二第章二第章三第节三匀节变匀速变直速线直运线动运位动移位和移时和间时关间系关〔系P(PT共上21课张课P P件T)〕
位 移 公 式 的 说
x = v0 t + 2—1 a t 2
高中物理必修一第二章第3节《匀变速直线运动的位移与时间的关系》
56.25m
即刹车后10s离刹车点56.25m.
课堂小结
➢ 匀加速直线运动位移与时间关系:
x
v0t
1 2
at
2
➢ 匀加速直线运动速度与位移关系:
v2 v02 2ax
无末速度 无时间
➢ 回忆:匀加速直线运动速度与时间关系:
v v0 at
无位移
10 15
匀变速直线运动的位 移仍可用图线与坐标 轴所围的面积表示。
t/s
梯形的面积就代表做匀变速直线运动物体
在0时刻(此时速度为v0)到 t时刻(此时速 度为v)这段时间的位移。
二、匀变速直线运动的位移与时间的关系
由图可知:梯形OABC的面积
S (OC AB)OA 2
代入各物理量得:
x
1 2
二、速度与位移的关系
v
v0
at
t
v
v0 a
x
v0t
1 2
at
2
v0 v
a
v0
a 2
v
v0 a2
2
v2 v02 2a
v 2 v02 2ax
例、在一事故现场,交警测量一汽车刹车后滑行的位移为32m,
已知汽车的加速度大小为4m/s2,若此路段限速为36km/h,则该
汽车是否超速?
a=-4m/s2
6个矩形对应6 个 但时速间度相不等等,的v/m·s-1
匀速运动。5 4
3 2 1
05
分割
10 15
v/m·s-1
5 4 3 2 1 t/s 0 5
把运动过程分割的再 细,小矩形的面积就 越接近物体的位移。
10 15 t/s
从v-t图象探究匀变速直线运动的位移
高中物理:第二章 第3节 匀变速直线运动的位移与时间的关系
第 3 节 匀变速直线运动的位移与时间的 关系
第二章 匀变速直线运动的研究
学习目标
核心素养形成脉络
1.知道匀变速直线运动的位移与 v-t 图象
中图线与坐标轴围成面积的关系.
2. 了 解 利 用 极 限 思 想 解 决 物 理 问 题 的 方
法.(难点)
3.理解匀变速直线运动的位移与时间的关
答案:见解析
对 x-t 与 v-t 图象的理解和应用 1.x-t 图象中的五点信息
2.匀变速直线运动的 x-t 图象 (1)图象形状:由匀变速直线运动的位移公式 x=v0t+12at2 知 x-t 图象是一个二次函数图 象,如图所示. (2)不是轨迹:这个图象反映的是物体位移随时间按二次函数关 系(抛物线)变化,而不是运动轨迹.
判一判 (1)匀速直线运动物体的运动轨迹就是它的 x-t 图 象.( × ) (2)位移公式 x=v0t+12at2 适用于匀变速直线运动.( √ ) (3)初速度越大,时间越长,匀变速直线运动物体的位移一定越 大.( × ) (4)匀变速直线运动的位移与初速度、加速度、时间三个因素有 关.( √ )
v-t 图象和 x-t 图象的应用技巧 (1)确认是哪种图象,v-t 图象还是 x-t 图象. (2)理解并熟记五个对应关系 ①斜率与加速度或速度对应; ②纵截距与初速度或初始位置对应; ③横截距对应速度或位移为零的时刻; ④交点对应速度或位置相同; ⑤拐点对应运动状态发生改变.
【通关练习】 1.(多选)(2019·辽宁沈阳高一期中)甲、乙 两车某时刻由同一地点沿同一方向开始 做直线运动,若以该时刻作为计时起点, 得到两车的 x-t 图象如图所示,则下列 说法正确的是( ) A.t=0 时两物体的速度都为零 B.t1 时刻乙车从后面追上甲车 C.t1 时刻两车速度相等 D.0~t1由于 x=9 m,t=1.5 s,所以由 v =xt 得平均速度 v =19.5 m/s=
第二章 匀变速直线运动
第二章匀变速直线运动考点一 匀变速直线运动规律及应用1.基本规律(1)速度公式:v =v 0+at .(2)位移公式:x =v 0t +12at 2. (3)位移速度关系式:v 2-v 20=2ax .这三个基本公式,是解决匀变速直线运动的基石.均为矢量式,应用时应规定正方向.2.两个重要推论(1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =2v t =v 0+v 2.(2)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.3.v 0=0的四个重要推论(1)1T 末、2T 末、3T 末、……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1).记住两个推论,活用一种思维1.两个重要推论公式(1)v t =v t =v 0+v t 2 (2)Δx =aT 22.用逆向思维法解决刹车问题(1)逆向思维法:匀减速到速度为零的直线运动一般看成逆向的初速度为零的匀加速直线运动.(2)对于刹车类问题,实质是汽车在单方向上的匀减速直线运动问题.速度减为零后,加速度消失,汽车停止不动,不再返回,若初速度为v 0,加速度为a ,汽车运动时间满足t≤v 0a ,发生的位移满足x≤v 202a . 考点二 常用的几种物理思想方法1.一般公式法一般公式指速度公式v =v 0+at ,位移公式x =v 0t +12at 2及推论式2ax =v 2-v 20,它们均是矢量式,使用时要注意方向性,一般以v 0方向为正方向,已知量与正方向相同者取正,与正方向相反者取负.未知量按正值代入,其方向由计算结果决定.2.平均速度法定义式v =x t 对任何性质的运动都适用,而v =12(v 0+v)只适用于匀变速直线运动. 3.中间时刻速度法利用“任一时间t 中间时刻的瞬时速度等于这段时间t 内的平均速度”,即2v t =v =12(v 0+v),适用于匀变速直线运动. 4.推论法对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑用Δx =aT 2求解.5.逆向思维法把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知的情况.6.图象法应用v -t 图象,可以把较复杂的问题转变为较简单的数字问题来解决.匀变速直线运动规律中应用的两个技巧1.匀减速直线运动减速到0时,通常看成反向的初速度为0的匀加速直线运动.2.若告诉匀变速直线运动的时间和位移,通常要考虑应用平均速度公式,求出中间时刻的瞬时速度.考点三 多过程组合问题多过程问题解题思路如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.可按下列步骤解题:(1)画:分清各阶段运动过程,画出草图;(2)列:列出各运动阶段的运动方程;(3)找:找出交接处的速度与各段间的位移-时间关系;(4)解:联立求解,算出结果.多过程组合问题的“三个”处理技巧1.用图象分析运动学问题能很好地反映出物体的运动规律,且直观、形象,这是图象法的优势,一些物理量的关系能通过图象很明显地反映出来.2.将末速度为零的匀减速直线运动通过逆向思维转化为初速度为零的匀加速直线运动.3.多运动过程的转折点的速度是联系两个运动过程的纽带,因此,转折点速度的求解往往是解题的关键.【基础练习】1.[基本规律的应用]一个做匀变速直线运动的质点,初速度为0.5 m/s ,第9 s 内的位移比第5 s 内的位移多4 m ,则该质点的加速度、9 s 末的速度和质点在9 s 内通过的位移分别是( )A .a =1 m/s 2,v 9=9 m/s ,x 9=40.5 mB .a =1 m/s 2,v 9=9 m/s ,x 9=45 mC .a =1 m/s 2,v 9=9.5 m/s ,x 9=45 mD .a =0.8 m/s 2,v 9=7.7 m/s ,x 9=36.9 m2.[刹车问题]汽车以20 m/s 的速度做匀速直线运动,见前方有障碍物立即刹车,刹车后加速度大小为5 m/s 2,则汽车刹车后第2 s 内的位移和刹车后5 s 内的位移为( )A .30 m,40 mB .30 m,37.5 mC .12.5 m,40 mD .12.5 m,37.5 m3.[两个重要推论的应用]一列火车做匀变速直线运动驶来,一人在轨道旁边观察火车运动,发现在相邻的两个10 s 内,火车从他跟前分别驶过8节车厢和6节车厢,每节车厢长8 m(连接处长度不计).求:(1)火车的加速度的大小;(2)人开始观察时火车速度的大小.4.[v 0=0重要推论的应用]一列车由等长的车厢连接而成.车厢之间的间隙忽略不计,一人站在站台上与第一节车厢的最前端相齐.当列车由静止开始做匀加速直线运动时开始计时,测量第一节车厢通过他的时间为2 s ,则从第5节至第16节车厢通过他的时间为多少?5.[比例法的应用]做匀减速直线运动的物体经4 s 停止,若在第1 s 内的位移是14 m ,则最后1 s 内的位移是( )A .3.5 mB .2 mC .1 mD .06.[中间位置速度公式的应用]滑板爱好者由静止开始沿一斜坡匀加速下滑,经过斜坡中点时的速度为v ,则到达斜坡底端时的速度为( )A .2vB .3vC .2vD .5v7.[平均速度公式的应用]质点由A 点出发沿直线AB 运动,行程的第一部分是加速度大小为a 1的匀加速运动,接着做加速度大小为a 2的匀减速运动,到达B 点时恰好速度减为零.若AB 间总长度为s ,则质点从A 到B 所用时间t 为( )A .s a 1+a 2 a 1a 2B .2s a 1+a 2 a 1a 2C .2s a 1+a 2 a 1a 2D .a 1a 22s a 1+a 28.[物理思想方法的综合应用]物体以一定的初速度从斜面底端A 点冲上固定的光滑斜面,斜面总长度为l ,到达斜面最高点C 时速度恰好为零,如图,已知物体运动到距斜面底端34l 处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间.9.[匀加速与匀速运动组合]短跑运动员完成100 m赛跑的过程可简化为匀加速运动和匀速运动两个阶段.一次比赛中,某运动员用11.00 s跑完全程.已知运动员在加速阶段的第2 s内通过的距离为7.5 m,求该运动员的加速度及在加速阶段通过的距离.10.[匀减速与匀加速的组合]已知一足够长的粗糙斜面,倾角为θ,一滑块以初速度v1=16 m/s从底端A点滑上斜面,经2 s滑至B点后又返回A点.其运动过程的v-t图象如图所示.已知上滑的加速度大小是下滑的4倍.求:(已知sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2)(1)AB之间的距离;(2)滑块再次回到A点时的速度及滑块在整个运动过程中所用的时间.【巩固提升】1.质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位制单位),则该质点()A.第1 s内的位移是5 mB.前2 s内的平均速度是6 m/sC.任意相邻的1 s内位移差都是1 mD.任意1 s内的速度增量都是2 m/s2.做匀加速直线运动的物体途中依次经过A、B、C三点,已知AB=BC=l2,AB段和BC段的平均速度分别为v1=3 m/s、v2=6 m/s,则:(1)物体经过B点时的瞬时速度v B为多大?(2)若物体运动的加速度a=2 m/s2,试求AC的距离l.3.假设某无人机靶机以300 m/s的速度匀速向某个目标飞来,在无人机离目标尚有一段距离时发射导弹,导弹以80 m/s2的加速度做匀加速直线运动,以1 200 m/s的速度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为()A.3.75 s B.15 s C.30 s D.45 s4.一辆汽车在平直公路上做刹车实验,若从0时刻起汽车在运动过程中的位移与速度的关系式为x=(10-0.1v2) m,则下列分析正确的是( )A .上述过程的加速度大小为10 m/s 2B .刹车过程持续的时间为5 sC .0时刻的初速度为10 m/sD .刹车过程的位移为5 m5.(多选)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( )A .v 0t -12at 2 B .v 0t C .v 0t 2 D .12at 2 6.(多选)给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g 2,当滑块速度大小减为v 02时,所用时间可能是( )A .v 02gB .v 0gC .3v 0gD .3v 02g7.(多选)在一次救灾活动中,一辆救灾汽车由静止开始做匀加速直线运动,刚运动了8 s ,由于前方突然有巨石滚下,堵在路中央,所以又紧急刹车,匀减速运动经4 s 停在巨石前.则关于汽车的运动情况,下列说法正确的是( )A .加速、减速中的加速度大小之比为a 1∶a 2等于2∶1B .加速、减速中的平均速度大小之比v 1∶v 2等于1∶1C .加速、减速中的位移大小之比x 1∶x 2等于2∶1D .加速、减速中的加速度大小之比a 1∶a 2不等于1∶28.(多选)物体做匀加速直线运动,在时间T 内通过位移x 1到达A 点,接着在时间T 内又通过位移x 2到达B 点,则物体( )A .在A 点的速度大小为x 1+x 22TB .在B 点的速度大小为3x 2-x 12TC .运动的加速度为2x 1T 2D .运动的加速度为x 1+x 2T 2 9.(多选)一物体以初速度v 0做匀减速运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法中正确的是( )A .初速度v 0的大小为2.5 m/sB .加速度a 的大小为1 m/s 2C .位移x 3的大小为1.125 mD .位移x 3内的平均速度大小为0.75 m/s10.公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s ,当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的加速度为晴天时的25,若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.11.珠海航展现场“空军八一飞行表演队”两架“歼-10”飞机表演剪刀对冲的精彩空中秀.质量为m 的“歼-10”飞机表演后返回某机场,降落在跑道上的减速过程简化为两个匀减速直线运动过程.飞机以速度v 0着陆后立即打开减速阻力伞,加速度大小为a 1,运动时间为t 1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x .求第二个减速阶段飞机运动的加速度大小和时间.。
知识点匀变速直线运动的规律
匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。
第二章匀变速直线运动公式规律总结
第二章匀变速直线运动公式规律总结匀变速直线运动是物体在一条直线上运动,并且加速度恒定的运动。
在这种类型的运动中,物体的速度随着时间均匀地改变,即加速度为常量。
本文将会总结匀变速直线运动的公式和规律。
一、匀变速直线运动的基本公式匀变速直线运动的基本公式可以用来描述物体在不同时刻的运动情况。
1.位移公式位移(S)表示物体从初始位置到一些时刻的位置之间的距离。
位移公式可以用来计算物体在一些时刻的位置。
S = v0t + (1/2)at^2其中,v0表示物体的初始速度,t表示时间,a表示加速度。
2.速度公式速度(v)表示物体在一些时刻的移动快慢和方向。
速度公式可以用来计算物体在一些时刻的速度。
v = v0 + at其中,v0表示物体的初始速度,t表示时间,a表示加速度。
3.加速度公式加速度(a)表示物体在单位时间内速度的增加量。
加速度公式可以用来计算物体在一些时刻的加速度。
a=(v-v0)/t其中,v表示物体在一些时刻的速度,v0表示物体的初始速度,t表示时间。
4.时间公式时间(t)表示物体从初始位置到一些位置所经过的时间。
时间公式可以用来计算物体在一些位置所经过的时间。
t=(v-v0)/a其中,v表示物体在一些位置的速度,v0表示物体的初始速度,a表示加速度。
二、匀变速直线运动的规律总结在匀变速直线运动中,物体的速度和位移在不同时间之间有一定的关系,可以总结出如下规律:1.加速度与速度的关系加速度的单位是m/s^2,表示物体在单位时间内速度的增加量。
当加速度为正时,物体的速度增加;当加速度为负时,物体的速度减小。
当物体加速度恒定时,速度的变化呈线性关系。
2.加速度与位移的关系加速度为常量时,物体的位移与时间的平方成正比。
也就是说,当加速度恒定时,位移的变化与时间的平方成正比。
3.速度与位移的关系在匀变速直线运动中,速度与位移之间存在以下关系:当速度恒定时,位移与时间成正比。
当加速度为正时,速度随时间的增加而增加,位移随时间的增加而增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挑战自我
V (m /s)
梯形面积
=中位线 高
Vt
vt/2
V0 0
s2
s1
t/2
t
1、中间时刻的瞬时速度vt/2如何表示? 2、vt/2与
v
有怎样的关系?试证明。
s v t
v t= v0 + a t
1 2 s v 0 t at 2
2as v v
2 t
2 0
3、 除t 外其他物理量都是矢量,方向不一定 相同。应先规定正方向(一般以v0 的方向为正
方向)
4、特殊情况,当 v 0= 0 时:
v = at
t
1 2 s at 2
小结:
s
vt
t
二、位移
V (m /s)
s 公式
v0 v t s t 2
Vt
s2
V0 0
at
t
t/ s
s1
v0 v t v 2
1 2 s v 0 t at 2
三、位移s与速度v的关系
t0 v0 a
vt t0 t a
V( m/s)
Vt V0
1 1 s v t t 0 t v t t 0 2 2
v v 2a 2 a
2 t
2 0
t0
2 0
0
t t0 + t
t/ s
2as v v
2 t
★公式理解
v t= v0 + a t
1 2 s v 0 t at 2
2as v v
2 t
2 0
1、都只适用于匀变速直线运动。
2、对于推导过程中
v0 v t v 2
只适用于匀变速直线运动 对任何形式的运动都适用
。
vt = at
2、汽车在紧急刹车时,加速度的 大小是6m/s2,如果必须在2s内停 下来,汽车的行驶速度最高不能 超过多少?
解:以汽车初速度v0方向为正方向
则由vt=v0+at 得
v0=vt –at = 0 - ( -6m/s2)×2s =12m/s
汽车的速度不能超过 12m/s
3、某质点做匀变速直线运动,位移方程为
s = 10t – 2t2(m),则该物体运动的
10m/s 初速度为_________ , 加速度为___________ - 4m/s2 ,
8m 。 4s内位移为______
4、汽车以 12m/s行驶,刹车后减速行驶的 2 2 加速度为 6 m/s ,则需经______s 汽车才
能停止,从刹车到停止这段时间内的平 均速
6 m /s ,通过的位移是______ 度是______ 12m
5、汽车在紧急刹车时,加速度的 大小是6m/s2,如果滑行12m停下 来,汽车的行驶速度最高不能超 过多少? 解:以汽车初速度v0方向为正方向
2 则由 vt2 v0 2as 得
v0 v 2as = 12m/s
2 t
汽车的速度不能超过 12m/s
速度公式 vt v0 at
1 2 位移公式 s v 0 t at 2
速度位移关系
v v 2as
2 t 2 0
1、一物体从静止开始做匀加速直线运动, 2 加速度为O.5 m/s ,则此物体在
2 4s末的速度为___________m / s; 1.5 4s初的速度为___________m /s
广东版课程标准高中物理必修一
第二章 探究匀变速直线运动
第三节 匀变速直线运动规律
主要内容
一、匀变速直线运动的速度公式
二、匀变速直线运动的速度公式
三、匀变速直线运动的速度 位移关系
一、速度 v公式
V (m /s)
Vt
V0 0
v at
ttLeabharlann sv ka tvt v0 v
vt v0 at