单结晶体管触发电路

合集下载

第十一讲-第十二讲单结晶体管触发

第十一讲-第十二讲单结晶体管触发

同步电压为锯齿波的触发电路
输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路), 也可为单窄脉冲。 三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移 相、同步环节。此外,还有强触发和双窄脉冲形成环节。
图5-7 同步电压为锯齿波的触发电路
同步电压为锯齿波的触发电路
R1 5
1) 脉冲形成环节
VD 1 1~VD 1 4
C 触发脉冲同步及移相
IM
I
t1 t2 t3
t4
图1 理想的晶闸管触发脉冲电流波形
t1~t2脉冲前沿上升时间(<1s) t1~t3强脉宽度 IM强脉冲幅值(3IGT~5IGT)
t1~t4脉冲宽度 I脉冲平顶幅值(1.5IGT~2IGT)
1.单结晶体管
(1)单结晶体管的结构
(a)结构 (b)等效电路 (c)图形符号 (d)外形管脚排列
单结晶体管触发电路
单结晶体管触发电路
单结晶体管
作用:产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻 由阻断转为导通。
对晶闸管触发电路的要求(重在理解):
A 触发信号有足够功率(大于参数小于最大允许峰值)
B 触发信号的波形要求(前沿尽可能陡,有强触发,有宽度)
前沿电流上升率不小于0.5A/us;电阻性负载脉宽大于50us 电感性1ms 三相全控桥 大于3.3ms.
电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接 在V8集电极电路中。
同步电压为锯齿波的触发电路
2) 锯齿波的形成和脉冲移相环节
锯齿波电压形成的方案较多,如采用自举式电路、 恒流源电路等;本电路采用恒流源电路。
图5-7 同步电压为锯齿波的触发电路
恒流源电路方案,由V1、V2、V3和C2等元件组成

单结晶体管触发电路工作原理

单结晶体管触发电路工作原理

单结晶体管触发电路工作原理单结晶体管触发电路是一种非常重要的电路,在各个行业中都得到了广泛应用。

它主要应用在高斯脉冲发生器、时基电路、定时器、闪烁灯、时间测量等领域。

单结晶体管触发电路的工作原理非常简单,它是由一个晶体管和其他一些电子元件组成的。

当你给电路添加上电源后,将会形成一个初始电流。

当电路中的电容充电到一定的程度后,会导致晶体管的基极电压达到一个足够高的值,从而使其进入工作区域。

此时,晶体管的电流会发生突变,从而使电路上的其他元件也会产生相应的变化。

在单结晶体管触发电路中,晶体管发挥着重要的作用。

它在电路中扮演着开关的角色,即只有当它工作时,电路中才会有电流通过。

而当电路中的电容充满电荷后,晶体管就会被关闭,从而停止电流的流动。

这样,我们就可以利用电路中电容的充电过程,来控制晶体管的启闭状态。

除了晶体管之外,单结晶体管触发电路中其它的元件也起到了不可忽视的作用。

例如电容、电阻、二极管、放大器等。

它们每一个都有着特定的功能,从而保证了整个电路的正常运转。

还有一点要注意的是,单结晶体管触发电路是一种非常敏感的电路。

它对电压、电流、温度等因素都非常敏感,一旦受到外界干扰,就会导致电路的不稳定或失效。

综上所述,单结晶体管触发电路是一种非常重要的电路,其工作原理简单,但是应用领域非常广泛。

在实际应用中,我们需要注意电路的稳定性,同时也需要合理地搭配各个电子元件,以便使电路正常地工作。

单结晶体管触发电路

单结晶体管触发电路

1.2 单结晶体管张弛振荡器
uC
UP
R
R2 E B2
UV
t
U
C
B1
uo
uC R1
uO
t
电路组成
振荡波形
1. uE = uC <UP 时,单结管不导通,uo 0。
此时R1上的电流很小,其值为:
Iபைடு நூலகம்R1
R1
U RB1 RB2
R2
U
RB1 RB 2
E
R1、R2是外加的,不同于内 部的RB1、RB2。前者一般取 几十欧~几百欧; RB1+RB2 一般为2~15千欧。
R
R2 E B2
C
B1 IR1
uC R1
uO
2. 随电容的 充电,uC逐渐升高。当 uC UP 时,单结 管导通, uo=UP-UF。然后电容通过R1放电,当放电 至 uc UV 时,单结管重新关断,使 uo0。R1上便 得到一个脉冲电压。
uC
UP
UV t
uo
UP-UF
t
UP、UV-- 峰点、谷点电压 UF --PN结正向导通压降
PN结反偏,iE很小; 当 uE UP 时
PN结正向导通, iE迅 速增加。
-- 分压比
(0.35 ~ 0.75) UP -- 峰点电压 UF -- PN结正向
导通压降
单结晶体管的型号及使用常识
BT3 5B 特性参数分类 耗散功率500mW 三个电极 特种管 半导体
图10.15 单结管型号的各符号意义
R
R2
E E
uC C
R1 uo
R2起温度补偿作用
模拟电子技术
模拟电子技术
单结晶体管触发电路

单结晶体管触发电路

单结晶体管触发电路

优点:单结晶体管触发电路比较简单,温度性能比较好,有一定的抗干扰能力,
缺点:脉冲前沿陡,输入功率较小,脉冲宽度较窄,只能承受调节RP (电位器R2),无法加入其它信号,移相范围≤180°,
一般为150°此电路可以用在单相可控硅整流电路要求不高的场合,能触发50A 以下的晶闸管。

交流电压经桥式整流和稳压后削波后得到梯形电压。

脉冲电压形成时梯形同步电压经R2、R3对电容C 充电,
C 两端电压上升到单结晶体管峰点电压UP(BT33的峰点电压)时,单结晶体管由截止变为导通,通过e---b1---R5放电,
放电电流在电阻RB1(放电电阻R5)上产生一组尖顶脉冲电压,由RB1(放电电阻R5)输出一组触发脉冲,其中第一个脉冲使晶闸管触发导通,后面的脉冲对晶闸管工作没有影响。

随着C 的放电,当电容两端电压下降到单结晶体管谷点电压UV(BT33谷底电压)时单结晶体管重新截止,
C 重新充电,重复上述过程。

RB1(放电电阻R5)上又输出一组峰顶脉冲电压,这个过程重复进行。

当梯形电压过零点时,电容C 两端电压也为零,因此电容每一次连续充放电的起点就是电源电压过零点,这样就保证输出电压的频率和电源频率同步。

移相是通过改变RP(电位器R2)的大小实现的,改变RP(电位器R2)的大小可以改变C 的充电速度,因此就改变了第一个脉冲出现的时间,从而达到了移相的目的。

分析单结晶体管触发电路

分析单结晶体管触发电路

谷点电流IV。由于UE随IE增大而减小,动态电阻 reb1
U E I E
为负值,故从P点到V
点这段曲线称为单结晶体管的负阻特性。对应这段负阻特性的区域称为负阻区。
V点以后,当IE继续增大,空穴注入N区增大到一定程度,部分空穴来不及与 基区电子复合,出现空穴剩余,使空穴继续注入遇到阻力,相当于RB1变大,因 此在V点之后,元件又恢复正阻特性,UE随着IE的增大而缓慢增大。这段区域称 为饱和区。显然,UV是维持管子导通的最小发射极电压,一旦UE<UV,管子将 截止。
2020年9月27日星期日
6
学习情第境7一章单相电可控力整电流子电技路术的制作
由上述分析可知,单结晶体管具有以下特点:
பைடு நூலகம்1.当发射极电压UE小于峰点电压UP时,单结晶体管为截 止状态,当UE上升到峰点电压时,单结晶体管触发导通。
2.导通后,若UE低于谷点电压UV,单结晶体管立即转入 截止状态。
3.峰点电压UP与管子的分压比η及外加电压UBB有关。 η
接上外加电源UEE,调整RP使UE由零逐渐加大,在UE<UA+UD=ηUBB+UD时 (UD为等效二极管的正向压降),二极管因反偏而截止,发射极仅有很小的反 向电流流过。E与B1间呈现很大的电阻,管子处于截止状态,这段区域称截止区。 如图b中OP段。
当UE升高到UE=ηUBB+UD时,达到图b中P点,二极管开始正偏而导通。IE随 之开始增加。P点所对应的发射极电压UP和电流IP分别称为单结晶体管的峰点电
2020年9月27日星期日
4
学习情第境7一章单相电可控力整电流子电技路术的制作
当E极开路时,图中A点对B1极间电压(即上压降)为
式中

晶闸管触发电路

晶闸管触发电路
晶闸管触发电路
•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。

单结晶体管触发电路及单相半波可控整流电路实验报告

单结晶体管触发电路及单相半波可控整流电路实验报告

单结晶体管触发电路及单相半波可控整流电路实验报告实验目的:研究单结晶体管触发电路和单相半波可控整流电路的特性。

实验器材:单结晶体管、电阻、电容、整流电路板、交流电源。

实验原理:1.单结晶体管触发电路:单结晶体管触发电路是一种常用的触发电路,可用于控制开关电路,使电路开启或关闭。

单结晶体管的基极和发射极之间的电流可以通过控制功率电源的输入电压来调节,从而实现对整个触发电路的控制。

2.单相半波可控整流电路:单相半波可控整流电路主要包括一个可控硅管和一个载流电阻。

通过控制可控硅管的导通角,可以实现对交流电的半波整流,将交流电转换为直流电。

实验步骤:1.搭建单结晶体管触发电路:根据实验要求,接入单结晶体管、电阻和电容,连接交流电源。

确定合适的电流和电压参数。

2.调节交流电源输出电压,观察并记录单结晶体管的调节情况。

3.搭建单相半波可控整流电路:根据实验要求,接入可控硅管和载流电阻,连接交流电源。

确定合适的电流和电压参数。

4.调节交流电源输出电压,观察并记录可控硅管的导通角度和整流电路的输出情况。

实验结果:1.单结晶体管触发电路的调节情况:在不同的输入电压下,单结晶体管的输出电流变化情况。

2.单相半波可控整流电路的输出情况:记录不同导通角度下,整流电路的输出电流和输出电压。

实验讨论:根据实验结果,分析单结晶体管触发电路和单相半波可控整流电路的特性和工作原理。

对于单结晶体管触发电路,可以控制电路的开启和关闭,实现对电路的控制。

对于单相半波可控整流电路,可以将交流电转换为直流电,实现对电流的整流。

单结晶体管触发电路(解析)教学文案

单结晶体管触发电路(解析)教学文案

单结晶体管触发电路浏览2695发布时间2009-03-20单结晶体管触发电路之一图1(a)是由单结晶体管组成的张弛振荡电路。

可从电阻R1上取出脉冲电压ug。

(a) 张弛振荡电路(b) 电压波形图1 单结晶体管张弛振荡电路假设在接通电源之前,图1(a)中电容C上的电压uc为零。

接通电源U后,它就经R向电容器充电,使其端电压按指数曲线升高。

电容器上的电压就加在单结晶体管的发射极E和第一基极B1之间。

当uc等于单结晶体管的峰点电压UP时,单结晶体管导通,电阻RB1急剧减小(约20Ω),电容器向R1放电。

由于电阻R1取得较小,放电很快,放电电流在R1上形成一个脉冲电压ug,如图1(b)所示。

由于电阻R取得较大,当电容电压下降到单结晶体管的谷点电压时,电源经过电阻R供给的电流小于单结晶体管的谷点电流,于是单结晶体管截止。

电源再次经R向电容C充电,重复上述过程。

于是在电阻R1上就得到一个脉冲电压ug。

但由于图1(a)的电路起不到如后述的“同步”作用,不能用来触发晶闸管。

单结晶体管触发电路之二单结晶体管触发电路如图2所示,带有放大器。

晶体管T1和T2组成直接耦合直流放大电路。

T1是NPN型管,T2是PNP型管。

UI是触发电路的输入电压,由各种信号叠加在一起而得。

UI经T1放大后加到T2。

当UI增大时,IC1就增大,而使T1的集电极电位UC1,即T2的基极电位UB2降低,T2更为导通,IC2增大,这相当于晶体管T2的电阻变小。

同理,UI减小时,T2的电阻变大。

因此,T2相当于一个可变电阻,随着UI的变化来改变它的阻值,对输出脉冲起移相作用,达到调压的目的。

输出脉冲可以直接从电阻R1上引出,也可以通过脉冲变压器输出。

图2 单结晶体管触发电路因为晶闸管控制极与阴极间允许的反向电压很小,为了防止反向击穿,在脉冲变压器副边串联二极管D1,可将反向电压隔开,而并联D2,可将反向电压短路。

单结晶体管触发电路之三——单相半控桥式整流电路图3 由单结晶体管触发的单相半控桥式整流电路改变电位器R P的数值可以调节输出脉冲电压的频率。

单结晶体管触发电路

单结晶体管触发电路

U UV U U P RE IV IP
( 2)、电阻的选择 电阻是用来补偿温度对峰点电压的影响,通常取值范围为: 200~ 600。 ( 3)、输出电阻的选择 输出电阻的大小将影响将影响输出脉冲的宽度与幅值,通常取值 范围为:50~100。 ( 4)、电容C的选择 电容 C的大小与脉冲宽窄和的大小有关,通常取值范围为:0.1~ 1。
有合格的元件均能可靠触发,可参考元件出厂的试验数据或产
品目录来设计触发电路的输出电压和电流值。
(3) 触发脉冲应有一定的宽度,脉冲的前沿尽可能陡, 以使元件在触发导通后,阳极电流能迅速上升超过掣住电流 而维持导通。普通晶闸管的导通时间约为6 μs, 故触发脉冲
的宽度至少应有6μs以上。对于电感性负载,由于电感会抵制 电流上升,因而触发脉冲的宽度应更大一些, 通常为0.5~1
ig ig m
0
t1
t
图1-14 强触发电流波形
(4) 触发脉冲必须与晶闸管的阳极电压同步,脉冲移相 范围必须满足电路要求。为保证控制的规律性,要求晶闸管 在每个阳极电压周期都必须在相同的控制角触发导通,这就 要求触发脉冲的频率与阳极电压的频率一致,且触发脉冲的
前沿与阳极电压应保持固定的相位关系,这叫做触发脉冲与 阳极电压同步。不同的电路或者相同的电路在不同负载、不
3.触发电路各元件的选择
( 1)、充电电阻的选择 改变充电电阻的大小,就可以改变张驰振荡电路的频率,但是频 率的调节有一定的范围,如果充电电阻选择不当,将使单结晶体 管自激振荡电路无法形成振荡。 充电电阻的取值范围为: 其中: ——加于图中B-E两端的触发电路电源电压 ——单结晶体管的谷点电压 ——单结晶体管的谷点电流 ——单结晶体管的峰点电压 ——单结晶体管的峰点电流

单结晶体管触发电路

单结晶体管触发电路

(3)移相控制
工作原理: 当Re增大时,单结晶体管发射极充电到峰点电压Up的 时间增大,第一个脉冲出现的时刻推迟,即控制角α 增 大,实现了移相。
(4)脉冲输出 工作原理:
触发脉冲ug由R1直接取出,这种方法简单、经济, 但触发电路与主电路有直接的电联系,不安全。对于晶 闸管串联接法的全控桥电路无法工作。所以一般采用脉 冲变压器输出。
围必须满足电路要求。
图2.4.1
强触发电流波形
特点:
2.4.2 晶闸管触发电路
由单结晶体管构成的 触发电路具有简单、可靠、 抗干扰能力强、温度补偿 性能好,脉冲前沿陡等优 点,在小容量的晶闸管装 置中得到了广泛应用。 组成: 由自激振荡、同步电 源、移相、脉冲形成等 部分组成。
图2.4.2 单结晶体管触发电路及波形
T 1 Re C ln( ) 1
图2.4.2 单结晶体管触发电路及波形
上式中 0.3 ~ 0.9是单结晶体管的分压比,即调节Re,可调节振荡频率。
(2)同步电源 工作原理:
同步电压由变压器TB获得,而同步变压器与主电路接至同一 电源,故同步电压与主电压同相位、同频率。 同步电压经桥式整流、稳压管Dw削波为梯形波uDW,而削波 后的最大值Uw既是同步信号,又是触发电路电源。 当uDW过零时,电容C经e-b1、R1迅速放电到零电压。这就是说, 每半周开始,电容 C 都从零开始充电。进而保证每周期触发电路 送出第一个脉冲距离过零的时刻(即控制角α 1 对触发电路的要求
触发电路对其产生的触发脉冲要求:
1、触发信号可为直流、交流或脉冲电压。 2、触发信号应有足够的功率(触发电压和触发电流)。
3、触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使
元件在触发导通后,阳极电流能迅速上升超过掣住电流而维 持导通。 4、触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范

单结晶体管触发电路实验原理

单结晶体管触发电路实验原理

单结晶体管触发电路实验原理单结晶体管触发电路实验原理单结晶体管触发电路是一种常用的电路,在实际电路中得到广泛应用,主要用于实现时间延迟、脉冲放大、钟形波形产生等功能。

单结晶体管触发电路由一个单结晶体管和少量的外部元件组成,其中单结晶体管作为开关管,在电路中起到触发的作用。

实验目的:1. 掌握单结晶体管的基本性质及其工作原理。

2. 了解单结晶体管触发电路的组成原理及其工作性能。

3. 学会使用示波器和万用表等仪器进行电气测量,掌握电路参数的测量方法。

实验器材:1. 单结晶体管(2N3904)一个2. 电容器(10μF)一个3. 电感线圈(33mH)一个4. 变阻器(10kΩ)一个5. 电源(12V)一个6. 示波器一个7. 万用表一个实验原理:单结晶体管是一种半导体器件,它由一个PN结构组成,该结构具有正极性和负极性两个区域。

当单结晶体管处于正向偏置状态时,P区的空穴和N区的自由电子在PN结处相遇,发生复合现象,并释放出能量。

这些能量以光子的形式从PN结的两侧发射出来,形成光子流。

光子流引起PN结区域的电流急剧上升,使得单结晶体管处于导通状态。

当单结晶体管处于反向偏置状态时,P区的空穴和N区的自由电子被PN结的势垒隔离,不能通过PN结流过去,因此单结晶体管处于截止状态。

单结晶体管触发电路是基于单结晶体管的开关特性设计的电路。

它由单结晶体管、电容器、电感线圈、变阻器和电源组成。

当电源加上电路时,电容器开始充电,直到电压达到单结晶体管的开启电压为止,单结晶体管导通,电容器的电荷被释放,产生一个脉冲输出信号,同时电感线圈的磁场也会随之变化,这会产生一个反向的电压,使得单结晶体管再次处于截止状态。

实验步骤:1. 连接电路:将单结晶体管、电容器、电感线圈、变阻器和电源按照电路图相连接,注意极性。

2. 调节变阻器:使用万用表测量电路中各个元件的参数,并调节变阻器使得单结晶体管触发电路的电压到达开启电压。

3. 测量电路输出波形:将示波器的探头分别接在单结晶体管的发射极和集电极上观察输出波形,并使用示波器测量输出脉冲的频率。

(完整版)单结晶体管触发电路(解析)

(完整版)单结晶体管触发电路(解析)

单结晶体管触发电路浏览2695发布时间2009-03-20单结晶体管触发电路之一图1(a)是由单结晶体管组成的张弛振荡电路。

可从电阻R1上取出脉冲电压ug。

(a) 张弛振荡电路(b) 电压波形图1 单结晶体管张弛振荡电路假设在接通电源之前,图1(a)中电容C上的电压uc为零。

接通电源U后,它就经R向电容器充电,使其端电压按指数曲线升高。

电容器上的电压就加在单结晶体管的发射极E和第一基极B1之间。

当uc等于单结晶体管的峰点电压UP时,单结晶体管导通,电阻RB1急剧减小(约20Ω),电容器向R1放电。

由于电阻R1取得较小,放电很快,放电电流在R1上形成一个脉冲电压ug,如图1(b)所示。

由于电阻R取得较大,当电容电压下降到单结晶体管的谷点电压时,电源经过电阻R供给的电流小于单结晶体管的谷点电流,于是单结晶体管截止。

电源再次经R向电容C充电,重复上述过程。

于是在电阻R1上就得到一个脉冲电压ug。

但由于图1(a)的电路起不到如后述的“同步”作用,不能用来触发晶闸管。

单结晶体管触发电路之二单结晶体管触发电路如图2所示,带有放大器。

晶体管T1和T2组成直接耦合直流放大电路。

T1是NPN型管,T2是PNP型管。

UI是触发电路的输入电压,由各种信号叠加在一起而得。

UI经T1放大后加到T2。

当UI增大时,IC1就增大,而使T1的集电极电位UC1,即T2的基极电位UB2降低,T2更为导通,IC2增大,这相当于晶体管T2的电阻变小。

同理,UI减小时,T2的电阻变大。

因此,T2相当于一个可变电阻,随着UI的变化来改变它的阻值,对输出脉冲起移相作用,达到调压的目的。

输出脉冲可以直接从电阻R1上引出,也可以通过脉冲变压器输出。

图2 单结晶体管触发电路因为晶闸管控制极与阴极间允许的反向电压很小,为了防止反向击穿,在脉冲变压器副边串联二极管D1,可将反向电压隔开,而并联D2,可将反向电压短路。

单结晶体管触发电路之三——单相半控桥式整流电路图3 由单结晶体管触发的单相半控桥式整流电路改变电位器R P的数值可以调节输出脉冲电压的频率。

单结晶体管触发电路..

单结晶体管触发电路..

VD e
Rb1
b)
b1
单结晶体管图形符号和 等效电路
Rbb Rb1 Rb 2 为硅片本身电阻
(2).单结晶管工作原理——伏安特性
Ie
Re
a)
Ib2
e
开通时大于UP 关断时Ie小于IV
b2
V
S
Ue
Ue
Ee
b)
I b1 Ib 2
VD
b1
U bb
U bb
P UP
b2
Rb 2
A S
UV
U e ( sat )
电源 变流电路
触发信号
负载
控制电路:综合系
同步电路
驱动电路
反馈信号
统信息进行处理,产 生和负载所需电压相 适应的相位控制信号。
同步电路:获得与
同步信号
移 相 控制电路
相 位 控制信号
控制电路
给定信号
交流源同步的正弦交 流信号,确定各元件自 然换相点和移相范围。
移相控制电路:由相位控制信号和同步信号结合,产生移相
单结晶体管触发电路及波形
3、移相控制 工作原理: 当Re增大时,单结晶 体管发射极充电到峰点电 压Up的时间增大,第一个 脉冲出现的时刻推迟,即 控制角α 增大,实现了移 相。
单结晶体管触发电路及波形
实际应用中,常用晶体管 V 代替可调电阻器 Re,以便实 现自动移相,同时脉冲的输出一般通过脉冲变压器 TP,以 实现触发电路与主电路的电气隔离,如图所示。
IG
0
大容量晶闸管门极触发电流要求脉冲峰值在
t
t1
t2
t3
1A ~ 1.5 A以上,前沿的电流上升率大于1 A s

课题5.单结晶体管触发电路

课题5.单结晶体管触发电路
1.触发信号应该具有足够的触发功率(触发电压和触发电流),以 保证晶闸管可靠导通;(一般幅度为4 - 10V )
2. 为使触发时间准确,触发脉冲的前沿要陡。(前沿时间不大于 10μs)
3.触发脉冲必须与主电路晶闸管的阳极电压同步。 4.触发脉冲要有一定的宽度,以保证晶闸管可靠地导通。(电阻负 载电路,脉冲宽度应大于20μs) 5.脉冲的相位能平稳地移动,并有足够宽的移相范围。 6. 触发电路在不输出触发脉冲时 ,电路输出的漏电压不应大于 0.25V ,以免发生误触发。
二、单结晶体管
2.单结晶体管等效电路
二、单结晶体管
3.单结晶体管符号与实物
第一基极b1 发射极e 第二基极b2
二、单结晶体管
4.单结晶体管的伏安特性
单结晶体管测试电路
单结晶体管测试等效电路
二、单结晶体管
4.单结晶体管的伏安特性
当开关S闭合,电压Ubb通过单结 晶体管等效电路中的rbl和rb2分压, 得A点电位UA,可表示为
C
U GT
相对应的门极直流电压 , 一般为1V ~ 5V
0
(b)
一、对触发电路的要求
常见的触发脉冲电压波形
正弦波
尖脉冲
方波
强触发脉冲
脉冲列
VT1
RP
R C
对于并联晶闸管的大电流变流装置及串联 晶闸管的高电压装置,应采用强触发脉冲。
VT2 RP
R C
一、对触发电路的要求
采用强触发脉冲的目的是:缩小晶闸管
注意:阳极加正向电压是指阳极电位高于阴极电位,阳极电位可
以是正也可以是负。门极正向电压是指门极电位高于阴极电位。
晶闸管关断条件:流过晶闸管的阳极电流小于维持电流。 方法:可以通过降低晶闸管阳极-阴极间电压或增大主电路中的 电阻。

单结晶体管触发电路

单结晶体管触发电路

单结晶体管触发电路在可控整流电路中,为使晶闸管在要求时刻导通,触发电路必须在每个正半波准确提供相同控制角触发脉冲串,而且控制角大小又可以人为调节,才能实现可控的目的。

触发电路种类繁多,此处介绍单结晶体管触发电路。

单结晶体管结构•基片:低电子浓度(两基极之间上下阻值很高,电流很小)、高电阻率的N型硅片,上下两端引出第二、第一基极(双基二极管),•硅片靠近上部烧结一片空穴浓度很高的P型硅片,引出发射极。

•管子一共三个电极,一个PN结,称为单结晶体管。

•下段电阻R B1所得的电压与两基极之间电压的比值称为分压比。

约0.5~0.9•使用时在发射极和第一基极之间加一个可调的正电压,将引起发射极电流,发射极电流和发射极电压之间的函数关系叫单结晶体管伏安特性。

•当发射极电压为第一基极电压+0.6V时,PN结导通,此时发射极电压叫做峰点电压,对应的电流叫做峰点电流。

•PN结导通后,P片高浓度空穴注入N片第一基极位置,使第一基极位置的载流子浓度增加,电阻率减小,第一基极的电阻R B1随即变小,出现伏安特性下降段的负阻区(电流增大,电压反而减小)。

•发射极电压跌至最低的数值叫做谷点电压U V,对应的电流叫做谷点电流,单结晶体管工作在谷点时,表明P区注入N区的载流子浓度达到极限,R B1阻值降低到最小值了,此时如果发射极外部电路提供不了谷点电流,则R B1增大使U B1增大,PN结反偏关断。

单结晶体管震荡电路•U g为输出电压,由于单结晶体管两基极电阻很大,则R1上边的压降可以忽略不计,输出电压为零。

•接通电源后,电源为电容C充电以后,电容电压不断上升,当达到单结晶体管发射极峰点电压时,发射极和第一基极之间的PN结导通,电容对R B1、R1放电,电流注入R B1然后其阻值迅速下降,这样C 仅通过R1放电。

R1的电阻值远远小于电阻R,所以充电比放电要慢,当随着放电电压下降到谷点电压时,提供不了谷点电流给单结晶体管,又电源提供给第一基极的电压U B1高于发射极电压,PN结反偏关断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单结晶体管触发电路
看一看
单结晶体管触发电路如图3-1所示,注意观察电路中所用的元器件,特别是有关元器件的型号或参数。

三极管9012的管脚图如图3-2所示,单结晶体管BT33的管脚图如图3-3所示。

图3-1 单结晶体管触发电路
图3-2 9012的管脚图
图3-3 单结晶体管BT33的管脚图
知识链接
单结晶体管的基本特性:
1.等效电路
单结晶体管等效电路如图3-4所示。

r b1:E与B1间电阻,随发射极电流而变,即IE上升,r b1下降。

rb2:E与B2间的电阻,数值与IE无关。

rbb:两基极间电阻。

rbb = r b1 + rb2
η:称为分压比,r b1与rbb的比值,η一般在0.3 ~ 0.8 之间。

图3-4 单结晶体管等效电路图
2.导通条件
VEE > ηVBB + VD (VD为PN结的正向电压)
想一想
如图3-1所示,单结晶体管触发电路是如何工作的?
做一做
1.检测图3-1所示电路中的元器件。

2.根据图3-1所示电路完成印制板图设计(板子尺寸:100mm×80mm)。

3.根据设计的印制板图在多孔板上完成电路的装接。

注意:电解电容、二极管、稳压二极管、三极管和单结晶体管的极性。

测一测
用示波器实测并画出单结晶体管触发电路各点波形图,将结果画入如图3-5所示。

图3-5 测各点波形
学一学
单结晶体管触发电路工作特点:
1.电源变压器的二次侧24V交流电压经单相桥式整流后由稳压管V5削波得到梯形波电压,该电压既作为单结晶体管触发电路的同步电压,又作为单结晶体管的工作电源电压。

2.V7、V8组成直接耦合放大电路,V7采用PNP型管,V8采用NPN型管,触发电路的给定电压(U1)由电位器RP调节,U1经V8放大后加到V7。

三极管V7相当于由U1控制的一个可变电阻,它起到移相的作用。

3.V9~V11是三极管V8的基极正反向电压保护作用。

相关文档
最新文档