克里格空间插值法共63页文档
克里格空间插值法
1.4邻域函数的统计函数及其意义
众数(majority):邻域中出现频率最高的数值 最大值(max):邻域中最大的数值 最小值(min):邻域中最小的数值 中位数(median):邻域中数值从小到大排列后位于中间的 数 平均值(mean):邻域中数值的算术平均 频率最小数(minority):邻域中出现频率最小的数值 范围(range):邻域中数值的范围,最大值与最小值之差 标准差(std):邻域中数值的标准差 和(sum):邻域中数值的和 变异度(varity):邻域中不同数值的个数
1.8 方差变异函数
3)理论方差函数曲线不穿过原点,而是存在一个最小的方差值。理论上讲,当间隔 h=0时,估值的方差应该为0,因为任何一点与自身之差的值为0。h趋近于0时,r(h) 轴上的正截距是残差的一个估计,该值称为块金(或基底,nugget)。在理论函数模型 中,用C0表示。 块金是在间隔距离小于采样间距时的测量误差或空间变异,或者是二者的和。测 量误差是由仪器的内在误差引起的,空间变异是自然现象在一定空间范围内的变化。 小于采样间距的微观尺度上空间变异是块金的一部分。 当r(h)值在所有的h值上都等于基台值时,实验半方差函数就表现为纯块金效应, 这通常由于短间距内点与点的变异很大而引起,表明所使用的采样间隔内完全没有空 间相关性,此时,可以认为各个样点是随机的,区域平均值就是各点的最佳估计值。 此时,只有增大采样间隔才能揭示出空间相关性。 块金与基台的比值(C0/(C+C0),基底效应)可以用来说明空间的变异特征,该值 越大,说明空间变异更多的是随机成分引起的,否则,则是由特定的地理过程或多个 过程综合引起的。 空间相关性的强弱,可用C/(C+C0)表示,该值越高,表明空间相关性越强。 在实际的模型计算中,块金与基台两个参数是可以调整的,其取值取决于整体的 拟合效果。
克里格插值
克里格插值什么是克里格插值?距离权重倒数插值和样条法插值被归类为确定性的插值方法,因为它们是直接基于周围已知点的值进行计算或是用指定的数学公式来决定输出表面的平滑度的插值方法。
而第二个插值方法家族包括的是一些地统计学的插值方法(如克里格插值),这些方法基于一定的包括诸如自相关(已知点间的统计关系)之类的统计模型。
因此,这些方法不仅有能力生成一个预测表面,而且还可以给出预测结果的精度或确定性的度量。
克里格插值与距离权重倒数插值相似之处在于给已知的样本点赋权重来派生出未知点的预测值。
这两种内插方法的通用公式如下,表达为数据的权重总和。
其中, Z(Si)是已测得的第i个位置的值;λi是在第i个位置上测得值的未知的权重;S0是预测的位置;N 是已知点(已测得值的点)的数目。
在距离权重倒数插值中,权重λi仅取决于距预测位置的距离。
然而,在克里格插值中,权重不仅建立在已知点和预测点位置间的距离的基础上,而且还要依据已知点的位置和已知点的值的整体的空间分布和排列。
应用权重的空间排列,空间自相关必须量化。
因此,运用普通克里格插值(Ordinary Kriging),权重λi取决于已知点的拟合模型、距预测位置的距离和预测点周围的已知点间的空间关系。
利用克里格方法进行预测,必须完成以下两个任务:(1)揭示相关性规则。
(2)进行预测。
要完成这两项任务,克里格插值方法通过以下两个步骤完成:(1)生成变异函数和协方差函数,用于估算单元值间的统计相关(也叫空间自相关),而变异函数和协方差函数也取决于自相关模型(拟合模型)。
(2)预测未知点的值。
因为前面已经说过的两个明确的任务,因此要用克里格方法对数据进行两次运算:第一次是估算这些数据的空间自相关而第二次是做出预测。
变异估计(Variography)变异估计就是拟合一个数学模型或空间模型,象已知的结构分析。
在已测点结构的空间建模中,首先得出经验半变异函数的曲线图,计算如下:半变异函数(距离h)= 0.5*均值[ (在i 位置的值-在j 位置的值)2 ]用于计算被距离h分隔的每一点对相对应的位置。
克里金插值法.pptx
针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i (i=1,2,……,
n)满足关系式:
n
i 1
i 1
以无偏为前提,kriging 方差为最小可得到求解待定权系数i 的方程组:
(5)根据求出的权重值,代入公式(1),即可求得评估领域内 n 个采样值的线性组合[2]。
克里金插值法的方法路线图如下:
3
导入数据
数据分析
是否服从 正态分布
是
是否存在 趋势
否
否 数据变换
是 泛克里金方法
根据数据选择 合适的方法
进行预测
计算克里金系数
拟合理论半 变异函数图
绘制经验半 变异函数图
绘制方差 变异云图
c 1
i
ni
dw 1
i1 c d w
(2)根据搜索策略选择合适的参估点,如图 2:
(4)
2
图 2 参估点图示
(3)根据已经求出的变异函数以及采样点数量,三个采样点列出三个等式,求出方程 组的系数,公式为:
C(1,1) C(2,1)
C(3,1)
C(1,2) C(2,2) C(3,2)
C(1,3)1 C(0,1) C(2,3)2 C(0,2)
不取决于 s 点的位置,而取决于位移量 h。为了确保自相关方程有解,必须允许某两点间自 相关可以相等。
然后,可以对方程式左边 Z(s) 进行变换。例如,可以将其转换成指示变量,即如果Z(s)
低于一定的阈值,则将其值转换为 0,将高于阈值的部分转换为 1,然后对高于阈值部分作 出预测,基于此模型作出预测便形成了指示克里金模型。如果将指示值转变成含有变量的
克里格插值
0x 克里格(Kringing )插值法是建立在统计学理论基础上,实际上是利用区域化变量的原始数据和半方差数据的结构特征,对位采样点的区域化变量的取值进行线性最优无偏估计的一种方法,也就是根据待估样点有限领域内若干已经择定的测定的样点数据,在认真考虑了阳电的形状、大小和相互空间位置之间的关系,以及他们与待估样点见相互位置关系和编译函数提供的结构信息之后,对待估样点间相互位置关系的编译函数提供的结构信息之后,对待估样点值进行的一种线性最优无偏估计。
下图为运用克里格法计算未知点的值的一般步骤:其插值原理如下:设在某一研究内未知点0x 的属性为)(0x Z ,其周围相关范围内有n 个已知已测点),,2,1(n i x i ⋯=。
通过n 个测定值的线性组合求其估计值)(0x Z :)()(10i n i i x Z x Z ∑==λ式中i λ为)(i x Z 位置有关的加权系数,并且∑==ni i 11λ克里格插值法是根据无偏估计和方差最小的要求来确定上式中的系数i λ。
1.构造半变异系数:设j x 和i x 的距离问为h 。
设n 个样点中mh 对样点的距离为h ,以他们的含量差)(-)(i j x Z x Z 构造的半变异函数为:2))()((21)(∑=--=h x x i j i j x Z x Z m h a 2.拟合得出变异系数:将n 个样点的含量带入公式,使用直线函数进行拟合3.构造矩阵和向量:求出任意两个已知点的半变异函数值,构造矩阵A:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯=011110101021221112n n n n a a a a a a A 取任意一个已知点i x ,求出与未知点0x 的距离并代入求出该点与未知点0x 的半变异函数值0i a ,得到向量B:)1,,,,(02010n a a a B ⋯=方程AX=B 的姐的前n 个分量即为公式()的权重系数i λ。
克里金(克里格)(Corigine)算法
克里格,或者说克里金插值Kriging。
法国krige名字来的。
特点是线性,无偏,方差小,适用于空间分析。
所以很适合地质学、气象学、地理学、制图学等。
相对于其他插值方法。
主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。
(当然也看你算法设计和电脑反应速度了呵呵)。
而那些趋势面法,样条函数法等。
虽然较快,但是毕竟程度和适合用范围都大受限制。
具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。
克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。
以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。
int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。
double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。
克里格法插值法
克里格法插值法克里格法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
其特点是线性,无偏,方差小,适用于空间分析。
所以很适合地质学、气象学、地理学、制图学等。
相对于其他插值方法。
主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以计算速度较慢。
而那些趋势面法,样条函数法等。
虽然较快,但是逼近程度和适用范围都大受限制。
克里格插值又分为:简单,普通,块,对数,指示性,泛,折取克里格插值等。
克里格插值的变异函数有球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里格方法。
如与分形的结合,发展了分形克里格法;与三角函数的结合,发展了三角克里格法;与模糊理论的结合,发展了模糊克里格法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数。
它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
克里格插值法
工程数学
提出了如下的平稳假设及内蕴假设: 提出了如下的平稳假设及内蕴假设:
{ 随机函数: 随机函数:Z (u ), u ∈ 研究范围} ,其空间分布律不因平移 而改变,即若对任一向量h, 而改变,即若对任一向量 ,关系式
F ( z1 , z2 , ⋅⋅⋅; x1 , ⋅⋅⋅) = F ( z1 , z2 , ⋅⋅⋅; x1 + h, x2 + h, ⋅⋅⋅)
D(ξ ) = Var (ξ ) = E[ξ − E (ξ )] = E (ξ ) − E (ξ )2 22来自工程数学工程数学
(3)协方差 ) 协方差是用来刻画随机变量之间协同变化程度的指标, 协方差是用来刻画随机变量之间协同变化程度的指标,其 大小反映了随机变量之间的协同变化的密切程度。 大小反映了随机变量之间的协同变化的密切程度。
σ ij = Cov(ξ1 , ξ 2 ) = E[(ξ1 − E (ξ1 ) (ξ 2 − E (ξ 2 ) ] ) )
= E (ξ1ξ 2 ) − E (ξ1 ) E (ξ 2 )
(4)相关系数 ) 协方差是有量纲的量,与随机变量分布的分散程度有关, 协方差是有量纲的量,与随机变量分布的分散程度有关,为 消除分散程度的影响,提出了相关系数这个指标。 消除分散程度的影响,提出了相关系数这个指标。
成立时,则该随机函数 成立时,则该随机函数Z(x)为平稳性随机函数。 为平稳性随机函数。 这实际上就是指,无论位移h多大,两个 维向量的随机变量 多大, 这实际上就是指,无论位移 多大 两个k维向量的随机变量
{ Z ( x1 ), Z ( x2 ),L , Z ( xk )} 和 { Z ( x1 + h), Z ( x2 + h),L , Z ( xk + h)}
(最新整理)克里金插值法
(完整)克里金插值法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)克里金插值法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)克里金插值法的全部内容。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D 。
Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法.1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z(x),在点x i ∈A (i=1,2,……,n )处属性值为Z(x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n)的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
kriging(克里金方法,克里金插值)[1]
精选完整ppt课件
15
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
精选完整ppt课件
精选完整ppt课件
21
三、克里金估计(基本思路
----以普通克里金为例
设 x1,, xn 为区域上的一系列观测点,zx1, ,zxn
为相应的观测值。区域化变量在 x 0 处的值 z*x0 可
采用一个线性组合来估计:
n
z*x0 izxi i1
无偏性和估计方差最小被作为 i 选取的标准
无偏 最优
16
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
提出了“地质统计学”概念 (法文Geostatistique)
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
区域化变量理论
克里金估计
1977年我国开始引入精选完整ppt课件随机模拟
3
克里金插值方法
n
z*x0izxi i1 (普通克里金)
•不仅考虑待估点位置与
特殊地,当h=0时,上式变为
Var[Z(u)]=C(0), 即方差存在且为常数。
克里格插值
克里格插值
在克里格插值过程中,需注意以下几点:
(1)数据应符合前提假设
(2)数据应尽量充分,样本数尽量大于80,每一种距离间隔分类中的样本对数尽量多于10对(3)在具体建模过程中,很多参数是可调的,且每个参数对结果的影响不同。
如:块金值:误差随块金值的增大而增大;基台值:对结果影响不大;变程:存在最佳变程值;拟合函数:存在最佳拟合函数(4)当数据足够多时,各种插值方法的效果相差不大。
3. 克里格方法的分类
目前,克里格方法主要有以下几种类型:普通克里格(Ordinary Kriging);简单克里格(Simple Kriging);泛克里格(Universal Kriging);协同克里格(Co-Kriging);对数正态克里格(Logistic Normal Kriging);指示克里格(Indicator Kriging);概率克里格(Probability Kriging);析取克里格(Disjunctive Kriging)等。
下面简要介绍一下ArcGIS中常用的几种克里格方法的适用条件,其具体的算法、原理可查阅相关文献资料。
不同的方法有其适用的条件,按照以上流程图所示步骤,当数据不服从正态分布时,若服从对数正态分布,则选用对数正态克里格;若不服从简单分布时,选用析取克里格。
当数据存在主导趋势时,选用泛克里格。
当只需了解属性值是否超过某一阈值时,选用指示克里格。
当同一事物的两种属性存在相关关系,且一种属性不易获取时,可选用协同克里格方法,借助另一属性实现该属性的空间内插。
当假设属性值的期望值为某一已知常数时,选用简单克里格。
当假设属性值的期望值是未知的,选用普通克里格。
克里格空间插值法权威PPT共63页
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
克里格空间插值法
1.7 区域变量
在有趋势的情况下,假设数据是弱平稳的,并假设对于 所有的h,增量Z(x)-Z(x+h)的方差是有限的,而且只 是相隔h的函数。在该假设成立的情况下,定义半方差为:
其中,n是相隔距离为h的样点对的个数。将r(h)和h 作为纵、横坐标作图即可获得实验半方差函数图(图 7.10)。实验方差函数图不受数据的非平稳性影响,是空 间变异性研究中的一个有力工具,也是区域变量定量描述 的第一步。
1.8 方差变异函数
2)曲线从较低的方差值升高,到一定的间隔值时 到达基台值,这一间隔称为变程(range)。在理 论函数模型中,变程用a表示。 变程是半方差函数中最重要的参数,它描述 了该间隔内样点的空间相关特征。在变程内,样 点越接近,两点之间相似性、即空间上的相关性 越强。很明显,如果某点与已知点距离大于变程, 那么该点数据不能用于数据内插(或外推),因 为空间上的自相关性不复存在。 变程的高低取决于观测的尺度,说明了相互 作用所影响的范围。不同的属性,其变程值可以 变化很大。
空间插值分析是将离散点的测量数据转 换为连续的数据曲面的方法。其作用是便于 与其它空间现象的分布模式进行比较。 空间插值的理论假设是空间位置上越靠 近的点,越可能具有相似的特征值;而距离 越远的点,其特征值相似的可能性越小。
1.1空间插值法简述
空间插值法包括了空间内插和外推两种算法 1 内插算法是一种通过已知点的数据推 求同一区域其它未知点数据的计算方法; 2 空间外推算法则是通过已知区域的数 据,推求其它区域数据的方法
1.8 方差变异函数
图 典型试验方差函数和拟合曲线
1.9理论变异函数模型
1.线性模型(Linear model_)
克里金插值(kriging)
精选可编辑ppt
16
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
精选可编辑ppt
Z*(x0)
22
(1)无偏条件
从本征假设出发, 可知 EZx为常数,有
E Z * x0 Z x0
E
n i 1
iZ xi
Z x0
n i m m 0
i1
(在搜寻邻域内为 常数,不同邻域可 以有差别)
可得到关系式:
n
i 1
i 1
精选可编辑ppt
Z*(x0)
23
离散变量(类型变量):
P
F (u ;k|(n ) )Por { Z b (u ) k|(n )}
不同的取值方式:估计(estimation) 模拟(精选si可m编u辑lappttion)
6
连续型地质变量
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
离散型地质变量
(范畴变量) 类型变量
砂体 相 流动单元 隔夹层 断层
精选可编辑ppt
31
具不同变程 的克里金插 值图象
精选可编辑ppt
32
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
克里金插值法的详细介绍。kriging。
克里金插值法的详细介绍。
kriging。
kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。
在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。
这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。
2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。
半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。
利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。
----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。
3.用拟合的模型计算出三个参数。
例如球状模型中nugget为c0,range为a,sill为c。
4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。
假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。
(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。
do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999hmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))then< p="">elsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))then locat(j)=i3exitend ifenddoendifenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5*$ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j)) end doenddoendifenddo</hmid(k))then<>。
克里金插值法
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。