高中数学北师大版选修1-2练习:第一章 统计案例 含解析

合集下载

(易错题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(1)

(易错题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(1)

一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是()A.甲队获胜的概率为827B.乙队以30:获胜的概率为13C.乙队以三比一获胜的概率为29D.乙队以32:获胜的概率为492.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.213.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()A.25B.1225C.1625D.454.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表学习成绩不优秀16218合计201030经计算2K的值,则有()的把握认为玩手机对学习有影响.A.95%B.99%C.99.5%D.99.9%5.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A=“第一次取到的数可以被3整除”,B=“第二次取到的数可以被3整除”,则()P B|?A=( )A.59B.23C.13D.296.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bcKa b c d a c b d-=++++并参照附表,得到的正确结论是()A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”7.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是()使用智能手机不使用智能手机总计学习成绩优秀4812学习成绩不优秀16218总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响.8.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A 袋中的概率为 ( )A .34B .14C .13D .239.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. A .1B .2C .3D .410.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关”11.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )=( ) A .14B .13C .12D .2312.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.一个不透明的箱中原来装有形状、大小相同的1个绿球和3个红球.甲、乙两人从箱中轮流摸球,每次摸取一个球,规则如下:若摸到绿球,则将此球放回箱中可继续再摸;若摸到红球,则将此球放回箱中改由对方摸球,甲先摸球,则在前四次摸球中,甲恰好摸到两次绿球的概率是________.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.16.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.17.在一场对抗赛中,,A B 两人争夺冠军,若比赛采用“五局三胜制”,A 每局获胜的概率均为23,且各局比赛相互独立,则A 在第一局失利的情况下,经过五局比赛最终获得冠军的概率是_____.18.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 19.某团队派遣甲、乙、丙、丁四人分别完成一项任务,已知甲完成任务的概率为14,乙完成任务的概率为12,丙、丁完成任务的概率均为23,若四人完成任务与否相互独立,则至少2人完成任务的概率为____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.在疫情防控中,不聚集、戴口罩、保持社交距离是对每个人的基本要求同时,通过运动健身增强体质,进而提升免疫力对个人防护也有着重要的意义,某机构为了解“性别与休闲方式为运动”是否有关,随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人休闲方式是运动,而女性只有13的人休闲方式是运动. (1)完成下列22⨯列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.24.2019年12月16日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40人.(1)完成下列22⨯列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?(2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++25.2019年,中国的国内生产总值(GDP)已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没.实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料本及非原料成本组成,每件产品的非原料成本y(元)与生产该产品的数量x(千件)有关,经统计得到如下数据:y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by ax=+和指数函数模型e dxy c=分别对两个变量的关系进行拟合.为此变换如下:令1ux=,则y a bu=+,即y与u满足线性关系;令lnv y=,则lnv c dx=+,即v与x也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54e dxy=,v与x的相关系数10.94r=-,其他参考数据如表(其中1iiux=,lni iv y=):81i iiu y=∑u2u821iiu=∑81iiy=∑821iiy=∑0.616185.5⨯2e-ln96.54v 183.40.340.115 1.5336022385.561.40.135 4.6 3.7(1)求指数函数模型和反比例函数模型中y关于x的回归方程;(2)试计算y与u的相关系数2r,并用相关系数判断选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?参考公式:对于一组数据()()()1122,,,,,,n nu v u v u v,其回归直线v uαβ=+的斜率和截距的最小二乘估计分别为:1221ni iiniiu v nuvu nuβ==-=-∑∑,v uαβ=-,相关系数1222211ni iin ni ii iu v nuvru nu v nv===-=⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭∑∑∑.26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名.①完成如下所示22⨯列联表技术工非技术工总计月工资不高于平均数50月工资高于平均数50总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.050.010.0050.001 0k 3.841 6.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输. 【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确;对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3:2获胜的概率为221433327⨯⨯=,故错.故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.C解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3,根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.3.C解析:C 【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,42()()105P A P B ===, 则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C . 【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.4.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.5.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.6.A解析:A 【解析】()()()()()22n ad bc K a b c d a c b d -=++++2110(1200400)7.82 6.63560506050-=≈>⨯⨯⨯所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”,选A.7.C解析:C 【解析】 经计算,()2230421681020101218K ⨯-⨯==⨯⨯⨯,27.87910.828K <<,对照数表知,在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响,故选C .点睛:本题考查了独立性检验的应用问题,是基础题;其解题步骤为:(1)认真读题,取出相关数据,作出22⨯列联表;(2)根据22⨯列联表中的数据,计算2K 的观测值k ;(3)通过观测值k 与临界值0k 比较,得出事件有关的可能性大小.8.D解析:D 【分析】小球落入A 袋中的概率为P (A )1P =-(B ),由此利用对立事件概率计算公式能求出小球落入A 袋中的概率. 【详解】 解:将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为21,33, 小球落入A 袋中的概率为:P (A )1P =-(B )1112221()333333=-⨯⨯+⨯⨯23=. 故选:D . 【点睛】 本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.9.B解析:B 【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B 。

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(有答案解析)

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(有答案解析)

一、选择题1.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .452.小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为35,小明投篮命中的概率为12,且两人投篮相互独立,则小明获胜的概率为( ) A .1225B .25C .825D .6253.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9164.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216 B .0.36C .0.352D .0.6485.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:由最小二乘法得与的线性回归方程为,则当时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95 D .6.156.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系7.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125C .61125D .641258.根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则 A .5a =B .变量x 与y 线性正相关C .当x =11时,可以确定y =3D .变量x 与y 之间是函数关系 9.已知()112P A =,()136P AB =,()512P B =,则()P B A 为( ) A .12B .13C .115D .1510.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( )A.116B.14C.13D.1212.下面给出四种说法:①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;②命题P:“∃x0∈R,x02﹣x0﹣1>0”的否定是¬P:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)=12﹣p④回归直线一定过样本点的中心(,x y).其中正确的说法有()A.①②③B.①②④C.②③④D.①②③④二、填空题13.某商圈为了吸引顾客举办了一次有奖竟猜活动,活动规则如下:两人一组,每轮竞猜中,每人竞猜两次,两人猜对的次数之和不少于3次就可以获得一张奖券.小蓝和她的妈妈同一小组,小蓝和她妈妈猜中的概率分别为p1,p2,两人是否猜中相互独立,若p1+p2=32,则当小蓝和她妈妈获得1张奖券的概率最大时,p12+p22的值为_____.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 16.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.在10个形状大小均相同的球中有4个红球和6个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率为_________.19.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.20.某项羽毛球单打比赛规则是3局2胜制,运动员甲和乙进人了男子羽毛球单打决赛,假设甲每局获胜的概率为23,则由此估计甲获得冠军的概率为______.三、解答题21.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:x的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()ni ix x y yr--=∑()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.临界值表:22.垃圾分类收集处理是一项利国利民的社会工程和环保工程.搞好垃圾分类收集处理,可为政府节省开支,为国家节约能源,减少环境污染,是建设资源节约型社会的一个重要内容.为推进垃圾分类收集处理工作,A市通过多种渠道对市民进行垃圾分类收集处理方法的宣传教育,为了解市民能否正确进行垃圾分类处理,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):有关?(2)将频率视为概率,现从A 市55岁及以下的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“不能正确进行垃圾分类”的人数为X ,若每次抽取的结果是相互独立的,求随机变量X 的分布列和均值()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.某机构为了解某大学中男生的体重单位:kg )与身高x (单位:cm )是否存在较好的线性关系,该机构搜集了7位该校男生的数据,得到如下表格:根据表中数据计算得到y 关于x 的线性同归方程为ˆˆ1.15yx a =+ (1)求ˆa(2)已知()()22121ˆ1ni i i ni i y yR y y ==-=--∑∑且当20.9R 时,回归方程的拟合效果非常好;当20.80.9R <<时,回归方程的拟合效果良好.试问该线性回归方程的拟合效果是非常好还是良好?说明你的理由.参考数据:()621ˆ49.12i i i y y=-=∑24.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关?()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.82825.近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP 中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:对优惠活动好评 对优惠活动不满意 合计 对商品状况好评 100 20 120 对商品状况不满意 50 30 80 合计15050200(I )能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP 向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP 购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是12,13,各次获取优惠券的结果相互独立若某用户一天使用了APP 购物两次,记该用户当天获得的优惠券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据参考公式:K 2()()()()2()n ad bc a b c d a c b d -=++++,其中n =a +b +c +d26.在一定范围内,植物的生长受到空气、水、温度、光照和养分等因素的影响,某试验小组为了研究光照时长对某种植物增长高度的影响,在保证其他因素相同的条件下,对该植物进行不同时长的光照试验,经过试验,得到6组该植物每日的光照时间x (单位:h )和每日平均增长高度y (单位:mm )的数据.(1)该小组分别用模型①ˆˆˆybx a =+和模型②ˆˆˆmx n y e +=对以上数据进行拟合,得到回归模型,并计算出模型的残差如下表:(模型①和模型②的残差分别为1ˆe 和2ˆe ,残差ˆˆi i i ey y =-)根据上表的残差数据,应选择哪个模型来刻画该植物每日的光照时间与每日平均增长高度的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(),x y 剔除,根据剩余的5组数据,求该模型的回归方程,并预测光照时间为11h 时,该植物的平均增长高度.(剔除数据前的参考数据:7.5x =, 5.9y =,61299.8i ii x y==∑,621355i i x ==∑,ln z y =,141z ≈.,6173.10i i i x z =≈∑,n10.7l 2.37≈, 4.03456.49e ≈.)参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.2.D解析:D 【分析】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),由相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式,即可求得. 【详解】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),小明获胜的概率是22222112213133131326111252552525252525P C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯⨯⨯-+⨯⨯-=++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选D . 【点睛】本题主要考查相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式的应用,意在考查学生分类讨论思想意识以及运算能力.3.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.4.C解析:C 【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 1.1-1.2 Word版含解析

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 1.1-1.2 Word版含解析

1.1 回归分析1.2 相关系数明目标、知重点 1.会建立线性回归模型分析两个变量间的相关关系.2.能通过相关系数判断两个变量间的线性相关程度.3.掌握建立线性回归模型的步骤.1.线性回归方程在线性回归方程y =a +bx 中,b ==,a =-b .其中=∑ni =1(xi -x )(yi -y )∑ni =1(xi -x )2∑ni =1xiyi -nx y ∑ni =1x 2i -nx 2y x x 1nx i ,=y i .∑n i =1y 1n ∑ni =1(,)称为样本点的中心,线性回归直线过样本点的中心.x y 2.相关系数(1)相关系数r 的计算公式r =.∑ni =1xiyi -nx y ∑n i =1x 2i -nx 2∑n i =1y 2i -ny 2(2)相关系数r 的取值范围是[-1,1],|r |值越大,变量之间的线性相关程度越高;|r |值越接近0,变量之间的线性相关程度越低.(3)当r >0时,b >0,称两个变量正相关;当r <0时,b <0,称两个变量负相关;当r =0时,b =0,称两个变量线性不相关.[情境导学]“名师出高徒”这句谚语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?探究点一 线性回归方程思考1 两个变量之间的关系分几类?答 分两类:①函数关系,②相关关系.函数关系是一种确定性关系,而相关关系是一种非确定性关系.上面所提的“名师”与“高徒”之间的关系就是相关关系.思考2 什么叫回归分析?答 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.思考3 对具有线性相关关系的两个变量进行回归分析有哪几个步骤?答 基本步骤为画散点图,求线性回归方程,用线性回归方程进行预测.例1 若从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据女大学生的身高预测体重的回归方程,并预测一名身高为172 cm的女大学生的体重.解 (1)画散点图选取身高为变量x,体重为变量y,画出散点图,展示两个变量之间的关系,并判断二者是否具有线性关系.由散点图可以发现,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用回归直线y=bx+a来近似刻画它们之间的关系.(2)建立回归方程由计算器可得b =0.849,a =-85.712.于是得到回归方程为y =0.849x -85.712.(3)预测和决策当x =172时,y =0.849×172-85.712=60.316(kg).即预测一名身高为172 cm 的女大学生的体重约为60.316 kg.反思与感悟 在使用回归方程进行预测时要注意:(1)回归方程只适用于我们所研究的样本的总体;(2)我们所建立的回归方程一般都有时间性;(3)样本取值的范围会影响回归方程的适用范围;(4)不能期望回归方程得到的预测值就是预测变量的精确值.跟踪训练1 某班5名学生的数学和物理成绩如表:学生学科A B C D E 数学成绩(x )8876736663物理成绩(y )7865716461(1)画出散点图;(2)求物理成绩y 对数学成绩x 的线性回归方程;(3)一名学生的数学成绩是96,试预测他的物理成绩.解 (1)散点图如图.(2)=×(88+76+73+66+63)=73.2.x 15=×(78+65+71+64+61)=67.8.y 15x i y i =88×78+76×65+73×71+66×64+63×61∑5 i =1=25 054.x =882+762+732+662+632=27 174.∑5 i =12i∴b =≈0.625.∑5i =1xiyi -5x ·y ∑5 i =1x 2i -5x 2∴a =-b =67.8-0.625×73.2=22.05.y x ∴y 对x 的线性回归方程是y =0.625x +22.05.(3)当x =96时,y =0.625×96+22.05≈82.所以,可以预测他的物理成绩是82.探究点二 相关系数思考1 给出n 对数据,按照公式求出的线性回归方程,是否一定能反映这n 对数据的变化规律?答 如果数据散点图中的点都大致分布在一条直线附近,这条直线就能反映这n 对数据的变化规律,否则求出的方程没有实际意义.思考2 怎样通过相关系数刻画变量之间的线性相关关系?答 |r |值越接近1,变量之间的线性相关程度越高;|r |值越接近0,变量之间的线性相关程度越低;当r =0时,两个变量线性不相关.例2 下面的数据是从年龄在40岁到60岁的男子中随机抽出的6个样本,分别测定了心脏的功能水平y (满分100),以及每天花在看电视上的平均时间x (小时).看电视的平均时间x 4.4 4.6 2.7 5.80.2 4.6心脏功能水平y525369578965(1)求心脏功能水平y 与每天花在看电视上的平均时间x 之间的样本相关系数r ;(2)求心脏功能水平y 与每天花在看电视上的平均时间x 的线性回归方程,并讨论方程是否有意义;(3)估计平均每天看电视3小时的男子的心脏功能水平.解 n =6,=(4.4+4.6+…+4.6)≈3.716 7,x 16=(52+53+…+65)≈64.166 7,y 16-62≈(4.42+4.62+…+4.62)-6×3.716 726∑i =1x2i x ≈19.766 8,-62≈(522+532+…+652)-6×64.166 726∑i =1y2i y≈964.807 7,i y i -6 ≈(4.4×52+4.6×53+…+4.6×65)-6×3.7167×64.166 7≈-124.630 2.6∑i =1xx y (1)心脏功能水平y 与每天花在看电视上的平均时间x 之间的相关系数:r ≈≈-0.902 5.-124.630 219.766 8×964.807 7(2)b ≈≈-6.305 0,a =-b ≈87.600 5,心脏功能水平y 与每天花在看电视上-124.630 219.766 8y x 的平均时间x 的线性回归方程为y =87.600 5-6.305 0x .由(1)知y 与x 之间有较强的线性关系,这个方程是有意义的.(3)将x =3代入线性回归方程y =87.600 5-6.305 0x ,可得y ≈68.7,即平均每天看电视3小时,心脏功能水平约为68.7.反思与感悟 求解两个变量的相关系数及它们的线性回归方程的计算量较大,需要细心、谨慎地计算.如果会使用含统计的科学计算器,能简单得到i ,i ,,,n∑i =1x n∑i =1y n∑i =1x 2i n∑i =1y2i i y i 这些量,也就无需制表这一步,直接算出结果就行了.另外,利用计算机中有关应n∑i =1x用程序也可以对这些数据进行处理.跟踪训练2 维尼纶纤维的耐热水性能的好坏可以用指标“缩醛化度”y 来衡量,这个指标越高,耐水性能也越好,而甲醛浓度是影响缩醛化度的重要因素,在生产中常用甲醛浓度x (g/L)去控制这一指标,为此必须找出它们之间的关系,现安排一批实验,获得如下数据.甲醛浓度x (g/L)18202224262830缩醛化度y (克分子%)26.8628.3528.7528.8729.7530.0030.36(1)画散点图;(2)求线性回归方程;(3)求相关系数r .解 (1)(2)列表:i x i y i x 2i x i y i 11826.86324483.4822028.3540056732228.75484632.542428.87576692.8852629.75676773.562830.0078484073030.36900910.80∑168202.944 1444 900.16==24,=,b =x 1687y 202.947∑7i =1xiyi -7x y ∑7 i =1x 2i -7x 2==0.264 3,4 900.16-7×24×202.9474 144-7×242a =-b =-0.264 3×24≈22.648,y x 202.947∴线性回归方程为y =22.648+0.264 3x .(3)y ≈5 892,r =∑7 i =12i ∑7i =1xiyi -7x y ∑7 i =1x 2i -7x 2∑7 i =1y 2i -7y 2==0.96.4 900.16-7×24×202.9474 144-7×242×5 892-7×(202.947)2由此可以看出甲醛浓度与缩醛化度两个变量之间有较强的线性相关关系.1.下列变量之间:①人的身高与年龄;②产品的成本与生产数量;③商品的销售额与广告费;④家庭的支出与收入.其中不是函数关系的有( )A .1个B .2个C .3个D .4个答案 D2.已知线性回归方程为y =bx +a ,其中a =3且样本点中心为(1,2),则线性回归方程为( )A .y =x +3 B .y =-2x +3C .y =-x +3 D .y =x -3答案 C解析 ∵y =bx +3过(1,2),可计算得b =-1.3.已知一个线性回归方程为y =1.5x +45,x i ∈{1,7,5,13,19},则=________.y 答案 58.54.一唱片公司欲知打歌费用x (十万元)与唱片销售量y (千张)之间的关系,从其所发行的唱片中随机抽取了10张,得如下的资料:i =28,=303.4,i =75,=598.5,i y i =237,则y 与x 的相关系数r10∑i =1x10∑i =1x2i 10∑i =1y 10∑i =1y 2i 10∑i =1x的绝对值为________.答案 0.3解析 由公式r =得|r |=0.3.n∑i=1xiyi -nx yn∑i =1x 2i -nx 2n∑i =1y 2i -ny 2[呈重点、现规律]1.对具有相关关系的两个变量进行统计分析,可从散点图观察大致呈条状分布,可以求线性回归方程并进行预报.2.通过计算相关系数可以判定两个变量的线性相关程度.一、基础过关1.在下列各量之间,存在相关关系的是( )①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③某户家庭用电量与电价之间的关系.A .②③ B .①③ C .① D .②答案 D2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y =0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x y C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg D .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由线性回归方程为y =0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系;由最小二乘法建立回归方程的过程知y =bx +a =bx +-b (a =-b ),所以y x y x 回归直线过样本点的中心(,);利用回归方程可以估计总体,所以D 不正确.x y 3.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)4235销售额y (万元)49263954根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预测广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵==,==42,x 4+2+3+5472y 49+26+39+544又y =bx +a 必过(,),x y ∴42=×9.4+a ,∴a =9.1.72∴线性回归方程为y =9.4x +9.1.∴当x =6(万元)时,y =9.4×6+9.1=65.5(万元).4.已知对一组观察值(x i,y i)作出散点图后确定具有线性相关关系,若对于y=bx+a,求x y得b=0.51,=61.75,=38.14,则线性回归方程为( )A.y=0.51x+6.65 B.y=6.65x+0.51C.y=0.51x+42.30 D.y=42.30x+0.51答案 A5.对于回归分析,下列说法错误的是( )A.在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定B.线性相关系数可以是正的,也可以是负的C.回归分析中,如果r2=1,说明x与y之间完全相关D.样本相关系数r∈(-1,1)答案 D解析 相关系数r的范围是[-1,1].6.对具有线性相关关系的变量x和y,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条线性回归方程为________.答案 y=-10+6.5xx y y x解析 由题意知=2,=3,b=6.5,所以a=-b=3-6.5×2=-10,即线性回归方程为y=-10+6.5x.7.某个服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之间的一组数据如下表:x3456789y66697381899091(1)求样本点的中心;(2)画出散点图;(3)求纯获利y与每天销售件数x之间的回归方程.x y解 (1)=6,≈79.86,样本点的中心为(6,79.86).(2)散点图如下:(3)因为i y i =3 487,=280,7∑i =1x7∑i =1x2i 所以b =7∑i =1xiyi -7x y7∑i =1x 2i -7(x )2=≈4.75.3 487-7×6×79.86280-7×62a =-b ≈51.36,y x 所以y =4.75x +51.36.二、能力提升8.已知x 与y 之间的几组数据如下表:x 123456y21334假设根据上表数据所得线性回归方程y =bx +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A .b >b ′,a >a ′ B .b >b ′,a <a ′C .b <b ′,a >a ′ D .b <b ′,a <a ′答案 C解析 b ′=2,a ′=-2,由公式b =求得.6∑i =1(xi -x )(yi -y )6∑i =1(xi -x )2b =,a =-b =-×=-,57y x 136577213∴b <b ′,a >a ′.选C.9.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )x 1234y1357A.点(2,3) B .点(1.5,4)C .点(2.5,4)D .点(2.5,5)答案 C解析 回归方程必过样本点的中心(,),即(2.5,4).x y 10.若线性回归方程中的回归系数b =0,则相关系数r =________.答案 0解析 b =,n∑i =1(xi -x )(yi -y )n∑i =1(xi -x )2r =,n∑i =1(xi -x )(yi -y )n∑i =1(xi -x )2·n∑i =1(yi -y )2若b =0,则r =0.11.某车间为了规定工时定额,需确定加工零件所花费的时间,为此做了4次试验,得到的数据如下:零件的个数x /个2345加工的时间y /小时2.5344.5若加工时间y 与零件个数x 之间有较好的相关关系.(1)求加工时间与零件个数的回归方程;(2)试预测加工10个零件需要的时间.解 (1)由表中数据得=,=,x =54,x 72y 72∑4i =12i x i y i =52.5,∑4 i =1从而得b =0.7,a =-b =1.05,y x 因此,所求的线性回归方程为y =0.7x +1.05.(2)将x =10代入回归方程,得y =0.7×10+1.05=8.05(小时),即加工10个零件的预测时间为8.05小时.12.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)88.28.48.68.89销量y (件)908483807568(1)求线性回归方程y =bx +a ,其中b =-20,a =-b ;y x (2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解 (1)==8.5,x 8+8.2+8.4+8.6+8.8+96=(90+84+83+80+75+68)=80.y 16∵b =-20,a =-b ,y x ∴a =80+20×8.5=250,∴线性回归方程y =-20x +250.(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20(x -)2+361.25,334∴该产品的单价应定为元,工厂获得的利润最大.334三、探究与拓展13.某运动员训练次数与运动成绩之间的数据关系如下:次数x 3033353739444650成绩y3034373942464851(1)作出散点图;(2)求出线性回归方程;(3)计算相关系数并进行相关性检验;(4)试预测该运动员训练47次及55次的成绩.解 (1)作出该运动员训练次数x 与成绩y 之间的散点图,如下图所示,由散点图可知,它们之间具有线性相关关系.(2)列表计算:次数x i 成绩y i x 2i y 2i x i y i 30309009009003334 1 089 1 156 1 1223537 1 225 1 369 1 2953739 1 369 1 521 1 4433942 1 521 1 764 1 6384446 1 936 2 116 2 0244648 2 116 2 304 2 20850512 5002 6012 550由上表可求得=39.25,=40.875,x =12 656,x y ∑8i =12i y =13 731,x i y i =13 180,∑8 i =12i ∑8 i =1∴b =≈1.041 5,∑8i =1xiyi -8x y ∑8 i =1x 2i -8x 2a =-b =-0.003 88,y x ∴线性回归方程为y =1.041 5x -0.003 88.(3)计算相关系数r =0.992 7,因此运动员的成绩和训练次数两个变量有较强的相关关系.(4)由上述分析可知,我们可用线性回归方程y =1.041 5x -0.003 88作为该运动员成绩的预测值.将x =47和x =55分别代入该方程可得y =49和y =57.故预测该运动员训练47次和55次的成绩分别为49和57.。

2018-2019学年高中数学 第一章 统计案例章末小结教案(含解析)北师大版选修1-2

2018-2019学年高中数学 第一章 统计案例章末小结教案(含解析)北师大版选修1-2

第一章 统计案例章末小结一、回归分析1.线性回归分析设样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归直线方程为y =a +bx ,其中b =l xy l xx =∑i =1n x i -xy i -y ∑i =1n x i -x 2=∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2, a =y -b x .2.相关系数r =l xy l xx l yy =∑i =1nx i -xy i -y ∑i =1n x i -x2∑i =1ny i -y 2=∑i =1n x i y i -n x y∑i =1nx 2i -n x 2∑i =1ny 2i -n y 2. |r |值越大,变量之间的线性相关程度越高;|r |值越接近0,变量之间的线性相关程度越低.二、条件概率1.条件概率的计算公式P (B |A )=P AB P A =n AB n A. 2.计算条件概率时,必须搞清楚欲求的条件概率是在哪一个事件发生的条件下的概率,从而选择合适的条件概率公式.三、独立事件1.独立事件的判断方法(1)定义法:对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.若A,B 相互独立,则A与B,A与B,A与B也相互独立.(2)事件A是否发生对事件B发生的概率无影响.2.相互独立事件同时发生的概率的求法P(AB)=P(A)P(B).3.相互独立事件往往与互斥事件、对立事件在题目中综合考查,要注意正确运用公式.四、独立性检验独立性检验的一般步骤(1)列出2×2列联表;(2)代入公式计算χ2=n ad-bc2a+b c+d a+c b+d;(3)根据χ2的值的大小作出判断.。

高中数学选修1-2第一章课后习题解答

高中数学选修1-2第一章课后习题解答

新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(包含答案解析)

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(包含答案解析)

一、选择题1.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中()表1表2表3语文性别不及格及格总计数学性别不及格及格总计英语性别不及格及格总男143650男104050男2525女163450女203050女545总计3070100总计3070100总计30701A.语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B.数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C.英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D.英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小2.小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为35,小明投篮命中的概率为12,且两人投篮相互独立,则小明获胜的概率为()A.1225B.25C.825D.6253.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是()A.分层抽样B.回归分析C.独立性检验D.频率分布直方图4.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:做不到能做到高年级4510低年级3015则下列结论正确的是()附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”5.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.9586.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. A .1 B .2C .3D .47.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .408.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-9.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.8810.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1211.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.4212.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++A.97.5% B.99% C.99.5% D.99.9%二、填空题13.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:礼让斑马线行人不礼让斑马线行人男性司机人数4015女性司机人数2025若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式()11221221 21212n n n n nn n n nχ++++-=14.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.15.某同学通过计算机测试的概率为13,他连续测试3次,且三次测试相互独立,其中恰有1次通过的概率为__________.16.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是15,且相互独立,则至少两人译出密码的概率为___________.17.一盒子装有只产品,其中有只一等品,只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”,则条件概率___.18.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.19.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________.①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.20.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.三、解答题21.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表: 男生测试情况: 抽样情况 免试(病残等) 合格 合格 良好 优秀 人数2101846x抽样情况 免试(病残等) 合格 合格 良好 优秀 人数1311y2生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”男性 女性 总计体育达人 非体育达人 总计()20P K k ≥ 0.10 0.05 0.025 0.010 0.0050k2.7063.841 5.024 6.635 7.879附:22(),()()()()n ad bc K n a b c d a b c d a c b d ⎛⎫-==+++ ⎪++++⎝⎭22.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间顺序作为变量x ,每次累计确诊人数作为变量y ,得到函数关系bxy ae =(a 、0b >).对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70iii x x y y =--=∑,()()111ln ln 35.10iii x x y y =--=∑,()1121110i i x x =-=∑,()1121ln ln 11.90i i y y=-=∑, 4.0657.97e ≈, 4.0758.56e ≈,4.0859.15e ≈.根据相关数据,确定该函数关系式(函数的参数精确到0.01).(2)为了了解患新冠肺炎与年龄的关系,已知某地患有新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少一人是老年人的概率.23.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N μ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()2n ad bc K a b c d a c b d -=++++, .n a b c d =+++ 24.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况::1A 个黑球2个红球;:3B 个红球;:c 恰有1个白球;:D 恰有2个白球;:3E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可);(2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X元,求变量X的分布列;若小张不打算在活动中亏本,求a的最大值.25.某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如图茎叶图:(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;(2)设所有50名骑手在相同时间内完成订单数的平均数m,将完成订单数超过m记为“优秀”,不超过m记为“一般”,然后将骑手的对应人数填入如表列联表;(3)根据(2)中的列联表,判断能否有95%的把握认为两种配送方案的效率有差异.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.自然资源部门对某市饮用水厂中的地下水质量进行监测,随机抽查了100眼水井进行监测,得到溶解性总固体浓度(单位:mg L)和硫酸盐浓度(单位:mg L)的分布如下表:(1)估计事件“该市某一水井中溶解性总固体浓度不超过500,且硫酸盐浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市水井中溶解性总固体浓度与硫酸盐浓度有关?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 2.D解析:D 【分析】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),由相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式,即可求得. 【详解】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),小明获胜的概率是22222112213133131326111252552525252525P C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯⨯⨯-+⨯⨯-=++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选D . 【点睛】本题主要考查相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式的应用,意在考查学生分类讨论思想意识以及运算能力.3.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 1.3 Word版含解析

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 1.3 Word版含解析

1.3 可线性化的回归分析明目标、知重点 1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.1.常见的非线性回归模型幂函数曲线y =ax b ,指数曲线y =a e bx .倒指数曲线y =a e ,对数曲线y =a +b ln_x .b x 2.非线性函数可以通过变换转化成线性函数,得到线性回归方程,再通过相应变换得到非线性回归方程.探究点一 非线性回归模型思考1 有些变量间的关系并不是线性相关,怎样确定回归模型?答 首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用回归方程来建立两个变量之间的关系,这时可以根据已有的函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.思考2 如果两个变量呈现非线性相关关系,怎样求出回归方程?答 可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.例1 某地区不同身高的未成年男性的体重平均值如下表:身高x /cm 60708090100110体重y /kg6.137.909.9912.1515.0217.50身高x /cm 120130140150160170体重y /kg20.9226.8631.1138.8547.2555.05试建立y 与x 之间的回归方程.解 根据表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y =c 1e c 2x 的周围,于是令z =ln y .x 60708090100110120130140150160170z1.812.072.302.502.712.863.043.293.443.663.864.01画出散点图如图所示.由表中数据可得=115,=2.962 5,i y i =4 370.5,=173 000,x y 12∑i =1x 12∑i =1x2i ∴b =≈0.020,12∑i =1xiyi -12 x y12∑i =1x 2i -12(x )2∴a =-b ≈0.663,y x ∴z 与x 之间的线性回归方程为z =0.663+0.020x ,则有y =e 0.663+0.020x .反思与感悟 根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c 1e c 2x 的周围,其中c 1和c 2是待定参数;可以通过对x 进行对数变换,转化为线性相关关系.跟踪训练1 在彩色显影中,由经验知:形成染料光学密度y 与析出银的光学密度x 由公式y =A e (b <0)表示.现测得试验数据如下:b x x i 0.050.060.250.310.070.10y i0.100.141.001.120.230.37x i 0.380.430.140.200.47y i1.191.250.590.791.29试求y 对x 的回归方程.解 由题给的公式y =A e ,两边取自然对数,便得ln y =ln A +,与线性回归方程相对照,bx bx 只要取u =,v =ln y ,a =ln A .1x 就有v =a +bu .题给数据经变量置换u =,v =ln y 变成如下表所示的数据:1x u i 20.00016.667 4.000 3.22614.28610.000v i -2.303-1.96600.113-1.470-0.994u i 2.632 2.3267.143 5.000 2.128v i0.1740.223-0.528-0.2360.255可得ln y =0.548-,0.146x 即y =e0.548-=e 0.548·e -≈1.73e -,0.146x 0.146x 0.146x 这就是y 对x 的回归方程.探究点二 非线性回归分析思考 对于两个变量间的相关关系,是否只有唯一一种回归模型来拟合它们之间的相关关系?答 不一定.我们可以根据已知数据的散点图,把它与幂函数、指数函数、对数函数、二次函数图像进行比较,挑选一种拟合比较好的函数,作为回归模型.例2 对两个变量x ,y 取得4组数据(1,1),(2,1.2),(3,1.3),(4,1.37),甲、乙、丙三人分别求得数学模型如下:甲 y =0.1x +1,乙 y =-0.05x 2+0.35x +0.7,丙 y =-0.8·0.5x +1.4,试判断三人谁的数学模型更接近于客观实际.解 甲模型,当x =1时,y =1.1;当x =2时,y =1.2;当x =3时,y =1.3;当x =4时,y =1.4.乙模型,当x =1时,y =1;当x =2时,y =1.2;当x =3时,y =1.3;当x =4时,y =1.3.丙模型,当x =1时,y =1;当x =2时,y =1.2;当x=3时,y=1.3;当x=4时,y=1.35.观察4组数据并对照知,丙的数学模型更接近于客观实际.跟踪训练2 根据统计资料,我国能源生产自1986年以来发展很快.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1986199119962001产量8.610.412.916.1根据有关专家预测,到2010年我国能源生产总量将达到21.7亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=bx+a(b≠0)B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1)D.y=log a x(a>0且a≠1)答案 A1.散点图在回归分析中的作用是( )A.查找个体个数B.比较个体数据大小关系C.探究个体分类D.粗略判断变量是否相关答案 D2.变量x与y之间的回归方程表示( )A.x与y之间的函数关系B.x与y之间的不确定性关系C.x与y之间的真实关系形式D.x与y之间的真实关系达到最大限度的吻合答案 D3.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为( )A .1B .-0.5C .0D .0.5答案 C4.某种产品的广告费支出x 与销售额y 之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是____________.x /万元24568y /万元3040605070答案 (6,50)[呈重点、现规律]1.对于确定具有非线性相关关系的两个变量,可以通过对变量进行变换,转化为线性回归问题去解决.建立回归模型的步骤①确定研究对象,明确变量关系;②画出散点图,观察变量之间的关系;③由经验确定回归方程的类型;④按一定规则估计回归方程中的参数2.常见曲线方程的变换公式曲线方程变换公式变换后的线性方程=a +1y b x y ′=,x ′=1y 1x y ′=a +bx ′y =ax b y ′=ln y ,x ′=ln x y ′=A +bx ′(A =ln a )y =a +b ln x y ′=y ,x ′=ln x y ′=a +bx ′y =a e bxy ′=ln y ,x ′=xy ′=A +bx ′(A =ln a )一、基础过关1.下列说法正确的是( )①线性回归方程适用于一切样本和总体;②线性回归方程一般都有时间性;③样本的取值范围会影响线性回归方程的适用范围;④根据线性回归方程得到的预测值是预测变量的精确值.A .①③④ B .②③ C .①② D .③④答案 B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( )A .y =-10x +200 B .y =10x +200C .y =-10x -200 D .y =10x -200答案 A3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =x +1上,则这组样本数据的样本12相关系数为( )A .-1B .0 C. D .112答案 D4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x 1.9934 5.1 6.12y1.54.047.51218.01对于表中数据,现给出下列拟合曲线,其中拟合程度最好的是( )A .y =2x -2B .y =()x12C .y =log 2x D .y =(x 2-1)12答案 D解析 可以代入检验,当x 取相应的值时,所求y 与已知y 相差最小的便是拟合程度最高的.5.对于指数曲线y =a e bx ,令u =ln y ,c =ln a ,经过非线性化回归分析之后,可以转化成的形式为( )A .u =c +bxB .u =b +cxC .y =b +cxD .y =c +bx 答案 A解析 对方程y =a e bx 两边同时取对数,然后将u =ln y ,c =ln a 代入,不难得出u =c +bx .6.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y =e bx +a 的周围,令z =ln y ,求得线性回归方程为z =0.25x -2.58,则该模型的回归方程为________.答案 y =e 0.25x -2.58解析 ∵z =0.25x -2.58,z =ln y ,∴y =e 0.25x -2.58.7.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:推销员编号12345工作年限x /年35679推销金额y /万元23345(1)求年推销金额y 关于工作年限x 的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.解 (1)设所求的线性回归方程为y =bx +a ,则b ===0.5,a =-b =0.4.5∑i =1xiyi -5x y5∑i =1x 2i -5x 21020y x ∴年推销金额y 关于工作年限x 的线性回归方程为y =0.5x +0.4.(2)当x =11时,y =0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.二、能力提升8.研究人员对10个家庭的儿童问题行为程度(X )及其母亲的不耐心程度(Y )进行了评价结果如下,家庭1,2,3,4,5,6,7,8,9,10,儿童得分:72,40,52,87,39,95,12,64,49,46,母亲得分:79,62,53,89,81,90,10,82,78,70.下列哪个方程可以较恰当的拟合( )A .y =0.771 1x +26.528B .y =36.958ln x -74.604C .y =1.177 8x 1.014 5D .y =20.924e 0.019 3x答案 B解析 可以通过画散点图观察知两个变量x 、y 之间大致呈现对数函数关系.9.已知x ,y 之间的一组数据如下表:x 1.08 1.12 1.19 1.25y2.252.372.432.55则y 与x 之间的线性回归方程y =bx +a 必过点________________________________________________________________________.答案 (1.16,2.4)解析 回归方程y =bx +a 必过样本点的中心(,),x y ∵==1.16,x 1.08+1.12+1.19+1.254==2.4,y 2.25+2.37+2.43+2.554∴样本点的中心为(1.16,2.4).10.已知线性回归方程为y =0.50x -0.81,则x =25时,y 的估计值为________.答案 11.69解析 当x =25时,y =0.50×25-0.81=11.69.11.在一次抽样调查中测得样本的5个样本点,数值如下表:x 0.250.5124y1612521如何建立y 与x 之间的回归方程.解 画出散点图如图(1)所示,观察可知y 与x 近似是反比例函数关系.设y = (k ≠0),令t =,则y =kt .k x 1x 可得到y 关于t 的数据如下表:t 4210.50.25y1612521画出散点图如图(2)所示,观察可知t 和y 有较强的线性相关性,因此可利用线性回归模型进行拟合,易得:=1.55,=7.2,i y i =94.25,=21.312 5,t y 5∑i =1t 5∑i =1t2i b =≈4.134 4,a =-b ≈0.791 7,∑5i =1tiyi -5t y ∑5 i =1t 2i -5t 2y t 所以y =4.134 4t +0.791 7,所以y 与x 的回归方程是y =+0.791 7.4.134 4x12.某地区六年来轻工业产品利润总额y 与年次x 的试验数据如下表所示:年次x 123456利润总额y11.3511.8512.4413.0713.5914.41由经验知,年次x 与利润总额y (单位:亿元)有如下关系:y =ab x e 0.其中a 、b 均为正数,求y 关于x 的回归方程.(保留三位有效数字)解 对y =ab x e 0两边取对数,得ln y =ln a e 0+x ln b ,令z =ln y ,则z 与x 的数据如下表:x 123456z2.432.472.522.572.612.67由z =ln a e 0+x ln b 及最小二乘法公式,得ln b ≈0.047 7,ln a e 0≈2.38,即z =2.38+0.047 7x ,所以y =10.8×1.05x .三、探究与拓展13.某商店各个时期的商品流通率y (%)和商品零售额x (万元)资料如下:x 9.511.513.515.517.5y64.643.22.8x 19.521.523.525.527.5y2.52.42.32.22.1散点图显示出x 与y 的变动关系为一条递减的曲线.经济理论和实际经验都证明,流通率y决定于商品的零售额x ,体现着经营规模效益,假定它们之间存在关系式:y =a +.试根据b x 上表数据,求出a 与b 的估计值,并估计商品零售额为30万元时的商品流通率.解 设u =,则y ≈a +bu ,得下表数据:1x u 0.105 30.087 00.074 10.064 50.057 1y64.643.22.8u 0.051 30.046 50.042 60.039 20.036 4y2.52.42.32.22.1进而可得n =10,≈0.060 4,=3.21,u y -102≈0.004 557 3,10∑i =1u2i u i y i -10 ≈0.256 35,10∑i =1uu y b ≈≈56.25,0.256 350.004 557 3a =-b ·≈-0.187 5,y u 所求的回归方程为y =-0.187 5+.56.25x 当x =30时,y =1.687 5,即商品零售额为30万元时,商品流通率为1.687 5%.。

北师大版高中数学选修1-2第一章统计案例题库(带详细答案)

北师大版高中数学选修1-2第一章统计案例题库(带详细答案)

北师大版高中数学选修1-2第一章统计案例题库一、选择题(共37小题,每小题5.0分,共185分)1.用独立性检验来考察两个分类变量x与y是否有关系,当统计量K2的观测值()A.越大,“x与y有关系”成立的可能性越小B.越大,“x与y有关系”成立的可能性越大C.越小,“x与y没有关系”成立的可能性越小D.与“x与y有关系”成立的可能性无关2.在一个2×2列联表中,由其数据计算得K2的观测值k=7.097,则这两个变量间有关系的可能性为()A. 99%B. 99.5%C. 99.9%D.无关系3.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关4.考察棉花种子经过处理跟生病之间的关系得到下表数据:根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的5.观察下列各图,其中两个分类变量之间关系最强的是().A.答案AB.答案BC.答案CD.答案D6.对两个分类变量进行独立性检验的主要作用是()A.判断模型的拟合效果B.对两个变量进行相关分析C.给出两个分类变量有关系的可靠程度D.估计预报变量的平均值7.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由列联表算得附表:参照附表,得到的正确结论是().A.在犯错误的概率不超过的前提下认为“爱好该项运动与性别有关”B.在犯错误的概率不超过的前提下认为“爱好该项运动与性别无关”C.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”8.在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是().A.若2的观测值为,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,那么在个吸烟的人中必有人患有肺癌B.由独立性检验可知,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有的可能患有肺癌C.若从统计量中求出在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D.以上三种说法都不正确9.利用独立性检验来考虑两个分类变量和是否有关系时,通过查阅下表来确定断言“和有关系”的可信度,如果,那么就有把握认为“和有关系”的百分比为()A. 25%B. 75%C. 2.5%D. 97.5%10.下面是一个2×2列联表:则表中a、b处的值分别为()A. 94,96B. 52,50C. 52,60D. 54,5211.下表是一个2×2列联表:则表中a,b处的值分别为()A. 94,96B. 52,50C. 52,54D. 54,5212.根据下面的列联表得到如下中个判断:①有的把握认为患肝病与嗜酒有关;②有的把握认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为;④认为患肝病与嗜酒有关的出错的可能为;其中正确命题的个数为()A .B.1C. 2D .13.为调查中学生近视情况,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差B.排列与组合C.独立性检验D.概率14.在判断两个分类变量是否有关系的常用的方法中,最为精确的方法是()A.通过三维柱形图判断B.通过二维条形图判断C.通过等高条形图判断D.以上都不对15.下列关于K2的说法中正确的是()A.K2在任何相互独立问题中都可以用来检验有关还是无关B.K2的值越大,两个事件的相关性就越大C.K2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合D .K2的观测值k的计算公式为16.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:以下各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为()A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=2,b=3,c=5,d=417.在2×2列联表中,两个比值________相差越大,两个分类变量之间的关系越强()A.与B.与C.与D.与18.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大,两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对19.如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A.答案AB.答案BC.答案CD.答案D20.甲、乙、丙、丁四位同学各自对A,B两变量做回归分析,分别得到散点图与残差平方和(-)2如下表哪位同学的实验结果体现拟合A,B两变量关系的模型拟合精度高?()A.甲B.乙C.丙D.丁21.在判断两个变量与是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是 ().A.模型1B.模型2C.模型3D.模型422.下列数据符合的函数模型为()A.B.y=2e xC.y=2eD .23.在画两个变量的散点图时,下面哪个叙述是正确的()A.预报变量在x轴上,解释变量在y轴上B.解释变量在x轴上,预报变量在y轴上C.可以选择两个变量中任意一个变量在x轴上D.可以选择两个变量中任意一个变量在y轴上24.在对两个变量进行回归分析时有下列步骤:①对所求出的回归方程作出解释;②收集数据(i,i),;③求回归方程;④根据所收集的数据绘制散点图.则下列操作顺序正确的是( )A.①②④③B.③②④①C.②③①④D.②④③①25.在对一组数据采用几种不同的回归模型进行回归分析时,得到下面的相应模型的相关指数的值,其中拟和效果较好的是()A .B .C .D .26.为了表示n个点与相应直线在整体上的接近程度,我们常用()表示.A.(yi-i)B.(i-yi)C.(yi-i)2D.(yi-)227.已知甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:则哪位同学的试验结果体现A、B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁28.若某地财政收入x与支出y满足线性回归方程(单位:亿元),其中.如果今年该地区财政收入10亿元,年支出预计不会超过().A. 10亿元B. 9亿元C. 10.5亿元D. 9.5亿元29.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④30.已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程=x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.>b′,>a′B.>b′,<a′C.<b′,>a′D.<b′,<a′31.散点图在回归分析过程中的作用是()A.查找个体个数B.比较个体数据大小关系C.探究个体分类D.粗略判断变量是否线性相关32.设(1,1),(2,2),…,(n,n)是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .和的相关系数为直线的斜率B.和的相关系数在0到1之间C .当为偶数时,分布在两侧的样本点的个数一定相同D .直线过点()33.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )A. r2<r1<0B. 0<r2<r1C. r2<0<r1D. r2=r134.设两个变量和之间具有线性相关关系,它们的相关系数是关于的回归直线的斜率是纵轴上的截距是,那么必有 ().A .与的符号相同B.与的符号相同C .与的符号相反D.与的符号相反35.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)()都在直线y=+1上,则这组样本数据的样本相关系数为()A.-1B. 0C.D. 136.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0B. 0<r2<r1C.r2<0<r1D.r2=r137.对于相关关系r,下列说法正确的是()A. |r|越大,相关程度越小B. |r|越小,相关程度越大C. |r|越大,相关程度越小,|r|越小,相关程度越大D. |r|≤1且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小分卷II二、填空题(共19小题,每小题5.0分,共95分)38.分类变量X和Y的列表如下,则下列说法判断正确的是________.(填序号)①ad-bc越小,说明X与Y的关系越弱;②ad-bc越大,说明X与Y的关系越强;③(ad-bc)2越大,说明X与Y的关系越强;④(ad-bc)2越接近于0,说明X与Y的关系越强.39.如果K2的观测值为6.645,可以认为“x与y无关”的可信度是________.40.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:设H0:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留三位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.41.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众与年龄.(填“有关”或“无关”)42.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到随机变量K2的观测值:因此,判定主修统计专业与性别有关系,那么这种判断出错的概率为.43.下表是关于男女生喜欢武打剧的调查表:则列联表中A=______ ,B=_____ ,C=_____ ,D=_____ .44.下面是一个2×2列联表:则b-d=________.45.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的惟一数据;④若判定两事件A与B有关,则A发生B一定发生.46.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y=e bx+a的周围,令z=ln y,求得线性回归方程为z =0.25x-2.58,则该模型的回归方程为________.47.若满足则可用来描述与之间关系的函数解析式为________.48.若一函数模型为,则作变换=________才能转为是的线性回归方程.49.在线性回归模型中,R2表示________对预报变量变化的贡献率,R2越________,表示回归模型的拟合效果越好.50.若一组观测值(1,1),(2,2),…,(n,n)之间满足+(),且恒为0,则为________.51.若对于变量y与x的10组统计数据的回归模型中,相关指数R2=0.95,又知残差平方和为120.53,那么的值为__________.52.如图是x和y的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.53.线性回归模型=x++中,=__________,=________,称为________.54.许多因素都会影响贫穷,教育也许是其中之一.在研究这两个因素的关系时,收集了美国50个州的成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线的人数占本州人数的百分比(y)的数据,建立的线性回归方程为=0.8x+4.6.斜率的估计值为0.8说明________________________________________________________________________.55.有下列说法正确的是:()①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程=x+可以估计观测变量的取值和变化趋势;56.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率y之间的关系:小李这5天的平均投篮命中率为______;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为______.三、解答题(共44小题,每小题12.0分,共528分)57.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得数据,试问:在出错概率不超过0.025的前提下,能否判断“文科学生总成绩不好与数学成绩不好有关系”?58.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:请问喜欢吃零食与性别是否有关?59.在某校对有心理障碍学生进行测试得到如下列联表:试说明在这三种心理障碍中哪一种与性别关系最大?60.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:对于教育机构的研究项目,根据上述数据能得出什么结论.61.为了研究性格与血型的关系,抽取80名被试者,他们的血型与性格汇总如下,试判断性格与血型是否相关.62.在某测试中,卷面满分为100分,60分为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:(1)根据上述表格完成列联表:(2)根据列联表可以得出什么样的结论?对今后的复习有什么指导意义?63.在海南省第二十四届科技创新大赛活动中,某同学为研究“网络游戏对当代青少年的影响”作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩电脑游戏,而调查的女生中有9人喜欢玩电脑游戏.(1)根据以上数据建立一个2×2的列联表;(2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为“喜欢玩电脑游戏与性别有关系”?64.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.根据已知条件完成下面的2×2列联表,并据此资料,你是否认为“体育迷”与性别有关?65.某校团对“学生性别与是否喜欢韩剧有关”作了一次调查,其中女生人数是男生人数的,男生喜欢韩剧的人数占男生人数的,女生喜欢韩剧的人数占女生人数的.若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则男生至少有多少人?66.某校在两个班进行教学方式的对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如下表所示(单位:人):(1)求的值;(2)能否在犯错误的概率不超过的前提下认为“教学方式”与“成绩”有关系?67.某地震观测站对地下水位的变化和地震的发生情况共进行了次观测,得到的数据如下表:能否在犯错误的概率不超过0.10的前提下认为地下水位的变化与地震的发生情况有关?68.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.69.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表根据表中数据,你有多大把握认为成绩及格与班级有关?由列联表中的数据,得70.某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据:(1) 若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.(2)根据(1)中的2×2列联表,在犯错误的概率不超过0.01的前提下,能否认为脚的大小与身高之间有关系?71.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不得影响,影响学生的健康成长,下表是性别与吃零食的列联表试画出列联表的三维柱形图、二维条形图与等高条件形图,并结合图形判断性别与吃零食是否有关?72.某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.根据这些数据能否断定“患呼吸道疾病与吸烟有关”?(用列联表和等高条形图说明).73.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?74.在某医院,因为患心脏病而住院的665名男性病人中有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.(1)利用图形判断秃顶与患心脏病是否有关系;(2)能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?75.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.试利用列联表和等高条形图判断监督员甲在不在生产现场对产品质量好坏有无影响.76.关于与有以下数据:有如下两个线性模型:(1);(2),试比较哪一个拟合效果比较好?77.对两个变量x,y取得4组数据(1,1),(2,1.2),(3,1.3),(4,1.37),甲、乙、丙三人分别求得数学模型如下:甲y=0.1x+1,乙y=-0.05x2+0.35x+0.7,丙y=-0.8·0.5x+1.4,试判断三人谁的数学模型更接近于客观实际.78.某同学次考试的数学、语文成绩在班中的排名如下表:对上述数据分别用与来拟合与之间的关系,并用残差分析两者的拟合效果。

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 Word版含解析

2016-2017学年高二数学北师大版选修1-2练习:第一章 统计案例 Word版含解析

1回归分析题目击破一、基本概念函数关系是一种确定关系,而相关关系是一种非确定关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.例1下列变量之间的关系是相关关系的是________.(1)正方形的边长与面积之间的关系;(2)水稻产量与施肥量之间的关系;(3)人的身高与年龄之间的关系;(4)降雪量与交通事故发生率之间的关系.分析两变量之间的关系有两种:函数关系和带有随机性的相关关系.解析(1)是函数关系;(2)不是严格的函数关系,但是具有相关性,因而是相关关系;(3)既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;(4)降雪量与交通事故发生率之间具有相关关系.答案(2)(4)点评该例主要考查对变量相关关系概念的掌握.二、线性回归方程设x与y是具有相关关系的两个变量,且相应于n个观测值的n个点大致分布在一条直线的附近,这条直线就叫作回归直线.例2若由资料知y对x呈线性相关关系,试求:(1)回归方程y=a+bx;(2)估计使用年限10年时,维修费用是多少?分析因为y对x呈线性相关关系,所以可以用线性相关的方法解决问题.解(1)制表于是有b=112.3-5×4×5=1.23,90-5×42a=y-b x=5-1.23×4=0.08.∴回归方程为y=1.23x+0.08.(2)当x=10时,y=1.23×10+0.08=12.38(万元),即估计使用10年时维修费用约是12.38万元.点评已知y对x呈线性相关关系,无须进行相关性检验,否则,应首先进行相关性检验.三、非线性回归问题分析非线性回归问题的具体做法是:(1)若问题中已给出经验公式,这时可以将解释变量进行变换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决.(2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种函数(如指数函数、对数函数、幂函数等)的图像作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量变换,将问题化为线性回归分析问题来解决.下面举例说明非线性回归分析问题的解法.例3某地区对本地的企业进行了一次抽样调查,表中是这次抽查中所得到的各企业的人均资本x(单位:万元)与人均产值y(单位:万元)的数据:(1)设y 与x 之间具有近似关系y ≈ax b (a ,b 为常数),试根据表中数据估计a 和b 的值; (2)估计企业人均资本为16万元时的人均产值(精确到0.01).解 (1)在y ≈ax b 的两边取常用对数,可得lg y ≈lg a +b lg x ,设lg y =z ,lg a =A ,lg x =X ,则z ≈A +bX .由公式(1)可得⎩⎪⎨⎪⎧A =-0.215 5,b =1.567 7,由lg a =-0.215 5, 得a ≈0.608 8,即a,b的估计值分别为0.608 8和1.567 7.(2)由(1)知y=0.608 8x1.567 7.样本数据及回归曲线的图形如图所示.当x=16时,y=0.608 8×161.567 7≈47.01(万元),故当企业人均资本为16万元时,人均产值约为47.01万元.2巧解非线性回归问题如果题目所给样本点的分布不呈带状分布,即两个变量不呈线性关系,那么,就不能直接利用线性回归方程建立两个变量之间的关系,这时我们可以把散点图和已经学过的各种函数,如幂函数、指数函数、对数函数、二次函数等作比较,挑选出与这些散点拟合最好的函数,然后利用变量置换,把非线性回归方程问题转化为线性回归方程的问题来解决,这是解决此类问题的通法,体现了转化思想.一、案例分析温度x/℃2345678某项指标y 5.790 6.8108.19910.00112.19014.79017.801试建立某项指标y关于温度x的回归模型,并判断你所建立的回归模型的拟合效果.分析根据表中的数据画出散点图,再由图设出相应的回归模型.解画出散点图如图所示,样本点并没有分布在某个带状区域内,而是分布在某一条二次函数曲线y=Bx2+A的周围.令X =x 2,则变换后的样本点应该分布在y =bX +a (b =B ,a =A )的周围.计算得到线性回归方程为y =0.199 94X +4.999 03.用x 2替换X ,得某项指标y 关于温度x 的回归方程y =0.199 94x 2+4.999 03. 计算得r ≈0.999 997,几乎为1,说明回归模型的拟合效果非常好.点评 本题是非线性回归分析问题,解决这类问题应该先画出散点图,把它与我们所学过的函数图像相对照,选择一种跟这些样本点拟合的最好的函数,然后采用适当的变量变换转化为线性回归分析问题,使之得以解决. 二、知识拓展常见的非线性函数转换方法:(1)幂型函数y =ax m (a 为正数,x ,y 取正值)解决方案:对y =ax m 两边取常用对数,有lg y =lg a +m lg x ,令u =lg y ,v =lg x ,则原式可变为u =m v +lg a ,其中m ,lg a 为常数,该式表示u ,v 的线性函数. (2)指数型函数y =c ·a x (a ,c >0,且a ≠1)解决方案:对y =ca x 两边取常用对数,则有lg y =lg c +x lg a ,令u =lg y ,则原式可变为u =x lg a +lg c ,其中lg a 和lg c 为常数,该式表示u ,x 的线性函数.与幂函数不同的是x 保持不变,用y 的对数lg y 代替了y .(3)反比例函数y =kx (k >0)解决方案:令u =1x ,则y =ku ,该式表示y ,u 的线性函数.(4)二次函数y =ax 2+c解决方案:令u =x 2,则原函数可变为y =au +c ,该式表示y ,u 的线性函数. (5)对数型函数y =c log a x解决方案:令x =a u ,则原函数可变为y =cu ,该式表示y ,u 的线性函数.3 判断两个分类变量的关系本章的重点是用独立性检验的基本思想对两个分类变量作出明确的判断,下面通过典例剖析如何判断两个分类变量的关系.例 某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了189对于人力资源部的研究项目,根据上述数据能得出什么结论?分析 首先由已知条件确定a 、b 、c 、d、n 的数值,再利用公式求出χ2的值,最后根据χ2值分析结果.解 由题目中表的数据可知: χ2=n (ad -bc )2(a +c )(a +b )(c +d )(b +d )=189×(54×63-40×32)294×95×86×103≈10.759.因为10.759>6.635,所以有99%的把握说员工“工作积极”与“积极支持企业改革”有关,可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.点评 在列联表中注意事件的对应及有关值的确定,避免混乱;在判断两个分类变量的关系的可靠性时一般利用随机变量来确定;把计算出的χ2的值与临界值作比较,确定出“A 与B 有关系”的把握.4 独立性检验思想的应用在日常生活中,经常会面临一些需要推断的问题.在对这些问题作出推断时,我们不能仅凭主观臆断作出结论,需要通过试验来收集数据,并依据独立性检验思想做出合理的推断. 所谓独立性检验,就是根据采集样本的数据,利用公式计算χ2的值,比较与临界值的大小关系来判定事件A 与B 是否有关的问题.其基本步骤如下:(1)考察需抽样调查的背景问题,确定所涉及的变量是否为二值分类变量; (2)根据样本数据制作列联表;(3)计算统计量χ2,并查表分析.当χ2很大时,就认为两个变量有关系;否则就认为没有充分的证据显示两个变量有关系.下面举例说明独立性检验思想在解决实际问题中的应用.例 为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,统计结果为:患慢性气管炎共有56人,患慢性气管炎且吸烟的有43人,未患慢性气管炎但吸烟的有162人.根据调查统计结果,分析患慢性气管炎与吸烟在多大程度上有关系? 解 根据所给样本数据得到如下2×2列联表:由列联表可以粗略估计出:有吸烟者中,有20.98%的患慢性气管炎;在不吸烟者中,有9.70%的患慢性气管炎.两个比例的值相差较大,所以结论“患慢性气管炎与吸烟有关”成立的可能性较大.根据列联表中的数据,得到χ2=339×(43×121-13×162)256×283×205×134≈7.469>6.635.所以有99%的把握认为“患慢性气管炎与吸烟有关”.点评 通过计算检验随机变量χ2,可以比较精确地给出这种判断的可靠程度.先收集数据,然后通过一些统计方法对数据进行科学的分析,这是我们用统计方法解决实际问题的基本策略.。

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(答案解析)(4)

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(答案解析)(4)

一、选择题1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6482.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25B .310C .15D .1103.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A .25B .1225C .1625D .454.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.9586.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .237.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .358.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .39.已知,x y 的取值如下表:( )x0 1, 2 3 4 y 11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-10.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点()11,x y ,()22,x y ,…,(),n n x y ,可以用()()22121ˆ1ni i i n ii y yR y y ==-=--∑∑来刻画回归的效果,已知模型1中20.96R =,模型2中23{5x yy x -==-,模型3中20.55R =,模型4中20.41R =,其中拟合效果最好的模型是( ) A .模型1 B .模型2C .模型3D .模型411.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .412.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过 A .B .C .D .二、填空题13.某地区气象台统计,该地区下雨的概率是415,刮风的概率是25,既刮风又下雨的概率为110,设A 为下雨,B 为刮风,那么(|)P B A 等于__________. 14.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______. 15.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r =-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i i x y i n =的回归直线方程ˆˆˆy bx a =+后要进行残差分析,相应于数据(,),(1,,)i i x y i n =的残差是指()ˆˆˆi i ie y bx a =-+. 以上命题“错误”的序号是_________________16.某人进行射击训练,射击一次命中靶心的概率是0.9,各次射击相互独立,他连续射击3次,则“第一次没有命中靶心后两次命中靶心” 的概率是______.17.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )18.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P BA │等于_________. 19.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表20.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是3.240y x =-+,且20m n +=,则其中的n =______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA 疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者 年轻受试者 合计舒张压偏高或偏低 舒张压正常 合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X ,求X 的分布列和数学期望.运算公式:()()()()()22n ad bc K a b c d a c b d -=++++,对照表:P (2K k ≥) 0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.82822.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数y 与进店人数x 是否线性相关?(给出判断即可,不必说明理由)(2)建立y 关于x 的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数) (参考数据:713245i ii x y==∑,25x =,15.43y =,7215075i i x ==∑,()274375x =,72700xy =)23.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2:的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆay bx =-;12342.54x +++==;105112114119112.54y +++==23.45≈22.47≈;()()niix x y y r --=∑0.751r ≤≤时,y 与x 正相关很强.24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表: 间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()2n ad bc K a b c d a c b d -=++++25.为了研究学生的数学核心素养与抽象能力(指标x )、推理能力(指标y )、建模能力(指标z )的相关性,将它们各自量化为1、2、3三个等级,再用综合指标w x y z =++的值评定学生的数学核心素养,若7w ≥,则数学核心素养为一级;若56w ≤≤,则数学核心素养为二级;若34w ≤≤,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为X ,求随机变量X 的分布列及其数学期望.26.某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人。

高中数学选修1-2第一章统计案例测试题带详细解答

高中数学选修1-2第一章统计案例测试题带详细解答

第1页,总20页选修1-2第一章、统计案例测试一、选择题1.已知x 与y 之间的一组数据:13574y +++==则y 与x 的线性回归方程为∧∧∧+=a x b y 必过点( ) A.(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2) 【答案】B 【解析】试题分析:由数据可知01231.54x +++==,,∴线性回归方程为∧∧∧+=a x b y 必过点(1.5,4)考点:本题考查了线性回归直线方程的性质点评:解决此类问题常常用到线性回归直线方程恒过定点(,)x y 这一结论,属基础题 2.年劳动生产率x (千元)和工人工资y (元)之间回归方程为1070y x =+,这意味着年劳动生产率每提高1千元时,工人工资平均A.增加70元 B.减少70元 C.增加80元 D.减少80元 【答案】A 【解析】试题分析:由题意,年劳动生产率x (千元)和工人工资y (元)之间回归方程为1070y x =+,故当x 增加1时,y 要增加70元,∴劳动生产率每提高1千元时,工资平均提高70元, 故A正确.考点:线性回归方程.点评: 本题考查线性回归方程的运用,正确理解线性回归方程是关键.3.已知某回归方程为:ˆˆ23y x =-,则当解释变量增加1个单位时,预报变量平均:( )A 、增加3个单位B 、增加13个单位 C 、减少3个单位 D 、减少13个单位试卷第2页,总20页【答案】C 【解析】解释变量即回归方程里的自变量xˆ,由回归方程知预报变量y ˆ减少3个单位 4.变量X 与Y 相对应的一组数据为(10, 1), (11.3, 2), (11.8, 3), (12.5, 4), (13, 5);变量U 与V 相对应的一组数据为(10,5), (11.3, 4), (11.8, 3), (12.5, 2), (13, 1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 A .012<<r r B . 120r r << C . 120r r << D . 12r r = 【答案】C【解析】解:∵变量X 与Y 相对应的一组数据为(10,1),(11.3,2), (11.8,3),(12.5,4),(13,5), . X =(10+11.3+11.8+12.5+13)÷ 5 =11.72 . Y =(1+2+3+4+5) ÷5 =3∴这组数据的相关系数是r=7.2 ÷19.172 =0.3755, 变量U 与V 相对应的一组数据为 (10,5),(11.3,4), (11.8,3),(12.5,2),(13,1) . U =(5+4+3+2+1)÷ 5 =3, ∴这组数据的相关系数是-0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零, 故选C .5.统计中有一个非常有用的统计量2k ,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A 老师教, 乙班B 老师教)进行某次数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.根据2k 的值,你认为不及格人数的多少与不同老师执教有关系的把握大约为 A .99.5% B .99.9% C .95% D .无充分依据. 【答案】A第3页,总20页【解析】解:k2=22()()()()()n ad bc k a b c d a c b d -=++++ =80(4×24-16×36) 2/ 20×60×40×40 =9.6>7.879∴不及格人数的多少与不同老师执教有关系的把握大约为99.5% 故选A .6. 下面是一个2⨯2列联表,则表中a 、b 处的值分别为( )A. 94、96B. 52、54C. 52、50D. 54、52 【答案】B【解析】解:因为根据表格中的数据可知,2+a=b,b+46=100,b=54,a=52,选B7.右图是2×2列联表:则表中a 、b 的值分别为A.94,72B.52,50C.52,74D.74,52 【答案】C【解析】a=73-21=52 b=a+22=52+22=74 故选Cy 1 y 2 总计 x 1 a 21 73 x 2 2 25 27 总计b46100试卷第4页,总20页8.统计中有一个非常有用的统计量2k ,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个班级进行数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.则2k 的值为( )A .0.559B .0.456C .0.443D .0.4 【答案】A【解析】2290(1236339)900.55945452169161χ⨯-⨯==≈⨯⨯⨯,故选A 。

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测题(答案解析)

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测题(答案解析)

一、选择题1.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.212.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有()的把握认为喜爱打篮球与性别有关.附参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.A.99.9%B.99.5%C.99%D.97.5% 3.下列说法中正确的是()A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 4.根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则 A .5a =B .变量x 与y 线性正相关C .当x =11时,可以确定y =3D .变量x 与y 之间是函数关系5.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好6.若y 关于x 的线性回归方程0.70.35y x =+是由表中提供的数据求出,那么表中m 的值为( )A .3.5B .3C .2.5D .27.已知()112P A =,()136P AB =,()512P B =,则()P B A 为( ) A .12 B .13C .115D .158.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+ 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④9.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关” 10.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们对应的22121()1(ˆ)nii nii y yR y y ==-=--∑∑的值如下,其中拟合效果最好的模型是( )A .模型1对应的20.48R =B .模型2对应的20.96R =C .模型3对应的20.15R =D .模型4对应的20.30R =11.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++A .97.5%B .99%C .99.5%D .99.9%二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____. 14.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 15.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.在一场对抗赛中,,A B 两人争夺冠军,若比赛采用“五局三胜制”,A 每局获胜的概率均为23,且各局比赛相互独立,则A 在第一局失利的情况下,经过五局比赛最终获得冠军的概率是_____.18.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2k 是用来判断两个分类变量是否相关的随机变量,当2k 的值很小时可以推断两个变量不相关;19.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________. ①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.20.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________.①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件三、解答题21.面对环境污染,党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此吉安市在吉州区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间为3小时以上且不超过4小时,扣3分;⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.3;租用时间为1小时以上且不超过2小时的概率分别是0.4,0.5;租用时间为2小时以上且不超过3小时的概率分别是0.1,0.1.(1)求甲比乙所扣积分多的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.22.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间顺序作为变量x ,每次累计确诊人数作为变量y ,得到函数关系bxy ae =(a 、0b >).对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70iii x x y y =--=∑,()()111ln ln 35.10iii x x y y =--=∑,()1121110ii x x =-=∑,()1121ln ln 11.90i i y y=-=∑, 4.0657.97e ≈, 4.0758.56e ≈,4.0859.15e ≈.根据相关数据,确定该函数关系式(函数的参数精确到0.01).(2)为了了解患新冠肺炎与年龄的关系,已知某地患有新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少一人是老年人的概率.23.网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?网购迷 非网购迷 合计年龄不超过40岁 年龄超过40岁 合计(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数ξ的分布列.(附:()()()()()22n ad bc k a b c d a c b d -=++++)()20P K k ≥ 0.15 0.10 0.05 0.01 0k2.0722.7063.8416.63524.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M 省的发展情况,M 省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A ,B 两项指标数,(1,2,3,4,5)i i x y i =,数据如下表所示:城市1城市2 城市3 城市4 城市5 A 指标数x2 4 5 6 8 B 指标数y34445()52125ii x x =-=∑()5212ii y y =-=∑()521125ii s x x ==-=∑. (1)试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系(若0.75r >,则线性相关程度很高,可用线性回归模型拟合);(2)建立y 关于x 的回归方程,并预测当A 指标数为7时,B 指标数的估计值; (3)若城市的网约车A 指标数x落在区间(3,3)x s x s -+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A 指标数x 回落到区间(3,3)x s x s -+之内.现已知2018年11月该城市网约车的A 指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.参考数据:0.30.55≈,0.90.95≈.25.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数y 与进店人数x 是否线性相关?(给出判断即可,不必说明理由)(2)建立y 关于x 的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数) (参考数据:713245i ii x y==∑,25x =,15.43y =,7215075i i x ==∑,()274375x =,72700xy =)26.下表是我国大陆地区从2013年至2019年国内生产总值(GDP )近似值(单位:万亿元人民币)的数据表格: 年份 2013 2014 2015 2016 2017 2018 2019 年份代号x1234567中国大陆地区GDP :y59.3 64.1 68.6 74.0 82.1 90.0 99.1(单位:万亿元人民币)以x为解释变量,y为预报变量,若以11y b x a=+为回归方程,则相关指数210.9808R≈;若以22lny a b x=+为回归方程,则相关指数220.8457R≈.(1)判断11y b x a=+与22lny a b x=+哪一个更适宜作为国内生产总值(GDP)近似值y 关于年份代号x的回归方程,并说明理由;(2)根据(1)的判断结果及表中数据,求出y关于年份代号x的回归方程(系数精确到0.01);(3)党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实视社会主义现代化.若到2035年底我国人口增长为14.4亿人,假设到2035年世界主要中等发达国家的人均国民生产总值的频率直方图如图所示.以(2)的结论为依据,预测我国在2035年底人均国民生产总值是否可以超过假设的2035年世界主要中等发达国家的人均国民生产总值平均数的估计值.参考数据:71537.2iiy==∑,712333.5i iix y==∑.参考公式:回归方程ˆˆˆy bx a=+中斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑,ˆˆa y bx=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.2.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.3.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A4.A解析:A【解析】由题意可得:357964x+++==,6321144a ay++++==,回归方程过样本中心点,则:111.4612.44a+=-⨯+,求解关于实数a的方程可得:5a=,由 1.40ˆb=-<可知变量x与y线性负相关;当x=11时,无法确定y的值;变量x与y之间是相关关系,不是函数关系.本题选择A选项.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.5.D解析:D【解析】对于A,回归直线一定过样本中心,正确;对于B,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(含答案解析)

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(含答案解析)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为3 7和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A.2949B.649C.2349D.43492.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是()A.120B.320C.15D.7203.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是()附参照表:参考公式:22()()()()()n ad bcka b c d a c b d-=++++,其中n a b c d=+++A.在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B.在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C.有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D.有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是()参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 5.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关6.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .407.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④8.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点()11,x y ,()22,x y ,…,(),n n x y ,可以用()()22121ˆ1niii nii y yRy y ==-=--∑∑来刻画回归的效果,已知模型1中20.96R =,模型2中23{5x yy x -==-,模型3中20.55R =,模型4中20.41R =,其中拟合效果最好的模型是( ) A .模型1B .模型2C .模型3D .模型49.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关” 10.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1211.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( ) A .B .C .D .12.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:则有()的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bcKa b c d a c b d-++++,其中n a b c d=+++A.97.5% B.99% C.99.5% D.99.9%二、填空题13.某地区气象台统计,该地区下雨的概率是415,刮风的概率是25,既刮风又下雨的概率为110,设A为下雨,B为刮风,那么(|)P B A等于__________.14.一个不透明的箱中原来装有形状、大小相同的1个绿球和3个红球.甲、乙两人从箱中轮流摸球,每次摸取一个球,规则如下:若摸到绿球,则将此球放回箱中可继续再摸;若摸到红球,则将此球放回箱中改由对方摸球,甲先摸球,则在前四次摸球中,甲恰好摸到两次绿球的概率是________.15.甲、乙两名运动员进行乒乓球单打比赛,已知每一局甲胜的概率为23.比赛采用“五局三胜(即有一方先胜3局即获胜,比赛结束)制”,则甲3:2获胜的概率是____.16.已知x、y之间的一组数据如下:则线性回归方程ˆy a bx=+所表示的直线必经过点________.17.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cossinxyθθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y+=;③极坐标系中,22,3Aπ⎛⎫⎪⎝⎭与()3,0B的距离是19;④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.18.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.19.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.20.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________.①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.三、解答题21.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.短潜伏者长潜伏者合计60岁及以上9060岁以下140合计300(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++22.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2).(1)补充完整22⨯列联表中的数据,并判断是否有99%把握认为甲乙两套治疗方案对患者白血病复发有影响;复发 未复发 总计甲方案乙方案 2总计70(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率. 附:20()P K k 0.05 0.01 0.005 0.001k 3.841 6.6357.87910.828n a b c d =+++,22()()()()()n ad bcKa b c d a c b d-=++++.23.甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀非优秀总计甲班10乙班30合计105已知在全部105人中抽到随机抽取1人为优秀的概率为2 7(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系” .(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++24.某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是12,从第二代开始,若上一代开红花,则这一代开红花的概率是13,开黄花的概率是23;若上一代开黄花,则这一代开红花的概率是35,开黄花的概率是25.记第n代开红花的概率为n p ,第n 代开黄花的概率为n q . (1)求2p ;(2)①证明:数列9()19n p n N *⎧⎫-∈⎨⎬⎩⎭为等比数列; ②第*(,2)n n N n ∈≥代开哪种颜色花的概率更大?25.某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人。

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(有答案解析)(2)

(常考题)北师大版高中数学选修1-2第一章《统计案例》检测(有答案解析)(2)

一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是()A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B.月温差(月最高气温﹣月最低气温)的最大值出现在10月C.9﹣12月的月温差相对于5﹣8月,波动性更大D.每月最高气温与最低气温的平均值在前6个月逐月增加2.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是()A.120B.320C.15D.7203.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A.12B.1C.56D.11124.从1,2,3,4,5中不放回地依次选取2个数,记事件A=“第一次取到的是奇数”,事件B=“第二次取到的是奇数”,则(|)P B A=()A.12B.25C.310D.155.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A=“第一次取到的数可以被3整除”,B=“第二次取到的数可以被3整除”,则()P B|?A=( )A.59B.23C.13D.296.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于()A .15B .14C .13D .127.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响.8.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A 袋中的概率为 ( )A .34B .14C .13D .239.为直观判断两个分类变量x 和y 之间是否有关系,若它们的取值分别为{x 1,x 2}和{y 1,y 2},通过抽样得到频数表为:则下列哪两个比值相差越大,可判断两个分类变量之间的关系应该越强( ) A .a a c +与bb d+ B .a a d +与cb c+ C .a b d +与ca c+ D .ac d +与c a b+ 10.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好11.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+ 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④12.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .14二、填空题13.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________.14.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.)15.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式()1122122121212n n n n n n n n n χ++++-=16.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.17.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.18.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是3.240y x =-+,且20m n +=,则其中的n =______.19.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.20.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++三、解答题21.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查样本中有40名女生.下图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).女 合计(1)完成上面的2×2列联表,并计算回答是否有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”?(2)若将频率视为概率,现从该中学高三的女生中随机抽取3人.记被抽取的3名女生中对“嫦娥五号”新闻关注的人数为随机变量X ,求X 的分布列及数学期望. 附:()20P K k ≥0.150 0.100 0.050 0.010 0.0050k2.072 2.7063.8416.6357.8792()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++22.2020年10月份黄山市某开发区一企业顺利开工复产,该企业生产不同规格的一种产品,根据检测标准,其合格产品的质量y (单位:g )与尺寸x (单位:mm )之间近似满足关系式b y c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下: 尺寸()x mm38 48 58 68 78 88质量(g)y16.8 18.8 20.7 22.4 24 25.5质量与尺寸的比yx0.442 0.392 0.357 0.329 0.308 0.290(1)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数试求随机变量的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:②已知优等品的收益z (单位:千元)与x ,y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(),(1,2,,)i i v u i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v unvu bv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7182e ≈. 23.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.24.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.25.某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.(1)用样本估计总体,以频率作为概率,若在A ,B 两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.优质花苗 非优质花苗 合计甲培育法 20乙培育法 10合计附:下面的临界值表仅供参考.20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)26.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸(mm)x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下: 尺寸(mm)x 38 48 58 68 78 88 质量()y g16.818.820.722.42425.5(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nni ii i v v u u v u nvubv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据相关系数的性质判断A ;根据所给折线图,对B ,C ,D 逐项进行判断. 【详解】每月最低气温与最高气温的线性相关系数r =0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A 正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C 正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A 正确,则D 错误; 故选:D 【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r ,r 越接近于1,两个变量的线性相关程度越强,属于中档题. 2.D解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.3.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.4.A解析:A 【解析】分析:利用条件概率公式求(|)P B A .详解:由条件概率得(|)P B A =2311341.2A C C =故答案为A.点睛:(1)本题主要考查条件概率的求法,意在考查学生对该知识的掌握水平.(2) 条件概率的公式:()(|)()P AB P B A P A ==()()n AB n A . 5.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.6.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 7.C解析:C 【解析】 经计算,()2230421681020101218K ⨯-⨯==⨯⨯⨯,27.87910.828K <<,对照数表知,在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响,故选C .点睛:本题考查了独立性检验的应用问题,是基础题;其解题步骤为:(1)认真读题,取出相关数据,作出22⨯列联表;(2)根据22⨯列联表中的数据,计算2K 的观测值k ;(3)通过观测值k 与临界值0k 比较,得出事件有关的可能性大小.8.D解析:D 【分析】小球落入A 袋中的概率为P (A )1P =-(B ),由此利用对立事件概率计算公式能求出小球落入A 袋中的概率. 【详解】 解:将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为21,33, 小球落入A 袋中的概率为:P (A )1P =-(B )1112221()333333=-⨯⨯+⨯⨯23=. 故选:D . 【点睛】 本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.9.A解析:A 【解析】因为22()()()()()()a b c d ad bc K a c b d a b c d +++-=++++,所以当2K 的值越小说明两个分类变量之间的有关系的把握程度越小,反之,当2K 的值越小说明两个分类变量之间的有关系的把握程度越大,即两个分类变量之间的关系应该越强,()()a b ad bc a c b d a c b d --=++++与2K 的关系等价,则()()a b ad bc a c b d a c b d --=++++值相差越大,可判断两个分类变量之间的关系应该越强,应选答案A .10.D解析:D 【解析】对于A ,回归直线一定过样本中心,正确;对于B ,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(含答案解析)(3)

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(含答案解析)(3)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5B .4C .1D .03.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5324.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11125.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:由以上数据,计算得到2K 的观测值9.643k ≈,根据临界值表,以下说法正确的是( )A .在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B .在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关 7.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机 不玩手机 合计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 合计201030经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%8.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910C .215D .1159.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125D .6412510.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .411.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12 B .0.42C .0.46D .0.8812.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( ) A .B .C .D .二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____.14.某人抛掷一枚均匀骰子,构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的概率为_____.15.机动车驾驶的考核过程中,科目三又称道路安全驾驶考试,是机动车驾驶人考试中道路驾驶技能和安全文明驾驶常识考试科目的简称假设某人每次通过科目三的概率均为45,且每次考试相互独立,则至多考两次就通过科目三的概率为__________.16.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.17.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表18.在10个形状大小均相同的球中有4个红球和6个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率为_________. 19.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:20.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________.①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22⨯列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;政策有效 政策无效 总计女士 10男士合计251005名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(n a b c d =+++)23.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.24.在疫情防控中,不聚集、戴口罩、保持社交距离是对每个人的基本要求同时,通过运动健身增强体质,进而提升免疫力对个人防护也有着重要的意义,某机构为了解“性别与休闲方式为运动”是否有关,随机调查了n个人,其中男性占调查人数的25.已知男性中有一半的人休闲方式是运动,而女性只有13的人休闲方式是运动.(1)完成下列22⨯列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.为了研究学生的数学核心素养与抽象能力(指标x )、推理能力(指标y )、建模能力(指标z )的相关性,将它们各自量化为1、2、3三个等级,再用综合指标w x y z =++的值评定学生的数学核心素养,若7w ≥,则数学核心素养为一级;若56w ≤≤,则数学核心素养为二级;若34w ≤≤,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为X ,求随机变量X 的分布列及其数学期望.26.为研制新冠肺炎的疫苗,某生物制品研究所将所研制的某型号疫苗用在小白鼠身上进行科研和临床试验,得到如下统计数据:现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为5. (1)能否有99.5%的把握认为注射此疫苗有效?(2)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病理分析,然后从这5只小白鼠中随机抽取3只对注射疫苗的情况进行核实,求恰有1只为注射过疫苗的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.A解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】设2t x =,则()11491625115t =++++=,()12173693142585y =++++= 586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A 【点睛】本题考查回归分析的应用,属于中档题.3.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭,所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.4.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭,()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.5.A解析:A 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A6.D解析:D 【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关. 选D.点睛:本题考查卡方含义,考查基本求解能力.7.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C.点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.11.D解析:D 【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88.故选D. 考点:相互独立事件的概率.12.D解析:D 【解析】 由题意得,两次的点数均为奇数且和小于的情况有,则,故选D.二、填空题13.09【分析】当乙连胜四局时对阵情况是第一局:甲对乙乙胜;第二局:乙对丙乙胜;第三局:乙对甲乙胜;第四局:乙对丙乙胜然后利用概率公式进行求解即可【详解】当乙连胜四局时对阵情况如下:第一局:甲对乙乙胜;解析:09. 【分析】当乙连胜四局时,对阵情况是第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜,然后利用概率公式进行求解即可 【详解】当乙连胜四局时,对阵情况如下:第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜.所求概率为P 1=(1﹣0.4)2×0.52=0.32=0.09 ∴乙连胜四局的概率为0.09 【点睛】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件.14.【分析】根据题意抛掷一枚均匀骰子出现奇数或偶数概率为则且的情况有2种:①当前2次同时出现偶数时则后6次出现3次偶数3次奇数②当前2次出现奇数时则后6次出现5次偶数1次奇数分别计算相应的概率求和即可【解析:13128. 【分析】根据题意,抛掷一枚均匀骰子,出现奇数或偶数概率为12,则20S ≠且82S =的情况有2种:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,分别计算相应的概率求和即可. 【详解】抛掷一枚均匀骰子,出现奇数或偶数概率为12, 构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的情况为:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,相应的概率23336111522264C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⨯⨯=, ②当前2次出现奇数时,则后6次出现5次偶数1次奇数,相应的概率为25561113222128C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯=, 所以概率为3513+12864128=. 故答案为:13128. 【点睛】本题考查二项分布概率计算,结合排列组合与数列的知识,属于综合题,解题的关键在于对所求情况进行分析,再利用二项分布进行概率计算即可,属于中等题.15.【解析】第一类:考一次就通过的概率为;第二类:第一次未通过第二次通过的概率为;综上则至多考两次就通过科目三的概率为故答案为 解析:2425【解析】第一类:考一次就通过的概率为45; 第二类:第一次未通过,第二次通过的概率为44415525⎛⎫-⨯=⎪⎝⎭; 综上,则至多考两次就通过科目三的概率为442452525+=. 故答案为2425. 16.【解析】前两个不是红灯第三个是红灯所以概率为 解析:427【解析】前两个不是红灯,第三个是红灯,所以概率为2114(1)3327-= 17.【分析】根据列联表计算可得由可得结果【详解】由题意得:至少有的把握认为学生的学习积极性与对待班级工作的态度有关故答案为:【点睛】本题考查独立性检验问题的求解考查基础公式的应用 解析:99.9%【分析】根据22⨯列联表计算可得2K ,由210.828K >可得结果. 【详解】由题意得:()225018197611.53810.82825252426K ⨯⨯-⨯=≈>⨯⨯⨯,∴至少有10.1%99.9%-=的把握认为学生的学习积极性与对待班级工作的态度有关.故答案为:99.9%. 【点睛】本题考查独立性检验问题的求解,考查基础公式的应用.18.【解析】设第1次摸出红球为事件A 第2次摸出红球为事件B 则事件A 和事件B 相互独立在第1次摸出红球的条件下第2次也摸出红球的概率为:故填点睛:一般地设AB 为两个事件且P(A)>0称P(B|A)=为在事件解析:13【解析】设第1次摸出红球为事件A, 第2次摸出红球为事件B,则事件A 和事件B 相互独立,在第1次摸出红球的条件下,第2次也摸出红球的概率为:()()431(|)43463P AB P B A P A ⨯===⨯+⨯,故填13.点睛: 一般地,设A ,B 为两个事件,且P(A)>0,称P(B|A)=()()P AB P A 为在事件A 发生的条件下,事件B 发生的条件概率, P(B|A)读作 A 发生的条件下B 发生的概率.条件概率具有以下性质:(1)0≤P(B|A)≤1(2)如果B 和C 是两个互斥事件,则P(B ∪C|A)= P(B|A)+ P(C|A).19.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆybx a =+必过样本中心点(),x y ,故①正确. 命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.20.②④【分析】根据每次取一球易得是两两互斥的事件求得然后由条件概率求得再逐项判断【详解】因为每次取一球所以是两两互斥的事件故④正确;因为所以故②正确;同理所以故①③错误故答案为:②④【点睛】本题主要考解析:②④ 【分析】根据每次取一球,易得1A ,2A ,3A 是两两互斥的事件,求得()()()123,,P A P A P A ,然后由条件概率求得1()P B A ,123()()()()P B P BA P BA P BA =++,再逐项判断. 【详解】因为每次取一球,所以1A ,2A ,3A 是两两互斥的事件,故④正确; 因为()()()123523,,101010P A P A P A ===, 所以11155()51011()5()1110P BA P B A P A ⨯===,故②正确; 同理3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ⨯⨯======, 所以1235524349()()()()10111011101122P B P BA P BA P BA =++=⨯+⨯+⨯=, 故①③错误. 故答案为:②④ 【点睛】本题主要考查互斥事件,相互独立事件,条件概率的求法,还考查了运算求解的能力,属于中档题.三、解答题21.(1)2081;(2)分布列见解析,()23681E X =. 【分析】(1)利用事件的独立性,分两种情况,恰 好打了7局小明获胜和恰好打了7局小亮获胜,再概率相加即可.(2)X 的可能取值为2,3,4,5,利用二项分布,分别求出其相应的概率,列出分布列即可. 【详解】(1)恰 好打了7局小明获胜的概率是525416721152C 333P ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 恰好打了7局小亮获胜的概率为252426721152333P C ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,∴比赛结束时恰好打了7局的概率为5212715215220381P P P ⨯+⨯=+==. (2)X 的可能取值为2,3,4,5,()224239P X ⎛⎫=== ⎪⎝⎭,()2312321283C 33327P X ⎛⎫==⨯⨯== ⎪⎝⎭,()2241434421113134C C 333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2341344521212485C C 3333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 或()334421885C 33381P X ⎛⎫==⨯⨯==⎪⎝⎭. ∴X 的分布列如下:()2345927818181E X =⨯+⨯+⨯+⨯=.【点睛】方法点睛:求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率. 22.(1)列联表见解析,没有;(2)710. 【分析】(1)分析题意完成2×2列联表,直接套公式求出2K ,对照参数下结论; (2)列举出基本事件,利用等可能事件的概率公式求概率. 【详解】(1)由题意设男士人数为x ,则女士人数为20x +, 又20100x x ++=,解40x =.即男士有40人,女士有60人. 由此填写22⨯列联表如下:由表中数据,计算()2210050152510 5.556 6.63560407525K ⨯⨯-⨯==<⨯⨯⨯,所以没有99%的把握认为对“政策是否有效与性别有关”.(2)从被调查的该餐饮机构的市民中,利用分层抽样抽取5名市民,其中女士抽取5603100⨯=人,分别用A ,B ,C 表示,男士抽取2人,分别用D ,E 表示. 从5人中随机抽取2人的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.其中抽取的2人中有男士的所有可能结果为(A ,D ),(A ,E ),(B ,D )(B ,E ),(C ,D ),(C ,E ),(D ,E ),共7种.所以,抽取的两人中有男士的概率为710P =. 【点睛】(1)独立性检验的题目直接根据题意完成完成2×2列联表,直接套公式求出2K ,对照参数下结论,一般较易;(2)等可能性事件的概率一般用列举法列举出基本事件,直接套公式求概率.23.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=,所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.24.(1)列联表见解析;(2)140人. 【分析】(1)根据题意得出被调查的男性、女性人数,填写列联表即可;(2)由表中数据计算观测值,对照附表列出不等式,结合题意求得本次被调查的人数至少有多少人. 【详解】(1)由题意,被调查的男性人数为25n ,其中有5n人的休闲方式是运动;被调查的女性人数应为35n ,其中有5n人的休闲方式是运动,则22⨯列联表如下:(2)由表中数据,得2255552323365555n n n n n n k n n n n ⎛⎫⋅-⋅ ⎪⎝⎭==⋅⋅⋅, 要使在犯错误的概率不超过0.05的前提下,认为“性别与休闲方式有关”, 则2 3.841k ≥.所以 3.84136n≥,解得138.276n ≥. 又*N n ∈且*N 5n∈,所以140n ≥ 即本次被调查的人数至少有140人.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了运算求解能力,是中档题. 25.(1)14;(2)见解析 【分析】(1)根据条件,列出各项指标的表格,根据条件概率列出各种情况,由古典概率求解. (2)根据(1),列出X 的分布列,根据数学期望的公式求得数学期望. 【详解】(1)由题可知:建模能力一级的学生是9;建模能力二级的学生是45710;建模能力三级的学生是12368,,,,A A A A A .记“所取的两人的建模能力指标相同”为事件A ,记“所取的两人的综合指标值相同”为事件B .则 ()()2232224541(|)164P AB C C P B A P A C C +====+ (2)由题可知,数学核心素养一级的学生为: 123568,,,,,A A A A A A ,非一级的学生为余下4人X ∴的所有可能取值为0,1,2,3.()()()()0312646433101021316464331010130,13010112,326C C C C P X P X C C C C C C P X P X C C ============∴随机变量X 的分布列为:∴ 0123010EX =⨯+⨯+⨯ 3 1.826+⨯= 【点睛】本题考查了条件概率的求法,离散型随机变量分布列及数学期望的求解,根据题意列出表格是关键,属于基础题.26.(1)有99.5%的把握认为注射此疫苗有效;(2)35. 【分析】(1)由题中条件求得p 的值,进而可完善22⨯列联表,结合列联表的数据计算出2K 的观测值,结合临界值表可得出结论;(2)计算出抽取的5只小白鼠中有3只未注射疫苗,分别用1、2、3来表示,2只已注射疫苗的小白鼠分别用a 、b 来表示,列举出所有的基本事件,利用古典概型的概率公式可计算出所求事件的概率. 【详解】 (1)依题意,由3405p p =+,得60p =,所以40q =,100x y ==, 所以,22⨯列联表如下表所示:由()22004040606087.879100100100100K ⨯⨯-⨯==>⨯⨯⨯,所以有99.5%的把握认为注射此疫苗有效;(2)设“恰有1只为注射过疫苗”为事件A ,由于在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例603402=抽取, 故抽取的5只小白鼠中有3只未注射疫苗,分别用1、2、3来表示,2只已注射疫苗的小白鼠分别用a 、b 来表示,从这5只小白鼠中随机抽取3只,可能的情况有:()1,2,3、()1,2,a 、()1,2,b 、()1,3,a 、()1,3,b 、()1,,a b 、()2,3,a 、()2,3,b 、()2,,a b 、()3,,a b ,共10种,其中恰有1只为注射过疫苗有:()1,2,a 、()1,2,b 、()1,3,a 、()1,3,b 、()2,3,a 、()2,3,b ,共6种,所以()63105P A ==,即恰有1只为注射过疫苗的概率为35. 【点睛】本题考查利用独立性检验的基本事件解决实际问题,同时也考查了利用古典概型的概率公式计算事件的概率,考查计算能力,属于中等题.。

新北师大版高中数学选修1-2第一章《统计案例》测试(答案解析)

新北师大版高中数学选修1-2第一章《统计案例》测试(答案解析)

一、选择题1.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示: 周数(x ) 1 2 3 4 5 治愈人数(y )2173693142由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5B .4C .1D .02.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .43.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9164.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚6.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机 不玩手机 合计经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%7.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .238.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆy bx a =+必经过点( )A .()33,B .()34,C .()44,D .()45,9.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”10.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 11.根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则 A .5a =B .变量x 与y 线性正相关C .当x =11时,可以确定y =3D .变量x 与y 之间是函数关系12.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .13二、填空题13.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.14.某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.16.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数)参考公式() 1122122121212n n n n nn n n nχ++++-=17.已知x、y之间的一组数据如下:x0123y8264则线性回归方程ˆy a bx=+所表示的直线必经过点________.18.现有A B、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A队中每人答对的概率均为23,B队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M表示“A队得2分”,事件N表示“B队得1分”,则()P MN=______.19.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好取自由曲线y x=与直线1x=及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则(|)P B A=_________.20.给出下列命题:①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x和y的数据得到其回归直线方程ˆ:l y bx a=+,则l一定经过点(,)P x y;③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;⑤在回归直线方程ˆ0.1104y x=+中,当解释变量x每增加一个单位时,预报变量y平均增加0.1个单位,其中真命题的序号是_________.三、解答题21.随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表年轻人非年轻人合计单车族非单车族合计是“非年轻人”的人数为随机变量,X求X的分布列与期望.参考数据:独立性检验界值表其中,()()()()()2,n ad bcn a b c d Ka b c d a c b d-=+++=++++(注:保留三位小数).22.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表:男生测试情况:生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”附:22(),()()()()n ad bcK n a b c da b c d a c b d⎛⎫-==+++⎪++++⎝⎭23.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间顺序作为变量x ,每次累计确诊人数作为变量y ,得到函数关系bx y ae =(a 、0b >).对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70iii x x y y =--=∑,()()111ln ln 35.10iii x x y y =--=∑,()1121110i i x x =-=∑,()1121ln ln 11.90i i y y=-=∑, 4.0657.97e ≈, 4.0758.56e ≈,4.0859.15e ≈.根据相关数据,确定该函数关系式(函数的参数精确到0.01).(2)为了了解患新冠肺炎与年龄的关系,已知某地患有新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少一人是老年人的概率.24.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N μ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()2n ad bc K a b c d a c b d -=++++, .n a b c d =+++25.在疫情防控中,不聚集、戴口罩、保持社交距离是对每个人的基本要求同时,通过运动健身增强体质,进而提升免疫力对个人防护也有着重要的意义,某机构为了解“性别与休闲方式为运动”是否有关,随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人休闲方式是运动,而女性只有13的人休闲方式是运动. (1)完成下列22⨯列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?运动 非运动 总计男性 女性总计n参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2n P K k ≥ 0.0500.010 0.001 0k 3.8416.63510.82826.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3]).(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.①请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥ 0.050.40 0.25 0.15 0.10 0.05 0.025 0.010 0k 3.8410.7081.3232.0722.7063.8415.0246.635【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】 设2t x =,则()11491625115t =++++=,()12173693142585y =++++= 586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A 【点睛】本题考查回归分析的应用,属于中档题.2.C解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+, 令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.3.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 回归分析题目击破
一、基本概念
函数关系是一种确定关系,而相关关系是一种非确定关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
例1 下列变量之间的关系是相关关系的是________.
(1)正方形的边长与面积之间的关系;
(2)水稻产量与施肥量之间的关系;
(3)人的身高与年龄之间的关系;
(4)降雪量与交通事故发生率之间的关系.
分析两变量之间的关系有两种:函数关系和带有随机性的相关关系.
解析(1)是函数关系;(2)不是严格的函数关系,但是具有相关性,因而是相关关系;(3)既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;(4)降雪量与交通事故发生率之间具有相关关系.
答案(2)(4)
点评该例主要考查对变量相关关系概念的掌握.
二、线性回归方程
设x与y是具有相关关系的两个变量,且相应于n个观测值的n个点大致分布在一条直线的附近,这条直线就叫作回归直线.
例2 假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:
若由资料知y对x呈线性相关关系,试求:
(1)回归方程y=a+bx;
(2)估计使用年限10年时,维修费用是多少?
分析因为y对x呈线性相关关系,所以可以用线性相关的方法解决问题.
解(1)制表
于是有b=112.3-5×4×5
90-5×42
=1.23,
a=y-b x=5-1.23×4=0.08.
∴回归方程为y=1.23x+0.08.
(2)当x=10时,y=1.23×10+0.08=12.38(万元),
即估计使用10年时维修费用约是12.38万元.
点评已知y对x呈线性相关关系,无须进行相关性检验,否则,应首先进行相关性检验.
三、非线性回归问题
分析非线性回归问题的具体做法是:
(1)若问题中已给出经验公式,这时可以将解释变量进行变换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决.
(2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种函数(如指数函数、对数函数、幂函数等)的图像作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量变换,将问题化为线性回归分析问题来解决.
下面举例说明非线性回归分析问题的解法.
例3 某地区对本地的企业进行了一次抽样调查,表中是这次抽查中所得到的各企业的人均资本x(单位:万元)与人均产值y(单位:万元)的数据:。

相关文档
最新文档