2018年北京高考理科数学高清版(无答案)
2018年高考真题理科数学(北京卷) Word版含解析
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
18年高考真题——理科数学(北京卷)
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)一.选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}|2A x x =<,{}2,0,1,2B =-,则A B =I ( )(A ){}0,1 (B ){}1,0,1- (C ){}2,0,1,2- (D ){}1,0,1,2-2.在复平面内,复数11i-的共轭复数对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( )(A )12 (B )56 (C )76 (D )7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率为f ,则第八个单音的频率为( )(A )32f(B )322f(C )1252f(D )1272f5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )4 6.设,a b r r 均为单位向量,则“|3||3|a b a b -=+r r r r ”是“a b ⊥r r ”的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( )(A )1 (B )2 (C ) 3 (D )48.设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则( )(A )对任意实数a ,()2,1A ∈ (B )对任意实数a ,()2,1A ∉(C )当且仅当0a <时,()2,1A ∉ (D )当且仅当32a ≤时,()2,1A ∉ 二.填空题(共6小题,每小题5分,共30分)9.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________。
2018年北京市高考数学试卷(理科)【附答案解析】
2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
2018北京高考卷数学[理科]试题和答案解析
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年高考北京数学理科真题答案
2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题1.A 2.D 3.B 4.D 5.C 6.C 7.CD 8.二、填空题212..119.3 10.21?3?6n?a n3yx (答案不唯一).14 =sin 13.2;13?三、解答题(15)(共13分)π1BABCBB=–,∴sin∈(解:(Ⅰ)在△,π),∴中,∵cos=2734.2?B?1cos78ab73A=,∴sin.= 由正弦定理得??34AsinsinABsin27πππAAB =,π),∴∈(.∈(0,∵),∴∠322ABBABCCABA=∵sin+sin=sin(+cos)=sincos(Ⅱ)在△中,3114333=.?)(???727214h3333hABCC== ,,=∵如图所示,在△中,sin∴CsinBC??7?BC214.33AC边上的高为.∴214分)(16)(共CABABC -解:(Ⅰ)在三棱柱中,111ABCCC∵⊥平面,1ACCA∴四边形为矩形.11CAEFAC,分别为的中点,,又11 EFAC.∴⊥BCAB.∵=BEAC∴,⊥BEFAC∴.⊥平面CCEFEFACBEAC,⊥∥,(Ⅱ)由(I)知⊥.1ABCABCEFCC,∴⊥平面又⊥平面.1BEABCBEEF,∴⊥.平面∵ xyzE如图建立空间直角坐称系-.BCDF,),1(1,(-1,0,0),由题意得0(0,2,),0G (0,2,1).0,0,2),(uuuruur∴,0)2,CB=(1,,CD=(2,,01)BCD 的法向量为设平面,n?(bc)a,,uuur?2a?c?00n?CD???,∴,∴uur??a?2b?0?n?CB?0??abc=-4,=-1令,=2,则BCD的法向量∴平面,n?4)?(2,?1,uur CDC的法向量为又∵平面,0),,2EB=(01uuruur21n?EB.∴=????cosn?EBruu21|n||EB|BCDCBCDC的由图可得二面角为钝角,所以二面角----1121.余弦值为?21GBCDF,(Ⅲ)平面的法向量为,2,1),∵(0,?1,?4)(2n?(0,0,2),uuuruuuruuur,∴与,∴不垂直,∴1),,?2=(0GFGF?2?n GF?n GFBCDBCDGF与平面内,∴与平面不平行且不在平面∴BCD相交.(17)(共12分)解:(Ⅰ)由题意知,样本中电影的总部数是,140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50.50.故所求概率为0.025?2000A为“从第四类电影中随机选出的电影获得好评”,设事件(Ⅱ)B为“从第五类电影中随机选出的电影获得好评”.事件PPP()()故所求概率为+()=ABABAB?AB PAPBPAPB).)(1–=((()(1–)())+PAPB)估计为0.2.(()估计为0.25,由题意知:故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.??????DDDDDD142536(18)(共13分)解:(Ⅰ)因为=[],)f(x23?x?4axa?(4a?1)x e f ′xaxaaxaxa+3]+1+[)–所以(4(=)[2+4–(4+1)]e x2xR)(∈e x axax+2]e–(2.+1)=[x2fa)e.–′(1)=(1faa=1.)e=0,解得由题设知′(1)=0,即(1–f (1)=3e≠0.此时a的值为1.所以f xaxax=ax–1]e())–(=(Ⅱ)由(Ⅰ)得′()[2+1+2x2x–2)e( .x11xf ax)<0;(,若2)时,>,则当′∈(a2xf x)>0.()时,当′∈(2,+∞f xx=2处取得极小值.在( )<0所以11xxaxax–1<0,1≤2)时,,则当–若2<0,≤–∈(0,22f x)>0.所以′(f x)的极小值点.不是(所以21a,+∞).的取值范围是(综上可知,2(19)(共14分)ypxP(1,2=2)经过点,解:(Ⅰ)因为抛物线2ppyx.,所以抛物线的方程为4=2 ,解得=4=2所以2l的斜率存在且不为0由题意可知直线,lykxk≠0)=.+1设直线(的方程为由得.220?4)x?k1xk?(2??y?kx?1?依题意,解得k<0或2??4yx0<k<1.22?0?1?k??(2k?4)?4PAPBlk≠.从而-2)y轴相交,故直线1不过点(又,,与-3.l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1所以直线).AxyBxy).),,((Ⅱ)设(,211214k?2.由(I)知,?xx?x??x 212122kk?2y yPA2= 直线–的方程为.1?1)2y?(x?1x?1?y?2?kx?1Mx.=0,得点令的纵坐标为112?y??2?M x?1x?111?kx?1N.同理得点的纵坐标为22?y?N x?12ruuuuuurruuuuuur由,得,.????QO=QNQOQM=y?=1?y1?MN所以22k?4?x?1x?12xx?(x?x)111111.211221????????=2?22kk1??1?y1?y(k?1)x(k?1)xk?1xxk?1221N1M2k11为定值.所以???(20)(共14分)αβ=(0,1,1,,0),1),所以解:(Ⅰ)因为=(11Mαα)= [(1+1?|1?1|)+(1+1?|1?1|)+(0+0(?,|0?0|)]=2,21M αβ)(1|)]=1.=,1|)+(0+1 [(1+0–|1?0|)+(1+1–|1––|0–2αxxxxBMααxxxx.+,则+(+(Ⅱ)设,=(,,),)∈= 41412323xxxxMαα)为奇数,(,∈{0,1}由题意知,且,,,4312xxxx中1的个数为1或,3.所以,,4213B?{(1,0,0,0),(0,1,0,0),(所以0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).αβMαβ)=1. ,均有,经验证,对于每组中两个元素(,B的元素.所以每组中的两个元素不可能同时是集合B中元素的个数不超过4.所以集合又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,B中元素个数的最大值为所以集合4.S xxx xxxAx =1∈,,,(Ⅲ)设=(,…,,…,,)|()knnk2112xxxkn),2,…,=0)(=1==…=,k121–S xxx xxx=0},==={( ,= ,…,)|…nnn221+11ASSS.=∪…∪∪则n+111Sknαβ,经验证,,–(1=1,2,…,)中的不同元素对于k Mαβ)≥(,1.Skn–12 所以,…,()中的两个元素不可能同时是=1,k B 的元素.集合Bn+1.所以中元素的个数不超过xxxSxxk=1,2,=…=(=0…,取e=(,,…,)∈且nknkk+112n–1).BSSB的元素个数)∪,…,e(,ee∪,则集合令=nnn+1–112n.,且满足条件+1为B是一个满足条件且元素个数最多的集合.故。
18年高考真题——理科数学(北京卷)
2018年普通高等学校招生全国统一考试数 学(理)(卷)一.选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}|2A x x =<,{}2,0,1,2B =-,则AB =( )(A ){}0,1 (B ){}1,0,1- (C ){}2,0,1,2- (D ){}1,0,1,2-2.在复平面,复数11i-的共轭复数对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ) (A )12 (B )56 (C )76 (D )7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率为f ,则第八个单音的频率为( ) (A )32f (B )322f (C )1252f (D )1272f5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )46.设,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) (A )1 (B )2 (C ) 3 (D )48.设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则( )(A )对任意实数a ,()2,1A ∈ (B )对任意实数a ,()2,1A ∉(C )当且仅当0a <时,()2,1A ∉ (D )当且仅当32a ≤时,()2,1A ∉ 二.填空题(共6小题,每小题5分,共30分)9.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________。
2018年普通高等学校招生全国统一考试数学试题 理(北京卷,含解析)
2018年普通高等学校招生全国统一考试数学试题理(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列. 5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C. 点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1. 详解: P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试(北京卷) 理科数学试题及解析
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =( )(A ){0,1} (B ){–1,0,1} (C ){–2,0,1,2} (D ){–1,0,1,2} 1.【答案】A【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .(2)在复平面内,复数11i-的共轭复数对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.【答案】D【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .(3)执行如图所示的程序框图,输出的s 值为( )(A )12 (B )56 (C )76 (D )7123.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立, 循环结束,输出56s =,故选B .(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( )(A (B (C ) (D ) 4.【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )4 5.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.【答案】C【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+, 因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥, 即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( )(A )1 (B )2 (C )3 (D )4 7.【答案】C【解析】22cos sin 1θθ+=Q ,P ∴为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,故选C .(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( )(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉8.【答案】D【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为,若32a ≤,则有()2,1A ∉,故选D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试(北京卷) 理科数学试题及解析 精编精校版
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =( )(A ){0,1} (B ){–1,0,1} (C ){–2,0,1,2} (D ){–1,0,1,2} 1.【答案】A【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .(2)在复平面内,复数11i-的共轭复数对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.【答案】D【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .(3)执行如图所示的程序框图,输出的s 值为( )(A )12 (B )56 (C )76 (D )7123.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立, 循环结束,输出56s =,故选B .(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为( )(A (B (C ) (D ) 4.【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )4 5.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.【答案】C【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+, 因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥, 即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( )(A )1 (B )2 (C )3 (D )4 7.【答案】C【解析】22cos sin 1θθ+=Q ,P ∴为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,故选C .(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( )(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉8.【答案】D【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为,若32a ≤,则有()2,1A ∉,故选D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。