第2章1-3节 概率论

合集下载

概率论与数理统计答案 第二章1-2节

概率论与数理统计答案  第二章1-2节
第二章 随机变量及其分布
关键词: 随机变量 离散型随机变量、分布律 连续型随机变量、概率密度 概率分布函数 重伯努利实验、二项分布、泊松分布 均匀分布、正态分布、指数分布 随机变量的函数的分布
1
§1 随机变量
定义
2 3
例1: 将一枚硬币抛掷3次. 关心3次抛掷中, 出现 H的总次数 以X记三次抛掷中出现H的总数, 则对样本空间 S={e}中的每一个样本点e, X都有一个值与之对 应, 即有
1) P { X = k} = C3k p k (1 − p )3− k , k = 0,1, 2,3 (
( 2)
P { X = 2} = C32 p 2 (1 − p)
21
泊松分布(Poisson分布)
若随机变量X的概率分布律为 e− λ λ k
P { X = k} = k! , = 0,1, 2, ⋅⋅⋅, λ > 0 k
互不影响
例如: 1.独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n次,设A={得到1点},则每次试验 只有两个结果:A , A , P ( A ) = 1 6
12
定义随机变量X表示n重伯努利试验中事件A发生的次 数, 我们来求它的分布律. X所有可能取的值为0,1,2,...,n. 由于各次试验是相互独立的, 因此事件A在指定的 k(0≤k≤n)次试验中发生, 在其它n−k次试验中A不发生 的概率为
13
设A在n重伯努利试验中发生X次,则
k P பைடு நூலகம் X = k} = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
⎛n⎞ k Cn = ⎜ ⎟ 表示n中 ⎜k ⎟ ⎝ ⎠ 任选k的组合数目

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

大一高等数学教材章节目录

大一高等数学教材章节目录

大一高等数学教材章节目录第一章导言第1节数学的发展和数学的定义第2节数学基本概念与基本运算第3节数学语言与符号第二章集合论与逻辑第1节集合的基本概念与运算第2节布尔代数与命题逻辑第3节谓词逻辑与命题公式第三章数列与极限第1节数列的概念与性质第2节数列极限的定义第3节数列极限的性质与计算方法第四章函数与连续第1节函数的概念与性质第2节函数的分类与表示第3节连续函数与间断点第五章导数与微分第1节导数的定义与性质第2节函数的求导法则第3节高阶导数与隐函数求导第六章微分中值定理与应用第1节微分中值定理第2节高阶导数的应用第3节泰勒公式及其应用第七章积分与不定积分第1节定积分与不定积分的概念第2节积分运算法则第3节不定积分与定积分的关系第八章微积分基本定理与应用第1节微积分基本定理与反函数微分法第2节曲线的弧长与体积第3节平面和空间曲线的曲率和曲率半径第九章偏导数与多元函数微分学第1节多元函数的定义与性质第2节偏导数的计算法则第3节多元函数的极值与最值第十章重积分与曲面积分第1节重积分的概念与性质第2节二重积分的计算方法第3节曲面积分与曲线积分第十一章空间解析几何第1节空间直线与平面的方程第2节空间曲线的方程与求交问题第3节空间曲面的方程与性质第十二章常微分方程第1节常微分方程的基本概念第2节一阶常微分方程的解法第3节高阶常微分方程的解法第十三章概率论与数理统计第1节概率的基本概念与性质第2节随机变量与概率分布第3节统计量与估计第十四章线性代数第1节矩阵与线性方程组第2节向量空间与变换矩阵第3节特征值与特征向量以上是大一高等数学教材的章节目录,每个章节都包含了该主题的基本概念、性质和相关计算方法。

希望这份目录能够帮助你在学习高等数学的过程中更好地组织学习内容,理解各个章节的关系和内在逻辑。

祝你在数学学习中取得好成绩!。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论知识点总结「篇一」概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。

其次,做游戏是学习数学最好的方法之一,根据课的内容的特点,教师设计了转盘游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性,在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理,在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式。

再次,我们教师在上课的时候要理解频率和概率的关系,教材中概率的概念是通过频率建立的,即频率的稳定值及概率,也就是用频率值估计概率的大小。

通过实验,让学生经历“猜测结果一进行实验一分析实验结果”的过程,建立概率的含义。

要建立学生正确的概率含义,必须让他们亲自经历对随机现象的探索过程,引导他们亲自动手实验收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,真正树立正确的概率含义。

第四,我们努力让学生在具体情景中体会概率的意义。

由于初中学生的知识水平和理解能力,初中阶段概率教学的基本原则是:从学生熟悉的生活实例出发,创设情境,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作,在知识的主动建构过程中,促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历会使他们终身受益,在具体情境中体验概率的意义。

《概率论》 第二章 基本定理

《概率论》 第二章 基本定理
2 1 所以 P ( B A) 4 2
方法二
按乘法法则
1 1 A3 A2 3 P ( AB ) 2 A5 10
1 A3 3 P ( A) 1 , A5 5
P ( AB ) 3/10 1 由乘法法则 P ( B A) P ( A) 3/5 2
注 条件概率的计算方法: (1) 若问题比较简单,可根据实际意义,直接由定 义求P(B|A); (2) 当问题比较复杂时,可在原样本空间中先求出 P(AB)和P(A),再由乘法公式求出P(B|A).
1 2 2 1 207 C4 C 46 276 C C 4 46 , P ( A1 ) , P ( A ) 3 2 3 980 C 50 19600 C 50
C 43 P ( A3 ) 3 C 50
4 . 19600
故 P ( A1 A2 A3 ) P ( A1 ) P ( A2 ) P ( A3 )
定理2 若A,B为任意两事件,则
P ( A B ) P ( A) P ( B ) P ( AB ).
推广 三个事件和的情况
P ( A1 A2 A3 )
P ( A1 ) P ( A2 ) P ( A3 ) P ( A1 A2 ) P ( A2 A3 ) P ( A1 A3 ) P ( A1 A2 A3 ).
例如 同时抛掷一大一小两枚硬币,设事件 A={大硬币正面},B={小硬币正面} 则基本事件共有4种情况: {大正,小正},{大正,小反},{大反,小正},{大反,小反}
2 1 2 1 , P(B)= , 于是 P(A)= 4 2 4 2 1 P(AB)= 4
有P(AB) = P(A)P(B) ,可见, A、B相互独立.

概率论与数理统计第二章随机变量及其分布

概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,

概率论与数理统计B教案第二章

概率论与数理统计B教案第二章

第二章随机变量及其分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节随机变量的概念内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)X=(eX为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1(讲义例1)在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为S{正面, 反面},=记赢钱数为随机变量X, 则X作为样本空间S的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面e e e X例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S = 记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH e易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.第二节 离散型随机变量及其分布函数内容要点:一、离散型随机变量及其概率分布定义 设离散型随机变量X 的所有可能取值为),2,1( =i x i , 称,2,1,}{===i p x X P i i为X 的概率分布或分布律, 也称概率函数.常用表格形式来表示X 的概率分布:n i n p p p p x x x X 2121二、常用离散分布退化分布 两点分布 n 个点上的均匀分布 二项分布 几何分布 超几何分布泊松分布:泊松分布是概率论中最重要的几个分布之一. 实际问题中许多随机现象都服从或近似服从泊松分布.三、二项分布的泊松近似定理1 (泊松定理) 在n 重伯努利试验中, 事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关), 如果∞→n 时, λ→n np (0>λ为常数), 则对任意给定的k , 有λλ-∞→=e k p n k b kn n !),,(lim .例题选讲:离散型随机变量及其概率分布例1 (讲义例1) 某篮球运动员投中篮圈的概率是0.9, 求他两次独立投篮投中次数X 的概率分布.例2 (讲义例2) 设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k aK X P k.试确定常数a .二项分布例3 (讲义例3) 已知100个产品中有5个次品, 现从中有放回地取3次, 每次任取1个, 求在所取的3个中恰有2个次品的概率.例4 (讲义例4) 某人进行射击, 设每次射击的命中率为0.02, 独立射击400次, 试求至少击中两次的概率.例5 (讲义例5) 设有80台同类型设备, 各台工作是相互独立的,发生故障的概率都是0.01, 且一台设备的故障能由一个人处理. 考虑两种配备维修工人的方法, 其一是由4人维护, 每人负责20台; 其二是由3人共同维护80台. 试比较这两种方法在设备发生故障时不能及时维修的概率的大小. 几何分布例6 (讲义例6) 某射手连续向一目标射击, 直到命中为止, 已知他每发命中的概率是p , 求所需射击发数X 的概率分布. 泊松分布例7 (讲义例7) 某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布, 求该城市一天内发生3次或3次以上火灾的概率. 二项分布的泊松近似例8 (讲义例8) 某公司生产的一种产品300件. 根据历史生产记录知废品率为0.01. 问现在这300件产品经检验废品数大于5的概率是多少?例9 (讲义例9) 一家商店采用科学管理,由该商店过去的销售记录知道, 某种商品每月的销售数可以用参数5=λ的泊松分布来描述, 为了以95%以上的把握保证不脱销, 问商店在月底至少应进某种商品多少件?例10 (讲义例10) 自1875年至1955年中的某63年间, 上海市夏季(5—9月)共发生大暴雨180次, 试建立上海市夏季暴雨发生次数的概率分布模型.课堂练习1.某类灯泡使用时数在1000小时以上的概率是0.2, 求三个灯泡在使用1000小时以后最多只有一个坏了的概率.2.一汽车沿一街道行驶, 需要通过三个均设有红绿信号灯的路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号灯显示的时间相等. 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求X 的概率分布.第三节 随机变量的分布函数当我们要描述一个随机变量时,不仅要说明它能够取哪些值,而且还要指出它取这些值的概率. 只有这样,才能真正完整地刻画一个随机变量, 为此,我们引入随机变量的分布函数的概念.内容要点:一. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→二、离散型随机变量的分布函数设离散型随机变量X 的概率分布为n i n p p p p x x x X 2121则X 的分布函数为∑∑≤≤===≤=xx i xx i i i p x X P x X P x F )()()(.例题选讲:随机变量的分布函数例1(讲义例1)等可能地在数轴上的有界区间],[b a 上投点, 记X 为落点的位置(数轴上的坐标) , 求随机变量X 的分布函数.例2(讲义例2)判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ离散型随机变量的分布函数例3(讲义例3)设,2/16/13/1210i p X 求)(x F .例4 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.例5(讲义例4)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.课堂练习1.设随机变量X 的概率分布为4/12/14/1421i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P第四节 连续型随机变量及其概率密度内容要点:一、 连续型随机变量及其概率密度定义 如果对随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有.)(}{)(⎰∞-=≤=xdt t f x X P x F则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数. 关于概率密度的说明1. 对一个连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求得其分布函数)(x F , 同时, 还可求得X 的取值落在任意区间],(b a 上的概率:⎰=-=≤<ba dx x f a Fb F b X a P )()()(}{2. 连续型随机变量X 取任一指定值)(R a a ∈的概率为0.3. 若)(x f 在点x 处连续, 则)()(x f x F =' (1)二、常用连续型分布 均匀分布定义 若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f 则称X 在区间),(b a 上服从均匀分布, 记为),(~b a U X .指数分布定义 若随机变量X 的概率密度为0.,0,0,)(>⎩⎨⎧>=-λλλ其它x e x f x则称X 服从参数为λ的指数分布.简记为).(~λe X正态分布定义 若随机变量X 的概率密度为.,21)(222)(∞<<∞-=--x e x f x σμσπ其中μ和)0(>σσ都是常数, 则称X 服从参数为μ和2σ的正态分布. 记为).,(~2σμN X 注: 正态分布是概率论中最重要的连续型分布, 在十九世纪前叶由高斯加以推广, 故又常称为高斯分布. 一般来说,一个随机变量如果受到许多随机因素的影响,而其中每一个因素都不起主导作用(作用微小),则它服从正态分布. 这是正态分布在实践中得以广泛应用的原因. 例如, 产品的质量指标, 元件的尺寸, 某地区成年男子的身高、体重, 测量误差, 射击目标的水平或垂直偏差, 信号噪声、农作物的产量等等, 都服从或近似服从正态分布.标准正态分布正态分布当1,0==σμ时称为标准正态分布, 此时, 其密度函数和分布函数常用)(x ϕ和)(x Φ表示:,21)(22x e x -=πϕ ⎰∞--=Φxt dt e x 2221)(π标准正态分布的重要性在于, 任何一个一般的正态分布都可以通过线性变换转化为标准正态分布.定理 设),,(~2σμN X 则).1,0(~N X Y σμ-=标准正态分布表的使用:(1)表中给出了0>x 时)(x Φ的数值, 当0<x 时, 利用正态分布的对称性, 易见有);(1)(x x Φ-=-Φ(2) 若),1,0(~N X 则);()(}{a b b X a P Φ-Φ=≤< (3)若),(~2σμN X , 则),1,0(~N X Y σμ-=故X 的分布函数;}{)(⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-≤-=≤=σμσμσμx x X P x X P x F⎭⎬⎫⎩⎨⎧-≤<-=≤<σμσμb Y a P b X a P }{.⎪⎭⎫⎝⎛-Φ-⎪⎭⎫⎝⎛-Φ=σμσμa b例题选讲:连续型随机变量及其概率密度例1 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤--=其它,011,12)(2x x x f π求其分布函数)(x F .例2(讲义例1)设随机变量X 具有概率密度⎪⎪⎩⎪⎪⎨⎧≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<X P x F X k 求的分布函数求确定常数例3(讲义例2)设随机变量X 的分布函数为⎪⎩⎪⎨⎧<≤<≤=x x x x x F 1,110,0,0)(2求 (1) 概率}7.03.0{<<X P ; (2) X 的密度函数.常用连续型分布 均匀分布例4 (讲义例3)某公共汽车站从上午7时起, 每15分钟来一班车, 即7:00, 7:15, 7:30, 7:45等时刻有汽车到达此站, 如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率. 指数分布例5(讲义例4)某元件的寿命X 服从指数分布, 已知其平均寿命为1000小时,求3个这样的元件使用1000小时, 至少已有一个损坏的概率. 正态分布例6(讲义例5)设)4,1(~N X , 求 .}2|1{|},6.10{),5(≤-≤<X P X P F 例7 设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应 定为多少?例8(讲义例6)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d ℃,液体的温度X (以℃计)是一个随机变量,且 )5.0,(~2d N X(1) 若 09=d ℃,求X 小于89℃ 的概率;(2) 若要求保持液体的温度至少为80℃的概率不低于0.99,问d 至少为多少?例9(讲义例7)某企业准备通过招聘考试招收300名职工,其中正式工280人, 临时工20人; 报考的人数是1657人, 考试满分是400分. 考试后得知, 考试总平均成绩, 即166=μ分, 360分以上的高分考生31人. 某考生B 得256分, 问他能否被录取? 能否被聘为正式工? 例10(讲义例8)在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.课堂练习1.已知)5.0,8(~2N X ,求 (1) );7(),9(F F (2) }105.7{≤≤X P ;(3) };1|8{|≤-X P(4) }.5.0|9{|<-X P2.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为92.36%, 为使其寿命在x -μ和x +μ之间的概率不小于0.9, x 至少为多少?第五节 随机变量函数的分布讲解注意:一、 随机变量的函数定义 如果存在一个函数)(X g , 使得随机变量Y X ,满足:)(X g Y =,则称随机变量Y 是随机变量X 的函数.注: 在微积分中,我们讨论变量间的函数关系时, 主要研究函数关系的确定性特征, 例如:导数、积分等.而在概率论中, 我们主要研究是随机变量函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律.一般地, 对任意区间I , 令})(|{I x g x C ∈=, 则},{})({}{C X I x g I Y ∈=∈=∈ }.{})({}{C X P I x g P I Y P ∈=∈=∈注: 随机变量Y 与X 的函数关系确定,为从X 的分布出发导出Y 的分布提供了可能.二、离散型随机变量函数的分布 设离散型随机变量X 的概率分布为,2,1,}{===i p x X P i i易见, X 的函数)(X g Y =显然还是离散型随机变量.如何由X 的概率分布出发导出Y 的概率分布? 其一般方法是:先根据自变量X 的可能取值确定因变量Y 的所有可能取值, 然后对Y 的每一个可能取值,,2,1, =i y i 确定相应的},)(|{i j j i y x g x C ==于是},{})({}{i i i i C X y x g y Y ∈==== .}{}{}{∑∈==∈==ij C x ji i x X P C X P y Y P从而求得Y 的概率分布.三、 连续型随机变量函数的分布一般地, 连续型随机变量的函数不一定是连续型随机变量, 但我们主要讨论连续型随机变量的函数还是连续型随机变量的情形, 此时我们不仅希望求出随机变量函数的分布函数, 而且还希望求出其概率密度函数.设已知X 的分布函数)(x F X 或概率密度函数)(x f X , 则随机变量函数)(X g Y =的分布函数可按如下方法求得:}.{})({}{)(y Y C X P y X g P y Y P y F ∈=≤=≤=其中}.)(|{y x g x C y ≤=而}{y C X P ∈常常可由X 的分布函数)(x F X 来表达或用其概率密度函数)(x f X 的积分来表达:⎰=∈yC X y dx x f C X P )(}{进而可通过Y 的分布函数)(x F Y , 求出Y 的密度函数.定理1 设随机变量X 具有概率密度),(),(+∞-∞∈x x f X ,又设)(x g y =处处可导且恒有0)(>'x g (或恒有0)(<'x g ), 则)(X g Y =是一个连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0|,)(|)([)(βαy y h y h f y f Y其中)(y h x =是)(x g y =的反函数, 且)).(),(max()),(),(min(+∞-∞=+∞-∞=g g g g βα例题选讲:离散型随机变量函数的分布例1(讲义例1)设随机变量X 具有以下的分布律, 试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -连续型随机变量函数的分布例2(讲义例2)对一圆片直径进行测量, 其值在[5, 6]上均匀分布, 求圆片面积的概率分布密度.例3(讲义例3)设⎩⎨⎧<<=其它,040,8/)(~x x x f X X , 求82+=X Y 的概率密度.例4 设)1,0(~N X , 求2X Y =的密度函数.例5(讲义例4)已知随机变量X 的分布函数)(x F 是严格单调的连续函数, 证明)(X F Y =服从]1,0[上的均匀分布.例6(讲义例5)的线性函数试证明设随机变量X N X ).,(~2σμb aX Y +=)0(≠a 也服从正态分布.例7 (讲义例6) 设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度.例8 (讲义例8) (对数正态分布) 随机变量X 称为服从参数为2,σμ的对数正态分布, 如果X Y ln =服从正态分布),(2σμN . 试求对数正态分布的密度函数.注: 在实际中, 通常用对数正态分布来描述价格的分布, 特别是在金融市场的理论研究中, 如著名的期权定价公式(Black —Scholes 公式), 以及许多实证研究都用对数正态分布来描述金融资产的价格. 设某种资产当前价格为0P , 考虑单期投资问题, 到期时该资产的价格为一个随机变量, 记作1P , 设投资于该资产的连续复合收益率为r , 则有re P P 01=从而0101ln ln lnP P P P r -== 注意到0P 为当前价格, 是已知常数,因而假设价格1P 服从对数正态分布实际上等价于假设连续复合收益率r 服从正态分布.例9(讲义例7)设随机变量X 服从参数为λ的指数分布, 求}2,min{X Y =的分布函数.课堂练习1. 设X 的分布列为10/310/110/110/15/12/52101i p X -试求: (1) 2X 的分布列; (2) 2X 的分布列.2. 设随机变量X 的概率密度为⎩⎨⎧<<=.,0,0,/2)(2其它ππx x x f求X Y sin =的概率密度.。

概率论整理

概率论整理

第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。

说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。

例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。

明德概率论与数理统计第二章第一节(1)

明德概率论与数理统计第二章第一节(1)
x x0
即任一分布函数处处右连续.
如:对例1,
0 , x 0, 1 F ( x ) , 0 x 1, 2 1, x 1.
1
1 2
F (x )
o

1
x
一个函数若具有上述性质, 则此函数一定是某个随 机变量的分布函数.
例2: 已知随机变量X 在整个实轴上取值, 其分布
X x
x

x
F ( x ) P ( X x ),
F(x) 是随机变量 X 取值不大于 x 的概率.
用分布函数计算 X 落在( a ,b ] 里的概率:
P ( a X b) P ( X b) P ( X a )
] (
a
]
b
请 填 空
P ( X a ) F (a ) F (a 0) P ( X a ) 1 P ( X a ) 1 F (a ) P (a X b) F (b) F (a 0)
而X在xk(k=1,2, · )处的概率就是F(x) · ·
在这些间断点处的跃度.
2º P{a X b}
F ( b 0) F ( a 0) F (b) F (a )
例3 一盒内装有5个乒乓球,其中2个旧的,
3个新的,从中任取2个,求取得的新球 个数X的分布律与分布函数,并计算: P{0 X 2}, P{0 X 2}. 解 X={ 取得的新球个数 },其分布律为
方法1. P{0 X 2}
P{ X 1} P{ X 2}
0.6 0.3 0.9
P{0 X 2} P{ X 0} P{ X 1}
F ( x) 0.7, 1 x 2 1, x2

概率论第二章随机变量以其分布第3节随机变量的分布函数

概率论第二章随机变量以其分布第3节随机变量的分布函数
F () 1, 知 1 P{ X 2}
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
27
因此有
0,
1 ,
F
(
x
)
6 1
,
2
1,
从而 X 的分布律为
X 1
1
P
6
x 1, 1 x 1,
1 x 2, x 2.
分别观察离散型、连续型分布函数的图象,可以看 出,分布函数 F(x) 具有以下基本性质:
10 F (x) 是一个不减的函数.F(x)
即当x2 x1时, 1 F(x2 ) F(x1).
01 2 3
x
返回主目录
证明 由 x1 x2 { X x1} { X x2 },
得 P{X x1} P{X x2}, 又 F ( x1) P{X x1}, F ( x2 ) P{X x2}, 故 F ( x1) F ( x2 ).
(3) 若 x 2 , 则 {X x} 是必然事件,于是
F(x) P{X x} 1.
返回主目录
§3 随机变量的分布函数
0,
F ( x)
x2 4
,
1,
x 0, 0 x 2,
x 2.
F(x) 1
01 2 3
x
返回主目录
§3 随机变量的分布函数
3. 分 布 函 数 的 性 质
x
x
o
x
同样,当 x 增大时 P{ X x}的值也不会减小,而
X (, x), 当 x 时, X 必然落在 (,)内.
o
x
16
§3 随机变量的分布函数
30 F(x 0) F(x), 即 F(x)是右连续的.

《概率论与数理统计》1-123(频率与概率)

《概率论与数理统计》1-123(频率与概率)

某一事件发生
它包含的一个样本点出现
三、事件间的关系及其运算
试验E S(样本空间) 事件A 必然事件 S 基本事件
不可能事件
A(子集) 样本点
1.事件的关系
① 包含、相等关系 A发生必然导致B发生
AB
称事件A包含于B或B包含A.
文氏图(Venn图)
A与B相等 ,记为A=B
例1: 产品有长度、直径、外观三个质量指标,
②(有﹏放﹏回﹏选﹏取﹏)从n个不同元素中有放回地抽取r个,依 次排成一列,称为可重复排列,排列数记
例 将三封信投入4个信箱,问在下列情形下各有几种 投法? ⑴ 每个信箱至多允许投入一封信。 ⑵ 每个信箱允许投入的信的数量不受限制。 解:⑴ 无重复排列:
⑵ 可重复排列:
Ⅳ. 组合 从n个元素中每次取出r个元素,构成一组,称为从n个 元素里每次取出r个元素的组合。 组合数为 或 几个常用性质:
两两互不相容。
证明 由三公理中的可列可加性,令
则由性质1可得 所以下式成立
如果




,0≤
≤1
(加法公式) 推广:
P11
例1 (天气问题) 某人外出旅游两天,据天气预报知: 第一天下雨的概率为0.6,第二天下雨的概率为0.3, 两天都下雨的概率为0.1 试求下列事件的概率: (1) 第一天下雨,第二天不下雨; (2) 第一天不下雨,第二天下雨; (3) 至少有一天下雨; (4) 两天都不下雨; (5) 至少有一天不下雨
解:设A、B分别表示第一、二天下雨 则 (1) (2) (3) (4) (5)
例2 (订报问题) 在某城市中,共发行三种报纸A,B,
C,订购A,B,C的用户占用分别为45%,35%,30%,

概率论与数理统计 --- 第二章{一维随机变量及其分布} 第二节:离散型随机变量

概率论与数理统计 --- 第二章{一维随机变量及其分布} 第二节:离散型随机变量
概率论
第二节 离散型随机变量
离散型随机变量及其分布律 离散型随机变量表示方法 三种常见分布
一、离散型随机变量及其分布律
例1 从中任取3 个球 取到的白球数X是一个随机变量 . (1) X 可能取的值是0,1,2 ; (2) 取每个值的概率为:
3 P { X 0} 3 5 1 3 10 5 6 3 10 5 3 3 10
2) 二项分布的泊松近似
定理(泊松定理):在n重伯努利试验中,
概率论
事件A在每次试验中发生的概率为p, 如果n 时,np ( 0为常数 ), 则对任意给定的非负整数k,有: n k n k lim p 1 p = e n k k!
k 3 k
3 k
, k 0,1,2,3
=0.104
3. 泊松分布(Poisson Distribution)
1) 设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k )
概率论

k
e

,
k 0,1,2,,
k!
其中 λ>0 是常数, 则称 X 服从参数为 λ 的泊松分布,记作X~π(λ).
概率论
随机变量 X 只可能取 0 与 1 两个值,其分布律为:
PX k p 1 p
k 1 k
,
k 0,1
0
p 1

X
0
q
1
p
pk
称 X 服从(0-1)分布或两点分布 或
X ~ b(1, p)
概率论
对于一个随机试验,如果它的样本空间只包含两个元 素,即 W {1 , 2 },我们总能在W上定义一个服从 (0-1)分布的随机变量.

《概率论》课程教学大纲

《概率论》课程教学大纲

《概率论》课程教学大纲ProbabiIity一、课程基本信息学时:48学分:3考核方式:考试。

期末成绩、平时成绩各占总成绩的70%和30%课程简介:《概率论》是一门研究和探索客观世界随机现象规律的数学学科。

它以随机现象为研究对象,是数学的分支学科,在金融、保险、经济与企业管理、工农业生产、医学、地质学、气象与自然灾害预报等等方面都起到非常重要的作用。

随着计算机科学的发展,以及功能强大的统计软件和数学软件的开发,这门学科得到了蓬勃的发展,它不仅形成了结构宏大的理论,而且在自然科学和社会科学的各个领域应用越来越广泛。

因此,将《概率论》这门课程定为必修基础课。

二、课程性质与教学目的《概率论》是统计学专业学生一门重要的专业基础必修课,在教学培养计划中列为基础主干课程。

通过本课程的学习,使学生不但比较系统的掌握概率论的基础知识,而且使学生学到随机数学的基础研究方法,另外训练学生严密的科学思维及分析问题解决问题的能力,为学生学习后继课打下良好的基础。

学习本课程要求学生具备必要的数学分析、高等代数等基础知识。

三、教学方法与手段以课堂教学为主,并结合案例分析与课程设计等手段使学生较好的掌握概率论中的重点和难点,提高学生的逻辑思维能力和数据分析模型的学以致用能力。

五、推荐教材和教学参考资源推荐教材:张超龙、杨建富编《概率论与数理统计教程》,中国农业出版社。

教学参考资源:1.沈恒范,《概率论与数理统计教程》,高等教育出版社,20052.盛骤等,《概率论与数理统计》,高等教育出版社,20083.华东师范大学数学系,《概率论与数理统计教程》,高等教育出版社,19804.张玉春、刘玉凤,《概率论与数理统计学习指导》,国防工业出版社,2008。

概率论与统计第二章第三节连续型随机变量

概率论与统计第二章第三节连续型随机变量

x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x

概率论第二章

概率论第二章

将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.

概率论与数理统计浙大四版 第二章3讲

概率论与数理统计浙大四版 第二章3讲
解 X 的分布密度函数为
f(x) 13, 2 x5, 0, 其他.
设 A 表示“ X 的观测值大于 3”,
即 A={ X >3 }.
由 P (A 于 ) P { X 3 }
51 dx
2,
33
3
设Y 表示3次独立观测中观测值大于3的次数,
则 因而有
Y
~
b 3,
32.
P{Y2}23322132333231320
解: F(x) = P(X x) =
x
f (t)dt
f(x)2 1x2, 1x1
0, 其它
解: 对x < -1,F(x) = 0
求 F(x).
对 1x1,
F(x)10d t x21t2dt
1
x
1x21ar
cxsi1n 2
对 x>1, F (x) = 1

0,
x1
F(x) x
1x21arcsx in1 2,
1, x 1
(2) 求X的概率密度.
解: (1) P(0.3<X<0.7)=F(0.7)-F(0.3)=0.72-0.32=0.4
(2)
f(x)= dF ( x ) dx
2x,
0,
0 x 1 其它
注意到F(x)在1处导数不存在,根据改变被积函数 在个别点处的值不影响积分结果的性质,可以在
F(x) 没意义的点处,任意规定 F(x)的值.
由此得, 1) 对连续型 r.v X,有
P ( a X b ) P ( a X b )
P(aXb) P(aXb)
2) 由P(X=a)=0 可推知
P (X R a ) f(x )d x P (X a ) 1 而 {X=a} 并非不可能事件 {XR{a}}并非必然事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)所取的每一个值都对应于一个随机事件;
(3)随机变量所取的每个值的概率大小是确定的;
令X 表示丢硬币赌博的赢钱数,则
1000, 正面;
X


1000,

反面;
P( X
1000)
P( 正面)

1 ;P( X 2
1000)

1; 2
令X 表示掷骰子出现点数的平方,则
1,2,3,4,5,6 L L
从概率的定义和前面的实例来看,计算概率时我们关心的
不是基本结果的描述,而更多的是一种数量关系.
2020/3/1
2
另外,有时我们总是将随机试验的基本结果与另外的数量 关系结合起来,比如
赢1000元钱; +1000
输1000元钱; 1000

1000 800 200 2000
实值函数,即X X(),称这样的变量X 为 随机变量,通常用英文字母X ,Y, Z L L 或 希腊字母,, 来表示.
随机变量是定义在样本空间上的实值函数;

X ()

R
随机变量的取值用小写字母x表示.
2020/3/1
4
随机变量的特征: (1)随机变量的取值是随机的,事前并不知道取什么值;4321
3 15 15 15 15
2020/3/1
8
例3 某人参加射击游戏, 射击的靶如图所示,
设每次射击不会发生脱靶,
1 2 4 d 2d 3d
并且击中1环,2环,4环的概率
分别与各环的面积成正比,求此人两次独立射击 所得环数的乘积的概率分布。
解: {ij i 1, 2, 4 ; j 1, 2, 4 }
X 1, 2, 4, 8, 16
(3d )2 ( 2d )2
p1
2 (3d )2
2
5 d 2 / 4 5 9 d 2 / 4 9 ;
p2

3; 9
p4

1; 9
2
2020/3/1
9
P( X P( X
1) 2)
P(11) p1 p1 P(12 ) P(21)
P( X 1) 4 2 4 6 5 15
P( X
432 2)

3
,
6 5 4 15
P( X 3) 4 3 2 2 2 6 5 4 3 15
P( X
43 21 2 4)

1
6 5 4 3 2 15
X0 1 2 3 4
P1
第二章
随机变量及其分布
基本内容:
一、随机变量的概念 二、离散随机变量(超几何分布、二项分布 泊松分布) 三、连续随机变量(均匀分布、指数分布,正态分布) 四、随机变量的分布函数
2020/3/1
1
在前一章,我们学习了随机试验和随机事件概率的计算, 随机现象大量存在,基本结果的描述也千变万化,例如
正面,反面 男孩,女孩 红球,白球,黑球
5 9
2
5 25 9 81 p1 p2 2
5 9

3 9

30 ; 81
P( X 4) P(14 ) P(41) P(22 )
P( X P( X

2 p1 p4
8) P(42
)pP22(2418)91;2
p4
16)

P(44 )

p4
其中次品数有x个的概率为 P(A2 ) P(A3) 1o 超几何分布
C C x nx M NM CNn
如果随机变量 X 的 概率函数为
p(x)

C C x nx M NM CNn
,x

0,1, 2,......min(n, M );
则称 X 服从超几何分布, 记为X H (n, M , N ),
实际上,给随机试验的每个基本结果赋予一个数值,这样
将样本空间与实数值之间建立一种对应关系,是我们用数 学理论和方法深入和系统研究随机试验规律的基础.
2020/3/1
3
2.1随机变量的概念
定义 设随机试验E的样本空间为 ,
若对于每一个样本点 ,变量X 都有确
定的实数值与之对应,则X 是定义在上的
2o pk 1
k
例1 设离散型随机变量X的分布律为 P(X i) pi (i 1, 2,L , n,L 其) 中0 p 1,求p的值.
解:由离散型随机变量分布列的性质有


pi 1 由等比数列公式得 pi
i1
解得p
1
i1
p 1 p
1
其中n, M , N是分布的参数.
2020/3/1
11
例4 已知20个产品中有5个一等品,若从中随机抽取8个,求:
(1)其中一等品数X的概率分布; (2)其中一等品数X 不多于3个的概率; 解(1)X的所有可能取值为:0,1, 2,3, 4,5 由题意知这是
超几何分布的模型,其中N 20, M 5, n 8;
p4

1; 81
p2

6; 81
X 1 2 4 8 16
P 25 30 19 6 1
81 81 81 81 81
2020/3/1
10
2.3超几何分布 二项分布 柏松分布
设一批产品共N件,其中M 件次品,从这批产品中“一次性
抽取n件样品”或“不放回的抽取n件样品”,则样品中的
次品数为 0,1,2,L n.
2
2020/3/1
7
[例2] 假定在排队等候胸透的6个病员中有2个肺结核患 者,求在发现第一个结核病患者前己胸透的病员人
数的概率分布. 解 : 用X 表示在发现第一个结核病患者前己胸透的病员
人数, 则X 是离散型随机变量, 取值为 0, 1, 2, 3, 4.
P( X 0) 2 1 , 63
X x1 x2 L xk L
P
p1 p2 L pk L
称为随机变量 X 的概率分布表.
2020/3/1
6
也可以用以下等式
P( X xk ) pk
(k 1, 2, 3, L )
表示随机变量 X 的取值及其相应的概率,称为分布律.
离散型随机变量的概率分布具有如下性质
1o pk 0 (k 1, 2, L )
X(i) i2,则P(X 25)
P(i 5) 1 . 6
2020/3/1
5
随机变量

离散型:取值为有限个或可列无穷个
连续型:取值为某个实数区间
2.2 离散型随机变量
(1) 概率分布 为了完整地描述离散型随机变量,不仅要知道它取哪
些值, 而且还要知道它以多大的概率取这些值, 即知道 它的概率分布.
相关文档
最新文档