数值分析考试复习总结

合集下载

数值分析复习资料

数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值分析期末复习资料

数值分析期末复习资料

数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。

2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。

数值分析考试复习总结修订稿

数值分析考试复习总结修订稿

数值分析考试复习总结 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析考试复习总结

数值分析考试复习总结

数值分析考试复习总结 Last revised by LE LE in 2021第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段 在哪些阶段将有哪些误差产生答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析总复习

数值分析总复习

yn+1=yn+h/2 (yn+yn+1)
解出yn+1得
y n 1
1 1 h 2 yn 1 1 2 h
类似前面分析,可知绝对稳定区域为
1 1 h 2 1 1 1 2 h
由于Re()<0,所以此不等式对任意步长h恒成立,这是隐式
公式的优点.一些常用方法的绝对稳定区间为
会构造简单的三次样条插值函数. 4. 了解正交多项式的概念,会求简单的正交多项式。 5. 掌握最小二乘法的思想,会求拟合曲线及最佳均方 误差.
七、数值积分
掌握梯形公式和Simpson公式及其误差。 2.掌握求积公式的代数精度的概念,会用待定系数法 确定求积公式。 3. 会用复化梯形公式和复化Simpson公式计算积分并
点.了解Newton迭代法的变形.
x k 1
局部平方收敛.
f ( xk ) xk f ( x k )
六、插值与逼近
1.了解差商的概念和性质. 2.会建立插值多项式并导出插值余项. Lagrange、Newton、Hermite插值多项式;基函数法 及待定系数法。
3.了解分段插值及三次样条插值的概念及构造思想。
祝大家考试好运!
字到该数位共有n位,则称这n个数字为x的有效数字,也 称用x近似x*时具有n位有效数字。 2.了解数值计算中应注意的一些问题.
二、解线性方程组的直接法
1.了解Gauss消元法的基本思想,知道适用范围 顺序Gauss消元法:矩阵A的各阶顺序主子式都不为零.
主元Gauss消元法:矩阵A的行列式不为零.
方 法 Euler方法 梯形方法 改进Euler方法 二阶R-K方法 三阶R-K方法 四阶R-K方法 方法的阶数 1 2 2 2 3 4 稳定区间 (-2 , 0) (- , 0) (-2 , 0) (-2 , 0) (-2.51 , 0) (-2.78 , 0)

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。

一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。

有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。

即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。

其中m 位该数字在科学计数法时的次方数。

例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。

2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。

对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。

(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。

(完整版)数值分析考试复习总结汇总,推荐文档

(完整版)数值分析考试复习总结汇总,推荐文档

10
100
误差估计:
f
max | f (x) fh (x) |
(x ih) (x (i 1)h) . 2! ixx(i1)h

第三章
最佳一致逼近:(了解) 最佳平方逼近
主要分两种情形:
1. 连续意义下
在空间 L2[a,b]中讨论
2. 离散意义下
在 n 维欧氏空间 Rn 中讨论,只要求提供 f 的样本值
n (x)
(x
xi
)
n
(xi
)
ji
n
n
其中: n (x) (x x j ), n xi (xi x j ) .
j0
j0
ji
例 1 n=1 时,线性插值公式
P1 ( x)
y0
(x x1) (x0 x1)
y1
(x x0 ) (x1 x0 )

例 2 n=2 时,抛物插值公式
P2 (x)
可得: L3 (x) x 2 (x 1 2)
方法二. 令
L3 (x) x(x 1 2) ( Ax B)

L3
(1)
3 2

L3 (1)
1, 2
定 A,B
(称之为待定系数法)

15.设 f (x) x2 ,求 f (x) 在区间[0,1] 上的分段线性插值函数 fh (x) ,并估计误差, 取等距节点,且 h 1/10 .
(2)
2x ( x 1 x
x 1 x) .
(3) 1 cos x sin 2 x sin x .

x
x(1 cos x) 1 cos x
第二章
拉格朗日插值公式(即公式(1))

数值分析复习要点

数值分析复习要点

1.设矩阵A


2
1

,
用Schmidt正交化方法,
1 2
对A作正交分解A QR.
2.设矩阵A


2 0
1 3
7 10
,
用Householder变换法,
0 4 5
对A作正交分解A QR.
3.已知一组线性无关的向量
u1 (1,1,1)T , u2 (1, 0, 1)T , u1 (0,1,1)T , 由此向量组,按Schmidt正交化方法,求一组对应的
Gauss变换阵
1




Lj




1

l j1, j 1




ln, j
1
对x x1,..., x j ,..., xn T 0, x j 0 构造Gauss变换阵G,使Gx x1,..., x j ,0,...,0 T
奇异值与奇异值矩阵
i
i ( AT A) 0,
i 1,..., r,


r

0
0 0
条件数 cond(A) p || A1 ||p|| A ||p , p F,1,2,
谱条件数 cond ( A)2 || A1 ||2|| A ||2

max ( AT A) min ( AT A)
y0
1 yn n 5 yn1
n 1, 2,...
计算yn,试分析算法的稳定性
习题:p15 10
数值计算中应注意的问题
(1) 防止相近的两数相减 (2) 防止大数吃小数 (3) 防止接近零的数做除数 (4) 注意计算步骤的简化,减小运算次数

数值分析考试复习总结

数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 哪些阶段将有哪些误差产生? 答:实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差 6 •设a 0.937关于精确数x 有3位有效数字,估计a 的相对误差. 计f(a)对于f(x)的误差和相对误差. 解 a 的相对误差:由于1 |E(x)| x a 10 32-^10 2 2 9f(a)对于f(x)的误差和相对误差.E r (x)—1018|E(f)| | -.1 x 、1 a| =般要经历哪几个阶段?在对于f (x) .J x ,估x aE r (x)(Th1)| E r (f)| 10 3. 1 a 4 10 34=102 0.252有效数字基本原则:1两个很接近的数字不做减法:2:不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:1 1 2xx 1x1 cosx(1)| 1;1;(3)0,|x|解(1)2X 2(1x)(1 2x).1 cosxsin 2 xsin x,x 1 x)■x(1 cosx) 1 cosx第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n(X)(X X j),j 0 n X i (X i X j).j 0例1 n=1时,线性插值公式P(x) yo (x X i) (x X o) (X o X i) y1(X i X o)例2 n=2时,抛物插值公式牛顿(Newton)插值公式由差商的引入,知(1) 过点X o , X1的一次插值多项式为其中(2) 过点X o,X1,X2的二次插值多项式为其中重点是分段插值:例题:1.利用):解⑵:方法一.由Lagrange 插值公式可得:L3(X) X2(X 12)方法二•令3 1由L a( 1) 3,L S(1)-,定A, B (称之为待定系数法) □2 215.设f(x) x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h 1/10.解f(x) X2,X i ih ,i 0,1, ,10,h 110第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b]的 n 1 维子空间 P n =span {1,x,x 2 , x n }, 其中1, x,x 2 , x n 是L 2[a, b]的线性无关多项式系.n 对f L 2[a,b],设其最佳逼近多项式可表示为: a i x ii 0由(f *,) 0,P nn*即 (x —xHa j (f,x i ), i 0(1) n(*2)j 0其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) .由{x i }i n 0的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f (x) cos x , x [0,1]的一次和二次最佳平方逼近多项式 解: 设P 1*(x) a 0 a 1x , P ; (x) b 0 b 1x b 2x 2分别为f(x)的一次、二次最佳平方逼近多项式。

数值分析总复习

数值分析总复习

A
4
5
4,
X
x2
,
8 4 22
x3
解: l11 a11 16 4,
l21 a21 l11 4 4 1,
l31 a31 l11 2,
4
b
3
.
10
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 19 第20页/共36页
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 18 第19页/共36页
一. 用平方根法求线性方程组AX=b, 其中
16 4 8
x1
26
第27页/共36页
六. 确定求解初值问题
y' f ( x, y), a x b,
y(a)
y0 .
的二步隐式Adams方法
yn1
yn
h 12
(5
fn1
fn
fn1 )
中的参数, 使该方法成为三阶方法, 并写出其局部截断误差主项.
可用数值积分方法或Taylor展开方法
8,
Rn1
1 24
h4
解 (1) 由已知, 当 f (x)分别为1, x, x2时, 求积公式等号成立. 即
11x3dx 1
0 1dx 14
11 2
((1x13
1)x23
)
2
故该公式具有3次代数精确度.
1 xdx 1
0

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

15
Lagrange插值
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
1, j k lk ( x j ) 0, j k
则称 lk(x) 为节点 x0 , x1 , … , xn 上旳拉格朗日插值基函数
16
线性与抛物线插值
两种特殊情形
x0 ƒ(x0)
x1 ƒ(x1) ƒ[x0, x1]
x2 ƒ(x2) ƒ[x1, x2] ƒ[x0, x1, x2]
x3 ƒ(x3) ƒ[x2, x3] ƒ[x1, x2, x3] ƒ[x0, x1, x2, x3]

xn ƒ(xn) ƒ[xn-1, ƒ[xn-2, xn-1, ƒ[xn-3, xn-2, xn-1, … ƒ[x0, x1,2…7 ,
ln 0.54 旳精确值为:-0.616186···
可见,抛物线插值旳精度比线性插值要高
Lagrange插值多项式简朴以便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
19
Lagrange插值
lk(x) 旳体现式 由构造法可得
lk (
x)
( x x0 ) ( xk x0 )
Rn(x)
n1
Nn( x) a0 a1( x x0 ) a2( x x0 )( x x1 ) an ( x xi )
i 1
其中 a0 f ( x0 ), ai f [x0 ,, xi ], i 1,2,, n
Nn(x) 是 n 次多项式
Rn( x) f [x, x0 , ... , xn]( x x0 )...( x xn1)( x xn )

e(x*) x x*

数值分析总复习

数值分析总复习

样条插值;整体连续光滑,且不需知导数值。
插值问题提法:已知
x y f(x)
x0 y
x1 y
xn y
0
1
n
求一个三次分段函数 S(x) 使
1,
S(
xi
)
y i
x x 2, 在 [ , ] 上是三次多项式
i
i 1
C 3, S(x) 2 ( a,b )
i 0, 1, , n
计算三次样条算法
由边界条件 i , i , , i 0 ,1,, n
插值基函数方法
插值问题解的一般形式 :
n (x) a0 a1 x an xn
(1 )
实质上是在求多项式的 自然基底 Bn Span{1, x , ,xn}
张成的线性空间中的一 个点 —一个多项式 (1) ,由(2 18)
式知,解存在唯一 ,只要解方程组求出线 性组合系数 {ai}
就可以了 , 但计算量太大 .
定理2.5(余项) .
(2 - 35)
设H (x)是过 x0 , x1 的 Hermite 插值多项式 , C f f(x) 3 , ( 4 )(x)在 (a,b) 内存在, (a,b)是
(a,b)
含点 x0 , x1 的任一区间, 则对任意给定的
x (a,b) 总存在一点ξ (x)使
R(x)
f(x) H(x)
f
( 4 )(ξ
4!
)
(x
x0
)2(x
x1
)2
分段三次 Hermite 插值多项式及余项
∑ y h m H n
H (x) [ (x)
( x)]
i0
ii
ii
定理2.7(余项) :

数值分析期末总结与体会

数值分析期末总结与体会

数值分析期末总结与体会数值分析是一门应用数学课程,主要研究数值计算方法和数值计算误差,并为实际问题提供数值计算解决方案。

在本学期的学习中,我深入学习了数值计算的基本概念与原理,并通过编程实践掌握了常见的数值计算方法。

在期末考试前夕,我对这门课的学习经历进行了总结与体会,下面是我对数值分析的期末总结与体会。

一、总结1. 知识掌握:在学习过程中,我通过系统的学习,掌握了课程中介绍的求根问题、插值问题、数值积分和数值微分等数值计算方法。

我了解了牛顿迭代法、二分法、割线法等求解非线性方程根的方法,熟悉了拉格朗日插值、牛顿插值等插值方法,学会了辛卜生插值多项式、三次样条插值等高级插值方法。

同时,我还学习了梯形法则、辛普森法则等数值积分算法,掌握了欧拉法、龙格-库塔法等数值微分算法。

2. 编程实践:在理论学习的基础上,我通过编写程序加深了对数值计算方法的理解与掌握。

我使用Python语言编写了求解非线性方程根、插值计算、数值积分和数值微分的代码,并通过实际运行验证了这些数值计算方法的正确性与有效性。

编程实践过程中,我深刻体会到了算法的重要性,不同的算法对于同一个数值计算问题,可能会有不同的效果。

3. 数值计算误差:在学习数值计算的过程中,我逐渐认识到数值计算误差的存在与产生机理。

由于计算机内部采用的是二进制表示法,而浮点数的二进制表示无法准确表示所有的实数,从而引入了舍入误差;另外,数值计算方法本身也存在精度误差,例如插值多项式的截断误差、数值积分的数值误差等。

掌握数值计算误差的产生原因和估计方法,对于正确评估数值计算结果的精度至关重要。

4. 应用实例:在学习过程中,我们还分析了各种实际问题,并通过数值计算方法得到了解决方案。

例如,在求根问题中,我们可以利用牛顿迭代法估计气体状态方程的参数;在插值问题中,我们可以使用拉格朗日插值方法恢复图像;在数值积分中,我们可以利用梯形法则或辛普森法则计算定积分;在数值微分中,我们可以应用欧拉法或者龙格-库塔法求解微分方程等。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

内积 ⎰⋅=10)()(),(dx x g x f g f计算如下内积:1)1,1(= , 21),1(=x , 31),1(2=x31),(=x x , 41),(2=x x , 51),(22=x x0),1(=f , 22),(π-=f x , 222),(π-=f x建立法方程组:(1) ⎪⎪⎩⎪⎪⎨⎧-=+=+210102)31(21021πa a a a ,得:2012π=a ,2124π-=a于是 x x P 22*12412)(ππ-=(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=++=++2210221021025141312413121031)21(ππb b b b b b b b b解得: 2012π=b , 2124π-=b , 02=b , 于是: x x P 2222412)(ππ-=. □第四章1 为什么要进行数值积分?常用哪些公式,方法? 答: 梯形复化求积公式和simpson 复化求积公式. 2: 方法好坏的判断: 代数精度 误差分析 1.代数精度的概念定义 若求积公式∑⎰=≈ni i i bax f w dx x f 0)()( (*)对所有次数m ≤的多项式是精确的,但对1+m 次多项式不精确,则称(*)具有m 次代数精度。

等价定义若求积公式(*)对m x x x ,,,,12 是精确的,但对1+m x 不精确,则(*)具有m 次代数精度。

3: 误差1 等距剖分下的数值求积公式:公式特点:节点预先给定,均匀分布,系数n iw i )1(0,=待定利用插值多项式)(x p n 近似代替)(x f ,即得插值型求积公式Newton-Cotes 公式 2 给定节点数下的具有最佳逼近性质(具有最高次代数精度)的数值求积公式:Gauss 求积公式 公式特点:系数n iw i )1(0,=和节点n i x i )1(0,=均待定3 分段插值多项式)(x n φ近似代替)(x f (分段求积)复化求积公式 复化求积公式通过高次求积公式提高精度的途径不行,类似函数插值 分而治之: 分段+低次求积公式---------- 称为复化求积法 两类低次(4≤n )求积公式:1. Newton -Cotes 型:矩形、梯形、Simpson 、Cotes 公式分别称为复化矩形、梯形、辛甫生、柯特斯公式2. Gauss 型: 一点、两点、三点Gauss 求积公式称为复化一点、两点、三点Gauss 公式复化梯形公式(n T )n ab h b f x f a f h x f x f x f x f x f x f hT n k k n n n -=++=++++++≡∑-=- )],()(2)([2 )]}()([)]()([)]()({[21112110 复化辛甫生公式: (每个k e 上用辛甫生公式求积))]()(2)(4)([6)]}()(4)([)]()(4)([)]()(4)({[61111211021212321b f x f x f a f hx f x f x f x f x f x f x f x f x f hS n k k n k k n n n n +++=+++++++++≡∑∑-==---na b h -=其中,2/1-k x 为ke 的中点 复化辛甫生公式是最常用的数值求积方法。

常采用其等价形式: 复化柯特斯公式 其中,na b h -=,21-k x为],[1k k x x -的中点,41-k x ,43-k x 为],[1k k x x -的四等分的分点自适应复化求积法计算时,要预先给定n 或步长h ,在实际中难以把握因为,h 取得太大则精度难以保证,h 太小则增加计算工作量. 自适应复化梯形法的具有计算过程如下: 步1 )]()([2,,11b f a f hT a b h n +←-←← 步2步3 判断ε<-||12T T ?若是,则转步5; 步4 21,2/,2T T h h n n ←←←,转步2; 步5 输出 2T .第五章1: 常用方法:(1).直接解法:Gauss 逐步(顺序)消去法、 Gauss 主元素法、矩阵分解法等;(2).迭代解法:构造某种极限过程去逐步逼近方程组的解 ①.经典迭代法Jacobi 迭代法、Seidel Gauss -迭代法、 逐次超松弛(SOR )迭代法等;②. Krolov 子空间的迭代法 根据A 的对称性,又分为:A 对称正定------- 共轭梯度法A 非对称--------- BICG 、 GMRes(最小残量法)③.解一类特定背景问题的迭代法 多重网格法2: 几类迭代法优缺点比较: 3: 迭代方法目标: 求解b Ax = 其中,A 非奇异。

基本思想:把线性方程组b Ax =的解x ,化为一个迭代序列极限解 关键:构造迭代序列所满足的公式:迭代格式。

构造迭代格式基本步骤:1. 将A 分裂:C B A -=:, 其中,B 非奇异 2. 构造迭代格式其中C B G ⋅=-1,称之为迭代矩阵 , b B g 1-= 其中,)(k Ax b -为)(k x 的残余向量 此时,b B g A B I G 11--=-= ,常用的迭代方法将)(ij a A =分裂为U L D A --= 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-00001,121n n n a a aL,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-0000,1112n n n a a a U,Jacobi 迭代方法若0≠ii a ,迭代格式g x G x k J k +⋅=+)()1( ① 其中 Jacobi 迭代矩阵:)(1U L D G J +=- ①式可写为分量形式 0][11)()1(≥-=∑≠=+k x a b a xnij j k j ij i ii k i, . (*1) 方法(*1)或①称为Jacobi 迭代方法. Gauss —Seidle 迭代方法若0≠ii a ,迭代格式g x G x k G k +⋅=+)()1( ② 其中,Gauss-Seidel 迭代矩阵:U L D G G 1)(--= 其分量形式][11)(11)1()1(∑∑+=-=++--=ni j k j ij i j k j ij i ii k ix a x a b a x,n i ,,2,1 =. (*2) 即,在计算新分量)1(+k i x 时,利用新值)1(+k j x ,1,,2,1-=i j 。

相关文档
最新文档