、络合滴定法
第四章络合滴定
即:pM' = lgK'MY - 3.0
pM=lgK´MY- 6 - pCsp(M)
影响滴定突跃的主要因素:
KMY越大,滴定突跃范围越大
CSP(M)越大,滴定突跃范围越大
2019/8/7
EDTA滴定不同浓度的金属离子
pM´
10 8 6 4 20
2019/8/7
100 滴定百分数
实际上常用Cu-PAN作指示剂: CuY+PAN。 在含有待测离子的溶液中,加入少量CuY,并滴加PAN,溶 液显紫红色。
M + CuY + PAN = MY + Cu-PAN
滴加EDTA与M定量反应后,稍微过量的EDTA就夺取Cu- PAN 中的Cu2+使PAN游离出来,溶液变为黄色达到终点。
Cu-PAN + Y = PAN + CuY CuY量在反应前后没有变化,不影响滴定结果。
pMgt lgK'mgEBT lgK mgEBT lgαEBT(H) 7.0 1.6 5.4
设想pH为10.0的氨性缓冲溶液中的Zn2+, 其pZnt为多少?
pZn t lgK'Zn EBT lgK Zn EBT lgαEBT(H) lgαZn(NH 3 )
M + Y = MY
K(MY) = [MY] [M][Y]
sp时:[M]= [Y]; [M]+[MY]= cSP(M)
M'sp = Y'sp =
csp M K' MY
或:
pM'sp
=
(pY)sp
=
1 2
lgK'MY +pcsp M
络合滴定法
pCa=7.68
影响滴定突跃大小的因素
1. 络合物的条件稳定常数 K’MY
在浓度一定时,值越大,突跃越大;当 K’MY
< 108 时,突跃已很小,影响 K’MY 的因素
首先是其绝对稳定常数 KMY ,而溶液的酸
度、掩蔽剂及辅助络合剂的络合作用等,都
对 K’MY 有影响。
2. 金属离子 M 的浓度
α
Y(N)
=1+KNY[N]
KNY 为与络合的稳定常数,其值可
由表 5-2 查得;[N] 为溶液中反应 达平衡后,游离 N 平衡浓度。
(三) Y 的总副反应系数 α Y: 当溶液中酸效应和共存离子效应同 时存在时,则 Y 的总副反应系数 α Y 为:
α Y=α
Y(H)
+α
Y(N)-1
二、金属离子 M 的副反应和副反应系数
有机络合剂: 分子中常含有两个以上可键合 的 原子,因此,与金属离子络合 时形成具有环状结构的螯合 物,稳定性大。螯合物的稳定 性与成环数目有关,当配位原 子相同时,环越多,螯合物越 稳定,螯合物的稳定性还与 五螯环的大小有关,通常以五 员环和六员环最稳定。
第二节 EDTA 的性质及其络合物
EDTA的性质: (1) EDTA 在水中的溶解度很小。通常使 用的是 EDTA 二钠盐(Na2H2Y•2H2O),一 般也将之简称为 EDTA。 (2)当 H4Y 溶于高酸度的溶液中时,它的 两个羧基可再接受 H+,形成 H6Y2+, 此时EDTA 相当于六元酸。 (3)EDTA 分子中含有两个氨氮和四个羧 氧,因此具有六个配位原子,通常均 按 1:1 络合,生成稳定的螯合物。
(cV ) EDTA M A A% 100 试样质量( g ) 1000
第3章 络合(配位)滴定法
(1) 溶液在pH>12时进行滴定时:
酸效应系数αY(H)=1; K 'MY = K MY = [MY] /([M] [Y4-]
1)滴定前:溶液中Ca 2+离子浓度: [Ca 2+ ] = 0.01 mol / L , pCa = -lg [Ca 2+ ] = -lg0.01 = 2.00
2)化学计量点前:已加入19.98mL EDTA(剩余0.02mL钙 溶 液 , 此 时 CaY 中 的 Ca2+ 浓 度 忽 略 , 因 为 与 剩 余 游 离 的 Ca2+比相差2个数量级。) [Ca2+] = 0.01000×0.02 / (20.00+19.98)= 5×10-6 mol/L, pCa =5.3
3)化学计量点:此时 Ca 2+几乎全部与EDTA络合, [CaY]=0.01/2=0.005 mol/L ;[Ca 2+]=[Y4-]=X ;KCaY=1010.69
由稳定常数表达式[Ca2+]2=CCaY,sp/KCaY,得:0.005/X2 = 1010.69 , 所以 [Ca 2+]=3.2×10-7 mol/L ;pCa=6.49
5.络合滴定中的副反应及条件稳定常数
络合滴定中的副反应:
滴定主反应:
Mn+ + Y4- = MY
⑴考虑酸效应影响:
由:
Y (H )
[Y' ] [Y]
得: [Y 4- ] [Y' ]
Y (H )
KMY
[MY] [M n ][Y 4- ]
带入稳定常数表达式得:
KMY
Y (H )
[MY] [M n ][Y ' ]
第4章络合滴定法
金属指示剂变色过程:
滴定前加入指示剂, M + In = MIn 溶液呈乙色
甲色 乙色
以EDTA进行滴定,滴定反应为: M + Y = MY
终点,
MIn + Y = MY + In 溶液由乙色 甲色
乙色
甲色
例:络合滴定法测定镁离子,滴定前加入铬黑T (EBT)指示剂,溶液呈紫红色:
铬黑T(蓝色) + Mg2+ = Mg2+-铬黑T(紫红色),
一、 配位反应及特征
金属离子与配位体通过配位共价键形成 的化合物——或称为配位化合物
配位键:配位原子提供一
如Ag(NH3)2Cl,K4[Fe(CN)6] 对电子与中心离子共用
Ag
2 NH 3
Ag
(
NH
3
)
2
(1: 2)
Fe 2
6CN
Fe(CN
)
4 6
(1: 6)
★ 发生络合反应的前提:
三、 EDTA络合物的特征
1.EDTA与金属离子的络合物特点
(1) EDTA与1-4价金属离子都能形成易溶性络合物; (2)形成的配合物为5个五元环结构的螯合物,稳定性高; (3)与大多数金属离子1∶1配位 (4)与无色金属离子形成无色络合物,有利于指示终点;与
有色金属离子一般生成颜色更深的络合物,应适当控制浓 度不易过大,否则指示终点困难。
第4章 络合(配位)滴定法
一 、 配位反应及特征 二、 氨羧络合剂 三、 EDTA络合物的特征 四、 EDTA的络合平衡 五、 金属指示剂 六、 提高络合滴定的选择性 七、 络合滴定的方式
第六章 络合滴定法
第六章 络合滴定法
第二节
例1 计算PH=2.00和PH=5.00时,ZnY的条件稳定常数 (已知lgKZnY=16.50)
解:查表可知 PH=2.00时, lgαY(H) =13.51 PH=5.00时, lgαY(H) =6.45 根据公式可得: PH=2.00时, lgK’ZnY=16.50-13.51=2.99 PH=5.00时,lgK’ZnY=16.50-6.45=10.05
主要存在型体 H6Y2+ H5Y+ H4Y H3YH2Y2HY3主要 Y4几乎全部Y4-
第六章 络合滴定法
第一节
在这七种型体中,只有Y4-能与金属离子直接络合,溶 液的酸度越低,Y4- 的分布分数就越大。因此,EDTA在 碱性溶液中络合能力较强。
四、金属离子-EDTA络合物的特点
由于EDTA的阴离子Y4- 的结构具有两个氨基和四个羧 基,所以它既可作为四基配位体,也可作为六基配位体。 因此,在周期表中绝大多数的金属离子均能与EDTA形成 多个五元环,所以比较稳定,在一般情况下,这些螯合 物部是1:1络合物,只有Zr(Ⅳ)和Mo(Ⅴ)与之形成2:1的络 合物。金属离子与EDTA的作用。其构型如图6—2所示。
第六章 络合滴定法
第二节
由配位反应的平衡关系和配合物的逐级形成常
数可知
αM(L) =CM/[M] =1+∑βi[L]n =1+K1[L]+K1K2[L]2+……K1K2……Kn[L]n =1+β1[L]+β2[L]2+……βn[L]n
上式表明, αM(L)其数值大于1、等于1。 αM(L) 越大,配位效 应越强,副反应越严重。 αM(L) =1时,金属离子无副反应。
络合滴定法
1 1 H 2 H 6 H
19
例: 计算在pH=5.0时EDTA的酸效应系数及 其对数值。
20
P127 表4-2
21
EDTA的酸效应系数曲线
lgY(H) 各lgαY(H)值见表4.2,p127
lg Y(H)~pH图
H2 N CH2 CH2
H2C N H2 N H2
亚铁氰化钾 络合物
Cu2+-NH3 络合物
乙二胺 - Cu2+
①中心离子(原子),一定能提供空的轨道。 ②配位体:提供孤对电子的化合物 ③配位原子:提供孤对电子的原子 ④配位键:配位原子提供孤对电子不中心离子共用形成的共价键。 ⑤配位数:不中心离子直接结合的配位原子总数。
[H+]越大,αY(H)(lgαY(H) )越大,[Y4-]越小,酸效应越严重。
pH , ] Y ( H ) , 4 ] 副反应越严重 [H [Y pH Y(H) ;pH 12 Y ( H ) 1 ,络合物稳定
18
累级稳定系数
Y ' H 6Y 2 H 5Y Y 4 Y ( H ) Y 4 Y
第四章 络合滴定法 (Compleximetry titration)
知识点:
络合平衡 氨羧络合剂 EDTA
EDTA的络合平衡
金属指示剂 提高络合滴定的选择性的方法
络合滴定的方式和应用
水的硬度
1
络合滴定法:配位滴定法,是以络合反应为基 础的滴定分析方法。
主要用于水中硬度和铝盐、铁盐混凝剂中有效成分的测定,也 可用于水中硫酸根、磷酸根等阴离子的间接测定。
:
第五章 络合滴定法
2、例 Fe3+ + Y4–
FeY–
为简化起见,常省去电荷,写成:
Fe + Y FeY
写成通式: M + Y
MY
由于配位比简单,为定量计 算带来了方便。
H
H
5、例
ZnY2 (无色 ) MnY2 (紫红) NiY2( 蓝绿) CrY( 深紫) CuY2( 深蓝) FeY( 黄)
]
10 0.9
H H4Y
Ka2
[H ][H 4Y] [H5Y ]
101.6
H H3Y
Ka3
[H ][H 3Y ] [H 4Y]
102.0
H H2Y2
Ka4
[H ][H 2Y2 ] [H 3Y ]
102.67
H HY3
Ka5
[H ][HY 3 ] [H 2Y2 ]
106.16
H Y4
k1
[ML] [M][L]
1
k1
[ML] [M][L]
ML L
ML2
k2
[ML2 ] [ML][L]
称总最稳后定一常2级数累k1积k2稳M定+[[MnM常]LL[L2数]]2 (MβLnn)又
k k k (见附录Ⅶ-1p604) n 12
[MLn ] n [M][L]n
(3)各型体平衡浓度的计算p102
Cu(NH3)22 NH3 Cu(NH3)32 K3 8.0103
Cu(NH3)32 NH3 Cu(NH3)24 K4 1.3102
络合滴定对反应的要求: 1、反应进行完全,生成物稳定 2、反应速度快 3、按一定的反应式进行 4、有适当确定终点的方法
分析化学 第五章 络合滴定法
滴定允许的最低pH值: lgKMY = lgKMY - lgα Y(H) lgα Y(H) = lgKMY - lgKMY
lgα
Y(H)
≤lgKMY - lgK MY =lgKMY-8 (3-29)
将金属离子的KMY代入式3-29,计算出lgαY(H), 再查 表3-11得对应的pH值,即滴定允许的最低pH值。 将金属离子的lgKMY 与其滴定允许的最低pH值绘成
b.碱土金属离子的lgKMY = 7~11; c.过渡金属、稀土金属离子和Al3+、Ce3+ 、Y3+等 的lgKMY=12~19; d.多数三价、四价金属离子及Hg2+、Sn2+等离子的 lgKMY>20 。
注意:表中数据为无副反应发生时的稳定常数。
实际测定时要采用条件稳定常数。
二、EDTA的离解平衡
综合考虑EDTA的酸效应和金属离子的络合效应等 副反应时,络合物的实际稳定程度要用条件稳定常 数KMY表示:
lgKMY = lgKMY-lgα Y(H)- lgα ≈lgKMY-lgα Y(H) = lgKMY
M
注意:在络合滴定中,酸效应对络合物稳定性的影 响较大,而络合效应的影响相对较小,因而条件稳定 常数可只考虑酸效应的影响,近似用KMY代替KMY。
K MY
Y(H)
[Y' ] [Y]
MY
[MY] [M][Y]
[Y ] [Y' ]
根据:
Y(H)
可得:
[MY] K MY K MY ' [M][Y' ] Y ( H )
考虑酸效应的条件稳定常数:
lgKMY = lgKMY - lgα
Y(H)
络合滴定法
络合滴定法(硬度的测定)一、络合滴定的原理络合滴定法是以络合反应为基础的滴定分析方法。
乙二胺四乙酸就是一种常用的络合剂。
简称EDTA 。
它是一种四元酸,微溶于水。
通常情况下,一个EDTA 分子,可与一个不同价态的离子络合,也就是说,EDTA 与金属离子1:1络合,生成易溶于水的络合物。
在络合滴定中,等当点的判别常用金属指示剂来显示。
金属指示剂本身也是一种络合剂,它与金属离子生成的络全物颜色与游离指示剂的颜色不同,而且要求它与金属离子形成的络合的稳定性略低于EDTA 和金属离子形成的络合物的稳定性,在理论终点时,指示剂由络合状态被EDTA 置换而成为游离的指示剂,根据指示剂颜色的变化就可以判断终点。
如用铬黑T (简写成HI n 2-)为指示剂测Ca 2+时Ca 2+ + HI n 2- = CaI n - + H +用EDTA (简称为H 2Y 2-)滴定过程中Ca 2+ + H 2Y 2- =CaY 2- + 2H +在终点时,溶液中游离Ca 2+都与H 2Y 2-反应了,由于CaY 2-的稳定性比CaI n 2-的稳定性高,再加入的EDTA 就会夺取CaI n -中的Ca 2+,发生如下反应H 2Y 2- +CaI n - = CaY 2-+HI N -+H +酒红色 蓝色溶液由酒红色转变为蓝色,显示终点的到来。
由于EDTA 是一种多元酸,溶液的pH 值决定EDTA 的存在形式,从而影响到络合物的稳定性。
在测硬度时,一般用缓冲溶液控制溶液的pH 值为10±0.1。
二、试剂1、C (1/2EDTA)为0.04mol/L配制:称取8g 乙二胺四乙酸二钠溶入1L 高纯水中,摇匀。
标定:称取0.4g(准确到0.2mg)于800℃灼烧至恒重的氧化锌,用少许蒸馏水湿润,滴加盐酸溶液(1+1)至样品溶解移入250mL 容量瓶中,稀释至刻度,摇匀。
取上述溶液20.00mL ,加80mL 除盐水,用10%氨水中和至pH 为7~8,加5mL 氨-氯化铵缓冲溶液(Ph =10),加5滴ρ=5g/L 铬黑T 指示剂,用C (1/2edta)=0.04mol/L 溶液滴定至溶液由紫色变纯蓝色,记录消耗EDTA 标准溶液的体积。
【分析化学】络合滴定法
O C O C CH2 O
分析化学中的络合物
简单配体络合物 螯合物
O
多核络合物
Cu(NH3 ) 2 4
H2C H2C N O C O
C
O CH2 CH2 Ca O N CH2
[(H2O)4Fe
OH OH
Fe(H2O)4]4+
O C O C CH2 O
简单配体络合物:中心离子和单齿配体(只含有一个配位原子的配体)所 形成,也称为简单络合物。简单络合物不稳定。与多元酸相类似,简单络 合物是逐级形成的。如:Cu2+与单基配位体NH3的反应: Cu2+ + NH3 === Cu(NH3)2+ K1=104.18 Cu(NH3)2+ + NH3 === Cu(NH3)22+ K2=103.48 Cu(NH3)22+ + NH3 === Cu(NH3)32+ K3=102.87 Cu(NH3)32+ + NH3 === Cu(NH3)42+ K4=102.11 正是因为这一性质限制了简单络合物在滴定分析中的应用,仅作为掩蔽剂 、显色剂和指示剂,而作为滴定剂的只有以CN-为络合剂的氰量法和以Hg2 +为中心离子的汞量法具有一些实际意义。 如:①以AgNO3标准溶液测定氰化物,反应如下: 2CN-+Ag+===[Ag(CN)2]- 此反应的累积稳定常数,相当稳定。当滴定到计量点时,稍过量的Ag+ 与Ag(CN)2-结合生成白色AgCN沉淀,使溶液变浑浊而指示终点。 Ag++Ag(CN)2-===2AgCN↓(白色) ②以Hg2+溶液作滴定剂,二苯胺基脲作指示剂,滴定Cl-,反应如下: Hg2++2Cl-===HgCl2 生成的HgCl2是解离度很小的络合物,称为拟盐或假盐。过量的汞盐与指示 剂形成兰紫色的螯合物以指示终点的到达。
四大滴定的方法
四大滴定的方法
四大滴定方法是:酸碱滴定、氧化还原滴定、络合滴定和沉淀滴定。
1. 酸碱滴定:酸碱滴定是用标准酸溶液滴定标准碱溶液(或反之)的方法,常用于测定溶液中的酸度或碱度,以确定物质的酸碱性质。
2. 氧化还原滴定:氧化还原滴定是以氧化还原反应为基础的滴定方法,常用于测定溶液中的氧化剂或还原剂的浓度,或者测定样品中的氧化还原能力。
3. 络合滴定:络合滴定又称螯合滴定,是基于金属离子与配体之间的络合反应进行滴定。
络合滴定常用于测定金属离子的浓度、测定配体的浓度以及确定络合反应的平衡常数等。
4. 沉淀滴定:沉淀滴定是通过滴定剂与待测物反应产生沉淀的滴定方法,通过观察滴定终点的沉淀形成与消失来确定滴定剂的用量,常用于测定含有沉淀产物的溶液中的物质的浓度。
第六章 络合滴定法
[ MY ] [ M ][Y ]
碱金属离子: 碱土金属离子: 过渡金属离子: 高价金属离子:
lgKMY﹤3 lgKMY 8~11 lgKMY 15~19 lgKMY﹥20
EDTA螯合物的模型
有色EDTA螯合物
螯合物 CoY2颜色 紫红 螯合物 颜色
CrY-
深紫
Fe(OH)Y2- 褐 (pH≈6) FeY黄 紫红 蓝绿
[Y'] α Y(H) [Y] [Y]+[HY]+[H 2 Y]+[H3 Y]+ +[H 6 Y] 1 [Y]
[ Y′]表示络合反应达平衡时 ,未与M络合的 EDTA的总浓度 可见:在副反应中Y型体的分布系数δY与酸 效应系数αY(H)成倒数关系。
第四级累积稳定常数:β4=K1×K2×K3×K4
一级累积稳定常数
ML 1 K1 M L
2 K1 K2
二级累积稳定常数
M L 2
M Ln
ML
2
总累积稳定常数
n K1 K2 K n
ML
n
可知
β K
θ n
θ 总
OH
“NN”型
乙二胺 - Cu2+
H2 N H2C
Cu
三乙撑四胺 - Cu2+
H2 N
CH2 CH2
H2 N
H2 N CH2
Cu
H2C H2C NH H2C NH CH2
H2C N H2 N H2
CH2
lgK1=10.6, lgK2=9.0 lgK总=19.6
lgK=20.6
3.“NO”型
4.“SS”型
edta络合滴定法
edta络合滴定法
摘要:
1.EDTA 络合滴定法的概述
2.EDTA 络合滴定法的原理
3.EDTA 络合滴定法的应用
4.EDTA 络合滴定法的优缺点
正文:
一、EDTA 络合滴定法的概述
EDTA 络合滴定法,全称为乙二胺四甲酸络合滴定法,是一种广泛应用于化学分析领域的定量分析方法。
该方法以乙二胺四甲酸(EDTA)为络合剂,与金属离子形成稳定的络合物,通过测定络合物的生成量来确定金属离子的含量。
二、EDTA 络合滴定法的原理
1.络合反应:EDTA 与金属离子反应生成稳定的络合物,反应方程式为:
Mn+ + H2Y2- →M(Y2-)n(H2O)6-
其中,M 表示金属离子,n 表示络合价,Y 表示乙二胺四甲酸。
2.络合常数:络合反应达到平衡时,络合离子和未络合的金属离子的浓度之比称为络合常数(Kf)。
络合常数是该反应的一个重要特征,可用于描述反应的程度和选择合适的滴定条件。
3.滴定终点:在滴定过程中,当金属离子完全与EDTA 络合时,溶液的pH 值会发生突跃,这一现象称为滴定终点。
通过检测滴定终点,可以判断金
属离子的含量。
三、EDTA 络合滴定法的应用
EDTA 络合滴定法广泛应用于各种金属离子的分析,如钙、镁、铁、铜、锌等。
在环境监测、生物医学、化工生产等领域都有重要的应用价值。
四、EDTA 络合滴定法的优缺点
1.优点:
(1)EDTA 络合滴定法具有较高的选择性和灵敏度,适用于多种金属离子的分析;
(2)滴定过程较为简便,操作容易掌握;
(3)滴定终点明显,便于判断。
edta络合滴定法
edta络合滴定法摘要:一、EDTA络合滴定法简介1.EDTA的定义2.EDTA与金属离子的络合作用3.络合滴定法的原理二、EDTA络合滴定法的实验操作1.实验器材与试剂2.标准溶液的配制3.样品处理4.滴定实验操作5.结果处理与分析三、EDTA络合滴定法的应用领域1.金属离子的分析2.地质矿产勘查3.环境保护4.医药卫生5.其他领域四、EDTA络合滴定法的优缺点1.优点a.操作简便b.准确度高c.适用范围广2.缺点a.对某些金属离子选择性较差b.可能产生副反应正文:一、EDTA络合滴定法简介乙二胺四乙酸二钠(简称EDTA)是一种多功能的螯合剂,能与多种金属离子形成稳定的螯合物。
EDTA络合滴定法是一种定量分析方法,通过EDTA 与金属离子之间的络合作用,确定金属离子的含量。
该方法具有操作简便、准确度高、适用范围广等优点。
二、EDTA络合滴定法的实验操作1.实验器材与试剂:烧杯、滴定管、移液器、标准溶液、未知样品、盐酸、氢氧化钠等。
2.标准溶液的配制:根据实验需要,准确称取一定量的EDTA标准品,溶解于水中,配制成不同浓度的标准溶液。
3.样品处理:对待测样品进行前处理,如溶解、过滤、稀释等,使其满足滴定要求。
4.滴定实验操作:将标准溶液滴加到样品中,边滴边振荡,观察颜色变化,当达到滴定终点时,记录滴定体积。
5.结果处理与分析:根据滴定数据,计算出样品中金属离子的含量。
三、EDTA络合滴定法的应用领域1.金属离子的分析:EDTA络合滴定法广泛应用于地质、冶金、化工等领域,对金属离子的含量进行准确分析。
2.地质矿产勘查:在地质矿产勘查中,EDTA络合滴定法可用于测定岩石、土壤、水样中的金属离子含量,为矿产资源评价提供依据。
3.环境保护:在环境保护领域,EDTA络合滴定法可应用于水体、土壤等环境介质中金属离子的监测,为污染源调查和环境治理提供数据支持。
4.医药卫生:在医药卫生领域,EDTA络合滴定法可应用于药物分析、生物样品中金属离子的测定等。
第六章络合滴定法
●● ●
δMLn=[MLn]/CM = n[L]n/(1+1[L]+2[L]2+…+n[L]n) = δMn[L]n
酸可看成质子络合物
Y4- + H+ = HY3HY3- + H+ = H2Y2H2Y2- + H+ = H3YH3Y- + H+ = H4Y H4Y + H+ = H5Y+ H5Y+ + H + = H6Y2+
EDTA
MY + HIn 色B
要求: 指示剂与显色络合物颜色不同(合适的pH); 显色反应灵敏、迅速、变色可逆性好;
稳定性适当,K MIn<KMY
常用金属离子指示剂
指示剂
铬黑T (EBT) 二甲酚橙 (XO) 酸性铬蓝K
pH 范围 8~10
<6
8~13
颜色变化 In MIn 蓝红
直接滴定离子 Mg2+, Zn2+,Pb2+
1
K6= Ka1 = 10 0.90 6=K1K2..K6 = 1023.59
EDTA的有关常数
离解 常数
Ka1 10-0.90
Ka2 10-1.60
Ka3 10-2.00
Ka4 10-2.67
Ka5 10-6.16
Ka6 10-10.26
逐级 常数
K1 1010.26
K2 106.16
K3 102.67
1
K1= Ka6 = 1010.26 1=K1= 1010.26
络合滴定法知识简介
络合滴定法知识简介络合滴定法是以络合反应为基础的一种容量分析方法。
用于络合滴定的络合剂(能与金属离子形成络合物的物质)有无机和有机络合剂两类。
用于络合滴定的络合反应必须具备下列条件:⑴反应必须完全。
即生成的络合物必须相当稳定;⑵反应必须按一定的化学反应式定量地进行;⑶反应必须迅速,并有适当地方法指示反应的等当点。
金属离子指示剂一、金属指示剂的变色原理在络合滴定中,常用一种能与金属离子生成有色络合物的显色剂来指示滴定过程中金属离子浓度的变化,这种显色剂它们一般是有机染料,本身具有颜色,并且能与金属离子络合生成另外一种颜色的络合物。
如果将少量的指示剂加入代测金属离子的溶液时,一部分的金属离子M便与指示剂In反应形成络合物。
即M + In≒M In(颜色Ⅰ)(颜色Ⅱ)此时,溶液显指示剂络合物M In的颜色。
现以EDTA滴定Mg2+(PH=7~11)用络黑T作指示剂为例,来说明金属指示剂的变色原理。
指示剂络黑T在PH=7~11的溶液中现蓝色,与金属离子Mg2+络合生成酒红色的络合物。
即,PH=7~11Mg2++络黑T Mg-络黑T(蓝色)(酒红色)滴定开始时,EDTA首先与游离的Mg2+络合生成无色的络合物,即Mg2++EDTA≒Mg-EDTA这时溶液仍显Mg-络黑T的颜色(酒红色)。
直到接近等当点,游离的Mg2+几乎全部被EDTA络合后,再加入EDTA时,由于Mg-络黑T络合物不如Mg-EDTA络合物稳定,因此,EDTA便夺取Mg-络黑T中的Mg2+而使络黑T游离出来。
反应如下:Mg-络黑T+ EDTA ≒Mg-EDTA +络黑T酒红色蓝色所以,当溶液由指示剂—金属络合物的颜色转变为游离指示剂的颜色时,即为滴定终点。
二、金属指示剂应具备的条件⑴指示剂应能与金属离子形成足够的稳定的络合物;⑵指示剂本身的颜色应与它和金属离子生成的络合物的颜色有显著的差别;⑶M—指示剂络合物的稳定性应比M—EDTA络合物的稳定性小,两者的稳定常数值至少要相差100倍以上。
第04章络合滴定法
1.EDTA的酸效应:由于H+存在使EDTA与金 属离子配位反应能力降低的现象
M+Y
MY
H+
HY
H+
H+
H2Y
主反应
H+ H6Y
酸效应引起的副反应
12/3/2019 9:59 AM
酸效应系数
酸效应系数aY(H)是[H+]的函数,是定量表示EDTA酸效应进 行程度的参数。 [H+]浓度越大,引起的酸效应越大。
小pH值。
2.共存离子的络合效应
M Y MY N
NY
N与Y生成的络合物 越稳定,N浓度越大, 共存离子效应越严 重。
12/3/2019 9:59 AM
3、金属离子的络合效应
金属离子还可以和溶液中其它络合剂作用, 同时,pH过高时,会与溶液中的OH–发生水 解的副反应。
[H+]浓度越大,引起的酸效应越大;碱度越 大,共存金属离子有干扰,所以络合反应应 该在一定范围缓冲溶液中进行。
12/3/2019 9:59 AM
分析化学中的络合物
简单配体络合物
螯合物
多核络合物
Cu(NH
3
)
2 4
O
C H2C O CH2
H2C N OC
CH2
O
Ca N
CH2
O
OC
C CH2 O
O
OH
[(H2O)4Fe
Fe(H2O)4]4+
OH
12/3/2019 9:59 AM
例1:无机配合物Cu(NH3)42+ Cu2+:中心离子,d轨道未充满,电子对接受体; N:配位原子,含有孤对电子,电子给予体; NH3:配位体,络合剂; 4个N:配位数; 4:配位体数.
edta络合滴定法
edta络合滴定法摘要:一、edta络合滴定法简介1.edta的定义2.edta络合滴定法的原理二、edta络合滴定法的应用1.金属离子的滴定2.配位化合物的滴定3.滴定过程中的指示剂三、edta络合滴定法的优点与局限性1.优点a.高精度b.快速c.易于操作2.局限性a.对某些离子的滴定效果不佳b.指示剂的选择有限四、edta络合滴定法与其他滴定法的比较1.与氧化还原滴定法的比较2.与沉淀滴定法的比较五、edta络合滴定法的发展趋势1.滴定体系的研究2.指示剂的改进3.自动化技术的应用正文:edta络合滴定法是一种广泛应用于化学分析中的滴定方法。
它以乙二胺四乙酸(edta)为滴定剂,通过与金属离子形成稳定的螯合物,从而实现对金属离子的滴定。
该方法具有高精度、快速和易于操作等优点,使其成为化学分析中不可或缺的一种方法。
在edta络合滴定法中,edta与金属离子形成稳定的螯合物,从而使金属离子从其原始溶液中去除。
这一过程可以通过加入指示剂来监测,从而确定滴定终点。
常用的指示剂有酚酞、铬黑t和荧光黄等。
edta络合滴定法的应用范围广泛,可以用于金属离子的滴定,也可以用于配位化合物的滴定。
在金属离子的滴定中,edta可以与多种金属离子形成稳定的螯合物,例如钙、镁、铁等。
在配位化合物的滴定中,edta可以与配位化合物中的金属离子形成稳定的螯合物,从而实现对配位化合物的滴定。
然而,edta络合滴定法也存在一些局限性。
例如,对于某些离子,如铝和镓,edta的滴定效果不佳。
此外,指示剂的选择也相对有限,这可能会影响到滴定结果的准确性。
与其他滴定方法相比,edta络合滴定法具有高精度、快速和易于操作等优点。
与氧化还原滴定法相比,edta络合滴定法对金属离子的滴定效果更好;与沉淀滴定法相比,edta络合滴定法对配位化合物的滴定效果更好。
总的来说,edta络合滴定法是一种重要的化学分析方法,具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-1 分析化学中常见的络合物 络合物分类
简单配体络合物
螯合物
多核络合物
Cu(NH
3
)
2 4
O
C H2C O CH2
H2C N OC
CH2
O
Ca N
CH2
O
OC
C CH2 O
O
OH
[(H2O)4Fe
Fe(H2O)4]4+
OH
6-1 分析化学中常见的络合物
一.简单络合物: 1.组成:
由中心离子与单基配位体构成的MLn络合物。
[ML] [M ][L]
[ML2 ] [ML][L]
[ML3 ] [ML2 ][L]
[ML3 ] [M ][L]3
[ML3]=3[M][L]3
(3) M + L = ML
[ML] K1 = [M][L]
ML + L = ML2
K2
=
[ML2 ] [ML][L]
ML2+L=ML3
K3
[ML3 ] [ML2 ][L]
••••••
MLn-1 + L=MLn 总反应:M+nL=MLn
Kn
[MLn ] [MLn1 ][L]
[MLn ]
n=K1K2•••Kn= [M][L]n
累积形成常数:络合物逐 级形成常数的乘积。β
[MLn]=n[M][L]n
同理,MLn的解离也是逐级进行的:
MLn=MLn-1+L
K1
[MLn1 ][ L] [MLn ]
[ MY ] [ M ][Y ]
KMY的物理意义为:
➢ 用来衡量同类型络合物的稳定性。
➢ KMY越大,表面此络合物的稳定性越大。
配合物的形成常数(稳定常数) (Stability or formation constant)
K形 =K稳
累积形成常数β=
K形=
1 ——
K离
➢ 讨论:
K形 ↑大,配合物稳定性↑高,配合反应↑完全
(三)EDTA在水溶液中的特性
2. Y4-逐级质子化-----酸可看成质子络合物
Y4- + H+ = HY3-
1
K1= Ka6 = 1010.26
HY3- + H+ = H2Y2H2Y2- + H+ = H3Y-
K2= K3=
1
Ka5 = 106.16
1
Ka4 = 102.67
注: 指与酸反应
H3Y- + H+ = H4Y H4Y + H+ = H5Y+
累积形成常数:络合物逐级形成常数的乘积。β
(二)MLn型络合物
前提:对金属离子而言,除了与EDTA配位外,还能与 其他配位剂 L 形成 MLn 型配合物。
1. MLn型络合物的稳定常数
M+L
ML
k1
[ML] [M ][L]
ML + L
ML2
k2
[ML2 ] [ML][L]
. . . . . . . . . ..
2
K1K 2
ML2 M L2
总累积稳定常数 n
K1K2
Kn
MLn M Ln
注:各级累计常数将各级 [MLi]和 [M ]及 [L]联系起来
1. ML(1:1)型络合物
M + L = ML
[ML] K1 = [M][L]
仅有一级络合:1=
K1
=
[ML] [M][L]
[ML]= 1[M][L]1
•
[ML2 ] [ML][L]
[ML2 ] [M][L]2
[ML2]=2[M][L]2
(2) M + L = ML
[ML] K1 = [M][L]
ML + L = ML2
K2
=
[ML2 ] [ML][L]
ML2+ L=ML3
总:M + 3L=ML3
累积形成常数:络合物逐 级形成常数的乘积。β
3
K1K2 K3
4个N:配位数;
4:配位体数.
H3N
NH3
Cu2+
H3N
NH3
Cu NH3Cu(NH3)2 NH3Cu(NH3)22.....C. u(NH3)52
一.简单络合物:
4. 小结: ① 简单络合物大多为无机络合物
② 无机络合剂: F-, NH3, SCN-, CN-, Cl-,
缺点:1)稳定性小 2)逐级络合现象 3)选择性差
2-
OO
OO M N
O
N
O
O
1.与众多金 属离子形成 稳定的多个 五元环配合 物如图 EDTA结构 式:(左图)
(二)EDTA螯合物的特性
EDTA 有 6 个配位基
HOOCH2C -OOCH2C
H N CH2 CH2 +
+ N
H
CH2COOCH2COOH
2个氨氮配位原子 4个羧氧配位原子
O
..
N
O ..
型 (如:Mo(Ⅴ)),计量数为1,通式略电荷 写成
通式:
M+Y=MY
4. 配合物带电荷且易溶于水 5. 反应快,滴定终点易判断
(二)EDTA螯合物的特性
6. 离子带色,形成MY也带色且颜色加深,可定 性分析
CuY (深蓝)
MnY (紫红)
FeY (黄)
NiY (蓝绿)
CrY (深紫) Fe(OH)Y2(褐)
数为第一级解离常数的倒数。
M + L = ML
ML + L = ML2
● ● ●
MLn-1 + L = MLn
逐级稳定常数 Ki [ML]
K1= [M][L]
K2=
[ML2] [ML][L]
● ● ●
Kn=
[MLn] [MLn-1][L]
累积稳定常数
1=K1=
HOOCH2C -OOCH2C
H N CH2 CCH2COOCH2COOH
2. EDTA在水溶液中以双偶极离子形式存在
三. EDTA及其络合物
(一)EDTA的性质 3. H4Y微溶于水
4.通常使用的是EDTA的二钠盐,用Na2H2Y•2H2O
表示,也简称EDTA。它在水中的溶解度较大, S=11.1g/100mL,其浓度约为0.3mol•L-1,pH=4.4。
二. 螯合物:
螯合物(Complex):多基配体与中心离子形成,配 位能力强,易行成稳定的多环状的可溶性配合 物,常见的含有N, O,S配位原子的有机配体 可用做滴定剂和掩蔽剂.
二. 螯合物:
三. EDTA及其络合物
乙二胺四乙酸 (H4Y, 简称EDTA)
Ethylene Diamine Tetra
第六章 络合滴定法 (Complexometric Titration)
——以络合反应为基础的滴定分析法
第一节 概述 第二节 溶液中各级络合物型体的分布 第三节 络合滴定中的副反应 第四节 EDTA滴定曲线 第五节 络合滴定指示剂 第六节 终点误差和准确滴定的条件 第七节 提高络合滴定选择性的方法 第八节 络合滴定的方式和应用
MLn-1 + L
MLn
kn
[MLn ] [ MLn1 ][ L]
2. MLn型配合物的累积稳定常数
M +L
ML
一级稳定常数
K1
ML M L
ML+ L
ML2
二级稳定常数
K2
ML2 ML L
MLn-1+ L
MLn
n级稳定常数
Kn
MLn MLn1 L
一级累积稳定常数
1
K1
ML M L
二级累积稳定常数
HOOCH2C
CH2COO-
:: ::
·· ··
NH+ C
C
NH+
H2 H2
-OOCH2C
CH2COOH
两个羧酸基上的 H转移至 N原子上,形成双
极离子,它的两个羧基可再接受 H+ 形成H6Y2+, 所以EDTA相当于六元酸.
(二)EDTA螯合物的特性----配位性质
EDTA-M螯合物的立体结构
O
可见,对于1:1型络合物 ,其形成常数与解离常数互为倒数。
2. MLn(1:n)型络合物
累积形成常数:络合物逐
(1) M + L = ML
[ML] 级形成常数的乘积。β K1 = [M][L]
ML + L = ML2 总:M+2L=ML2
K2
=
[ML2 ] [ML][L]
2
K1K2
[ML] [M][L]
H4Y + 2NaOH = NaH2Y + 2H2O
EDTA
:: ::
HOOCH2C
CH2COO-
·· ··
NH+ C
C
NH+
H2 H2
-OOCH2C
CH2COOH
乙二胺四乙酸 (H4Y) 乙二胺四乙酸二钠盐 (Na2H2Y)
三. EDTA及其络合物
(一)EDTA的性质
5. 在强酸溶液中,H4Y完全质子化,生成六元环
CoY (玫瑰)
Cr(OH)Y2(蓝)
(三)EDTA在水溶液中的特性
1. H6Y2+的逐级解离----酸性
H6Y2+ =H+ + H5Y+
Ka1=
[H+][H5Y]
[H6Y]
H5Y+ =H+ + H4Y