人教a版高考数学理一轮课件选修4-42参数方程

合集下载

2020版高考人教A版理科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案

2020版高考人教A版理科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案

姓名,年级:时间:第二节参数方程2019考纲考题考情1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:错误!①并且对于t 的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,t叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2.直线的参数方程过定点P0(x0,y0)且倾斜角为α的直线的参数方程为错误!(t为参数),则参数t的几何意义是有向线段错误!的数量。

3.圆的参数方程圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射线,按逆时针方向旋转到圆上一点所在半径形成的角α为参数的圆的参数方程为错误!(α为参数)α∈[0,2π).4.椭圆的参数方程以椭圆的离心角θ为参数,椭圆错误!+错误!=1(a>b>0)的参数方程为错误!(θ为参数),θ∈[0,2π).1.将参数方程化为普通方程时,要注意防止变量x 和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围。

2.直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离。

一、走进教材1.(选修4-4P26T4改编)在平面直角坐标系中,曲线C:错误!(t为参数)的普通方程为________。

解析消去t,得x-y=1,即x-y-1=0。

答案x-y-1=02.(选修4-4P37例2改编)在平面直角坐标系xOy 中,若直线l:错误!(t为参数)过椭圆C:错误!(φ为参数)的右顶点,求常数a的值。

解直线l的普通方程为x-y-a=0,椭圆C的普通方程为错误!+错误!=1,所以椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,所以a=3.二、走出误区微提醒:①不注意互化的等价性致误;②直线参数方程中参数t的几何意义不清致误;③交点坐标计算出错致错。

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1

α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=

高考数学总复习 第2节 参数方程课件 新人教A版选修44

高考数学总复习 第2节 参数方程课件 新人教A版选修44

数的关系 y=g(t)
x=ft ,那么 y=gt 就是曲线的参数方程.
第五页,共70页。
在参数方程与普通(pǔtōng)方程的互化中,x,y的取值范围必 须保持一致.
第六页,共70页。
三、常见曲线的参数方程的一般形式
1.直线的参数方程
经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程为
x= x0+tcos α y= y0+tsin α
第十四页,共70页。
2.若 P(2,-1)为圆xy==15+sin5θcos θ, (θ 为参数且 0≤θ
<2π)的弦的中点,则该弦所在的直线方程为( )
A.x-y-3=0
B.x+2y=0
C.x+y-1=0
D.2x-y-5=0
第十五页,共70页。
解析:由xy= =15+sin5θc,os θ 消去参数 θ,得(x-1)2+y2=25, ∴圆心 C(1,0),∴kCP=-1. ∴弦所在的直线的斜率为 1. ∴弦所在的直线方程为 y-(-1)=1·(x-2), 即 x-y-3=0,故选 A.
第二十页,共70页。
解析:曲线
C1:xy==34++csions
θ θ
(θ 为参数)的直角坐标方
程为(x-3)2+(y-4)2=1,可知曲线 C1 是以(3,4)为圆心,1 为半径的圆;曲线 C2:ρ=1 的直角坐标方程是 x2+y2=1, 故 C2 是以原点为圆心,1 为半径的圆.由题意知|AB|的最小 值即为分别在两个圆上的两点 A,B 间的最短距离.由条件
① ②
①2+②2 得 x2+(y-1)2=1,
即所求普通方程为 x2+(y-1)2=1,
答案(dáàn):x2+(y-1)2=1
第二十六页,共70页。

人教A版高考总复习一轮理科数学精品课件 选修4—4 坐标系与参数方程 第1课时 极坐标方程与参数方程

人教A版高考总复习一轮理科数学精品课件 选修4—4 坐标系与参数方程 第1课时 极坐标方程与参数方程
(θ 为参数)
= + sin.
= cos,
2
2
(3)椭圆方程 2 + 2 =1(a>b>0)的参数方程为
(θ 为参数)


= sin.
2

=
2
,
2
(4)抛物线方程 y =2px(p>0)的参数方程为
(t 为参数)
= 2.
2
2
2
微点拨1.参数方程通过代入消元法或加减消元法消去参数化为普通方程,
= -1 + 2sin (α为参数).以O为极点,x轴的非负半轴为极轴建立极坐标
π
= 2cos,
(2)由(1)得曲线 C 的参数方程为
为参数, 且 ≠
2
= sin
∴点 A( 2cos θ,sin θ)到直线 l 的距离
| 2cos -sin -1|
d=
2
=
,
2
,
2
整理得 2cos θ=sin θ 或 2cos θ-sin θ= 3cos(θ+α)=2 其中 tan =
(3)取相同的长度单位
互化公式
x = ρθ,

y = ρθ,
ρ2 = x 2 + y 2 ,

y
θ = x ( ≠ 0)
(2)把直角坐标转化为极坐标时,通常有不同的表示法(极角相差2π的整数
倍).一般取ρ≥0,θ∈[0,2π).
4.直线的极坐标方程
(1)若直线过点M(ρ0,θ0),且从极轴到此直线的角为α,则它的方程为ρsin(θ-α)
由已知tan θ=2,可得
16cos2θ-8sin θcos θ=0,

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)
人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例

人教A版高中数学选修4-4课件第二章第一节《参数方程》

人教A版高中数学选修4-4课件第二章第一节《参数方程》

,(为
参数)的右
顶点,
则常数a的值为________ .
*高考链接*
1.(2013年高考湖南卷(理))在平面直

坐标系xOy中,
若l
:

x y

t t
,
(t为 a
参数)
过椭圆C
:

x y

3 2
cos sin
,(为
参数)的右
顶点,
则常数a的值为____3____ .
*练习1* 曲线y x2的一种参数方程是( )
A.

x

t
2
y t 4
B.
x

sin
t
y sin2 t
C
.

x

t
y t
D.
x

t
y t 2

练习2* 参数方程

x y
|
cos
2 1 (1 2
sin
一般地,在平面直角坐标系中,如果曲线
上任意一点的坐标x,y都是某个变数t的函数
x f (t),
(2)
y g(t),
并且对于t的每一个允许值,由方程组(2)所确
定的点M(x,y)都在这条曲线上,那么方程(2)
就叫做这条曲线的参数方程,联系变数x,y
的变数t叫做参变数,简称参数。相对于参数
x

sin
t
y sin2 t
(2)

x


1 2
(et

et
)

y

高考数学(人教A版)一轮复习课件:选修4-4-2参数方程

高考数学(人教A版)一轮复习课件:选修4-4-2参数方程

2 2 2 3 2 3 2 2 | AB | ( ) ( ) 2 5. 2 2 2 2
2.(2015·湖北高考改编)在直角坐标系xOy中,以O为极 点,x轴的正半轴为极轴建立极坐标系.已知直线l的极 坐标方程为ρ(sinθ-3cosθ)=0,曲线C的参数方程为 (t为参数),l与C相交于A,B两点,求|AB|的长.
1 xt , t y t 1 t
y2 4
解得t1=0,t2=
16 ,得|AB|=|t , 由直线参数方程的意义 1-t2|= 7
16 . 7
【规律方法】 直线的参数方程在交点问题中的应用 已知直线l经过点M0(x0,y0),倾斜角为α,点M(x,y)为l上 任意一点,则直线l的参数方程为 数). (t为参
x x 0 tcos, y y0 tsin
2.直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直 线上任一点M(x,y) 到M0(x0,y0)的距离.
考点一 直线的参数方程与应用 【典例1】(2016·江苏高考)在平面直角坐标系xOy中, 已知直线l的参数方程为 (t为参数),椭圆C的
1 x 1 t, 参数方程为 (θ为参数),设直线l与椭圆 C相交 2 于A,B两点,求线段AB的长. y 3 t 2 x cos, y 2sin
3
(1)写出☉C的直角坐标方程. (2)P为直线l上一动点,当P到圆心C的距离最小时,求点P的直角坐标.
【解题提示】(1)利用直角坐标与极坐标的关系进行代换即得. (2)直角坐标与极坐标进行坐标代换后,利用两点间的距离公式可求解.
ቤተ መጻሕፍቲ ባይዱ 【解析】(1)由ρ=2 从而有x2+y2=2

2.1.1《参数方程的概念、圆的参数方程》 课件(人教A版选修4-4)

2.1.1《参数方程的概念、圆的参数方程》 课件(人教A版选修4-4)
y=t
限内,其余方程的曲线都过第二象限.
4.已知O为原点,当θ = 时,参数方程 6
x=3cos (θ 为参数) y=9sin
上的点为A,则直线OA的倾斜角为( (A)
6
) (D) 5
6
(B)
3
(C) 2
3
【解析】
5.在方程 标是( )
x=sin2 (θ 为参数)所表示的曲线上的一点的坐 y=sin+cos
12.(14分)已知圆系方程为x2+y2-2axcosφ -2aysinφ =0
(a>0).
(1)求圆心的轨迹方程; (2)证明圆心轨迹与动圆相交所得的公共弦长为定值.
【解析】
)
【解析】选D. 当x=t-1=0时,t=1,y=t+2=3;当y=t+2=0时, t=-2,x=t-1=-3.曲线与坐标轴的交点坐标为(0,3),
(-3,0).
x=sin 2.下列各点在方程 (θ 为参数)所表示的曲线上的是 y=cos2
(
(B) ( 1 , 2 )
3 3
)
(A)(2,-7) (C) ( 1 , 1 )
【解析】设飞机在点H将物资投出机 舱,记此时刻为0 s,设在时刻t s 时的坐标为M(x,y),如图,建立平 面直角坐标系,由于物资做平抛运 动,依题意,得
x=100t x=100t 1 2 ,即 y=h- gt y=h-5t 2 2
令x=100t=1 000,得t=10(s), 由y=h-5t2=h-500=0,得h=500 m. 答案:500 m
∴x=sin 2θ= - 3 .
4
1 4
x=3+cos 6.曲线 (θ 为参数)上的点到坐标轴的最近距离为 y=4+sin

人教A版数学【选修4-4】ppt课件:2-3第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-3第二讲-参数方程
x=x0+tcosα, y=y0+tsinα
称为标准形式,其中参
数t的几何意义是:|t|表示参数t对应的点M到________,t就是有向 → 线段 M0M 的数量.当点M在点M0的上方时,________;当点M在 点M0的下方时________;当点M与点M0重合时,________.
4 x = 1 + 5t, 的方程为 y=3t 5
(t为参数).代入椭圆方程x2+9y2=9,并
整理得:97t2+40t-200=0. 由t的几何意义,知所求的弦长为
|t2-t1|= t2+t12-4t2t1 = -200 60 40 2 - -4 = 22. 97 97 97
3.直线参数方程的应用 直线的标准参数方程主要用来解决过定点的直线与圆锥曲线 相交时的弦长或距离.它可以避免求交点时解方程组的繁琐运 算,但应用直线的参数方程时,需先判别是否是标准形式再考虑t 的几何意义.
课堂互动探究
剖析归纳 触类旁通
【例1】
典例剖析 x=5+3t, 设直线的参数方程为 y=10-4t.
(u为参数).
规律程,只要用代入法消去参
(2)过点M0(x0,y0),倾斜角为α(0≤α<π)的直线的参数方程为
x=x0+tcosα, y=y0+tsinα,
其中参数t有几何意义,t=M0M,即t表示有向线
→ 段 M0M 的数量,其中M(x,y)为直线上任意一点,因为倾斜角α∈ [0,π),所以sinα≥0,再化参数方程的标准形式时应注意这一 点.
(t为参数).
规律技巧
本题可使用直线的普通方程求解.也可以使用参
数方程求解,但是使用普通方程求解,计算量大,如果设出直线 的倾斜角,写出直线的参数方程求解.就可以转化为三角函数求 最值问题,计算简便.

2015高考数学(人教A版)一轮课件:选修4-4-2参数方程

2015高考数学(人教A版)一轮课件:选修4-4-2参数方程

(t 为参数)与曲线
x=asin θ, C2: y=3cos θ,
(θ 为参数,a>
0)有一个公共点在 x 轴上,则 a=________.
解析:曲线 C1 的普通方程为 2x+y=3,曲线 C2 的普通方程 x2 y2 3 为a2+ 9 =1,直线 2x+y=3 与 x 轴的交点坐标为(2,0),故曲线 x2 y 2 3 3 a2+ 9 =1 也经过这个点,代入解得 a=2(舍去-2). 3 答案:2
1.(2013· 湖南)在平面直角坐标系 xOy 中, 若直线
x=3cosφ, C: y=2sinφ
x=t, l: y=t-a
(t 为参数)过椭圆
(φ 为参数)的右顶点,则常数
a 的值为________.
x2 y2 解析: 椭圆的普通方程为:9 + 4 =1, 直线 l 的普通方程为: y=x-a,椭圆的右顶点为(3,0),代入直线方程得 a=3.
①,并且对于 t 的每一个允
许值,由方程组①所确定的点 M(x,y)都在这条曲线上,那么方 程组①就叫做这条曲线的 参数方程,联系变数 x,y 的 变数t 叫 做参变数,简称 参数 ,相对于参数方程而言,直接给出点的坐 标间关系的方程叫做 普通方程 .
2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一 般地可以通过 消去参数 而从参数方程得到普通方程. (2)如果知道变数 x, y 中的一个与参数 t 的关系, 例如 x=f(t) , 把它代入普通方程,求出另一个变数与参数的关系 y=g(t) ,
(θ 为参数).
4.椭圆的参数方程 以坐标原点 O 为中心,焦点在 x 轴上的椭圆的标准方程 x=acosφ x2 y2 (φ 为参数) 2+ 2=1(a>b>0) a b , 其参数方程为 y=bsinφ ,

【人教版】数学(理)一轮复习:选修4-4《坐标系与参数方程》(第2节)ppt课件 公开课一等奖课件PPT

【人教版】数学(理)一轮复习:选修4-4《坐标系与参数方程》(第2节)ppt课件 公开课一等奖课件PPT

选修4-4 坐标系与参数方程
2.(2013·陕
西
高考
)圆
锥曲线
x=t2, y=2t
(t 为参数)的焦点坐标是
________.
解析 代入法消参,得到圆锥曲线的方程为 y2=4x,
则焦点坐标为(1,0).
答案 (1,0)
选修4-4 坐标系与参数方程
3.(2012·湖北高考)在直角坐标系 xOy 中,以原点 O 为极点,x 轴
选修4-4 坐标系与参数方程
直线的参数方程 [典题导入]
(2014·东北三省三校第二次联考)在直角坐标系 xOy 中,已
知点 P(0, 3),曲线 C 的参数方程为xy= =
5cos φ, 15sin φ
(φ 为参数).以
原点为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标
方程为 ρ=2cosθ3-π6.
解析 直线方程可化为 x-y+1=0,圆的方程可化为(x-1)2+y2 =1.由点到直线的距离公式可得,圆心 C(1,0)到直线 l 的距离为
12+|2|-12= 2. 答案 2
选修4-4 坐标系与参数方程
5.(2013·广东高考)已知曲线 C 的极坐标方程为 ρ=2cos θ.以极点
为原点,极轴为 x 轴的正半轴建立直角坐标系,则曲线 C 的参
(t 为参数).若 A,B 为直线 l 上两点,其对应的
参数分别为 t1,t2.线段 AB 的中点为 M,点 M 所对应的参数为 t0. 注意以下几个常用的结论:
(1)t0=t1+2 t2;(2)|PM|=|t0|=|t1+2 t2|;(3)|AB|=|t2-t1|;(4)|PA|·|PB|
=|t1t2|.
选修4-4 坐标系与参数方程

高考总数学(文)一轮总复习课件:选修4-4 第二节 参数方程

高考总数学(文)一轮总复习课件:选修4-4 第二节 参数方程

2.(2013·广西四校联考)极坐标方程ρ=cos x=-1-t,
θ和参数方程 y=2+3t (t为参数)所表示的图 形分别是________.
【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ, ∴x2+y2=x,即x2-x+y2=0表示圆, ∵xy==2-+13-t,t,消t后,得3x+y+1=0,表示直线.
线段OP的中点,由代入法求曲线C2的参数方程;
(2)由于点A、B在射线θ=
π 3
上,分别求点A、B的
极径,进而确定|AB|的大小.
【尝试解答】 (1)由 O→P =2 O→M 知,点M是线段 OP的中点.
设点P(x,y),则M(x2,y2), ∵点M在曲线C1:xy==22+cos2sαin ,α,上,
方程判断曲线类型.
【尝试解答】
由xy==ba++ttcsions
θ, θ. ②

(1)当t为非零常数时,
原方程组为xy--tt ba==csions
θ, θ. ④

③2+④2得(x-t2 a)2+(y-t2 b)2=1,
即(x-a)2+(y-b)2=t2,它表示一个圆.
(2)当t=0时,表示点(a,b).
【思路点拨】 将直线的参数方程化为普通方程,根据 点到直线的距离公式得到关于θ的函数,转化为求函数的最 值.
π 【尝试解答】 当t= 2 时,P(-4,4);且Q(8cos θ,3sin θ),
故M(-2+4cos θ,2+32sin θ).
C3为直线x-2y-7=0,
M到C3的距离d=
5 5 |4cos
3.直线、圆、椭圆的参数方程
轨迹 直线
圆 椭圆
普通方程 y-y0=tan α(x-

2019届一轮复习人教A版理 选修4-4 第2节 参数方程 课件(47张)

2019届一轮复习人教A版理 选修4-4 第2节 参数方程 课件(47张)

(t
为参数)与曲线xy= =33csions
α, α

为参数)的交点个数.
(2)在平面直角坐标系 xOy 中,若直线 l:xy= =tt, -a (t 为参数)过椭圆 C:
x=3cos φ, y=2sin φ
(φ 为参数)的右顶点,求常数 a 的值.
【导学号:97190394】
(2)把直线
l
x=1+ 的参数方程
23t,
y=2+12t
代入 x2+y2=16,
得1+ 23t2+2+12t2=16,t2+( 3+2)t-11=0, 所以 t1t2=-11, 由参数方程的几何意义,|PA|·|PB|=|t1t2|=11.
[规律方法] 1解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通 方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有 关的问题,如最值、范围等.
x=3cos θ, y=sin θ
(θ 为参数),直线 l 的参数方程为xy= =a1+ -4t t,
(t 为参数).
(1)若 a=-1,求 C 与 l 的交点坐标;
(2)若 C 上的点到 l 距离的最大值为 17,求 a.
[解] (1)曲线 C 的普通方程为x92+y2=1. 当 a=-1 时,直线 l 的普通方程为 x+4y-3=0.
x+4y-3=0, 由x92+y2=1,
解得xy= =30, 或xy==-22452.215, 从而 C 与 l 的交点坐标为(3,0),-2215,2245.
(2)直线 l 的普通方程为 x+4y-a-4=0,故 C 上的点(3cos θ,sin θ)到 l 的
[规律方法] 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有 代入消去法、加减消去法、恒等式三角的或代数的消去法.另外,消参时要注意 参数的范围. 普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线 的参数方程直接写出.

高二数学选修4-42参数方程的概念优选课堂.ppt

高二数学选修4-42参数方程的概念优选课堂.ppt

7
选修4-4 坐标系与参数方程
信宜第二中学 高二数学1、2班
简易辅导
8
y
M(x,y)
r
o
M0 x
简易辅导
9
如果在时刻t,点M转过的角度是,坐标是
M (x, y),那么=t,设OM =r,那么由三
角函数的定义有:
cost x ,sin t y 即{x r cost (t为参数)
r
r y r sin t
简易辅导
12
由于选取的参数不同,圆有不同的参 数方程,一般地,同一条曲线,可以 选取不同的变数为参数,因此得到的 参数方程也可以有不同的形式,形式 不同的参数方程,它们表示 的曲线可
以是相同的,另外,在建立曲线的参 数参数时,要注明参数及参数的取值 范围。
简易辅导
13
例、已知圆方程x2+y2 +2x-6y+9=0,将它 化为参数方程。
表示圆的圆心坐标、半径,并化为普通方程。
(x 5)2 ( y 3)2 4
简易辅导
17
选修4-4 坐标系与参数方程
信宜第二中学 高二数学1、2班
简易辅导
18
由参数方程
x y
cos sin
3,
(
为参数)直接判断点M的轨迹的
曲线类型并不容易,但如果将参数方程转化为熟悉的普通
方程,则比较简单。
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
投放点
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档