高考数学题型全归纳由数列的递推公式求通项公式的常用方法
由数列的递推公式求数列的通项公式的几种常用方法
由数列的递推公式的求数列的通项公式几种常用方法(宁波市北仑中学 竺君祥 315800)已知递推数列求其数列通项公式,是一类常见的问题,也是教学中的一个难点.本文介绍几种运用数列的递推关系求数列通项公式的几种常用方法.一. 迭加法可化为型如)(1n f a a n n =-+的递推数列,用迭加法求其通项公式.且通项公式为∑-=+=111)(n k n k f a a证明:例1: 已知数列}{n a ,其中11=a ,521++=+n a a n n ,求它的通项公式. 解:由已知得521+=-+n a a n n , 则51212+⨯=-a a ,52223+⨯=-a a ,53234+⨯=-a a ……5)1(21+-⨯=--n a a n n ,将以上)1(-n 个式子相加,得 )1(5)]1(321[21-+-++++⨯=-n n a a n ,故55)1(1-+-=-n n n a a n ,于是5421-++=n n a a n ,又11=a 即442-+=n n a n .二. 叠乘法可化为型如)(1n f a a nn =+的递推数列,用叠乘法求其通项公式. 例2: 已知数列}{n a ,其中11=a ,n n n a a 51=+,求它的通项公式. 解:由已知得n n n a a 51=+,则512=a a ,2235=a a ,3345=a a ,……,115--=n n n a a , 将以上)1(-n 个式子相乘,得2)1()1(321155--+++==n n n n a a ,又11=a ,故2)1(5-=n n n a . 三:差分法可化为型如)()(1n g ak f n k k =∑=的递推数列,用差分法求其通项公式.例3: 已知数列}{n a 满足n n na a a a a n +=+++++243212432 )(N n ∈,求数列}{n a 的通项公式.解:由已知n n na a a a a n +=+++++243212432 ,…① 得,当1=n 时,31=a ;当2≥n 时, )1()1(2)1(432214321-+-=-+++++-n n a n a a a a n ②所以当2≥n 时,由①-②得:14-=n na n ,即na n 14-=,当1=n 时也成立.所以,数列}{n a 的通项公式为na n 14-=. 四:化归法把递推数列的递推公式进行适当变形,化归为熟悉的等差或等比数列,再求其通项公式. 例4: 已知数列}{n a ,其中11=a ,241+=+n n a S ,求它的通项公式. 解:因为,111==S a ,所以,51241122=-+=-=a S S a , 因为)(4)24()24(21211------=+-+=-=n n n n n n n a a a a S S a ,所以)2(22211----=-n n n n a a a a ,从而222211=-----n n n n a a a a ,于是数列{12--n n a a }是以3212=-a a 为首项,公比为2的等比数列,所以n a a n n n (23221--⨯=->1),从而432211=---n n n n a a ,所以数列{n n a 2}是以首项为2121=a ,公差为43的等差数列,于是413)1(43212-=-+=n n a n n ,所以22)13(2413-⋅-=⋅-=n n n n n a . 例5: 已知数列}{n a 满足11=a ,),2(321N n n a a n n ∈≥+=-,求这个数列的通项公式. 解:设)(1αβα+=+-n n a a (βα,为待定常数),即αβαβ-+=-1n n a a , 则与已知的递推公式321+=-n n a a 相比较得3,2=-=αβαβ,所以2,3==βα,于是)3(231+=+-n n a a ,所以数列}3{+n a 是首项为431=+a ,公比为2的等比数列,于是1243-⨯=+n n a )(N n ∈,即321-=+n n a ,所以数列}{n a 的通项公式为321-=+n n a .五、数学归纳法用数学归纳法求递推数列的通项公式是教学中的重点,其步骤是归纳、猜想、证明. 例6:已知数列}{n a 中各项均正,且)1(21nn n a a S +=,求数列的通项公式. 解: )1(211111a a a S +==,又01>a ,所以11=a ;)1(2122212a a a a S +=+=, 即2212a a =+,又02>a ,所以122-=a ;)1(21333213a a a a a S +=++=,即33122a a =+,又03>a ,所以,233-=a .,猜想:1--=n n a n ()N n ∈.证明:①当1=n 时,由上述过程知结论正确,②假设k n=)1(≥k 时结论成立,即1--=k k a k ,则1+=k n 时, )1(21)1(211111kk k k k k k a a a a S S a +-+=-=++++)11(21)1(2111-++---+=++k k k k a a k k k a a k k -+=++)1(2111 所以012121=-+++k k a k a ,又01>+k a ,所以k k a k -+=+11,即1+=k n 时成立.由①,②知对任意N n ∈,1--=n n a n.,所以数列}{n a 的通项公式为1--=n n a n .。
高考数学专题59 由递推关系求数列的通项(解析版)
专题59 由递推关系求数列的通项一、题型选讲题型一 、 由连续两项之间的关系确定数列的通项 利用数列的递推公式求解数列的通项公式的策略: 1、对于递推关系转化为〔常数〕或〔常数〕可利用等差、等比数列的通项公式求解; 2、对于递推关系式可转化为的数列,通常采用叠加法〔逐差相加法〕求其通项公式;3、对于递推关系式可转化为的数列,并且容易求数列前项积时,通常采用累乘法求其通项公式;4、对于递推关系式形如的数列,可采用构造法求解数列的通项公式.例1、数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
【解析】解法一:121(2),n n a a n -=+≥112(1)n n a a -∴+=+ 又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =- 解法二:121(2),n n a a n -=+≥121n n a a +∴=+两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例2、在数列{n a }中,1a =21,1121+++=n n n a a 求n a 【解析】: 由递推式得:1121++=-n n n a a1n n a a d +-=1n na q a +=1()n n a a f n +-=1()n na f n a +={()}f n n 1n n a pa q +=+即: 21221=-a a 32321=-a a43421=-a a……………..)2(211≥=--n a a n n n 以上各式相加:nn a a 21.....2121321++++= =n 21.....21212132++++ =211)211(21--n =n 211- )2(≥n 当1=n 时 1a =1—21211= 所以n a =n 211-例3、n n a n n a a 2313,311+-==+ 求n a【解析】:由递推式得23131+-=+n n a a n n 即:21311312+⨯-⨯=a a =5222312323+⨯-⨯=a a =85 11823313334=+⨯-⨯=a a ………………………13432)1(31)1(31--=+-⨯--⨯=-n n n n a a n n )2(≥n以上各式相乘:1361321-=-=n a n a n )2(≥n 当1=n 时 1a =1136-⨯=3所以: 136-=n a n题型二、由连续三项确定数列的通项原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比拟系数可求得λ,数列{}1n n a a λ++为等比数列。
数列递推公式求通项公式的方法
数列递推公式求通项公式的方法数列是指按照一定规律排列的一组数。
而数列递推公式是指通过前一项或几项的数值,推导出数列中后一项的数值的公式。
而求解数列通项公式,即通过已知的数列的部分项求得数列的通项公式的方法,可以分为以下几种:1.列表法:通过列出数列的前几项进行观察和总结,找到数列的规律,从而推导出数列的通项公式。
这种方法常用于找出简单数列的通项公式,如等差数列和等比数列。
2.递推法:利用数列递推的性质,通过对数列进行递推推导出通项公式。
递推法常用于复杂的数列,需要将数列的前几项与后几项进行比较,找到规律并推导出通项公式。
3.数学归纳法:数学归纳法是一种利用已知的数学命题,在该命题的基础上证明该命题对任意自然数(或整数)都成立的方法。
对于数列来说,可以利用已知的数列部分项的性质,通过数学归纳法证明该数列的通项公式的正确性。
4.差分法:差分法是一种通过对数列进行差分操作,将数列变为新的数列,新数列有可能是个数列递推公式/规律更简单的数列。
然后,根据新数列的通项公式,再通过反差分操作推导出原数列的通项公式。
差分法常用于较为复杂的数列,特别适合于数列中的递推关系较为难以发现的情况。
5.比率法:比率法是一种通过比较数列的相邻项之间的比率或比值的变化规律,推导出数列的通项公式的方法。
比率法常用于等比数列或存在比率规律的数列。
需要注意的是,求解数列通项公式并不是一种机械性的计算过程,而是需要灵活运用数学知识、观察和总结数列的规律,并进行推理和证明的过程。
在实际应用中,也可能需要结合上述多种方法进行综合分析来求解数列的通项公式。
递推数列求通项公式-高考数学一题多解
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
数列递推公式求通项公式的方法与技巧
通项公式求解方法简介肖永钦解决“给出数列的递推公式,要求分析数列相关性质”这一类型的题目中,如果能够求解数列的通项公式,则求解、分析数列变得相当简单。
下面就高中常见的递推公式其通项公式一般解法作简要介绍。
高中常见的递推公式一般经过构造(例如:同时减去一个数或者移项)都可以转化成等比数列、等差数列类型。
(一)已知1a 及q pa a n n +=+1………………(1),求通项公式分析上述递推公式,显然,当0=p 时,数列}{n a 是常数列,通项公式是q a n =;当1=p 时,数列}{n a 是等比数列,通项公式是q a n a a n )(1-+=。
当时且10≠≠p p ,我们不妨设(1)式可以写成)(1x a p x a n n -=-+…………(2),若设x a b n n -=,则数列}{n b 为等比数列,即(1)式可以转化成等比数列。
我们整理(2)式,即px x pa a n n -+=+1,我们发现,如果令q px x =- (3),则(1)式便可以转化为(2)式,从而此类型的数列的通项公式能够求解。
我们整理(3)式有q px x +=,发现q px x +=方程与(1)式有着显著的关系,即形式上的一致性。
例1:已知数列{}n a 中有111,32n n a a a +==+且,求该数列的通项公式。
分析:由132n n a a +=+有32,1x x x =+=-解得,故由递推公式可以有113(1)n n a a ++=+,即数列}1{+n a 为等比数列,所以有1113(1)n n a a -+=+,把11a =代入,并整理得1231n n a -=⋅-,即求出数列{}n a 的通项公式。
上述右边是加个常数,如果右边加一个与n 相关的变量,则需要再作一定的调整,接下来请看例2例2:已知数列{}n a 中有23,111++==+n a a a n n 且,求该数列的通项公式。
分析:显然本题与【例1】显著的差别就在于后面不是常数了,而是变量,这里我们仍然可以通过待定系统数,把2+n 分配到两边,并构造等比数列。
已知数列的递推公式求通项公式的方法总结归纳
已知数列的递推公式求通项公式的方法
1.累加法:递推关系式为1()n n a a f n +-=采用累加法。
“累加法”实为等差数列通项公式的推导方法。
2.累乘法:递推关系式为
1()n n
a f n a +=采用累乘法。
“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1)1n n a pa q +=+,(2)1n
n n a pa q +=+,
都可以通过恒等变形,构造出等差或等
比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。
4. 和化项法:递推关系式为()n S f n =或()n n S f a =一般利用11,
1
,2
n n n S n a S S n -=⎧
=⎨-≥⎩进行转化。
例1.已知12a = , 1n a +=2132n n a -+⋅
求数列{}n a 的通项公式.
例2.已知11,a = 11
n n n a a n +=⋅
+,
求数列{}n a 的通项公式
例3.已知11,a =123n n a a +=+,
求数列{}n a 的通项公式
例5.已知43n n S a =+,
求数列{}n a 的通项公式.
例4.已知11,a =123n n n a a +=+,
求数列{}n a 的通项公式
例6.已知113
n n a S +=
,11a =,
求数列{}n a 的通项公式。
高中数学:递推式求数列通项公式常见类型及解法
高中数学:递推式求数列通项公式常见类型及解法对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构造把问题转化。
一、型例1. 在数列{a n}中,已知,求通项公式。
解:已知递推式化为,即,所以。
将以上个式子相加,得,所以。
二、型例2. 求数列的通项公式。
解:当,即当,所以。
三、型例3. 在数列中,,求。
解法1:设,对比,得。
于是,得,以3为公比的等比数列。
所以有。
解法2:又已知递推式,得上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。
所以,所以。
四、型例4. 设数列,求通项公式。
解:设,则,,所以,即。
设这时,所以。
由于{b n}是以3为首项,以为公比的等比数列,所以有。
由此得:。
说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。
五、型例5. 已知b≠0,b≠±1,,写出用n和b表示a n的通项公式。
解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。
说明:对于递推式,可两边除以,得,引入辅助数列,然后可归结为类型三。
六、型例6. 已知数列,求。
解:在两边减去。
所以为首项,以。
所以令上式,再把这个等式累加,得。
所以。
说明:可以变形为,就是,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。
等差、等比数列是两类最基本的数列,是数列部分的重点,也是考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。
转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
▍▍ ▍▍。
数列题型及解题方法归纳总结
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n+d及a n+1=qa n(d,q为常数)例1、 已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解 ∵a n+1-a n=2为常数 ∴{a n}是首项为1,公差为2的等差数列∴a n=1+2(n-1) 即a n=2n-1例2、已知满足,而,求=?(2)递推式为a n+1=a n+f(n)例3、已知中,,求.解: 由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★说明 只要和f(1)+f(2)+…+f(n-1)是可求的,就可以由a n+1=a n +f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q(p,q 为常数)例4、中,,对于n>1(n∈N)有,求.解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1)因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为an+1=p a n +q n(p,q 为常数)由上题的解法,得: ∴(5)递推式为思路:设,可以变形为:,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
高考数学高频考点题型归纳与方法总结(新高考通用)
高考数学高频考点题型归纳与方法总结(新高考通用)
高考数学的高频考点题型主要包括以下几类:
1. 函数与方程:包括一次函数、二次函数、指数函数、对
数函数、三角函数等的性质、图像和应用;一元二次方程、一元二次不等式、一元一次方程组等的解法与应用。
解题方法:熟悉各种函数的性质和图像特点,掌握解方程
和解不等式的方法和步骤。
2. 数列与数列的通项公式:包括等差数列、等比数列、递
推数列等的性质、求和公式和通项公式。
解题方法:了解数列的性质和公式,掌握数列的求和方法
和通项公式的推导。
3. 三角函数与解三角形:包括三角函数的性质、图像和应用;解三角形的正弦定理、余弦定理和正弦定理。
解题方法:熟悉三角函数的性质和图像特点,掌握解三角
形的定理和公式。
4. 平面几何与立体几何:包括平面图形的性质、面积和周
长计算;立体图形的性质、体积和表面积计算。
解题方法:熟悉各种图形的性质和计算公式,掌握平面几
何和立体几何的解题方法和步骤。
5. 概率与统计:包括事件的概率计算、随机变量的期望计算、样本调查和数据处理等。
解题方法:掌握概率和统计的基本概念和计算方法,了解常见的概率分布和统计图表的绘制方法。
6. 解析几何:包括平面解析几何和空间解析几何的性质、方程和应用。
解题方法:熟悉解析几何的基本概念和计算方法,掌握平面解析几何和空间解析几何的解题方法和步骤。
总结起来,高考数学的高频考点题型主要集中在函数与方程、数列与数列的通项公式、三角函数与解三角形、平面几何与立体几何、概率与统计、解析几何等方面。
解题方法主要是熟悉各种概念和公式,掌握解题方法和步骤。
递推公式求数列通项的八大常见形式
新课标高考由递推公式求数列通项的八大常见形式对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列称辅助数列法。
1.递推公式为(其中p,q均为常数,)。
解法:把原递推公式转化为:其中,再利用换元法转化为等比数列求解。
例1. 已知数列中,,求。
2.型递推式可构造为形如的等比数列。
例5. 在数列中,,求通项公式。
解:原递推式可化为,比较系数可得:,,上式即为是一个等比数列,首项,公比为。
所以。
即,故为所求。
3. (A、B、C为常数,下同)型递推式(1)可构造为形如的等比数列。
类型 4 递推公式为(其中p,q均为常数,)。
(2)可构造为形如引入辅助数列(其中),得:再应用类型1的方法解决。
例1. 已知数列中,,求。
例2. 已知数列中,,求。
4.=p+q (p、q均为常数)(二阶递归)=p+q-=(-)∴解出、因此{-}是G.P型特殊地分析:∵∴∴是以为首项,公比为的等比数列例1、,,,求例2:a1=1,a2==-,求数列{}的通项公式。
-=(-)解得:=1、=-=(-), a2-a1= ∴-=∴=(-)+(-)+┈+(a2-a1)+a1=++┈++1=3-. ∴=3-5.等差数列:由此推广成差型递推关系:累加:=,于是只要可以求和就行。
递推公式为解法:把原递推公式转化为,(特殊情形:⑴.(差后等差数列)⑵(差后等比数列))利用累加法求解。
例1.已知{}满足,且,求例2.已知{}满足,且,求例3.已知{}满足,且,求例4. 已知数列满足,求。
6.等比数列:递推公式为累乘:类型2递推公式为解法(1)把原递推公式转化为,利用累乘法求解。
例1.已知{}满足,且,求例2.已知{}满足,且,求例3.. 已知数列满足,求。
7.倒数变换法:形如(为常数,且)的递推公式,可令。
则可转化为型;例1:数列中,且,,求数列的通项公式.8.对数变换法:1.递推式两边同取对数,得令,则,已转化为“型”,由累乘相消法可得例、已知数列满足,求。
由递推公式求通项的9种方法经典总结
精析由递推公式求通项的9种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1).[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t=b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n ,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用叠加法(逐差相加法)求解.[例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n .于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…, b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32, 所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n ,代入(*)式,得a n =2·3n -n -1. 6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2n , 即lg a n =lg a 1-2n ,所以a n =a 1-2n .7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n 3n +2. 8.)(1n f a a n n =++型 由原递推关系改写成),()1(2n f n f a a n n -+=-+然后再按奇偶分类讨论即可例8.已知数列{}n a 中,,11=a .21n a a n n =++求n a 解析:.21n a a n n =++Θ2212+=+++n a a n n ,故22=-+n n a a 即数列{}n a 是奇数项和偶数项都是公差为2的等差数列,⎩⎨⎧∈≥-=∴*,1,1,N n n n n n n a n 且,为偶数为奇数 9.)(1n f a a n n =⋅+型将原递推关系改写成)1(12+=+⋅+n f a a n n ,两式作商可得,)()1(2n f n f a a n n +=+然后分奇数、偶数讨论即可 例9.已知数列{}n a 中,,2,311n n n a a a =⋅=+求{}n a 解析:⎪⎩⎪⎨⎧∈≥⋅⋅=+-N n n n n a n n n ,1,231,23221,为偶数为奇数。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
由数列递推公式求其通项公式的常见方法
由数列递推公式求其通项公式的常见方法焦仲民甘肃省陇西县第三中学,甘肃 陇西 748100摘要:递推公式是给出数列的基本方式之一,由数列递推关系式求其通项公式在高考题中占着不小的比重,说每一套高考试卷中数列必出递推也不为过,不能不感受到高考数学试题中“递推”之风的强劲,为此,本文通过例题来研究由递推关系式求数列通项公式的类型与求解策略。
关键词:数列 递推公式 通项公式已知数列的递推公式,求其通项公式是是高中数学的重要内容,也是历年高考的重点、热点和难点内容之一,自然成为师生研究的重点,这类题型如果单纯的看某一个具体的题目,它的求解方法是灵活多变的,构造的技巧性也很强,致使学生面对此类具体问题仍束手无策.但是此类题目也有很强的规律性,存在着解决问题的通法,基本思路是:利用累加或累乘的方法,把所求数列通过变形,转换为等差数列或者等比数列。
本文就高中数学中常见的几类题型通过举例对其解法通法加以说明。
一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解. 例1.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =.注:在运用累加法时,要特别注意项数,计算时项数容易出错. 二、)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累积法,具体做法是将通项变形为1()n na f n a +=,从而就有:32121(1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1(1)(2)(1)na f f f n a =⋅⋅⋅- ,进而求解. 例2.已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错. 三、形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项公式可通过待定系数法构造辅助数列来求得.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c d a c d a ,即:1)1(11--⋅-+=-c d c c d a a n n 。
新课标高考数学题型全归纳:如何由递推公式求通项公式典型例题
展开后得: an 1 3an 2n 对比得: t 1
an 1 2n 1 3(an 2n )
令 bn an 2n ,则 bn 1 3bn,且b1=a1 21 3
bn 是b1=3为首项,公比 q=3的等比数列
bn 3 3n 1 3n 即: an 3n 2n
类型四: an 1 pan r ( p 0,an 0)
an 的通项公式。
( 2)已知数列
an 满足 a1 1,sn
(n
1)an
,求数列
an 的通项公式。
2
1
1 11
解:( 1)由题知: an 1 an n2 n n( n 1) n n 1
an (an an 1) (an 1 an 2 ) …… +(a 2 - a1) a1
11
1
(
)(
1 ) ……
1 (
类型一: an 1 an
f (n) 或 an 1 an
g(n)
分析:利用迭加或迭乘方法。即: an (an an 1) ( an 1 an 2) …… +( a2 a1) a1
或 an
an an 1
a2
…… a1
an 1 an 2
a1
例 1.(1)
已知数列
an 满足 a1
1 , an 1 an 2
1 ,求数列 n2 n
(1) f ( x) 是多项式时转为 an 1 A( n 1) B p (an An B ) ,再利用换元法转为等比数列
(2) f ( x) 是指数幂: an 1 pan rq n 1( pqr 0)
an 1 an 若 p q 时则转化为 qn 1 qn r ,再利用换元法转化为等差数列
根据递推公式求数列通项公式的常用方法总结归纳
求递推数列通项公式的常用方法归纳目录一、概述··································二、等差数列通项公式和前n项和公式··································1、等差数列通项公式的推导过程································2、等差数列前n项和公式的推导过程··································三、一般的递推数列通项公式的常用方法··································1、公式法··································2、归纳猜想法··································3、累加法··································4、累乘法··································5、构造新函数法(待定系数法)··································6、倒数变换法··································7、特征根法··································8、不动点法·································9、换元法·································10、取对数法··································11、周期法··································一、概述在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用,同时,数列的教学也是培养观察、分析、归纳、猜想、逻辑推理以及运用数学知识提出问题、分析问题和解决问题的必不可少的重要途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由数列的递推公式求通项公式的常用方法一 准备知识所谓数列,简单地说就是有规律的(有限或无限多个)数构成的一列数,常记作{}n a ,an 的公式叫做数列的通项公式.常用的数列有等差数列和等比数列.数列的前n 项和n S 与通项公式n a 的关系是:1(2)n n n a S S n -=-≥.有些数列不是用通项公式给出,而是用n a 与其前一项或前几项的关系来给出的,例如:123n n a a +=+,这样的公式称为数列的递推公式.由数列的递推公式我们可以求出其通项公式.数列问题中一个很重要的思想是把数列的通项公式或递推公式变形,然后将它看成新数列(通常是等差或等比数列)的通项公式或递推公式,最后用新数列的性质解决问题. 二 例题精讲例1.(裂项求和)求222222818281335(21)(21)n nS n n ⨯⨯⨯=+++⨯⨯-⨯+K .解:因为2222811(21)(21)(21)(21)n n a n n n n ⨯==--⨯+-+所以2222221111111335(21)(21)n S n n ⎡⎤⎛⎫⎛⎫=-+-++- ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎣⎦L 211(21)n =-+例2.(倒数法)已知数列{}n a 中,135a =,121nn n a a a +=+,求{an}的通项公式.解:211211+=+=+nn n n a a a a∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即15612(1)33n n n a -=+-=,∴361n a n =-.练习1.已知数列{}n a 中,a1=1,1121n n n S S S --=+,求{an}的通项公式.解:21121111+=+=---n n n n S S S S ,∴⎭⎬⎫⎩⎨⎧n S1是以1为首项,公差为2的等差数列. ∴n S 1=1+2(n -1)=2n -1,即121n S n =-. ∴1112123n n n a S S n n -=-=---=)32)(12(2---n n∴1112123n a n n ⎧⎪=⎨-⎪--⎩(1)(2)n n =≥例3.(求和法,利用公式1(2)n n n a S S n -=-≥)已知正数数列{}n a 的前n 项和112n n n S a a ⎛⎫=+ ⎪⎝⎭,求{}n a 的通项公式. 解:1111112S a a a ⎛⎫==+ ⎪⎝⎭,所以11a =.∵1n n n a S S -=-, ∴1112n n n n n S S S S S --=-+-∴111n n n n S S S S --+=-,即2211n n S S --=. ∴{}2nS 是以1为首项,公差为1的等差数列.∴2n S n =,即n S =.∴1n n n a S S -=-=n ≥2)∴n a .例4.(叠加法)已知数列{}n a 的前n 项和n S 满足12132n n n S S --⎛⎫-=⨯- ⎪⎝⎭(3n ≥),且1231,2S S ==-,求{}n a 的通项公式.解:先考虑偶数项有:S2n -S2n -2=-3·1221-⎪⎭⎫⎝⎛nS2n -2-S2n -4=-3·3221-⎪⎭⎫ ⎝⎛n……S4-S2=-3·321⎪⎭⎫ ⎝⎛将以上各式叠加得S2n -S2=-3×4114112113-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-n ,所以21212(1)2n n S n -⎛⎫=-+ ⎪⎝⎭≥.再考虑奇数项有:S2n +1-S2n -1=3·n221⎪⎭⎫⎝⎛ S2n -1-S2n -3=3·2221-⎪⎭⎫ ⎝⎛n……S3-S1=3·221⎪⎭⎫ ⎝⎛将以上各式叠加得22112(1)2nn S n +⎛⎫=-≥ ⎪⎝⎭.所以a2n+1=S2n+1-S2n=4-3×n221⎪⎭⎫ ⎝⎛,a2n=S2n -S2n -1=-4+3×1221-⎪⎭⎫ ⎝⎛n .综上所述11143,21432n n n n a n --⎧⎛⎫-⨯⎪ ⎪⎪⎝⎭=⎨⎪⎛⎫-+⨯ ⎪⎪⎝⎭⎩为奇数,为偶数,即111(1)432n n n a --⎡⎤⎛⎫=-⋅-⨯⎢⎥⎪⎝⎭⎢⎥⎣⎦.例5.(1n n a pa r +=+类型数列)在数列{}n a 中,an+1=2an -3,a1=5,求{}n a 的通项公式. 解:∵an+1-3=2(an -3)∴{an -3}是以2为首项,公比为2的等比数列. ∴an -3=2n ∴an=2n+3.练习2.在数列{}n a 中,a1=2,且1n a +={}n a 的通项公式.解:2211122n n a a +=+, ∴22111(1)2n n a a +-=-.∴{an+12-1}是以3为首项,公比为21的等差数列.∴an+12-1=3×121-⎪⎭⎫ ⎝⎛n,即n a =例6(1()n n a pa f n +=+类型)已知数列{}n a 中,a1=1,且113n n n a a --=+,求{}n a 的通项公式. 解:(待定系数法)设1133n n n n a p a p --+⋅=+⋅,则1123n n n a a p --=-⋅,与113n n n a a --=+比较可知12p =-.所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且13122a -=-. 所以3122n n a -=-,即n a =213-n . 练习3.已知数列{}n a 满足21n n S a n +=+,其中n S 是{}n a 的前n 项和,求{}n a 的通项公式.解:∵1n n n a S S -=-, ∴1221n n S S n -=++(待定系数法)设12()(1)n n S pn q S p n q -++=+-+,化简得:21pn p q n ---=+,所以⎩⎨⎧=+-=-12q p p ,即⎩⎨⎧=-=12q p∴2(21)2(1)1n n S n S n -+=--+, 又∵11213S a +=+=,∴132S =,11212S -+=,∴{21}n S n -+是以12为公比,以21为首项的等比数列.∴1212nn S n ⎛⎫-+= ⎪⎝⎭,即1212nn S n ⎛⎫=+- ⎪⎝⎭,12122nn n a n S ⎛⎫=+-=- ⎪⎝⎭. 例7.(1rn n a pa +=型)(2005年江西高考题)已知数列{}n a 各项为正数,且满足11a =,1n a +=)4(21n n a a -.⑴求证:12n n a a +<<;⑵求{}n a 的通项公式. 解:⑴略. ⑵211(2)22n n a a +=--+, ∴2112(2)2n n a a +-=--, ∴2112(2)2n n a a +-=-∴由⑴知20n a ->,所以221221log (2)log (2)2log (2)12n n n a a a +⎡⎤-=-=--⎢⎥⎣⎦,∴212log (2)12[log (2)1]n n a a +--=--,即2{log (2)1}n a --是以1-为首项,公比为的等比数列,∴12log (2)112n n a ---=-⨯, 化简得11222n n a --=-.练习4.(2006年广州二模)已知函数4444(1)(1)()(1)(1)x x f x x x ++-=+--(0x ≠).在数列{}n a 中,12a =,1()n n a f a +=(n *∈N ),求数列{}n a 的通项公式.解:4444114441(1)(1)1(1)1(1)(1)1(1)1n n n n n n n n n n n a a a a a a a a a a a +++⎛⎫++-+++=⇒== ⎪+-----⎝⎭,从而有1111ln4ln 11n nn n a a a a ++++=--, 由此及111lnln 301a a +=≠-知:数列1ln 1n n a a ⎧⎫+⎨⎬-⎩⎭是首项为ln 3,公比为的等比数列, 故有11141441131ln 4ln 331131n n n n n n n n n a a a a a ----+++=⇒=⇒=---(n *∈N ).例8.(三角代换类型)已知数列{}n a 中,12a =,1111n n n a a a --+=-,求{}n a 的通项公式.解:令1tan n a θ-=,则an+1=1πtantan π4tan π41tan tan 4n a θθθ++⎛⎫==+ ⎪⎝⎭-⋅,∴(1)πtan arctan 24n n a -⎡⎤=+⎢⎥⎣⎦.。