ACS712-20A中文
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号).工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
ACS712
ACS712带 2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器特点∙低噪音模拟信号路径∙可通过新的滤波引脚设置器件带宽∙ 5 µs 输出上升时间,对应步进输入电流∙50 千赫带宽∙总输出错误1.5%(当T A = 25°C 时)及4%(在–40°C 至85°C 时)∙小型低厚度SOIC8 封装∙ 1.2 mΩ 内部传导电阻∙引脚1-4 至5-8 之间2.1 V RMS最小绝缘电压∙ 5.0 伏特,单电源操作∙66 至185 mV/A 输出灵敏度∙输出电压与交流或直流电流成比例∙出厂时精确度校准∙极稳定的输出偏置电压∙近零的磁滞∙电源电压的成比例输出描述Allegro® ACS712 可为工业、汽车、商业和通信系统中的交流或直流电流感测提供经济实惠的精密解决方案。
该器件封装便于客户轻松实施。
典型应用包括电动机控制、载荷检测和管理、开关式电源和过电流故障保护。
该器件具有精确的低偏置线性霍尔传感器电路,且其铜制的电流路径靠近晶片的表面。
通过该铜制电流路径施加的电流能够生成可被集成霍尔IC 感应并转化为成比例电压的磁场。
通过将磁性信号靠近霍尔传感器,实现器件精确度优化。
精确的成比例电压由稳定斩波型低偏置BiCMOS 霍尔IC 提供,该IC 出厂时已进行精确度编程。
当通过用作电流感测通路的主要铜制电流路径(从引脚 1 和2,到 3 和4)的电流不断上升时,器件的输出具有正斜率(>V IOUT(Q))。
该传导通路的内电阻通常是1.2 mΩ,具有较低的功耗。
铜线的粗细允许器件在可达5× 的过电流条件下运行。
传导通路的接线端与传感器引脚(引脚 5 到8)是电气绝缘的。
这让ACS712 电流传感器可用于那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用。
ACS712 采用小型的表面安装SOIC8 封装。
引脚架镀采用100% 雾锡电镀,可与标准无铅(Pb) 印刷电路板装配流程兼容。
各种电流检测方式的比较
浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT和PT就是特殊的变压器。
基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
3、二次绕组有一点直接接地。
4、变换的准确性模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。
各种电流检测方式的比较
ACS758的原理是一样的。与ACS712、ACS710相比,其特点是:量程大,分为50A、100A、150A、200A四个等级。内置路径内阻小,为100uΩ.温度等级,50A、100A量程的等级为L级,即-40~150℃;150A量程的为K级,即-40~125℃;200A量程的为E级,即-40~85℃.带宽为120KHz,响应时间为4us。25℃时,原边1200A大电流时,可承受时间为1秒。85℃时,原边900A大电流时,可承受时间为1秒。150℃时,原边600A大电流时,可承受时间为1秒。以上介绍的为Allegro的三颗代表型芯片级霍尔电流传感器,我介绍的均为双向的霍尔电流传感器(可测交直流),输出加载于0.5Vcc上。Allegro也有单向的霍尔传感器,其单向的霍尔电流传感器(可测正电流),输出加载于0.1Vcc上。芯片级的霍尔电流传感器,目前其最大量程为200A,对于大于200A的电流,可用Allegro线性霍尔做成塻块型霍尔电流传感器。事实上,国内有部份品牌的模块型霍尔电流传感器,就是应用Allegro的线性霍尔做为核心做成的。六.小结各种电流检测的方式原理各不同。检测电阻+运放与电流互感器属于低成本的方案,其可靠性与安全性较差,主要用于低端方案。模块式霍尔电流传感器,其体积较大,双电源供电,成本较高。隔离放大器,其原边,副边均需电源供电,在消除干扰方面的设计难度更大,成本比模块式霍尔电流传感器要低,比Allegro的成本高。外围电路较复杂,需加检测电阻。Allegro的霍尔电流传感器,量程相对于每一个型号来说,是固定的,最高量程为200A。小量程(50A以下)的霍尔电流传感器成本低,ACS758的成本比模块型霍尔电流传感器低。输出加载于0.5Vcc,输出信号为正电压。
闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图
ACS712中文资料_描述(电流传感器)
ACS712华文形貌之阳早格格创做戴 2.1 kVRMS 电压绝缘及矮电阻电流导体的齐集成、鉴于霍我效力的线性电流传感器 IC特性•矮噪音模拟旗号路径•可通过新的滤波引足树立器件戴宽• 5 µs 输出降下时间,对于应步进输进电流•80 千赫戴宽•总输出缺面为 1.5%(当 T A = 25°C时)•小型矮薄度 SOIC8 启拆• 1.2 mΩ 里面传导电阻•k V RMS最小绝缘电压• 5.0 伏特,单电源支配•66 至 185 mV/A 输出敏捷度•输出电压与接流或者曲流电流成比率•出厂时透彻度校准•极宁静的输出偏偏置电压•近整的磁滞•电源电压的成比率输出形貌Allegro® ACS712 可为工业、商业战通疑系统中的接流或者曲流电流感测提供经济真惠且透彻的办理规划.该器件启拆便于客户沉快真施.典型应用包罗电效果统造、载荷检测战管造、启闭式电源战过电流障碍呵护.该器件没有成用于汽车应用.该器件具备透彻的矮偏偏置线性霍我传感器电路,且其铜造的电流路径靠拢晶片的表面.通过该铜造电流路径施加的电流不妨死成可被集成霍我 IC 感触并转移为成比率电压的磁场.通过将磁性旗号靠拢霍我传感器,真止器件透彻度劣化.透彻的成比率电压由宁静斩波型矮偏偏置 BiCMOS 霍我IC 提供,该 IC 出厂时已举止透彻度编程.当通过用做电流感测通路的主要铜造电流路径(从引足 1 战 2,到 3 战 4)的电流没有竭降下时,器件的输出具备正斜率 (>V IOUT(Q)).该传导通路的内电阻常常是mΩ,具备较矮的功率耗费.铜线的细细允许器件正在可达 5×的过电流条件下运止.传导通路的接线端与传感器引足(引足 5 到 8)之间电气绝缘.那让 ACS712 电流传感器 IC 可用于那些央供电气绝缘却已使用光电绝缘器或者其余下贵绝缘技能的应用.ACS712 采与小型的表面拆置 SOIC8 启拆.引足架镀采与100% 雾锡电镀,可与尺度无铅 (Pb) 印刷电路板拆置过程兼容.正在里面,该器件为无铅产品,倒拆法使用目前豁免于RoHS 的下温含铅焊球除中.器件正在出厂拆运前已真足校准. 功能圆框图英文pdf下载天面:。
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
3、二次绕组有一点直接接地。
ACS712电流检测
电流检测方法介绍一、串电阻检测优点:电路结构清晰,成本低,实时性好,精度较高;缺点:温漂较大,无隔离效果,量程较大时,需要分多个挡来处理结果,容易受GND地的干扰;总结:一般的产品都可以用该方案解决。
实际调试过程中,信号容易受地线干扰,通过PCB合理的布局跟软件的滤波处理,能解决干扰的问题。
另外,当电流量程较大时,需要做两级甚至两级以上的处理(原因:采样电阻小,小电流的时候,信号很难采集到;采样电阻曾大时,大电流的时候超过运放的电压)二、电流互感器检测电磁式电流互感器优点:结构简单可靠,寿命较长,便于维护。
价格较低。
电磁式电流互感器缺点:重量大。
不能用于高频检测。
精度较低。
三、其他检测方式(这里不做详细介绍)AVAGO的光耦隔离放大器。
TI的电容式隔离放大器ADI的西格玛德尔塔式隔离放大器。
四、基于霍尔感应原理的电流检测专用芯片(ACS712为例讲解)1)命名说明:ACS712ELCTR-20A-T为例A AllegroCS current sensor712 part numberE 温度等级, Allegro温度等级常用的S(-20~85) E(-40~85) K(-40~125) L(-40~150) LC 封装TR 包装,TR为卷带盘装20A 量程T 符合环保要求2)ACS712主要特点●80KHZ带宽●总输出误差为1.5%●采用小型贴片SOIC8封装● 1.2mΩ内部电阻●左侧大电流引脚(PIN1-4)与右侧低电压引脚(PIN5-8)最小绝缘电压为2100V●5V单电压工作●出厂时精准校准●该器件不可应用于汽车领域3)原理与应用领域原理与简介:该芯完全基于霍尔感应的原理设计,由一个精确的低偏移线性霍尔传感器电路与位于接近IC表面的铜箔组成(如下图所示),电流流过铜箔时,产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、斩波与修正电路,输出一个电压信号,该信号从芯片的第七脚输出,直接反应出流经铜箔电流的大小。
ACS中文描述电流传感器
ACS712中文描述带 2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器IC特点•低噪音模拟信号路径•可通过新的滤波引脚设置器件带宽• 5 μs 输出上升时间,对应步进输入电流•80 千赫带宽•总输出误差为1.5%(当T A = 25°C时)•小型低厚度SOIC8 封装• 1.2 mΩ 内部传导电阻•引脚1-4 至5-8 之间2.1k V RMS最小绝缘电压• 5.0 伏特,单电源操作•66 至185 mV/A 输出灵敏度•输出电压与交流或直流电流成比例•出厂时精确度校准•极稳定的输出偏置电压•近零的磁滞•电源电压的成比例输出描述Allegro? ACS712 可为工业、商业和通信系统中的交流或直流电流感测提供经济实惠且精确的解决方案。
该器件封装便于客户轻松实施。
典型应用包括电动机控制、载荷检测和管理、开关式电源和过电流故障保护。
该器件不可用于汽车应用。
该器件具有精确的低偏置线性霍尔传感器电路,且其铜制的电流路径靠近晶片的表面。
通过该铜制电流路径施加的电流能够生成可被集成霍尔IC 感应并转化为成比例电压的磁场。
通过将磁性信号靠近霍尔传感器,实现器件精确度优化。
精确的成比例电压由稳定斩波型低偏置BiCMOS 霍尔IC 提供,该IC 出厂时已进行精确度编程。
当通过用作电流感测通路的主要铜制电流路径(从引脚 1 和2,到 3 和4)的电流不断上升时,器件的输出具有正斜率(>V IOUT(Q))。
该传导通路的内电阻通常是?mΩ,具有较低的功率损耗。
铜线的粗细允许器件在可达5× 的过电流条件下运行。
传导通路的接线端与传感器引脚(引脚 5 到8)之间电气绝缘。
这让ACS712 电流传感器IC 可用于那些要求电气绝缘却未使用光电绝缘器或其它昂贵绝缘技术的应用。
ACS712 采用小型的表面安装SOIC8 封装。
引脚架镀采用100% 雾锡电镀,可与标准无铅(Pb) 印刷电路板装配流程兼容。
ACS712
TA (°C) –40 to 85 –40 to 85 –40 to 85
Optimized Range, IP (A) ±5 ±20 ±30
Sensitivity, Sens (Typ) (mV/A) 185 100 66
*Contact Allegro for additional packing options.
2
ACS712
Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor
Functional Block Diagram
▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Low-noise analog signal path Device bandwidth is set via the new FILTER pin 5 μs output rise time in response to step input current 80 kHz bandwidth Total output error 1.5% at TA = 25°C Small footprint, low-profile SOIC8 package 1.2 mΩ internal conductor resistance 2.1 kVRMS minimum isolation voltage from pins 1-4 to pins 5-8 5.0 V, single supply operation 66 to 185 mV/A output sensitivity Output voltage proportional to AC or DC currents Factory-trimmed for accuracy Extremely stable output offset voltage Nearly zero magnetic hysteresis Ratiometric output from supply voltage
ACS712ELCTR-20A-T霍尔电流检测芯片
Approximate Scale 1:1Application 1. The ACS712 outputs an analog signal, V OUT . that varies linearly with the uni- or bi-directional AC or DC primary sensed current, I P , within the range specified. C F is recommended for noise management, with values that depend on the application.ACS712DescriptionThe Allegro ® ACS712 provides economical and precise solutions for A C or DC current sensing in industrial, automotive, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy after packaging.The output of the device has a positive slope (>V IOUT(Q)) when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is 1.2 mΩ typical, providing low powerFeatures and Benefits▪ Low-noise analog signal path▪ Device bandwidth is set via the new FILTER pin ▪ 5 µs output rise time in response to step input current ▪ 50 kHz bandwidth▪ Total output error 1.5% at T A = 25°C, and 4% at –40°C to 85°C ▪ Small footprint, low-profile SOIC8 package ▪ 1.2 mΩ internal conductor resistance▪ 2.1 kV RMS minimum isolation voltage from pins 1-4 to pins 5-8▪ 5.0 V , single supply operation▪ 66 to 185 mV/A output sensitivity▪ Output voltage proportional to AC or DC currents ▪ Factory-trimmed for accuracy▪ Extremely stable output offset voltage ▪ Nearly zero magnetic hysteresis▪Ratiometric output from supply voltageFully Integrated, Hall Effect-Based Linear Current Sensorwith 2.1 kVRMS V oltage Isolation and a Low-Resistance Current ConductorContinued on the next page…Package: 8 pin SOIC (suffix LC)Typical ApplicationC BYP 0.1 µFSelection GuidePart Number Packing*T OP (°C)Optimized Range, I P(A)Sensitivity, Sens (Typ) (mV/A)ACS712ELCTR-05B-T Tape and reel, 3000 pieces/reel –40 to 85±5185ACS712ELCTR-20A-T Tape and reel, 3000 pieces/reel –40 to 85±20100ACS712ELCTR-30A-TTape and reel, 3000 pieces/reel–40 to 85±3066*Contact Allegro for additional packing options.loss. The thickness of the copper conductor allows survival of the device at up to 5× overcurrent conditions. The terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through 8). This allows the ACS712 current sensor to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques.The A CS712 is provided in a small, surface mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.Description (continued)Absolute Maximum RatingsCharacteristicSymbol NotesRating Units Supply Voltage V CC 8V Reverse Supply Voltage V RCC –0.1V Output VoltageV IOUT 8V Reverse Output Voltage V RIOUT –0.1V Output Current Source I IOUT(Source) 3mA Output Current SinkI IOUT(Sink)10mA Overcurrent Transient Tolerance I P 100 total pulses, 250 ms duration each, applied at a rate of 1 pulse every 100 seconds.60A Maximum Transient Sensed Current I R (max)Junction Temperature, T J < T J (max)60A Nominal Operating Ambient Temperature T A Range E–40 to 85ºC Maximum Junction T J (max)165ºC Storage TemperatureT stg–65 to 170ºCTÜV AmericaCertificate Number: U8V 06 05 54214 010Parameter SpecificationFire and Electric ShockCAN/CSA-C22.2 No. 60950-1-03UL 60950-1:2003EN 60950-1:2001IP+IP+IP–IP–VCC VIOUT FILTER GNDTerminal List TableNumber Name Description1 and 2IP+Terminals for current being sensed; fused internally 3 and 4IP–Terminals for current being sensed; fused internally 5GND Signal ground terminal6FILTER Terminal for external capacitor that sets bandwidth 7VIOUT Analog output signal 8VCCDevice power supply terminalFunctional Block DiagramPin-out DiagramCOMMON OPERATING CHARACTERISTICS1 over full range of T OP , C F = 1 nF, and V CC = 5 V, unless otherwise specified Characteristic Symbol Test Conditions Min.Typ.Max.Units ELECTRICAL CHARACTERISTICSSupply Voltage V CC 4.5 5.0 5.5V Supply Current I CC V CC = 5.0 V, output open6811mA Output Zener Clamp Voltage V Z I CC = 11 mA, T A = 25°C68.3–V Output Resistance R IOUT I IOUT = 1.2 mA, T A=25°C–12ΩOutput Capacitance Load C LOAD VIOUT to GND––10nF Output Resistive Load R LOAD VIOUT to GND 4.7––kΩPrimary Conductor Resistance R PRIMARY T A = 25°C– 1.2–mΩRMS Isolation Voltage V ISORMS Pins 1-4 and 5-8; 60 Hz, 1 minute, T A=25°C2100––V DC Isolation Voltage V ISODC Pins 1-4 and 5-8; 1 minute, T A=25°C–5000–V Propagation Time t PROP I P = I P(max), T A = 25°C, C OUT = open–3–μs Response Time t RESPONSE I P = I P(max), T A = 25°C, C OUT = open–7–μs Rise Time t r I P = I P(max), T A = 25°C, C OUT = open–5–μs Frequency Bandwidth f–3 dB, T A = 25°C; I P is 10 A peak-to-peak50––kHz Nonlinearity E LIN Over full range of I P–±1±1.5% Symmetry E SYM Over full range of I P9*******%Zero Current Output Voltage V IOUT(Q)Bidirectional; I P = 0 A, T A = 25°C–V CC×0.5–V Magnetic Offset Error V ERROM I P = 0 A, after excursion of 5 A–0–mVClamping Voltage V CH Typ. –110V CC×0.9375Typ. +110mVV CL Typ. –110V CC×0.0625Typ. +110mVPower-On Time t PO Output reaches 90% of steady-state level, T J= 25°C, 20 A presenton leadframe–35–µsMagnetic Coupling2–12–G/A Internal Filter Resistance3R F(INT) 1.7kΩ1Device may be operated at higher primary current levels, I P, and ambient, T A, and internal leadframe temperatures, T OP , provided that the Maximum Junction Temperature, T J(max), is not exceeded.21G = 0.1 mT.3R F(INT) forms an RC circuit via the FILTER pin.COMMON THERMAL CHARACTERISTICS1Min.Typ.Max.Units Operating Internal Leadframe Temperature T OP E range–40–85°CValue Units Junction-to-Lead Thermal Resistance2RθJL Mounted on the Allegro ASEK 712 evaluation board5°C/WJunction-to-Ambient Thermal Resistance RθJA Mounted on the Allegro 85-0322 evaluation board, includes the power con-sumed by the board23°C/W1Additional thermal information is available on the Allegro website.2The Allegro evaluation board has 1500 mm2 of 2 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connect-ing the layers. Performance values include the power consumed by the PCB. Further details on the board are available from the Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Informa-tion section of this datasheet.x05A PERFORMANCE CHARACTERISTICS T OP = –40°C to 85°C1, C F = 1 nF, and V CC = 5 V, unless otherwise specified Characteristic Symbol Test Conditions Min.Typ.Max.Units Optimized Accuracy Range I P–5–5ASensitivity2Sens TA Over full range of I P, T A = 25°C–185–mV/A Sens TOP Over full range of I P178–193mV/ANoise V NOISE(PP)Peak-to-peak, T A= 25°C, 185 mV/A programmed Sensitivity,C F= 4.7 nF, C OUT = open, 20 kHz bandwidth–45–mV Peak-to-peak, T A = 25°C, 185 mV/A programmed Sensitivity,C F = 47 nF, C OUT = open, 2 kHz bandwidth–20–mV Peak-to-peak, T A = 25°C, 185 mV/A programmed Sensitivity,C F = 1 nF, C OUT = open, 50 kHz bandwidth–75–mVElectrical Offset Voltage V OE I P = 0 A–40–40mV Total Output Error3E TOT I P =±5 A, T A = 25°C–±1.5–% 1Device may be operated at higher primary current levels, I P, and ambient temperatures, T OP, provided that the Maximum Junction Temperature,T J(max), is not exceeded.2At –40°C Sensitivity may shift as much 9% outside of the datasheet limits.3Percentage of I P, with I P = 5 A. Output filtered.x20A PERFORMANCE CHARACTERISTICS T OP = –40°C to 85°C1, C F = 1 nF, and V CC = 5 V, unless otherwise specified Characteristic Symbol Test Conditions Min.Typ.Max.Units Optimized Accuracy Range I P–20–20ASensitivity2Sens TA Over full range of I P, T A = 25°C–100–mV/A Sens TOP Over full range of I P97–103mV/ANoise V NOISE(PP)Peak-to-peak, T A= 25°C, 100 mV/A programmed Sensitivity,C F= 4.7 nF, C OUT = open, 20 kHz bandwidth–24–mV Peak-to-peak, T A = 25°C, 100 mV/A programmed Sensitivity,C F = 47 nF, C OUT = open, 2 kHz bandwidth–10–mV Peak-to-peak, T A = 25°C, 100 mV/A programmed Sensitivity,C F = 1 nF, C OUT = open, 50 kHz bandwidth–40–mVElectrical Offset Voltage V OE I P = 0 A–30–30mV Total Output Error3E TOT I P =±20 A, T A = 25°C–±1.5–% 1Device may be operated at higher primary current levels, I P, and ambient temperatures, T OP, provided that the Maximum Junction Temperature,T J(max), is not exceeded.2At –40°C Sensitivity may shift as much 9% outside of the datasheet limits.3Percentage of I P, with I P = 20 A. Output filtered.x30A PERFORMANCE CHARACTERISTICS T OP = –40°C to 85°C1, C F = 1 nF, and V CC = 5 V, unless otherwise specified Characteristic Symbol Test Conditions Min.Typ.Max.Units Optimized Accuracy Range I P–30–30ASensitivity2Sens TA Over full range of I P , T A = 25°C–66–mV/A Sens TOP Over full range of I P64–68mV/ANoise V NOISE(PP)Peak-to-peak, T A= 25°C, 66 mV/A programmed Sensitivity,C F= 4.7 nF, C OUT = open, 20 kHz bandwidth–20–mV Peak-to-peak, T A = 25°C, 66 mV/A programmed Sensitivity,C F = 47 nF, C OUT = open, 2 kHz bandwidth–7–mV Peak-to-peak, T A = 25°C, 66 mV/A programmed Sensitivity,C F = 1 nF, C OUT = open, 50 kHz bandwidth–35–mVElectrical Offset Voltage V OE I P = 0 A–30–30mV Total Output Error3E TOT I P = ±30 A, T A = 25°C–±1.5–% 1Device may be operated at higher primary current levels, I P, and ambient temperatures, T OP, provided that the Maximum Junction Temperature,T J(max), is not exceeded.2At –40°C Sensitivity may shift as much 9% outside of the datasheet limits.3Percentage of I P, with I P = 30 A. Output filtered.Characteristic PerformanceI P= 5 A, Sens = 185 mV/A unless otherwise specified6.06.57.07.58.08.59.09.510.0T A (°C)T A (°C)M e a n I C C (m A )V E R R O M (m V )V I O U T (V)V CC (V)I C C (m A )E L I N (%)T A (°C)0.250.500.751.001.251.501.752.0000.20.40.60.81.01.21.41.61.82.0T A (°C)M e a n E T O T (%)-15.0-10.0-5.00.05.010.015.000.51.01.52.02.53.03.54.04.5Ip (A)Ip(A)S e n s (m V /A )Mean Supply Current versus Ambient TemperatureV CC = 5 VSupply Current versus Supply VoltageMagnetic Offset versus Ambient TemperatureNonlinearity versus Ambient TemperatureI = 10 AMean Total Output Error versus Ambient TemperatureI = 10 AOutput Voltage versus Sensed CurrentSensitivity versus Sensed CurrentT A(°C)T A (°C)M e a n I C C(m A )V E R R O M (mV )V I O U T (V)V CC (V)I C C (m A )E L I N (%)T A (°C)0.200.400.600.801.00 00.20.40.60.81.01.21.41.61.82.0T A (°C)M e a n E T O T (%)0.51.01.52.02.53.03.54.04.5Ip (A)Ip (A)S e n s (m V /A )6.06.57.07.58.08.59.09.510.0Mean Supply Current versus Ambient TemperatureV CC = 5 VSupply Current versus Supply VoltageMagnetic Offset Current versus Ambient TemperatureNonlinearity versus Ambient TemperatureMean Total Output Error versus Ambient TemperatureOutput Voltage versus Sensed CurrentSensitivity versus Sensed CurrentCharacteristic PerformanceI P = 30 A, Sens = 66 mV/A unless otherwise specifiedSensitivity (Sens). The change in sensor output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G / A ) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is pro -grammed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Noise (V NOISE ). The product of the linear IC amplifier gain (mV/G) and the noise floor for the Allegro Hall effect linear IC (≈1 G). The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mV) by the sensitivity (mV/A) provides the smallest current that the device is able to resolve.Linearity (E LIN ). The degree to which the voltage output from the sensor varies in direct proportion to the primary currentthrough its full-scale amplitude. Nonlinearity in the output can be attributed to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity:where V IOUT_full-scale amperes = the output voltage (V) when thesensed current approximates full-scale ±I P .Symmetry (E SYM ). The degree to which the absolute voltage output from the sensor varies in proportion to either a positive or negative full-scale primary current. The following formula is used to derive symmetry:Quiescent output voltage (V IOUT(Q)). The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at V CC ⁄ 2. Thus, V CC = 5 V translates into V IOUT(Q) = 2.5 V . Variation in V IOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Electrical offset voltage (V OE ). The deviation of the device out-put from its ideal quiescent value of V CC / 2 due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Accuracy (E TOT ). The accuracy represents the maximum devia-tion of the actual output from its ideal value. This is also known as the total ouput error. The accuracy is illustrated graphically in the output voltage versus current chart at right.Accuracy is divided into four areas:• 0 A at 25°C. Accuracy of sensing zero current flow at 25°C, without the effects of temperature.• 0 A over Δ temperature. Accuracy of sensing zero current flow including temperature effects.• Full-scale current at 25°C. Accuracy of sensing the full-scale current at 25°C, without the effects of temperature.• Full-scale current over Δ temperature. Accuracy of sensing full-scale current flow including temperature effects.Ratiometry . The ratiometric feature means that its 0 A output, V IOUT(Q), (nominally equal to V CC /2) and sensitivity, Sens, are proportional to its supply voltage, V CC . The following formula is used to derive the ratiometric change in 0 A output voltage, ΔV IOUT(Q)RAT (%).The ratiometric change in sensitivity, ΔSens RAT (%), is defined as:Definitions of Accuracy Characteristics1001–[{[{V IOUT _full-scale amperes –V IOUT(Q)∆ gain × % sat ()2 (V IOUT _half-scale amperes – V IOUT(Q))100V IOUT _+ full-scale amperes – V IOUT(Q)V IOUT(Q) –V IOUT _–full-scale amperes100V IOUT(Q)VCC /V IOUT(Q)5VV CC /5 V100Sens VCC /Sens 5VV CC /5 V‰Output Voltage versus Sensed CurrentAccuracy at 0 A and at Full-Scale Current100200300400500t r (µs )Power on Time versus External Filter Capacitance1020304050C F (nF)C F(nF)C F (nF)5075100125150tr (µs )C F (nF)t P O (µs )0.010.11101001000N o i s e (p -p )(m A )Definitions of Dynamic Response CharacteristicsPropagation delay (t PROP ). The time required for the sensor output to reflect a change in the primary current signal. Propaga-tion delay is attributed to inductive loading within the linear IC package, as well as in the inductive loop formed by the primary conductor geometry. Propagation delay can be considered as a fixed time offset and may be compensated.Rise time (t r ). The time interval between a) when the sensor reaches 10% of its full scale value, and b) when it reaches 90% of its full scale value. The rise time to a step response is used to derive the bandwidth of the current sensor, in which ƒ(–3 dB) = 0.35 / t r . Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Response time (t RESPONSE ). The time interval between a) when the primary current signal reaches 90% of its final value, and b) when the sensor reaches 90% of its output corresponding to the applied current.Excitation SignalOutput (mV)15 AStep ResponseT A =25°CC F (nF)t r (µs) 0 6.647 1 7.74 4.7 17.38 10 32.09087 22 68.15 47 88.18 100 291.26 220 623.02 4701120Chopper Stabilization is an innovative circuit technique that is used to minimize the offset voltage of a Hall element and an asso-ciated on-chip amplifier. Allegro patented a Chopper Stabiliza-tion technique that nearly eliminates Hall IC output drift induced by temperature or package stress effects. This offset reduction technique is based on a signal modulation-demodulation process. Modulation is used to separate the undesired dc offset signal from the magnetically induced signal in the frequency domain. Then, using a low-pass filter, the modulated dc offset is suppressed while the magnetically induced signal passes through the filter. As a result of this chopper stabilization approach, the output voltage from the Hall IC is desensitized to the effects of tempera-ture and mechanical stress. This technique produces devices that have an extremely stable Electrical Offset V oltage, are immune to thermal stress, and have precise recoverability after temperature cycling.This technique is made possible through the use of a BiCMOS process that allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample and hold circuits.Chopper Stabilization TechniqueConcept of Chopper Stabilization TechniquePEAKRESETTypical ApplicationsApplication 5. 10 A Overcurrent Fault Latch. Fault threshold set by R1 and R2. This circuit latches an overcurrent fault and holds it until the 5 V rail is powered down.Application 2. Peak Detecting CircuitApplication 4. Rectified Output. 3.3 V scaling and rectification application for A-to-D converters. Replaces current transformer solutions with simpler ACS circuit. C1 is a function of the load resistance and filtering desired. R1 can be omitted if the full range is desired.Application 3. This configuration increases gain to 610 mV/A (tested using the ACS712ELC-05A).Improving Sensing System Accuracy Using the FILTER Pin In low-frequency sensing applications, it is often advantageous to add a simple RC filter to the output of the sensor. Such a low-pass filter improves the signal-to-noise ratio, and therefore the resolution, of the sensor output signal. However, the addition of an RC filter to the output of a sensor IC can result in undesirable sensor output attenuation — even for dc signals.Signal attenuation, ∆V ATT , is a result of the resistive divider effect between the resistance of the external filter, R F (see Application 6), and the input impedance and resistance of the customer interface circuit, R INTFC . The transfer function of this resistive divider is given by:Even if R F and R INTFC are designed to match, the two individualresistance values will most likely drift by different amounts overtemperature. Therefore, signal attenuation will vary as a function of temperature. Note that, in many cases, the input impedance, R INTFC , of a typical analog-to-digital converter (ADC) can be as low as 10 kΩ.The ACS712 contains an internal resistor, a FILTER pin connec -tion to the printed circuit board, and an internal buffer amplifier. With this circuit architecture, users can implement a simple RC filter via the addition of a capacitor, C F (see Application 7) from the FILTER pin to ground. The buffer amplifier inside of the ACS712 (located after the internal resistor and FILTER pin connection) eliminates the attenuation caused by the resistive divider effect described in the equation for ∆V ATT . Therefore, the ACS712 device is ideal for use in high-accuracy applications that cannot afford the signal attenuation associated with the use of an external RC low-pass filter.=∆V ATT R INTFC R F + R INTFC V IOUT.Application 6. When a low pass filter is constructed externally to a standard Hall effect device, a resistive divider may exist between the filter resistor, R F, and the resistance of the customer interface circuit, R INTFC . This resistive divider will cause excessive attenuation, as given by the transfer function for ∆V ATT .Application 7. Using the FILTER pin provided on the ACS712 eliminates the attenuation effects of the resistor divider between R F and R INTFC , shown in Appli-cation 6.The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.Copyright ©2006, Allegro MicroSystems, Inc.ACS712T R LC PPP YYWWA ACS Allegro Current Sensor712Device family numberT Indicator of 100% matte tin leadframe platingR Operating ambient temperature range codeLC Package type designatorPPP Primary sensed currentYY Date code: Calendar year (last two digits)WW Date code: Calendar weekA Date code: Shift codeACS712TR LC PPPL...LYYWWACS Allegro Current Sensor712Device family numberT Indicator of 100% matte tin leadframe platingR Operating ambient temperature range codeLC Package type designatorPPP Primary sensed currentL...L Lot codeYY Date code: Calendar year (last two digits)WW Date code: Calendar weekPackage BrandingTwo alternative patterns are usedFor the latest version of this document, go to our website at:。
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号).工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号).工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式浅谈电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号).工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变压器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
ACS712-20A中文
ACS712-20A中⽂
GY-712-20A电流传感器模块
SENSOR:ACS712ELCTR-20A
特点和优点
Low-noise模拟信号路径
器件的带宽是通过设置新的筛选器引脚
5µs输出响应上升时间步输⼊电流
50kHz带宽
总输出1.5%错误T
A=25°C,和4%⽇⾄–40°C85°C
占地⾯积⼩,low-profile SOIC8包装
1.2毫欧内部导体电阻
2.1千伏RMS从引脚1-4最⼩绝缘电压引脚5-8 5.0V,单电源操作到66-185输出灵敏度mV/A
输出电压正⽐于电流AC或DC
Factory-trimmed的准确性
极度稳定的输出偏移电压
⼏乎为零的磁滞
电源电压的成⽐例输出
引脚描述
Pin Pinname Desscription
1IP+电流输⼊正端
2IP–电流输⼊负端
3GND电源地
4VIOUT输出引脚(100mV/A)
5VCC供给电源
Table:
名称描叙
⼯作电压5V
⼯作电流10mA
接⼝输出电压100mV/A
⼯作温度-40°~85°
尺⼨(长*宽*⾼)18mm×36mm×11.6mm 内部电路图。
Acs712霍尔效应电流传感器
Acs712霍尔效应电流传感器Acs712Allegro 发布全新低噪音2100Vrms 霍尔效应电流传感器马萨诸塞州伍斯特市,2006年12月18 B-Allegr 。
推出两款全新高性能、低噪音2100 Vrms 绝缘电流传感器。
与上一代电流传感器相比,Allegro 全新电流传感器ACS712 (双向)及ACS713 (单向) 有噪音更低、精确度更高的特点。
这些传感器还包抵集成屏蔽,可有效削弱通过引脚框的较高 dV/dt 瞬态, 从而使得该解决方案非常适合电动机控制及高端电流感测应用。
2006年12月18开始生产之日起至今,ACS712系列三个型号:ACS712ELCTR-05B-TACS712ELCTR-20A-TACS712ELCTR-30A-T此系列产品销量一直在电流传感器行业中遥遥领先.行业领头者。
这些传感器的响应时间比之前的器件缩短了两倍以上,因此非常适合保护及髙速应用。
此外,器件中还添加了滤波引脚,从而可进一步降低输出噪音并改善低电流精确度, 并且不会产生外部RC 滤波器的衰减影响。
电流传感器IC 系列是基于霍尔效应的创新型单片绝缘器件,可提供采用业界领先的小型封装的全面集成解决方案。
带2.1 kVRMS 电压绝缘及低电阻电流导体的全集成、基于霍尔效应的线性电流传感器IC特点*1•:低噪音模拟信号路径*2*:可通过新的滤波引脚设昼器件带宽*3•: 5ps 输出上升时间,对应步进输入电流ACS712此系列共含三个型号,检测电流5A.20A.30A 以下给大家一一列兴出来。
灵敏度电流■电源传感器类型 封装/外壳 霍尔效应 8-SOIC (0.154", 精确度5A型号 电流•传感 ACS712ELCTR-05B-T 3.90mm 宽) ACS712ELCTR-20A-T 3.90mm 宽) ACS712ELCTR-30A-T 3.90mm 宽) 型号 电源电压输出频率 ±1.5% 180-190 mV/A10mA 20A30A ±1.5% 96-104 mV/A10mA ±1.5% 63-69 mV/A10mAACS712ELCTR-05B-T 4.5 V-5.5 V 2.5V ACS712ELCTR-20A-T 4.5 V-5.5 V 2.5VACS712ELCTR-30A-T 4.5 V-5.5 V 2.5V 霍尔效应 8-SOIC (0.154M , 霍尔效应 8-SOIC (0.154", 响应时间电极标记80kHz 5ps 双向80kHz 5ps 双向 80kHz 5ps 双向 工作温度 负 40085 °C 负 40°C-85°C 负 40°C-85°C*4•: 80千赫带宽*5•:总输出误差为1.5% (当TA = 25c C 时)*6*:小型低厚度SOIC8封装*7*: 1.2 mQ 内部传导电阻*8*:引脚1-4至5-8之间2.1 VRMS 最小绝缘电压*9•: 5.0伏特,单电源操作*10*: 66至185 mV/A 输出灵敏度*11*:输出电压与交流或宜流电流成比例*12*:出厂时精确度校准*13*:极稳定的输出偏置电压*14•:近零的磁滞*14*:电源电压的成比例输出Typical Application描述Allegro ACS712可为工业、商业和通信系统中的交流或直流电流感测提供经济实惠且精确的 解决方案。
电流检测方法
电流检测方法介绍一、串电阻检测优点:电路结构清晰,成本低,实时性好,精度较高;缺点:温漂较大,无隔离效果,量程较大时,需要分多个挡来处理结果,容易受GND地的干扰;总结:一般的产品都可以用该方案解决。
实际调试过程中,信号容易受地线干扰,通过PCB合理的布局跟软件的滤波处理,能解决干扰的问题。
另外,当电流量程较大时,需要做两级甚至两级以上的处理(原因:采样电阻小,小电流的时候,信号很难采集到;采样电阻增大大时,大电流的时候超过运放的电压)二、电流互感器检测电磁式电流互感器优点:结构简单可靠,寿命较长,便于维护。
价格较低。
电磁式电流互感器缺点:重量大。
不能用于高频检测。
精度较低。
三、其他检测方式(这里不做详细介绍)AVAGO的光耦隔离放大器。
TI的电容式隔离放大器ADI的西格玛德尔塔式隔离放大器。
四、基于霍尔感应原理的电流检测专用芯片(ACS712为例讲解)1)命名说明:ACS712ELCTR-20A-T为例A :AllegroCS :current sensor712 :part numberE 温度等级,Allegro温度等级常用的S(-20~85) E(-40~85) K(-40~125) L(-40~150) LC :封装TR :包装,TR为卷带盘装20A :量程T :符合环保要求2)ACS712主要特点●80KHZ带宽●总输出误差为1.5%●采用小型贴片SOIC8封装●1.2mΩ内部电阻●左侧大电流引脚(PIN1-4)与右侧低电压引脚(PIN5-8)最小绝缘电压为2100V●5V单电压工作●出厂时精准校准●该器件不可应用于汽车领域3)原理与应用领域原理与简介:该芯完全基于霍尔感应的原理设计,由一个精确的低偏移线性霍尔传感器电路与位于接近IC表面的铜箔组成(如下图所示),电流流过铜箔时,产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、斩波与修正电路,输出一个电压信号,该信号从芯片的第七脚输出,直接反应出流经铜箔电流的大小。
ACS712芯片手册
Package: 8 pin SOIC (suffix LC)
Approximate Scale 1:1
Continued on the next page…
Typical Application
+5 V 1 2 IP 3 4 IP+ VCC 8 7 VOUT CBYP 0.1 μF
IP+ VIOUT ACS712 IP– FILTER IP– GND
Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000
2
ACS712
Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor
Description
The Allegro® ACS712 provides economical and precise solutions for AC or DC current sensing in industrial, automotive, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection. The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy after packaging. The output of the device has a positive slope (>VIOUT(Q)) when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is 1.2 mΩ typical, providing low power
各种电流检测方式比较
浅谈电流检测方式一、检测电阻+运放优势:本钱低、精度较高、体积小劣势:温漂较大,精细电阻的选择较难,无隔离效果。
分析:这两种拓扑构造,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,本钱低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,本钱将大大提高。
运放本钱低的,钳位电压低,而特殊工艺的,则本钱上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT和PT就是特殊的变压器。
根本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。
它的工作原理和变压器相似。
也称作TA或LH〔旧符号〕工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备平安。
3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。
电磁式电压互感器的工作原理和变压器一样。
也称作TV或YH〔旧符号〕。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路〔短路电流烧毁PT〕,装有熔断器。
3、二次绕组有一点直接接地。
4、变换的准确性模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GY-712-20A电流传感器模块
SENSOR:ACS712ELCTR-20A
特点和优点
Low-noise模拟信号路径
器件的带宽是通过设置新的筛选器引脚
5µs输出响应上升时间步输入电流
50kHz带宽
总输出1.5%错误T
A=25°C,和4%日至–40°C85°C
占地面积小,low-profile SOIC8包装
1.2毫欧内部导体电阻
2.1千伏RMS从引脚1-4最小绝缘电压引脚5-8 5.0V,单电源操作
到66-185输出灵敏度mV/A
输出电压正比于电流AC或DC
Factory-trimmed的准确性
极度稳定的输出偏移电压
几乎为零的磁滞
电源电压的成比例输出
引脚描述
Pin Pinname Desscription
1IP+电流输入正端
2IP–电流输入负端
3GND电源地
4VIOUT输出引脚(100mV/A)
5VCC供给电源
Table:
名称描叙
工作电压5V
工作电流10mA
接口输出电压100mV/A
工作温度-40°~85°
尺寸(长*宽*高)18mm×36mm×11.6mm
内部电路图。