【数学】数学一模试题分类汇编——平行四边形综合及答案
人教中考数学综合题专题复习【平行四边形】专题解析附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=245ACACcos︒=∴2AD AB AC+=.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2,∴AH=BH=BC ,∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,∴EF=BC .考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
备战中考数学—平行四边形的综合压轴题专题复习含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x , ∴CF=BE-EM=2+28x -x , ∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.2.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213, ∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 62233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,CF=BE=32,在Rt △OCE 中,OC=222231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭=622+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=2, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.6.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.7.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若42ADB =∠,则DBE ∠的度数为______.(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】(1)如图1所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:CF=22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.8.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为23,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②2;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF≌△DOE根据全等三角形的性质证明;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;(2)首先过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系.【详解】(1)①证明:∵四边形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为23, ∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE , ∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.9.问题探究(1)如图①,已知正方形ABCD 的边长为4.点M 和N 分别是边BC 、CD 上两点,且BM =CN ,连接AM 和BN ,交于点P .猜想AM 与BN 的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD 的边长为4.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,求△APB 周长的最大值;问题解决(3)如图③,AC 为边长为23的菱形ABCD 的对角线,∠ABC =60°.点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 向终点C 和A 运动.连接AM 和BN ,交于点P .求△APB 周长的最大值.【答案】(1)AM ⊥BN ,证明见解析;(2)△APB 周长的最大值2;(3)△PAB 的周长最大值3.【解析】试题分析:根据全等三角形的判定SAS 证明△ABM ≌△BCN ,即可证得AM ⊥BN ; (2)如图②,以AB 为斜边向外作等腰直角△AEB ,∠AEB=90°,作EF ⊥PA 于E ,作EG ⊥PB 于G ,连接EP ,证明PA+PB=2EF ,求出EF 的最大值即可;(3)如图③,延长DA 到K ,使得AK=AB ,则△ABK 是等边三角形,连接PK ,取PH=PB ,证明PA+PB=PK ,求出PK 的最大值即可.试题解析:(1)结论:AM ⊥BN .理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.10.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.(1)填空:AB= ,BC= .(2)将△ABC绕点B逆时针旋转,①当AC与x轴平行时,则点A的坐标是②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.③在②的条件下,旋转过程中AC扫过的图形的面积是多少?(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.【解析】试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90°,∴BC=;(2)①如图1,∵B(0,3),∴OB=3,∵AB=5,∴AO=AB-BO=5-3=2,∴A(0,-2).当在x轴上方时,点A的坐标为(0,8),②如图2,过点C作CF⊥OA与点F,∵△ABC为等腰直角三角形,∴∠BAC=90°,AB=AC,∴∠BAO+∠CAF=90°,∵∠OBA+∠BAO=90°,∴∠CAF=∠OBA,在△AOB和△CFA中,,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(-7,4)∵A(-4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=x,∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,∴∠ABD=90°,∵∠CAB=90°,∴∠ABD=∠CAB=90°,∴AC∥BD,∴设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,∴直线BD的解析式为y=x+3;③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,所以可得:S=;(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,平行四边CAA′C′的面积为(7+)×4=,三角形ABC的面积为×5×5=△ABC扫过的面积为:.考点:几何变换综合题.。
人教中考数学综合题专题复习【平行四边形】专题解析及答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.在图1中,正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边AE =2b ,且边AD 和AE 在同一直线上.操作示例当2b <a 时,如图1,在BA 上选取点G ,使BG =b ,连结FG 和CG ,裁掉△FAG 和△CGB 并分别拼接到△FEH 和△CHD 的位置构成四边形FGCH .思考发现小明在操作后发现:该剪拼方法就是先将△FAG 绕点F 逆时针旋转90°到△FEH 的位置,易知EH 与AD 在同一直线上.连结CH ,由剪拼方法可得DH=BG ,故△CHD ≌△CGB ,从而又可将△CGB 绕点C 顺时针旋转90°到△CHD 的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F 作FM ⊥AE 于点M (图略),利用SAS 公理可判断△HFM ≌△CHD ,易得FH=HC=GC=FG ,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH 是正方形.实践探究(1)正方形FGCH 的面积是 ;(用含a , b 的式子表示)(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a 时,此类图形都能剪拼成正方形,且所选取的点G 的位置在BA 方向上随着b 的增大不断上移.当b >a 时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;剪拼方法如图2-图4;联想拓展:能,剪拼方法如图5(图中BG=DH=b)..点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)23【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.5.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.6.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.7.(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为:AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+8或16﹣8.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F 中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8综上所述,BD′平方的长度为16+8或16﹣8.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.8.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC(1)求证:AC是⊙O的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.9.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考点:四边形的综合知识.10.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题。
人教备战中考数学平行四边形综合经典题及详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB -=2133, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键 2.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。
(I )若点P 落在矩形OBCD 的边OB 上,①如图①,当点E 与点O 重合时,求点F 的坐标;②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。
人教备战中考数学 平行四边形 综合题含详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键2.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.3.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.DF CF106∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.4.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.5.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.7.点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P 与点O 重合时,请你判断OE 与OF 的数量关系;(2)当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF ,AE ,OE 之间有怎样的数量关系,直接写出结论不必证明.【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .【解析】【分析】(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.【详解】(1)OE =OF .理由如下:如图1.∵四边形ABCD 是矩形,∴ OA =OC .∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;(2)补全图形如图2,OE =OF 仍然成立.证明如下:延长EO 交CF 于点G .∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.又∵点O 为AC 的中点,∴ AO =CO .在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,∴Rt EFG ∆中,12OF EG =,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF +CG ,∴ CF =OE +AE ;②如图3,当点P 在线段OA 延长线上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∴ FG =OF =OE ,同理可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF -CG ,∴ CF =OE -AE .【点睛】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.8.如图,抛物线交x 轴的正半轴于点A ,点B (,a )在抛物线上,点C 是抛物线对称轴上的一点,连接AB 、BC ,以AB 、BC 为邻边作□ABCD ,记点C 纵坐标为n , (1)求a 的值及点A 的坐标;(2)当点D 恰好落在抛物线上时,求n 的值;(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n =___________.(直接写出答案)【答案】(1), A(3,0);(2)【解析】试题解析:(1)把点B的坐标代入抛物线的解析式中,即可求出a的值,令y=0即可求出点A的坐标.(2)求出点D的坐标即可求解;(3)运用△AEB的面积为7,列式计算即可得解.试题解析:(1)当时,由,得(舍去),(1分)∴A(3,0)(2)过D作DG⊥轴于G,BH⊥轴于H.∵CD∥AB,CD=AB∴,∴,∴(3)9.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。
【数学】数学平行四边形的专项培优 易错 难题练习题(含答案)含答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,3△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=3,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴323综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.4.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为3,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②22;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明; ②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.【详解】(1)①证明:∵四边形ABCD 是正方形,∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为3∴OG=123∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG ∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,∴PD=2HP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE ,∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.5.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质7.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.8.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
人教备战中考数学平行四边形综合练习题及详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形 .A .平行四边形B .矩形C .菱形D .等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.【答案】(1) C ;(2)∠ABC 的度数为60°或90°或150°.【解析】试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.(2)根据和谐四边形定义,分AD=CD ,AD=AC ,AC=DC 讨论即可.(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.(2)∵等腰Rt △ABD 中,∠BAD=90°,∴AB=AD.∵AC 为凸四边形ABCD 的和谐线,且AB=BC ,∴分三种情况讨论:若AD=CD ,如图1,则凸四边形ABCD 是正方形,∠ABC=90°;若AD=AC ,如图 2,则AB=AC=BC ,△ABC 是等边三角形,∠ABC=60°;若AC=DC ,如图 3,则可求∠ABC=150°.考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.4.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(334【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得2OE OD OH OG OC -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形, ∴2OC OD =,2OC OE =.∴2OD OE OC +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形,由(1)得:2OG OH OC +=,在CGD ∆和CHE ∆中, 90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴2OD OE OC +=.(3)2OG OH OC +=, ()CGD CHE ASA ∆≅∆,∴GD HE =. ∵OD GD OG =-,OE OH EH =+,∴2OE OD OH OG OC -=+=, ∴32OC =,∴34CE =,CE 的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.5.正方形ABCD ,点E 在边BC 上,点F 在对角线AC 上,连AE .(1)如图1,连EF ,若EF ⊥AC ,4AF =3AC ,AB =4,求△AEF 的周长;(2)如图2,若AF =AB ,过点F 作FG ⊥AC 交CD 于G ,点H 在线段FG 上(不与端点重合),连AH .若∠EAH =45°,求证:EC =2.+;(2)证明见解析【答案】(1)2542【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=2AB=42,求出AF=32,CF=AC﹣AF=2,求出△CEF 是等腰直角三角形,得出EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=2AB=42,∵4AF=3AC=122,∴AF=32,∴CF=AC﹣AF=2,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理得:AE=2225+=,AF EF++=+;∴△AEF的周长=AE+EF+AF=252322542(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE =∠FAH ,∵FG ⊥AC ,∴∠AFH =90°,在△ABE 和△AFH 中,90B AFH AB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△AFH (ASA ),∴BE =FH ,∵BM =BE +EM ,FG =FH +HG ,∴EM =HG ,∵EC =EM +CM ,CM =CGCF ,∴EC =HG.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.6.(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.7.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC .(1)请判断:FG 与CE 的关系是___;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE ,FG ∥CE ;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF 是平行四边形即可得出FG =CE ,FG ∥CE ;(2)构造辅助线后证明△HGE ≌△CED ,利用对应边相等求证四边形GHBF 是矩形后,利用等量代换即可求出FG =C ,FG ∥CE ;(3)证明△CBF ≌△DCE 后,即可证明四边形CEGF 是平行四边形.试题解析:解:(1)FG =CE ,FG ∥CE ;(2)过点G 作GH ⊥CB 的延长线于点H .∵EG ⊥DE ,∴∠GEH +∠DEC =90°.∵∠GEH +∠HGE =90°,∴∠DEC =∠HE .在△HGE 与△CED 中,∵∠GHE =∠DCE ,∠HGE =∠DEC ,EG =DE ,∴△HGE ≌△CED (AAS ),∴GH =CE ,HE =CD .∵CE =BF ,∴GH =BF .∵GH ∥BF ,∴四边形GHBF 是矩形,∴GF =BH ,FG ∥CH ,∴FG ∥CE .∵四边形ABCD 是正方形,∴CD =BC ,∴HE =BC ,∴HE +EB =BC +EB ,∴BH =EC ,∴FG =EC ;(3)∵四边形ABCD 是正方形,∴BC =CD ,∠FBC =∠ECD =90°.在△CBF 与△DCE 中,∵BF =CE ,∠FBC =∠ECD ,BC =DC ,∴△CBF ≌△DCE (SAS ),∴∠BCF =∠CDE ,CF =DE .∵EG =DE ,∴CF =EG .∵DE ⊥EG ,∴∠DEC +∠CEG =90°.∵∠CDE +∠DEC =90°,∴∠CDE =∠CEG ,∴∠BCF =∠CEG ,∴CF ∥EG ,∴四边形CEGF 平行四边形,∴FG ∥CE ,FG =CE .8.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥,CF AG ∴⊥,又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)7)(5x)=+-, 解得:1x 2=,216x (3=-舍去),∴=,GF2∴菱形BDFG的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.9.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
全国中考数学平行四边形的综合中考真题分类汇总及答案解析
全国中考数学平行四边形的综合中考真题分类汇总及答案解析一、平行四边形1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN ∥AE ,MN=AE ,利用三角形全等证出AE=AF ,而DM=AF ,从而得到DM ,MN 数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM 、MN 的位置关系是垂直.试题解析:(1)∵四边形ABCD 是正方形,∴AB=AD=BC=CD ,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF ,∴BC ﹣CE=CD ﹣CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,∴△AEF 是等腰三角形;(2)DM 、MN 的数量关系是相等,DM 、MN 的位置关系是垂直;∵在Rt △ADF 中DM 是斜边AF 的中线,∴AF=2DM ,∵MN 是△AEF 的中位线,∴AE=2MN ,∵AE=AF ,∴DM=MN ;∵∠DMF=∠DAF+∠ADM ,AM=MD ,∵∠FMN=∠FAE ,∠DAF=∠BAE ,∴∠ADM=∠DAF=∠BAE ,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM ⊥MN ;(3)(2)中的两个结论还成立,连接AE ,交MD 于点G ,∵点M 为AF 的中点,点N 为EF 的中点,∴MN ∥AE ,MN=AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.4.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②42或22.【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=,DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===22AH (25)(2)32=-=,AE AH EH 42=+=,=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.6.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.【详解】证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.7.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH =3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.8.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ;(2)根据△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC 即可解题;(3)当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.9.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.106DF CF∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A (0,8),B (6,0),C (﹣4,0)∴AB 2268+10,BC =10.∴AB =BC ,(1)由结论得:P 1D 1+P 1E 1=OA =8∵P 1D 1=1=2,∴P 1E 1=6 即点P 1的纵坐标为6又点P 1在直线l 2上,∴y =2x+8=6,∴x =﹣1,即点P 1的坐标为(﹣1,6);(2)由结论得:P 2E 2﹣P 2D 2=OA =8∵P 2D 2=2,∴P 2E 2=10 即点P 1的纵坐标为10又点P 1在直线l 2上,∴y =2x+8=10,∴x =1,即点P 1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.10.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.11.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.12.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P 在运动中保持∠APD=90°,所以点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF .理由:∵四边形ABCD 是正方形,∴AD=DC ,∠ADC=∠C=90°.在△ADE 和△DCF 中,,∴△ADE ≌△DCF (SAS ).∴AE=DF ,∠DAE=∠CDF ,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE ⊥DF ; (2)是; (3)成立.理由:由(1)同理可证AE=DF ,∠DAE=∠CDF 延长FD 交AE 于点G ,则∠CDF+∠ADG=90°, ∴∠ADG+∠DAE=90°. ∴AE ⊥DF ; (4)如图:由于点P 在运动中保持∠APD=90°,∴点P 的路径是一段以AD 为直径的弧, 设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小, 在Rt △QDC 中,QC=,∴CP=QC ﹣QP=.考点:四边形的综合知识.13.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)①25;②25 【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB ,AD=AC , ∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC ,∠DAB=∠DAC+∠BAC , ∴∠EAC=∠DAB ,在△AEC 和△ABD 中{AE ABEAC BAD AC AD=∠=∠=∴△AEC ≌△ABD (SAS ), ∴∠AEC=∠ABD ,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE , ∴∠BFC=∠AEB+∠ABE=120°, 故答案为120°;(2)①如图2,以AB 为边在△ABC 外作正三角形ABE ,连接CE .由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴2264--22EC BC∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质14.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.请你阅读下面交流信息,解决所提出的问题.展示交流:小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.(选择图乙或图丙的一种情况说明即可).(2)小慧思考问题的方式中,蕴含的数学思想是.拓展延伸:根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.【答案】成立;分类讨论思想;正方形.【解析】试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.试题解析:(1)、成立,理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,∠DAC=∠QBC,延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;拓展延伸:四边形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,∴MN TP,∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.考点:几何变换综合题15.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。
数学平行四边形试题答案及解析
数学平行四边形试题答案及解析1.两条直线相交成直角时,这两条直线互相,它们的交点叫做.【答案】垂直,垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可.解:如果两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足.故答案为:垂直,垂足.点评:此题考查了垂直与垂足的定义.2.两条平行线间的距离.【答案】处处相等【解析】因为平行线之间的距离都是两条平行线的垂线段,所以相等.解:两条平行线间的距离处处相等;故答案为:处处相等.点评:此题很简单,考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.3.两条直线相交成直角,这两条直线的交点叫.【答案】垂足【解析】如果两直线相交的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足;据此判断即可.解:由垂足的含义可知:两条直线相交成直角,这两条直线的交点叫垂足;故答案为:垂足.点评:此题主要是考查垂足的含义.4.两条直线相交成直角,就是说这两条直线互相,其中一条直线叫做另一条直线的.这两条直线的交点叫做.【答案】垂直、垂线、垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线;据此解答即可.解:两条直线相交成直角,就是说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.这两条直线的交点叫做垂足.故答案为:垂直、垂线、垂足.点评:此题考查了学生垂直、垂线与垂足的定义.5.直线a垂直于直线b,则直线b一定垂直于直线a..(判断对错)【答案】√【解析】根据垂直的定义可知:两条直线相交所组成的四个角中,有一个角是直角,那么这两条直线就互相垂直,其中一条直线就叫做另一条直线的垂线,解:根据垂直的定义可知,垂直是指两条直线的位置关系,是相互的,一条直线a垂直与直线b,则直线b一定垂直与直线a,原题说法正确.故答案为:√.点评:垂直是指两条直线之间的位置关系,是相互的.6.(2010•深圳模拟)两条直线如果永不相交,这两条直线一定互相平行..【答案】错误【解析】同一平面内,两条永不相交(即没有交点)的直线的位置关系叫互相平行,其中一条叫另一条的平行线,同一平面内,两条直线的位置关系只有平行和相交两种情况.解:两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.点评:解答此题应根据同一平面内,两条直线的位置关系进行解答.7.(2011•北海模拟)从直线外一点画到直线的线段中垂直的线段最短..【答案】√【解析】通过画图即可解答.解:如图所示:,从直线外一点画到直线的线段中垂直的线段最短,题干说法正确.故答案为:√.点评:此题应根据垂线段的性质进行解答.从直线外一点向已知直线画垂直线段和斜线,垂线段最短.8.过已知直线外的一点作已知直线的平行线,能作无数条..【答案】错误【解析】过直线外一点有且只有一条直线与已知直线平行.据此解答.解:根据以上分析知:过直线外一点只有一条直线与已知直线平行.故答案为:错误.点评:本题考查了过直线外一点与已知直线平行的知识.9.两条直线平行,无论怎样延长直线,都不相交..【答案】√【解析】利用平行线的定义:在同一平面内,不相交的两条直线叫做平行线;据此判断.解:由平行线定义可知:两条直线平行,无论怎样延长直线,都不相交;故答案为:√.点评:本题主要考查了平行的特征及性质.10.过直线外一点可以画无数条直线与已知直线平行..【答案】错误【解析】根据平行的性质:同一平面内,过直线外一点,画已知直线的平行线,只能画一条;据此判断即可.解:根据平行的性质可知:过直线外一点可以画一条直线与已知直线平行,所以本题说法错误;故答案为:错误.点评:此题考查了平行的特征.11.(2009•游仙区模拟)因为平行线是不相交的两条直线,所以不相交的两条直线一定是平行线..【答案】错误【解析】根据平行线的定义“在同一平面内,两条永不相交的直线叫做平行线.”而在本题中,缺少了“在同一平面内”这个条件.因此是错误的.解:因为平行线是不相交的两条直线,所以不相交的两条直线一定是平行线,说法错误,前提必须是“在同一平面内”;故答案为:错误.点评:本题主要考查了平行线的含义,需要认真揣摩题干,注意每一个条件是否满足,避免粗心大意.12.若两条直线不相交,则两条直线平行.【答案】×【解析】根据直线平行、相交的定义及平行公理和推论进行分析判断即可.解:若两条直线不相交,则两条直线平行,说法错误;应该是在同一平面内,两直线不相交就平行;故答案为:×.点评:本题是对概念和公理的考查,准确记忆是解答本题的关键.13.(2013•福田区模拟)垂直于同一条直线的两条直线一定平行..【答案】错误【解析】在同一平面内,垂直于同一条直线的两条直线一定平行;如果不在同一平面内,垂直于同一条直线的两条直线可能相交或异面;进而判断即可.解:垂直于同一条直线的两条直线一定平行,说法错误,前提必须是在同一平面内;故答案为:错误.点评:根据垂直和平行的特征进行解答即可.14.(2004•苏州模拟)在同一平面内,不相交的直线一定平行..【答案】√【解析】利用平行线的定义解答即可.解:根据平行线的定义:在同一平面内,不相交的两条直线叫做平行线;所以原题说法正确.故答案为:√.点评:本题主要考查了平行的特征及性质.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.15.过直线外的一点,画已知直线的平行线,这样的平行线可以画()A.1条B.2条C.无数条【答案】A【解析】根据平行线的性质,过直线外一点作已知直线的平行线,能作且只能作一条.解:过直线外的一点,画已知直线的平行线,这样的平行线可以画1条.故选:A.点评:此题主要考查了平行线的性质.16.同一平面内两条直线的位置关系有()A.2种B.3种C.无数种【答案】A【解析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.解:在同一个平面内,两条直线只有两种位置关系,即平行或相交;故选:A.点评:本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.17.同一平面内的两条直线最多有()个交点.A.0B.1C.2【答案】B【解析】根据垂直与平行的特征可知:平面内两条直线相交,有1个交点;据此解答.解:同一平面内的两条直线最多有1个交点.故选:B.点评:此题考查了垂直于平行的特征,应注意理解和应用.18.两条直线相交成四个角,其中一个角是直角,那么其他三个角一定是()A.锐角B.直角C.钝角【答案】B【解析】两条直线相交,有两种情况,垂直或不垂直,如果其中一个角是90°,那么其它各个角都是90°,这两条直线就相互垂直.解:两条直线相交成四个角,其中一个角是直角,那么其他三个角一定是直角;故选:B.点评:此题考查了垂直的含义,注意对一些基础概念和性质的理解.19.在同一平面内,若两条直线都和同一条直线垂直,那么这两条直线()A.互相垂直B.互相平行C.不能确定【答案】B【解析】根据平行的性质:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;据此解答.解:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;故选:B.点评:此题考查了垂直和平行的性质,应注意积累和理解.20.下面的各组直线中,哪组互相平行?()A B C D E F【答案】B、D、F【解析】根据平行的含义:同一平面内,永不相交的两条直线是平行线;据此解答即可.解:根据平行的含义可知:B、D、F中的两条直线互相平行;故选:B、D、F.点评:此题考查了平行的含义,应注意灵活运用.21.线段AB向下平移后得到线段CD,那么AB和CD()A.互相平行B.相交C.互相垂直【答案】A【解析】根据平移的性质:平移的对应线段平行且相等可知.解:由平移的性质及平行的含义可知:AB和CD互相平行;故选:A.点评:本题主要考查了平移的性质及平行的含义.22.两条直线相交成直角时,这两条直线()A.互相平行B.互相垂直C.互相重合【答案】B【解析】根据垂直的含义:在同一平面内相交成直角的两条直线叫做互相垂直;进行解答即可.解:根据垂直的含义可知:如果两条直线相交成直角,我们就说这两条直线互相垂直;故选:B.点评:本题主要考查垂直的定义,熟练掌握定义是解题的关键.23.画已知直线的平行线,可以画()条.A.1B.2C.3D.无数【答案】D【解析】根据平行线的含义:在同一平面内不相交的两条直线,叫平行线;可知过直线外一点,可以做一条平行线和已知直线平行,这样的点有无数个,所以在同一平面内画已知直线的平行线,可以画无数条;据此解答.解:在同平面内可以画无数条已知直线的平行线;故选:D.点评:此题应根据平行的含义和性质进行分析、解答.24.梯形的两条腰如果无限延长,其结果是()A.互相平行B.互相垂直C.相交【答案】C【解析】只有一组对边平行的四边形是梯形,平行的这组对边叫做梯形的底,不平行的对边叫做梯形的腰,由此根据同一平面内,两条直线的位置关系即可进行选择.解:根据梯形的定义可知,梯形的两条腰不平行,因为在同一平面内,两条直线不平行,就相交,所以把梯形的两条腰无限地延长,两腰会相交.点评:此题考查梯形的特征及同一平面内两条直线的位置关系的灵活应用.25.关于下面图形中四条线段的关系,有下面几种说法,其中正确的是()A a和b互相垂直B b和c互相垂直C c和d互相垂直D a和b互相平行E c和a互相平行F d和a互相平行【答案】C、E【解析】依据梯形和直角梯形的定义及特点,即可进行解答.解:因为只有一组对边平行的四边形,叫做梯形,有一个角是直角的梯形,叫做直角梯形;再通过观察图可知:只有“c和d互相垂直”和“c和a互相平行”是正确的;故选:C、E.点评:此题主要考查梯形和直角梯形的定义及特点.26.在下面的图中,两条直线互相垂直的是()A.B.C.D.【答案】A【解析】根据垂直的性质:当两条直线相交成90度时,这两条直线互相垂直,其中一条直线是另一条直线的垂线;进行解答即可.解:根据垂直的性质:当两条直线相交成90度时,这两条直线互相垂直,其中一条直线是另一条直线的垂线;故选:A.点评:此题考查了垂直的意义和特征.27.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线【答案】C【解析】根据平行线的定义和平行的特征及性质即可判断.解:因为在同一平面内,两条不相交的直线是平行线,故A、B错误;故选:C.点评:本题考查的重点是平行线的有关概念和特征.28.两条直线相交,有一个角是直角,这两条直线()互相垂直.A.一定B.不一定C.不可能【答案】A【解析】根据垂直的含义:在同一平面内相交成直角的两条直线叫做互相垂直;进行解答即可.解:根据垂直的含义可知:直两条线相交,有一个角是直角,这两条直线一定互相垂直;故选:A.点评:此题考查了垂直的含义.29.在同一平面内,两根小棒都和第3根小棒垂直,那么这两根小棒的位置关系是()A.相交B.互相垂直C.互相平行D.不能确定【解析】根据在同一平面内,两条直线都与同一条直线垂直,则这两直线平行作答.解:因为在同一平面内,l1⊥l2,l2⊥l3,所以l1∥l3,即l1与l3的位置关系是平行.故选:C.点评:此题考查了平行线的判定这一知识点,本题利用了:在同一平面内,两条直线都与同一条直线垂直,则这两直线平行.30.在两条平行线之间作了四条垂线,这四条垂线的长度()A.都相等B.不相等C.有的相等有的不相等【答案】A【解析】根据平行和垂直的性质和特征可知:两条平行线中可以画无数条垂线,这些线段的长度相等;进而解答即可.解:因为两条平行线中可以画无数条垂线,这些线段的长度相等,所以在两条平行线之间作了四条垂线,这四条垂线的长度相等;故选:A.点评:此题应根据垂直和平行的特征和性质进行解答.。
平行四边形专题(含答案)
平行四边形专题一.选择题(共15小题)1.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确2.下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.124.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个5.平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<226.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个7.如图,▱的对角线、交于点O,平分∠交于点E ,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个8.在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④9.如图,在平行四边形中,2,F是的中点,作⊥,垂足E在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④10.如图,平行四边形的周长是26,对角线与交于点O,⊥,E是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.811.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S312.如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.2613.如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.614.如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14 15.如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5二.解答题(共11小题)16.如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.17.如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.18.如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.19.如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.20.如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.21.如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.22.如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.23.如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?24.如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.25.如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.26.已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.平行四边形专题(答案)一.选择题(共15小题)1.(2015春•博野县期末)已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确【分析】因为平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值为大于7而小于13,则它的另一条对角线α的取值范围为14<α<26.【解答】解:如图,已知平行四边形中,10,6,求的取值范围,即a的取值范围.∵平行四边形∴2,26∴α,3∴在△中:﹣<<即:14<α<26故选B.【点评】此题主要考查平行四边形的性质和三角形三边之间的关系.2.(2012•麻城市校级模拟)下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个【分析】对平行四边形性质的考查,以及矩形,正方形,中心对称图形的性质及判定.【解答】解:①中对角线互相平分的四边形是平行四边形,所以①对;②等腰梯形两条对角线也相等,②也不对;③中对角线互相垂直的矩形是正方形,正确;④两条对角线相等的菱形是正方形,正确,⑤任何一个具有对称中心的四边形一定是正方形或矩形,错误,等腰梯形,菱形都有对称中心;⑥角是轴对称图形但不是中心对称图形,所以⑥不对⑦线段、圆、矩形、菱形、正方形都是中心对称图形,都有对称中心,所以正确;⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条,正三角形只有三条对称轴.所以题中共有②⑤⑥⑧四个错误,故答案选D.【点评】本题综合考查了各种图形的性质以及有关判定,熟记性质和判定,准确掌握知识是解题的关键.3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.12【分析】可先求平行四边形的总面积,因为,所以三个小三角形的面积相等,进而可求解.【解答】解:如图,过点D作⊥于点G,∵6,∠30°,∴3,∴平行四边形的面积为•8×3=24,∴△的面积为×24=12∴△的面积×12=4故选B.【点评】平行四边形的面积等于平行四边形的边长与该边上的高的积.即•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,并注意体会三角形面积相等的条件.4.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.根据平行四边形的性质,结合图形,逐一分析即可.【解答】解:根据平行四边形的基本性质和判定,可知:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形,正确.②平行四边形的面积等于三角形的面积的2倍,说明不清楚,比较对象不明了,所以错误.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,正确.④平行四边形对角线的交点到一组对边的距离相等,正确.故选C.【点评】主要考查了平行四边形的基本性质,并利用性质解题,熟记性质是解题的关键,注意解题时要数形结合.5.(2011春•东莞校级期中)平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<22【分析】根据题意画出图形,根据平行四边形的对角相互相平分,可得,;根据三角形的三边关系,可得x的取值范围是1<x<11.【解答】解:∵四边形是平行四边形,12,10,∴6,5,∵,∴x的取值范围是1<x<11.故选A.【点评】此题考查了平行四边形的性质:平行四边形的对角相互相平分.还考查了三角形的三边关系:三角形中任意两边之和>第三边,三角形中任意两边之差<第三边.题目比较简单,解题时要细心.6.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个【分析】根据平行四边形的基本性质和基本表示方法进行判断即可.【解答】解:根据有关概念和性质可知:①四边形是平行四边形,记做“四边形是▱”,错误.②把四边形分成两个全等的三角形,正确.③∥,且∥,正确④四边形是平行四边形,可以记做“▱”,应该为:记做“▱”,错误.故选B.【点评】主要考查了平行四边形的基本性质和基本表示方法.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.(2015•绥化)如图,▱的对角线、交于点O,平分∠交于点E,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个【分析】由四边形是平行四边形,得到∠∠60°,∠120°,根据平分∠,得到∠∠60°推出△是等边三角形,由于,得到,得到△是直角三角形,于是得到∠30°,故①正确;由于⊥,得到S▱•,故②正确,根据,,且>,得到≠,故③错误;根据三角形的中位线定理得到,于是得到,故④正确.【解答】解:∵四边形是平行四边形,∴∠∠60°,∠120°,∵平分∠,∴∠∠60°∴△是等边三角形,∴,∵,∴,∴∠90°,∴∠30°,故①正确;∵⊥,∴S▱•,故②正确,∵,,∵>,∴≠,故③错误;∵,,∴,∴,故④正确.故选:C.【点评】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(2016•菏泽)在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④【分析】当▱的面积最大时,四边形为矩形,得出∠∠∠∠90°,,根据勾股定理求出,即可得出结论.【解答】解:根据题意得:当▱的面积最大时,四边形为矩形,∴∠∠∠∠90°,,∴5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱的面积最大时,四边形为矩形是解决问题的关键.9.(2016•虞城县二模)如图,在平行四边形中,2,F是的中点,作⊥,垂足E 在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④【分析】由在平行四边形中,2,F是的中点,易得,继而证得①∠∠;然后延长,交延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△≌△(),得出对应线段之间关系进而得出答案.【解答】解:①∵F是的中点,∴,∵在▱中,2,∴,∴∠∠,∵∥,∴∠∠,∴∠∠,∴∠∠,故此选项正确;②延长,交延长线于M,∵四边形是平行四边形,∴∥,∴∠∠,∵F为中点,∴,在△和△中,,∴△≌△(),∴,∠∠M,∵⊥,∴∠90°,∴∠∠90°,∵,∴,故②正确;③∵,∴S△△,∵>,∴S△<2S△故S△2S△错误;④设∠,则∠,∴∠∠90°﹣x,∴∠180°﹣2x,∴∠90°﹣180°﹣2270°﹣3x,∵∠90°﹣x,∴∠3∠,故此选项正确.故选C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△≌△是解题关键.10.(2016•绵阳)如图,平行四边形的周长是26,对角线与交于点O,⊥,E 是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.8【分析】由▱的周长为26,对角线、相交于点O,若△的周长比△的周长多3,可得13,﹣3,求出和的长,得出的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱的周长为26,∴13,,∵△的周长比△的周长多3,∴()﹣()﹣3,∴5,8.∴8.∵⊥,E是中点,∴4;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出是解决问题的关键.11.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c 表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=()(a﹣c )2﹣c2,∴S21﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S23=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.12.(2016•丽水)如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.26【分析】由平行四边形的性质得出3,6,8,即可求出△的周长.【解答】解:∵四边形是平行四边形,∴3,6,8,∴△的周长3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(2016•泰安)如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠∠,证出8,同理:6,求出﹣2,﹣2,即可得出结果.【解答】解:∵四边形是平行四边形,∴∥,8,6,∴∠∠,∵平分∠,∴∠∠,∴∠∠,∴8,同理:6,∴﹣2,﹣2,∴4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.14.(2016•丹东)如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14【分析】由平行四边形的性质和角平分线得出∠∠,得出6,同理可证6,再由的长,即可求出的长.【解答】解:∵四边形是平行四边形,∴∥,6,,∴∠∠,∵平分∠,∴∠∠,则∠∠,∴6,同理可证:6,∵﹣2,即6+6﹣2,解得:10;故选:B.【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出是解决问题的关键.15.(2013•达州)如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5【分析】由平行四边形的对角线互相平分、垂线段最短知,当⊥时,线段取最小值.【解答】解:∵在△中,∠90°,∴⊥.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时⊥.∴∥.又点O是的中点,∴是△的中位线,∴ 1.5,∴23.故选B.【点评】本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.二.解答题(共11小题)16.(2016•西宁)如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.【分析】(1)由在▱中,E是的中点,利用,即可判定△≌△,继而证得结论;(2)由2,,可得,又由△≌△,可得,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形是平行四边形,∴∥,∴∠∠,∵E为中点,∴,在△与△中,,∴△≌△(),∴;(2)∵2,,∴,∵△≌△,∴,∴⊥.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.17.(2016•温州)如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.【分析】(1)由平行四边形的性质得出∥,∥,证出∠∠F,∠∠,由证明△≌△即可;(2)由全等三角形的性质得出3,由平行线的性质证出∠∠90°,由勾股定理求出,即可得出的长.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,∴∠∠F,∠∠,∵E是▱的边的中点,∴,在△和△中,,∴△≌△();(2)解:∵≌△,∴3,∵∥,∴∠∠90°,在▱中,5,∴4,∴28.【点评】此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(2016•新疆)如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.【分析】由垂直得到∠∠90°,根据可证明△≌△,得到,根据平行四边形的判定判断即可.【解答】证明:∵⊥,⊥,∴∠∠90°,∵∥,∴∠∠,在△和△中,∵,∴△≌△(),∴,∵∥,∴四边形是平行四边形.【点评】本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出,主要考查学生运用性质进行推理的能力.19.(2016•梅州)如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)由平行四边形的性质和证明△≌△,得出对应边相等即可;(2)证出,再证明,得出1,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∴∠∠.在△与△中,∴△≌△().∴.(2)解:∵⊥,∥,∴∠∠90°.∵∠45°,∴∠∠45°.∴∵⊥,∴∠∠90°.∴∠∠45°.∴,∴1,由(1)可知,1,∴3,∴3.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.20.(2016•滨州)如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.【分析】(1)结论四边形是菱形.只要证明即可.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,求出、即可解决问题.【解答】解:(1)四边形是菱形.理由:∵垂直平分,∴,,∴∠∠,∵∠∠,∴∠∠,在△和△中,,∴△≌△,∴,∴,∴四边形是菱形.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,∵∠90°,∠30°,2,∴,∵∥,⊥,⊥,∴∥,,2,在△中,∵∠90°,∠45°,∴∠∠45°,∴,∴3,在△中,∵∠90°,.3,∴10.∵,∴的最小值为10.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H 的位置,属于中考常考题型.21.(2015•枣庄)如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)通过证明△与△全等即可求得.(2)由△是等腰直角三角形,得出∠45°,因为⊥,得出∠45°,所以△与△都是等腰直角三角形,从而求得的长和2,然后等腰直角三角形的性质即可求得.【解答】(1)证明:∵四边形是平行四边形,∴,∥,∴∠∠,在△与△中∴△≌△()∴;(2)解:∵⊥,∴∠90°,∵∠45°,∴∠∠45°,∵⊥,∴∠∠45°,∴△是等腰直角三角形,∵∥,⊥,∴⊥,∴,△是等腰直角三角形,∵△≌△()∴,∴,即2,∵△是等腰直角三角形,∴1,∴,∴在等腰△中,22∴2,【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.22.(2015•潜江)如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.【分析】(1)由A与B的坐标求出的长,根据四边形为平行四边形,求出的长,进而确定出C 坐标,设反比例解析式为,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱中,A(2,0),B (6,0),D(0,3),∴4,∥,∴C(4,3),设反比例解析式为,把C坐标代入得:12,则反比例解析式为;(2)∵B(6,0),∴把6代入反比例解析式得:2,即B′(6,2),∴平行四边形向上平移2个单位,即′=2,∴D′(0,5),把5代入反比例解析式得:,即E (,5).【点评】此题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.23.(2015•柳州)如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?【分析】(1)已知∥,添加即可判断以为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.【解答】解:(1)当∥时,四边形是平行四边形,此时,∴12﹣2,∴4.∴当4时,四边形是平行四边形.(2)过D点,⊥于F,∴8.﹣18﹣12=6,10,①当⊥,则18.即:218,∴6;②当⊥,此时P一定在上,1=10+12﹣222﹣2t,2,易知,△∽△2P1,∴,解得:,③情形:当⊥时,因∠<90°,此种情形不存在.∴当6或时,△是直角三角形.【点评】此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.24.(2016•永州)如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.【分析】(1)由平行四边形的性质和角平分线得出∠∠,即可得出;(2)先证明△是等边三角形,得出4,2,由勾股定理求出,由证明△≌△,得出△的面积=△的面积,因此平行四边形的面积=△的面积•,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,,∴∠∠,∵是∠的平分线,∴∠∠,∴∠∠,∴,∴;(2)解:∵,∠60°,∴△是等边三角形,∴4,∵⊥,∴2,∴2,∵∥,∴∠∠,∠∠E,在△和△中,,∴△≌△(),∴△的面积=△的面积,∴平行四边形的面积=△的面积•×4×2=4.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题(2)的关键.25.(2015•呼和浩特)如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.【分析】(1)先证出,再由即可证明△≌△;(2)由对角线互相平分证出四边形是平行四边形,再由对角线相等,即可得出四边形是矩形.【解答】(1)证明:∵四边形是平行四边形,∴,,∵,∴,在△和△中,,∴△≌△();(2)解:四边形是矩形;理由如下:∵,,∴四边形是平行四边形,∵,∴四边形是矩形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.26.(2016•青岛)已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出,∠∠,由证明△≌△即可;(2)由平行四边形的性质得出∥,,证出,得出四边形是平行四边形,得出,再由等腰三角形的三线合一性质得出⊥,即可得出四边形是菱形.【解答】(1)证明:∵四边形是平行四边形,∴,∠∠,在△和△中,,∴△≌△();(2)解:四边形是菱形;理由如下:如图所示:∵四边形是平行四边形,∴∥,,∵,∴,∴四边形是平行四边形,∴,∵,∴⊥,∴四边形是菱形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、菱形的判定.熟练掌握平行四边形的性质,证出四边形是平行四边形是解决问题(2)的关键.。
人教中考数学压轴题专题复习——平行四边形的综合含答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF 的长取最小值时,求AP 的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH ,进而利用平行线的性质得出∠APB=∠PBC 即可得出答案;(2)首先证明△ABP ≌△QBP ,进而得出△BCH ≌△BQH ,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB ,证明△EFM ≌△BPA ,设AP=x ,利用折叠的性质和勾股定理的知识用x 表示出BE 和CF ,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,∵PE=BE ,∴∠EBP=∠EPB .又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .又∵AD ∥BC ,∴∠APB=∠PBC .∴∠APB=∠BPH .(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x , ∴CF=BE-EM=2+28x -x ,∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.3.如图,在正方形ABCD 中,E 是边BC 上的一动点(不与点B 、C 重合),连接DE 、点C 关于直线DE 的对称点为C ′,连接AC ′并延长交直线DE 于点P ,F 是AC ′的中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP 、BP 、DP 三条线段之间的数量关系,并证明; (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.【答案】(1)45°;(2)BP +DP 2AP ,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE =∠C 'DE 和∠ADF =∠C 'DF ,可得∠FDP '=12∠ADC =45°; (2)作辅助线,构建全等三角形,证明△BAP ≌△DAP '(SAS ),得BP =DP ',从而得△PAP '是等腰直角三角形,可得结论;(3)先作高线C 'G ,确定△ACC ′的面积中底边AC 为定值2,根据高的大小确定面积的大小,当C '在BD 上时,C 'G 最大,其△ACC ′的面积最大,并求此时的面积.【详解】(1)由对称得:CD =C 'D ,∠CDE =∠C 'DE ,在正方形ABCD 中,AD =CD ,∠ADC =90°,∴AD =C 'D ,∵F 是AC '的中点,∴DF ⊥AC ',∠ADF =∠C 'DF ,∴∠FDP =∠FDC '+∠EDC '=12∠ADC =45°; (2)结论:BP +DP 2AP ,理由是:如图,作AP '⊥AP 交PD 的延长线于P ',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 62233. 【解析】【分析】(1)如图1中,延长EO 交CF 于K ,证明△AOE ≌△COK ,从而可得OE=OK ,再根据直角三角形斜边中线等于斜边一半即可得OF=OE ;(2)如图2中,延长EO 交CF 于K ,由已知证明△ABE ≌△BCF ,△AOE ≌△COK ,继而可证得△EFK 是等腰直角三角形,由等腰直角三角形的性质即可得OF ⊥EK ,OF=OE ; (3)分点P 在AO 上与CO 上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO 交CF 于K ,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62-或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.5.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.6.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠,得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得BD ==.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以sin 45HN BH ===︒.由cos 45DF EF ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
中考数学—平行四边形的综合压轴题专题复习含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.2.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.3.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.【详解】证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.4.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P ==OB OD86为点D的对应点,再将纸片还原。
人教【数学】数学一模试题分类汇编——平行四边形综合含详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH =∠HEF ,∴∠CAD =∠G ,∴AE =EG ;(2)如图2,连接GC ,∵AC =BC ,AD ⊥BC ,∴BD =CD ,∴AG 是BC 的垂直平分线,∴GC =GB ,∴∠GBF =∠BCG ,∵BG =BF ,∴GC =BE ,∵CE =EF ,∴∠CEF =180°﹣2∠F ,∵BG =BF ,∴∠GBF =180°﹣2∠F ,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=1AC=AN,∠DAN=∠ADN,2∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=1FG=GM,∠GDM=∠AGE,2∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=1AC,2∵AC=AB=5,∴EM=5.2【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.2.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.3.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=33,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵OB=27,∴OH=22OB BH=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O 在线段CH 上,点F 在线段CD 上,点E 在线段BC 上时.同法可证:OC=CE+CF ,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O 在线段CH 上,点F 在线段DC 的延长线上,点E 在线段BC 上时.同法可知:CE-CF=OC ,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE 的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥, ∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.5.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF是菱形.的角平分线,连接AD,找出图中所有的等腰三角形.(2)若BD是ABC【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.6.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.7.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.8.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考点:四边形的综合知识.9.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.【解析】试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
九年级数学一模试题分类汇编——平行四边形综合附答案
九年级数学一模试题分类汇编——平行四边形综合附答案一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12 AD CE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)(探究延伸)如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.(3)(迁移应用)如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.【答案】(1)见解析;(2)见解析;(3)34【解析】分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.同理:EM+EN=AB详解:证明:(1)如图2,∵四边形ABCD是平行四边形,∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵点P是CD中点,在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA•PB=2AB;(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,∴AG=BG,过点A作AF⊥BC于F,设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5, 在Rt △ADE 中,点M 是AE 的中点, ∴AE=2DM=2EM , 同理:BE=2CN=2EN , ∵AB=AE+BE , ∴2DM+2CN=AB , ∴DM+CN=AB ,同理:EM+EN=AB ∴△DEM 与△CEN 的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE )+[(DM+CN )+(EM+EN )] =(DE+CN )+AB=5+.点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.2.如图①,在等腰Rt ABC V 中,90BAC ∠=o ,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=o ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED V 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED V 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②4222【解析】 【分析】()1如图①中,结论:AF 2AE =,只要证明AEF V是等腰直角三角形即可;()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF V ≌EDA V 再证明AEF V 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:Q 四边形ABFD 是平行四边形,AB DF ∴=, AB AC =Q ,AC DF ∴=, DE EC =Q , AE EF ∴=,DEC AEF 90∠∠==o Q ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .Q 四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==o ,EKF 180DKE 135∠∠∴=-=o o ,EK ED =,ADE 180EDC 18045135∠∠=-=-=o o o o Q ,EKF ADE ∠∠∴=, DKC C ∠∠=Q ,DK DC ∴=,DF AB AC ==Q , KF AD ∴=, 在EKF V 和EDA V 中, EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴V ≌EDA V ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==o ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-==,综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.3.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)5(2)62+(3)321++【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据22OC CD+可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,CF=BE=3,在Rt△OCE中,OC=222231122OE CE⎛⎫⎛⎫+=++⎪ ⎪⎪⎝⎭⎝⎭=622+.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=12∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=12,∴2∵223DF DH-=,∴2132+321++∴OF321++考点:四边形综合题.5.如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD=EC ;(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.【答案】(1)见解析; (2)见解析. 【解析】 【分析】(1)先证四边形ABDE 是平行四边形,再证四边形ADCE 是平行四边形即可; (2)由∠BAC =90°,AD 是边BC 上的中线,得AD =BD =CD ,即可证明. 【详解】(1)证明:∵AE ∥BC ,DE ∥AB , ∴四边形ABDE 是平行四边形, ∴AE =BD ,∵AD 是边BC 上的中线, ∴BD =DC , ∴AE =DC , 又∵AE ∥BC ,∴四边形ADCE 是平行四边形.(2) 证明:∵∠BAC =90°,AD 是边BC 上的中线. ∴AD =CD∵四边形ADCE 是平行四边形, ∴四边形ADCE 是菱形. 【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.6.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或552-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--,∴125522x x ==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.7.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(334【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得2OE OD OH OG OC -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形, ∴2OC OD =,2OC OE =.∴2OD OE OC +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形,由(1)得:2OG OH OC +=,在CGD ∆和CHE ∆中, 90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴2OD OE OC +=.(3)2OG OH OC +=, ()CGD CHE ASA ∆≅∆,∴GD HE =. ∵OD GD OG =-,OE OH EH =+,∴2OE OD OH OG OC -=+=, ∴32OC =,∴34CE =,CE 的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.8.正方形ABCD ,点E 在边BC 上,点F 在对角线AC 上,连AE .(1)如图1,连EF ,若EF ⊥AC ,4AF =3AC ,AB =4,求△AEF 的周长;(2)如图2,若AF =AB ,过点F 作FG ⊥AC 交CD 于G ,点H 在线段FG 上(不与端点重合),连AH .若∠EAH =45°,求证:EC =2.+;(2)证明见解析【答案】(1)2542【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=2AB=42,求出AF=32,CF=AC﹣AF=2,求出△CEF 是等腰直角三角形,得出EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=2AB=42,∵4AF=3AC=122,∴AF=32,∴CF=AC﹣AF=2,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理得:AE=2225+=,AF EF++=+;∴△AEF的周长=AE+EF+AF=252322542(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE =∠FAH ,∵FG ⊥AC ,∴∠AFH =90°,在△ABE 和△AFH 中,90B AFH AB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△AFH (ASA ),∴BE =FH ,∵BM =BE +EM ,FG =FH +HG ,∴EM =HG ,∵EC =EM +CM ,CM =CG =2CF ,∴EC =HG +2FC .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.9.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,请直接写出△ABC 的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.10.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.11.问题情境在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.特例探究(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;拓展延伸(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α.【解析】 【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan 2α.证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD , ∴MC=MA=MD , ∵BA=BC , ∴BM 垂直平分AC , ∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°, ∴∠DEC=90°,∴∠DCE=∠CDE=45°, ∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC , ∴∠MEC=45°,∴△BME 是等腰直角三角形, ∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM .(2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD . ∵BA =BC , ∴BM 垂直平分AC . ∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°, ∴∠DEC =60°,∴∠DCE =∠DEC =60°, ∴△CDE 是等边三角形, ∴EC =ED . ∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC ,∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°. 在Rt △BME 中,∵∠MEB =30°, ∴ME =3MB .(3) 如图3中,结论:EM=BM•tan2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC , 所以EM=BM•tan 2α.【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.12.(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB 的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由; (3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.【答案】(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241; 【解析】分析:(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB ACAM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论;(3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM ABCN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下: ∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°, ∴∠BAM=∠CAN , 在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△ACN (SAS ), ∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AMBC MN ==1且∠ABC=∠AMN , ∴△ABC ~△AMN∴AB ACAM AN =, ∵AB=BC ,∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ),∵∠ABC=∠AMN , ∴∠BAC=∠MAN , ∴∠BAM=∠CAN , ∴△ABM ~△ACN , ∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC 即∠BAM=∠CAN ,∵AB AMBC AN== ∴AB ACAM AN =, ∴△ABM ~△ACN∴BM ABCN AC=,∴CN AC BM AB ==cos45°=2,∴=, ∴BM=2, ∴CM=BC ﹣BM=8, 在Rt △AMC ,==,∴点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.13.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE= (含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<.【解析】试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积-△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.试题解析:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC-BE=6-2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=EF=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°-60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积-△NFN的面积=××(t)2-××(-+2)2=t2+t-3,即S=t2+t-3;当2<t≤3时,如图3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.考点:四边形综合题.14.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.请你阅读下面交流信息,解决所提出的问题.展示交流:小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.(选择图乙或图丙的一种情况说明即可).(2)小慧思考问题的方式中,蕴含的数学思想是.拓展延伸:根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.【答案】成立;分类讨论思想;正方形.【解析】试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.试题解析:(1)、成立,理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,∠DAC=∠QBC,延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;拓展延伸:四边形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,∴MN TP,∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.考点:几何变换综合题15.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。
人教【数学】数学一模试题分类汇编——平行四边形综合附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN 、MQ 与边BC 的交点分别是E 、F , 此时<t <, t=1或.考点:几何变换综合题3.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②4222【解析】 【分析】()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=, AB AC =,AC DF ∴=, DE EC =, AE EF ∴=,DEC AEF 90∠∠==, AEF ∴是等腰直角三角形, AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K . 四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=, EKF ADE ∠∠∴=, DKC C ∠∠=, DK DC ∴=,DF AB AC ==, KF AD ∴=,在EKF 和EDA 中, EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-==,综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.4.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.5.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?465225【解析】【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,2222B N'+;如图2,当∠AFB′=90°+DN= 3.2 5.6时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,2222B N'+;+DN=22【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴2222AB BE=86++,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+ =22;综上,可得B′D 4655或2【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.6.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。
人教【数学】数学一模试题分类汇编——平行四边形综合附答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;③同②的方法可证.试题解析:(1)∵AC,BD是正方形的对角线,∴OA=OC=OB,∠BAD=∠ABC=90°,∵OE⊥AB,∴OE=12 AB,∴AB=2OE,(2)①AF+BF=2OE证明:如图2,过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE证明:如图3,延长OE,过点B作BH⊥OE于点H∴∠EHB=90°∵OE⊥MN,BF⊥MN∴∠AEO=∠HEF=∠BFE=90°∴四边形HBFE为矩形∴BF=HE,EF=BH∵四边形ABCD是正方形∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)∴AE=OH,OE=BH,∴AF﹣BF=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE③BF﹣AF=2OE,如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,∴∠AOE+∠AOG=90°.在正方形ABCD中,OA=OB,∠AOB=90°,∴∠AOG+∠BOG=90°,∴∠AOE=∠BOG.∵OG⊥BF,OE⊥AE,∴∠AEO=∠BGO=90°.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴22BE OB -213 ∴413 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度4.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+2FC.【答案】(1)25422)证明见解析【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC2AB=2,求出AF=2,CF=AC﹣AF2,求出△CEF 是等腰直角三角形,得出EF=CF2,CE2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC2AB=2,∵4AF =3AC =122, ∴AF =32,∴CF =AC ﹣AF =2,∵EF ⊥AC ,∴△CEF 是等腰直角三角形,∴EF =CF =2,CE =2CF =2,在Rt △AEF 中,由勾股定理得:AE =2225AF EF +=,∴△AEF 的周长=AE +EF +AF =252322542++=+;(2)证明:延长GF 交BC 于M ,连接AG ,如图2所示:则△CGM 和△CFG 是等腰直角三角形,∴CM =CG ,CG 2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE =∠FAH ,∵FG ⊥AC ,∴∠AFH =90°,在△ABE 和△AFH 中,90B AFH AB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△AFH (ASA ),∴BE =FH ,∵BM =BE +EM ,FG =FH +HG ,∴EM =HG ,∵EC=EM+CM,CM=CG=2CF,∴EC=HG+2FC.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.5.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.6.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面积不能等于2.说明一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,.在△AHE中,,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.说明二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为,∴BF的最大值为.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.7.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.【答案】证明见解析.【解析】分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF详解:证明:∵CF⊥CE,∴∠ECF=90°,又∵∠BCG=90°,∴∠BCE+∠ECD =∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE与△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2, ∴AH=BH=BC ,∵OA=AE ,OH=HF ,∴AH 是△OEF 的中位线,∴AH=EF ,AH ∥EF ,∴EF ⊥BC ,BC=EF ,∴EF=BC . 考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =.(1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数.(2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.(1)填空:AB= ,BC= .(2)将△ABC绕点B逆时针旋转,①当AC与x轴平行时,则点A的坐标是②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.③在②的条件下,旋转过程中AC扫过的图形的面积是多少?(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.【解析】试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(-4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90°,∴BC=;(2)①如图1,∵B(0,3),∴OB=3,∵AB=5,∴AO=AB-BO=5-3=2,∴A(0,-2).当在x轴上方时,点A的坐标为(0,8),②如图2,过点C作CF⊥OA与点F,∵△ABC为等腰直角三角形,∴∠BAC=90°,AB=AC,∴∠BAO+∠CAF=90°,∵∠OBA+∠BAO=90°,∴∠CAF=∠OBA,在△AOB和△CFA中,,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(-7,4)∵A(-4,0)设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:,则直线AC解析式为y=x,∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,∴∠ABD=90°,∵∠CAB=90°,∴∠ABD=∠CAB=90°,∴AC∥BD,∴设直线BD的解析式为y=x+b1,把B(0,3)代入解析式的:b1=3,∴直线BD的解析式为y=x+3;③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,所以可得:S=;(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,平行四边CAA′C′的面积为(7+)×4=,三角形ABC的面积为×5×5=△ABC扫过的面积为:.考点:几何变换综合题.。
2023年北京市初三一模数学试题汇编:平行四边形章节综合
2023北京初三一模数学汇编平行四边形章节综合画法:①连接ED,②连接CE,交BD于点③连接AF,交DE于点AB CD,∴四边形EBCDF是BD中点.、是△DE△是ABDBD=(1)如图1,当点E在线段AO上(不与端点重合)时.①求证:AFE ABE ;②用等式表示线段AB ,AE ,AF 的数量关系并证明;(2)如图2,当点E 在线段OC 上(不与端点重合)时,补全图形,并直接写出线段AB ,AE ,AF 的数量关系.3.(2023·北京顺义·统考一模)如图,ABCD 的对角线AC ,BD 相交于点O ,将对角线BD 向两个方向延长,分别至点E 和点F ,且使BE DF =.(1)求证:四边形AECF 是平行四边形;(2)若OF OA =,求证:四边形AECF 是矩形.4.(2023·北京朝阳·统考一模)如图,在平行四边形ABCD 中,对角线,AC BD 相交于点O ,点E ,F 在BD 上,AE CF ,连接,AF CE .(1)求证:四边形AECF 为平行四边形;(2)若180EAO CFD ∠+∠=︒,求证:四边形AECF 是矩形.5.(2023·北京延庆·统考一模)如图,在平行四边形ABCD 中,连接AC ,90BAC ∠=︒,点M 为边AD 的中点,连接CM 并延长,交BA 的延长线于点E ,连接DE .(1)求证:四边形ACDE 是矩形;(2)若10BE =,12DE =,求四边形BCDE 的面积.6.(2023·北京西城·统考一模)在ABC 中,AD 是BC 边上的中线,点E 在线段AD 上,点F 在线段AD 的延长线上,CE FB ∥,连接BE ,CF .(1)如图1,求证:四边形BFCE 是平行四边形.(2)若A ABC CB =∠∠,①依题意补全图2;②求证:四边形BFCE 为菱形.7.(2023·北京房山·统考一模)如图,ABCD 中,对角线AC 、BD 交于点O ,在BD 上截取OE OF OA ==.(1)求证:四边形AECF 是矩形;(2)若AE AF =,求证:AC 平分BAD ∠.8.(2023·北京海淀·统考一模)如图,正方形ABCD 中,点E ,F 分别在,BC CD 上,,,BE CF AE BF =交于点G .(1)求AGF ∠的度数;(2)在线段AG 上截取MG BG =,连接,DM AGF ∠的角平分线交DM 于点N .①依题意补全图形;②用等式表示线段MN 与ND 的数量关系,并证明.9.(2023·北京丰台·统考一模)如图,在平行四边形 ABCD 中,90ACB ∠︒=,过点 D 作 DE BC ⊥ 交 BC 的延长线于点 E .(1)求证:四边形 ACED 是矩形;(2)连接 AE 交 CD 于点 F ,连接 BF .若 60ABC ∠︒=,2CE =,求 BF 的长.11.(2023·北京海淀·统考一模)如图,菱形48AC BD ==,,则OM 的长为_________【详解】2CD ,E 为AB 的中点,CD .AB CD ,∴四边形EBCD 是平行四边形.(一组对边平行且相等的四边形是平行四边形)F 是BD 中点.(平行四边形对角线互相平分)DE 、是△是ABD △BD =,,ABE ADE ≌,可得AB 于点G ,证明AG 于M ,证明Rt Rt EFN BEM ≌,可得四边形点AE∴ABE ADE≌.∴BE DE∠==,ABE=,EF BE=DE EF∠=∠.F ADE∠=∠.F ABE∠∠∠如图2,过点E∵四边形ABCD是矩形,ANE 是等腰直角三角形,,AN NE =Rt Rt EFN BEM ≌,EM FN =,AB MN NE EM ==+,2AB NE AN AF AE =+−=2AB AF AE +=.【点睛】本题是四边形综合题目,考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,又BE DF =,OE OF ∴=.∴四边形AECF 是平行四边形.2)证明:由12OA AC =OF OA =AE CF ,EAO FCO =∠AOE COF =∠AEO CFO ≌△OF =.∴四边形AECF ,再证明EAM CDM ≌.得)先由矩形与三角形面积公式求得51260ACDE S AE DE 矩形,115123022ABC S AB AC .再由ABC +S ACDE BCDE S S =矩形四边形求解即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴BA CD ∥,BA CD =.∴AEC DCE ∠=∠,EAD CDA ∠=∠.∴EAM CDM ≌.ME MC =.∴四边形ACDE 是平行四边形.90BAC ∠=︒,90EAC ∠=︒.∴平行四边形ACDE 是矩形.51260ACDE AE DE ,115123022ABC S AB AC . ∴ABC +S =60+30=90ACDE BCDE S S =矩形四边形【点睛】本题考查平行四边形的性质,矩形的判定和性质,全等三角形的判定与性质,矩形与三角形的面积,熟练掌握平行四边形的性质定理,矩形的判定定理,全等三角形的判定与性质是解题的关键.)证明BDF CDE ≌,可得A CB ∠,可得AB AC =)证明:∵ CE FB ∥,,边上的中线,∴BDF CDE ≌,FB CE =,∴四边形BFCE 是平行四边形.2)解:①依题意补全图②证明:∵ A ABC CB =∠∠,∴ AB AC =,∵ AD 是BC 边上的中线,∴ AD BC ⊥,由(1)证明方法可得 四边形BFCE 是平行四边形,∴ 四边形BFCE 为菱形.【点睛】本题考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质及菱形的判定,熟练掌握平行四边形的判定与性质及菱形的判定是解题的关键.7.(1)证明见解析(2)证明见解析【分析】(1)先根据平行四边形的性质得到OA OC =,进而证明OE OF OA OC ===,由此即可证明四边形AECF 是矩形;(2)先证明四边形AECF 是正方形,得到AC BD ⊥,即可证明四边形ABCD 是菱形,则由菱形的性质可得AC 平分BAD ∠.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC =,∵OE OF OA ==,∴OE OF OA OC ===,∴四边形AECF 是平行四边形,AC EF =;∴四边形AECF 是矩形;(2)证明:∵四边形AECF 是矩形,AE AF =,∴四边形AECF 是正方形,∴AC BD ⊥,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC 平分BAD ∠.【点睛】本题主要考查了正方形的性质与判定,矩形的判定,菱形的性质与判定,平行四边形的性质,熟知特殊平行四边形的判定定理是解题的关键.8.(1)90︒(2)①见解析②MN ND =,证明见解析90,利用SAS 证明ABE BCF ≌得出角相,再证MGN DHN ≅,问题即可解决.是正方形,在ABE 和BCF 中,,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴ABE BCF SAS ≌()BAE CBF ∠=∠AGF BAE ∠=∠+∠2)①根据题意画图如下②MN ND =,理由如下作AH AG ⊥交GN 的延长线于点∵GN 平分AGF ∠,AGF ∠=∴1452AGH AGF ∠=∠=︒ ∴AGH 为等腰直角三角形∴,AG AH AGH AHG =∠=∠∵四边形ABCD 为正方形∴,90AB AD BAD =∠=︒BAD ∠=∠BAG ∠=∠在ABG 和ADH 中AB AD BAG DAH AG AH =∠=∠=∴(ABG ADH SAS ≅在MGN 和DHN 中MG DH MGN DHN MNG DNH =∠=∠∠=∠ ∴(MGN DHN AAS ≅MN DN =【点睛】本题考查正方形的性质和全等三角形的判定,等腰直角三角形性质和判定等知识,解题的关键是熟练掌握基本知识,合理作出辅助线..(1)见解析(2)23BF =)先证明ABE 是等边三角形,再根据)证明:∵四边形,90ACB ∠=︒90DE =︒,ACE E ∠=∠∴ABE 是等边三角形,90BFE ∠=,1302FBEABE ,24BE BC , 12EF BE =, Rt BFE △22=23BF BE EF −=【点睛】本题考查平行四边形的性质,矩形的性质和判定,等边三角形的性质和判定,灵活运用相关性质ABC 是等腰直角三角形,求出Rt AEF 中,求出【详解】解:如图,四边形∴,AE AF DE DF AD EF ====,∵90,4BAC AB AC ∠=︒==,∴ABC 是等腰直角三角形,CB =D 是BC 边上的中点,AD EF ==Rt AEF 中,2AE =,BE AB AE =−故答案为:2【点睛】此题考查了正方形的性质、勾股定理、直角三角形的性质等知识,熟练掌握相关性质是解题的关。
数学一模试题分类汇编——平行四边形综合附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC .(1)求证:AD=EC ;(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE 是平行四边形,再证四边形ADCE 是平行四边形即可;(2)由∠BAC =90°,AD 是边BC 上的中线,得AD =BD =CD ,即可证明.【详解】(1)证明:∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 是平行四边形,∴AE =BD ,∵AD 是边BC 上的中线,∴BD =DC ,∴AE =DC ,又∵AE ∥BC ,∴四边形ADCE 是平行四边形.(2) 证明:∵∠BAC =90°,AD 是边BC 上的中线.∴AD =CD∵四边形ADCE 是平行四边形,∴四边形ADCE 是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.3.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC 273 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形;(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S 平行四边形BCFD =3×3393,S △ACF =12×3×3393,S 平行四边形ADBC 273. 【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.4.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥, ∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.5.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.6.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,使点D 落在边BC 上的点F 处,过点F 作FG ∥CD ,交AE 于点G ,连接DG .(1)求证:四边形DEFG 为菱形;(2)若CD =8,CF =4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG ,ED=EF ,∠1=∠2,由FG ∥CD ,可得∠1=∠3,再证明 FG=FE ,即可得到四边形DEFG 为菱形;(2)在Rt △EFC 中,用勾股定理列方程即可CD 、CE ,从而求出的值. 试题解析:(1)由折叠的性质可知:DG=FG ,ED=EF ,∠1=∠2,∵FG ∥CD ,∴∠2=∠3,∴FG=FE ,∴DG=GF=EF=DE ,∴四边形DEFG 为菱形;(2)设DE=x ,根据折叠的性质,EF=DE=x ,EC=8﹣x ,在Rt △EFC 中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.7.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S △ABC=12BC•AP ,S △DFC =12FC•DQ , ∴S △ABC =S △DFC ;(3)解:根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.∴S 阴影部分面积和=3S △ABC =3×12×3×4=18. 考点:四边形综合题8.如图,P 是边长为1的正方形ABCD 对角线BD 上一动点(P 与B 、D 不重合),∠APE=90°,且点E 在BC 边上,AE 交BD 于点F .(1)求证:①△PAB ≌△PCB ;②PE=PC ;(2)在点P 的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;(3)设DP=x ,当x 为何值时,AE ∥PC ,并判断此时四边形PAFC 的形状.【答案】(1)见解析;(2); (3)x=﹣1;四边形PAFC 是菱形.【解析】试题分析:(1)根据四边形ABCD 是正方形,得出AB=BC ,∠ABP=∠CBP°,再根据PB=PB ,即可证出△PAB ≌△PCB ,②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB ,从而证出PE=PC ;(2)根据PA=PC ,PE=PC ,得出PA=PE ,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB (SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在点P的运动过程中,的值不改变.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.考点:四边形综合题.9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题10.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。
数学一模试题分类汇编——平行四边形综合含答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.3.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC273【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=932,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE 和△ACF 中,,∴△ABE ≌△ACF .(ASA )∴BE=CF .(2)解:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF .故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值.作AH ⊥BC 于H 点,则BH=2,S 四边形AECF =S △ABC ===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.6.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或552-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形, ①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2, x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG , ∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--,∴125555,22x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE ,∴CE DE CD DF=, ∵△CDE ∽△ADF ,∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =54或5-5或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.7.菱形ABCD 中、∠BAD =120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F . (1)如图①,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条段段之间的数量关系;(2)如图②,点O 在CA 的延长线上,且OA =13AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由; (3)点O 在线段AC 上,若AB =6,BO =27,当CF =1时,请直接写出BE 的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=33,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵7,∴22OB BH=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.5.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且86OB OD==,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P 为点D的对应点,再将纸片还原。
(I)若点P落在矩形OBCD的边OB上,①如图①,当点E与点O重合时,求点F的坐标;②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若7OP=,求点F的坐标:(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。
【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭【解析】【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐标;②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;(Ⅱ)当O,P ,F 点共线时OP 的长度最短.【详解】解:(I )①∵折痕为EF,点P 为点D 的对应点DOF POF ∴∆≅∆45DOF POF ∴∠=∠=∵四边形OBCD 是矩形,90ODF ︒∴∠=45DFO DOF ︒∴∠=∠=6DF DO ∴==点F 的坐标为(6,6)②∵折痕为EF ,点P 为点D 的对应点.,DG PG EF PD ∴=⊥∵四边形OBCD 是矩形,//DC OB ∴,FDG EPG ∴∠=∠;DGF PGE ∠=∠DGF PGE ∴∆≅∆DF PE ∴=//DF PE∴四边形DEPF 是平行四边形.EF PD ⊥,DEPF ∴是菱形.设菱形的边长为x ,则DE EP x ==7OP =,7OE x ∴=-,在Rt ODE ∆中,由勾股定理得222OD QB DE +=2226(7)x x ∴+-= 解得8514x = 8514DF ∴= ∴点F 的坐标为85,614⎛⎫⎪⎝⎭ (Ⅱ)86,55P ⎛⎫ ⎪⎝⎭【点睛】此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.6.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH 3.理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°, ∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60° 在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF , ∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°, ∴∠FIH =30°,∴IH 3.(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.7.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角三角形MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.8.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+2FC.【答案】(1)25422)证明见解析【解析】【分析】(1)由正方形性质得出AB =BC =CD =AD =4,∠B =∠D =90°,∠ACB =∠ACD =∠BAC =∠ACD =45°,得出AC =2AB =42,求出AF =32,CF =AC ﹣AF =2,求出△CEF 是等腰直角三角形,得出EF =CF =2,CE =2CF =2,在Rt △AEF 中,由勾股定理求出AE ,即可得出△AEF 的周长;(2)延长GF 交BC 于M ,连接AG ,则△CGM 和△CFG 是等腰直角三角形,得出CM =CG ,CG =2CF ,证出BM =DG ,证明Rt △AFG ≌Rt △ADG 得出FG =DG ,BM =FG ,再证明△ABE ≌△AFH ,得出BE =FH ,即可得出结论.【详解】(1)∵四边形ABCD 是正方形,∴AB =BC =CD =AD =4,∠B =∠D =90°,∠ACB =∠ACD =∠BAC =∠ACD =45°, ∴AC =2AB =42,∵4AF =3AC =122,∴AF =32,∴CF =AC ﹣AF =2,∵EF ⊥AC ,∴△CEF 是等腰直角三角形,∴EF =CF =2,CE =2CF =2,在Rt △AEF 中,由勾股定理得:AE =2225AF EF +=,∴△AEF 的周长=AE +EF +AF =252322542++=+;(2)证明:延长GF 交BC 于M ,连接AG ,如图2所示:则△CGM 和△CFG 是等腰直角三角形,∴CM =CG ,CG 2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90°,在△ABE和△AFH中,90 B AFHAB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=2CF,∴EC=HG+2FC.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.9.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC 中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.10.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC 与△DFC 中,∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S △ABC =12BC•AP ,S △DFC =12FC•DQ , ∴S △ABC =S △DFC ;(3)解:根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大. ∴S 阴影部分面积和=3S △ABC =3×12×3×4=18. 考点:四边形综合题。