第23章 旋转(单元总结)(原卷版)
23章旋转章小结
形
典型习题
6.如图,在△ABC 中,∠C=90°,AC=BC= 2,将△ABC 绕点 A 顺时针方 3-1 . 向旋转 60°到△AB′C′的位置,连接 C′B,则 C′B=____________
典型习题
类型三:通过旋转确定点的坐标 7.如图,边长为 2 的正三角形 ABO 的边 OB 在 x 轴上,将△ABO 绕 原点 O 逆时针旋转 30°得到三角形 OA1B1,则点 A1 的坐标为( B ) A.( 3,1) B.( 3,-1) C.(1,- 3) D.(2,-1)
A.30° B.60° C.90° D.150°
典型习题
3.如图,在△ABC中,∠CAB=70°,将△ABC
绕点A逆时针旋转到△AB′C′的位置,使得 CC′∥AB,则∠BAB′的度数是( C ) A.70°
B.35°
C.40° D.50°
典型习题 4.如图,在正方形ABCD内有一点P,PA=1,
C B
A
D
E
.O
知识点
对称中心的确定 两对对称点的连线的交点就是对称 中心。或两个对称点所连线段的中 点也是对称中心)。
.O
知识点
中心对称图形的定义
把一个图形绕着某一个点旋转180°,如果 旋转后的图形能够与原来的图形重合,那么 这个图形叫做中心对称图形,这个点就是它 的对称中心.
知识点
中心对称与中心对称图形的区别与联系 名 中心对称 中心对称图形 称 把一个图形绕着某一个点旋 如果一个图形绕着一个点 定 转180,如果他能够与另一 旋转180后的图形能够与 义 个图形重合,那么就说这两 原来的图形重合,那么这 个图形叫做中心对称图形 个图形关于这点对称 ①两个图形完全重合; 性 ②对应点连线都经过对称中 对应点连线都经过对称中 质 心,并且被对称中心平分 心,并且被对称中心平分 区 ①两个图形的关系 别 ②对称点在两个图形上 ①具有某种性质的一行证明 9.如图,在△ABC中,AB=AC,D是BC上一 点,且AD=BD.将△ABD绕点A逆时针旋转得到 △ACE. (1)求证:AE∥BC; (2)连接DE,判断四边形ABDE的形状,并说明 理由.
第二十三章旋转知识点总结,经典例题,单元测试
第二十三章旋转知识点总结,经典例题,单元测试:1.旋转:把一个平面图形绕着平面内某一点0转动一个角度,就叫做图形的旋转。
点0叫做旋转中心,旋动的角叫做旋转角。
旋转方向:顺时针和逆时针。
2.旋转的特征:(旋转不改变图形的大小和方向)(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角都等于旋转角。
(3)旋转前、后的图形全等。
3.旋转对称图形:一个图形绕着某一动点转动一定的角度后能与自身完全重合,这种图形称为旋转对称图形,绕着转动的这一点,称为旋转中心。
注:结合旋转对称图形的定义知:正三角形绕其中心旋转1200后能与自身完全重合,故正三角形是旋转对称图形;正方形绕其对角线的交点(旋转中心)旋转900后能与自身完全重合,故正方形是旋转对称图形。
一般的正n(n≥3)变形是旋转对称图形,那么最少旋转时,能与自身完全重合。
4.设计旋转对称图形:(1)确定旋转中心、旋转角度和旋转方向;这是旋转的三要素。
(2)确定图形中的关键点;(3)将这些关键点绕旋转中心绕指定方向旋转指定的角度。
(4)顺次连接新关键点,得到所求图形。
旋转的定义:【例1】如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:1.旋转中心是什么?旋转角是什么?2.经过旋转,点A、B分别移动到什么位置?【例2】如图所示,⊿ABC 和⊿ADE 都是等腰直角三角形,∠ACB 和∠AED 都是直角,点C 在AD 上,如果⊿ABC 经旋转后能与⊿ADE 重合,那么哪一点是旋转中心?旋转角度是多少?并指出对应点。
CBDEAM DBC EAN练一练:如图所示,⊿ABC 是等腰三角形,∠ACB=900,D 是AB 边上一点,⊿CBD 经逆时针旋转后到达⊿CAE 的位置,则旋转中心是 ,旋转角度是 ,点B 的对应点是 ,点D 的对应点是 ,线段CB 的对应线段是 ,线段CD 的对应线段是 ,∠CBD 的对应角是 ,如果点M 是线段BC 的中点,点N 是线段AC 的中点,那么经过上述旋转之后,点M 旋转到了 。
2024-2025学年人教版数学九年级上 第二十三章 旋转 单元练习卷(含答案)
2024-2025学年人教版数学九年级上第二十三章旋转一、单选题1.下列中国品牌新能源车的车标中,是中心对称图形的是()A.B.C.D.2.如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为( )A.60°B.120°C.72°D.144°3.已知一直角坐标系内有点,将线段OA绕原点O顺时针旋转90°后,A的对应点A 坐标为()A.B.C.D.4.如图,点A,C的坐标分别为(1,1)、(2,4),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则C'点的坐标为( )A.(﹣2,4)B.(4,0)C.(﹣1,3)D.(﹣2,2)5.如图,将绕点O逆时针旋转后得到,若,则的度数是A.B.C.D.6.如图,在平面直角坐标系中,,,,请确定一点D,使得以点A,B,C,D为顶点的四边形是轴对称图形但不是中心对称图形,则点D的坐标可能是()A.B.C.D.7.如图,在平面直角坐标系中,已知点,点B在第一象限内,,,绕点O逆时针旋转,每次旋转,则第2023次旋转后,点B的坐标为( )A.B.C.D.8.如图,在等腰直角中,,D、E为斜边上的点,,若,则的长是( )A.3B.C.D.9.如图,在平面直角坐标系中,将正方形绕O点顺时针旋转后,得到正方形,以此方式,绕O点连续旋转2023次得到正方形,如果点C坐标为,那么点的坐标为()A.B.C.D.10.如图,在正方形中,E,F是对角线上两点,,且.将以点A为中心顺时针旋转得到,点D,F的对应点分别为点B,G,连接,则下列结论一定正确的是()A.B.C.D.二、填空题11.若点和点关于原点对称,则点的坐标为.12.如图,在中,,将绕点C按逆时针方向旋转得到,点A的对应点为,点恰好在边上,则点与点B之间的距离为.13.如图,在平面直角坐标系xOy中,△OCD可以看成是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△OCD的过程.14.如图,△ABC中,∠C=90°,BC=3,AC=4.将△ABC绕点B逆时针旋转90°,点A 旋转后的对应点为A',则线段AA'的长为.15.如图,等腰△ABC中,∠BAC=120°,点D在边BC上,等腰△ADE绕点A顺时针旋转30°后,点D落在边AB上,点E落在边AC上,若AE=2cm,则四边形ABDE的面积是.16.如图,将绕着点A顺时针旋转得到.若点在同一条直线上..则的度数为.17.如图,中,,,,点是边上的一点,将绕点旋转得到,点的对应点为点,点的对应点为点,连接.如果,那么的长等于.18.如图,正方形的边长为2,,点是直线上一个动点,连接,线段绕点顺时针旋转得到,连接,则线段长度的最小值为.三、解答题19.如图,将绕直角顶点顺时针旋转,得到,连接,(1)求的长(2)若,求的度数.20.如图,图形中每一小格正方形的边长为1,已知.(1)的长等于,的面积等于;(2)将向右平移2个单位得到,则A点的对应点的坐标是;(3)将绕点C按逆时针方向旋转后得到,写出B点对应点的坐标.21.如图1,在△ABC 中,∠ACB=90°,∠B=20°,点O在AB边上.连结OC,已知OA=OB=OC.(1)直接写出∠A的度数;(2)如图2,将OA 绕着点O 逆时针旋转β角至OP,连结BP、CP.①当β=40°时,请你通过计算说明∠BCP=∠BPC;②当∠PBC=∠PCB时,求旋转角β的度数(0°<β<180°).22.正方形和等腰共顶点D,,将绕点D逆时针旋转一周.(1)如图1,当点F与点C重合时,若,求的长;(2)如图2,M为中点,连接,探究的关系,并说明理由;(3)如图3,在(2)条件下,连接并延长交于点Q,若,在旋转过程中,的最小值为.23.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F (点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.参考答案:1.B2.D3.B4.D5.B6.C7.D8.D9.C10.A11.12.13.将△AOB顺时针旋转90°,再向左平移2个单位长度14.15.2cm216.50°17.或18.19.(1)解:由题意,根据旋转的性质可知:,,;(2)由旋转的性质可知:,,,,,,.20(1)如图,根据题意,得:,,,∴;∴,(2)∵,∴向右平移2个单位得到,此时即,故答案为:.(3)根据旋转方向,旋转的性质,得,21.解:(1)∵∠A+∠B+∠ACB=180°,∠ACB=90°,∠B=20°,∴∠A=180°-90°-20°=70°;(2)①∵OB=OC,∠ABC=20°,∴∠BCO=∠ABC=20°,∴∠AOC=∠BCO+∠ABC=40°,∵∠AOP=β=40°,∴∠AOC=∠AOP,∴∠BOC=∠BOP,在△BOC和△BOP中,∵OC=OP,∠BOC=∠BOP,BO=BO,∴△BOC≌△BOP(SAS),∴BC=BP,∴∠BCP=∠BPC;②如图3,∵∠PBC=∠PCB,∠BCO=∠ABC=20°,∴∠1=∠2,∵OP=OC=OB,∴∠2=∠4,∠1=∠3,设∠1=x°,则∠PBC=∠PCB=(x+20)°,∠BPC=2x°,由三角形的内角和定理可得:2(x+20)+2x=180,解得:x=35,即∠1=∠3=35°,∴∠AOP=β=∠1+∠3=70°;即当∠PBC=∠PCB时,旋转角β=70°.22.1)解:如图:连接,∵四边形为正方形,∴,∵,∴,∴,∴.(2)解:;理由如下:如图2,延长至Q,使,连接,∵,∴,∴,∴,延长交于点N∴,∴,∴,∴,∴,∴,∴.(3)解:如图:连接,取的中点O,连接.∵四边形是正方形,,∴,∵,∴,∴点M的运动轨迹是O为圆心,为半径的圆,当与相切时,的值最小,∵,∴,∵,∴,∵,∴,在上取一点T,使得,连接,∵,∴,∴,∴,∴,∴最小.23.解:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD;(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∴△MPE≌△FPD(ASA)∴ME=DF,∴DE+DF=AD;(3)如图,在整个运动变化过程中,①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE=AD.。
(完整版)第二十三章旋转知识点
第二十三章旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.。
九年级数学: 第23章旋转单元测试卷及答案(Word版)
第23 章旋转单元测试卷一、填空题:(共23分)1.如图1,△ABC是等腰直角三角形,D是A B上一点,△CBD经旋转后到达△ACE的位置,则旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段C B的对应点是;∠B的对应角是;如果点M是C B的13,那么经过上述旋转后,点M移到了.2. 3点12分和3点40分时,时针与分针构成的角各是度和度.3.请你写出5个成中心对称的汉字,填在下面的横线上.4.如图2所示的四个图形中,图形(1)与图形成轴对称;图形(1)与图形成中心对称.(填写符合要求的图形所对应的符号)5.如图3所示,△ABC绕点A逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为度.6.如图4所示,线段A B=4cm,且C D⊥AB于O,则阴影部分的面积是.7.如图5①,将字母“V”沿平移格会得到字母“W”。
如图5②,将字母“V”绕点旋转度后得到字母N,绕点旋转度后会得到字母X.(图中E、F分别是其所在线段的中点)8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相同的三角形组成的正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出个不同的“希望杯”.9.在直角坐标系中,点A(2,-3)关于原点对称的坐标是.10. 在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有个.图7二、选择题:(共40分)11.观察下列图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你仔细观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14.下列图形.中心对称图形的为()ABC D15.下列图形中是中心对称图形的是A B C D16.在下列四个图案中,既是轴对称图形,又是中心对称图形的是())AB C D17.下列图案都是由宁母“m ”经过变形、组合而成的.其中不是中心对称图形的是()18.将下面的直角梯形绕直线 l 旋转一周,可以得到右边立体图形( )19.数学课上,老师让同学们观察如图 8 所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°; 丙同学说:90°;丁同学说:135°。
九年级上学期数学-第二十三章 旋转 单元过关检测02(原卷版)
2022—2023学年九年级上学期第三单元过关检测(2)一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.2.(4分)在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移3.(4分)如图,将线段AB先绕原点О按逆时针方向旋转90°,再向下平移4个单位,得到线段CD,则点A的对应点C的坐标是()第3题第4题A.(1,﹣6)B.(﹣1,6)C.(1,﹣2)D.(﹣1,﹣2)4.(4分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.105°B.95°C.85°D.75°5.(4分)如图,直线l1∥l2,现将一个含30°角的直角三角板的锐角顶点B放在直线l2上,将三角板绕点B旋转,使直角顶点C落在l1与l2之间的区域,边AC与直线l1相交于点D,若∠1=35°,则图中的∠2的度数是()第5题第6题A.65°B.75°C.85°D.80°6.(4分)如图,在△AOB中,AO=2,BO=AB=3.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段BB′的长为()A.2B.22C.3D.327.(4分)问题:“如图1,平面上,正方形内有一长为12,宽为6的矩形纸片,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙三名同学分别作了自认为边长最小的正方形,求出该正方形的边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可以移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可以移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和时就可以移转过去;结果取n=18.对甲、乙、丙评价正确的是()A.甲的思路错,n值正确B.乙的思路对,n值正确C.丙的思路对,n值正确D.甲、乙的思路都错,丙的思路对8.(4分)如图,在等边△ABC中,D是边AC上一动点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=10,则△AED的周长的最小值是()第8题第9题第10题A.10B.103C.10+53D.209.(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB'C'D'的位置,旋转角为α(0°<α<90°),若∠1=120°,则∠α等于()A.25°B.30°C.45°D.65°10.(4分)如图,点P是等边三角形ABC内一点,且P A=3,PB=4,PC=5,则∠APB的度数是()A.90°B.100°C.120°D.150°11.(4分)如图Rt△ABC中,∠ACB=90°,D是斜边AB的中点,将△ABC绕点A按顺时针方向旋转,点C落在CD的延长线上的E处,点B落在F处,若AC=42,BC=217,则CE的长为()第11题第12题A.7.5B.6C.6.4D.6.512.(4分)如图,在矩形ABCD中,AB=2,BC=4,F为BC中点,P是线段BC上一点,设BP=m(0<m≤4),连结AP并将它绕点P顺时针旋转90°得到线段PE,连结CE、EF,则在点P从点B向点C 的运动过程中,有下面四个结论:①当m≠2时,∠EFP=135°;②点E到边BC的距离为m;③直线EF一定经过点D;④CE的最小值为2.其中结论正确的是()A.①②B.②③C.②③④D.③④二、填空题(本题共4个小题,每小题4分,共16分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)如图,边长为2的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按顺时针方向旋转120°,得到△OA'B′,则点A′的坐标为.第13题第14题第15题14.(4分)如图,在矩形ABCD中,AC是对角线.将矩形ABCD绕点B顺时针旋转90°到矩形GBEF位置,H是EG的中点.若AB=6,BC=8,则线段CH的长为.15.(4分)如图,边长为2的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE将线段CE绕点C顺时针旋转60°得到CF,连接DF,则在点E运动过程中,DF的最小值是.16.(4分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,1),(3,0),(2,﹣1).点M从坐标原点O出发,第一次跳跃到点M1,使得点M1与点O关于点A成中心对称;第二次跳跃到点M2,使得点M2与点M1关于点B成中心对称;第三次跳跃到点M3,使得点M3与点M2关于点C成中心对称;第四次跳跃到点M4,使得点M4与点M3关于点A成中心对称;…,依此方式跳跃,点M2022的坐标是.三、解答题(本题共8个小题,共86分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上,解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移4个单位,则点B的对应点坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A1OB1,请在图中作出△A1OB1;(3)求△A1OB1的面积.18.(8分)如图,将等边△ABC绕点C顺时针旋转60°,得到△ADC,分别过点A、点C作BC、AD边上的高,交BC、AD于点E、F.(1)求证:四边形AECF是矩形;(2)连接BD,若AB=3,求BD的长.19.(10分)如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.20.(10分)如图,△ABC与△ACD为正三角形,点O为射线CA上的动点,作射线OM与射线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与射线CD相交于点F.(1)如图1,点O与点A重合时,点E,F分别在线段BC,CD上,求证:△AEC≌△AFD;(2)如图2,当点O在CA的延长线上时,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE、CF、CO三条线段之间的数量关系,并说明理由.21.(12分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移a个单位长度,向下平移a个单位长度后,得到的点M(m,n)落在第四象限,求a的取值范围;(3)在(2)条件下,当a取何值,代数式m2+2n+5取得最小值.22.(12分)如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)证明:在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,当AC绕点O顺时针旋转多少度时,四边形BEDF是菱形,请给出证明.23.(12分)如图,已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S表示(1)中作出的四边形A1B1C1D1的面积S1;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四个边形,面积为S2,则S1与S2是否相等,为什么?24.(14分)如图,有一副直角三角板如图1放置(其中∠D=45°,∠C=30°),P A,PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)在图1中,∠DPC=;(2)①如图2,若三角板PBD保持不动,三角板P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;②如图3,在图1基础上,若三角板P AC的边P A从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,当PC转到与P A重合时,两三角板都停止转动,在旋转过程中,当∠CPD=∠BPM时,求旋转的时间是多少?。
人教新版数学九年级上学期《第23章旋转》单元测试(含答案)
人教新版数学九年级上学期《第23章旋转》单元测试一.选择题(共10小题)1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种2.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°4.如图,E是正方形ABCD的边CB延长线上的一点.把△AEB绕着点A逆时针旋转后与△AFD重合,则旋转的角度可能是()A.90°B.60°C.45°D.30°5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°6.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)8.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)9.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C.D.10.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n的坐标是()+1A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)二.填空题(共6小题)11.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.12.下图右侧有一盒拼板玩具,左侧有五块板a、b、c、d、e,如果游戏时可以平移或旋转,但不能翻动盒中任何一块,那么a、b、c、d、e中,是盒中找不到的?(填字母代号)13.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=;将△ABC绕直角顶点A旋转时,保持AD在∠BAC的内部,设∠EAC=x°,∠BAD=y°,则x与y的关系是.14.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),以O旋转中心,将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是;△P5OP6的面积是.16.在五行五列的方格棋盘上沿骰子的某条棱翻动骰子,骰子在棋盘上只能向它所在格的左、右、前、后格翻动.开始时骰子在3C处,如图1,将骰子从3C处翻动一次到3B处,骰子的形态如图2;如果从3C处开始翻动两次,使朝上,骰子所在的位置是.三.解答题(共7小题)17.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.18.如图,已知平面直角坐标系中两点A(﹣1,5)、B(﹣4,1).(1)将A、B两点沿x轴分别向右平移5个单位,得到点A1、B1,请画出四边形ABB1A1,并直接写出这个四边形的面积;(2)画一条直线,将四边形ABB1A1分成两个全等的图形,并满足这两个图形都是轴对称图形.19.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.20.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.21.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.23.如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD 于E.(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.参考答案一.选择题1.C.2.D.3.B.4.A.5.B.6.A.7.B.8.B.9.D.10.C.二.填空题11.13.12.D.13.40°,y=180﹣x.14.或或或.15.512.16.2B或4B.三.解答题17.解:注:本题画法较多,只要满足题意均可,画对一个得(1分).18.解:(1)如图所示的四边形ABB1A1即为要求画的四边形,S四边形ABB1A1=5×(5﹣1)=20(平方单位);(2)如图所示:∵四边形ABB1A1是平行四边形,∴直线AB1即为所要求画的直线.19.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF,∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4,∴BF=BM﹣MF=4﹣x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF的长为.20.解:(1)∵∠BAC=100°,AB=AC,∴∠ABC=∠ACB=40°,当α=60°时,由旋转的性质得AC=CD,∴△ACD是等边三角形,∴∠DAC=60°,∴∠BAD=∠BAC﹣∠DAC=100°﹣60°=40°,∵AB=AC,AD=AC,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD﹣∠ABC=70°﹣40°=30°,故答案为:30°;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.则△CBD≌△CBM,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM,∴∠ACM=60°,∴△ACM是等边三角形,∴AM=AC=AB,∠MAC=60°,∴∠BAM=40°,∵∠CAD=∠CDA=(180°﹣20°)=80°,∴∠BAD=∠CAD=20°,∵AD=AD,∴△DAB≌△DAM,∴BD=DM,∵BD=BM,∴BD=DM=BM,∴∠DBM=60°,∴∠DBC=∠CBM=30°,故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°﹣60°=40°,∠ABC=∠ACB=90°﹣=40°,∠ABD=90°﹣∠BAD=120°﹣=70°,∠CBD=∠ABD﹣∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°=20°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=﹣20°=20°;③以C为圆心CD为半径画圆弧交BD的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=50°,∠DCD2=180°﹣2∠CDD2=180°﹣100°=80°,∠α=60°+∠DCD2=140°.综上所述,α为60°或20°或140°时,∠CBD=30°.故答案为60或20或140.21.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.22.解:(1)小明的结论正确,理由如下:∵AD平分∠BAC,∠BAD+∠CAD=90°,∴∠BAD=∠CAD=45°.∵∠FAB+∠BAD=90°,∴∠FAB=45°,∴∠FAB=∠BAD,∴AB平分∠FAD.(2)小明的结论正确,理由如下:∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,∴∠FAB=∠DAC.(3)∵∠FAC=∠FAB+90°,∴∠FAB=∠FAC﹣90°.∵∠BAD=90°﹣∠FAB,∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).23.解:(1)∵△ABC为等边三角形∴AB=BC=AC=4,∠BAC=60°且∠DBC=15°∴∠ABE=45°且AE⊥BD∴∠BAE=∠ABE=45°∴AE=BE,且AC=BC∴CF垂直平分AB即AF=BF=2,CF⊥AB∵∠ABE=45°∴∠FEB=∠ABE=45°∴BF=EF=2,∵Rt△BCF中,CF==2∴CE=2﹣2(2)如图2:过点M作CM∥BD∵将线段AE绕点A逆时针旋转60°得到线段AF∴AE=AF,∠EAF=60°,∴△AEF为等边三角形∴∠AFE=∠AEF=60°∴∠FAC+∠EAC=60°,且∠BAE+∠EAC=60°∴∠BAE=∠CAF,且AB=AC,AE=AF∴△ABE≌△ACF∴BE=CF,∠AEB=∠AFC=90°∴∠BEF=150°,∠MFC=30°∵MC∥BD∴∠BEF=∠GMC=150°,∴∠CMF=30°=∠CFM∴CM=CF且CF=BE∴BE=CM且∠BGE=∠CGM,∠BEG=∠CMG ∴△BGE≌△GMC∴BG=GC。
第23章 旋转单元测试试题(含解析)
人教版九年级上册第23章旋转单元测试(时间100分钟,总分100分)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.33.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°4. 如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5. 如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2 B.3 C.4 D.1.56.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45° B.60° C.90° D.120°8. 如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对9. 如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空(共8个小题,每题3分,共24分)11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是.12. △ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14. 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16. 如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为.17. 如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18. 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是(填序号)三、解答题(前3题每题7分,后三题分别为8、8、9分,共46分)19.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.20. 如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22. 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC 与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。
人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)
九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。
第二十三章 旋转章末复习小结(1)基本知识
课堂练习
4.直角坐标系中,点A(﹣3,4)与点B(3,﹣4)关于( C )
A.x轴轴对称B.y轴轴对称C.原点中心对称D.以上都不对
5.已知点P(2+m,n-3)与点Q(m,1+n)关于原点对称,则m-n
的值是( D )
A.1 B.-1
C.2
D.-2
课堂练习
6.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为
人教版.九年级上册
第二十三章 旋转章末复习小结(1 )
基本知识
学习目标
1.梳理本章的知识要点,回顾与复习本章知识; 2.进一步明确旋转、中心对称、中心对称图形的概念及性 质,并会作图; 3.能熟练说出一个点关于原点对称的坐标; 4.能灵活应用平移、旋转、轴对称变换进行图案设计,体 会数学的美感.
复习巩固 本章知识结构图
3.如图,将△ABC绕点A逆时针旋转90°能与△ADE重合,点D在 线段BC的延长线上,若∠BAC=20°,则∠AED的大小为( D )
A.135° B.125° C.120° D.115°
知识梳理
知识点2 中心对称有关概念 把一个图形绕着某一个点旋转 180° ,如果它能与另一个图形 重合,那么就说这两个图形成 中心对称 ,这个点叫做对称中心, 这两个图形中的对应点叫做关于中心的 对称点 . 知识点3 中心对称的性质
绕着某一点旋转180° 能够与另一个图形重合
对称点所连线段都经过对称中心, 而且被对称中心所平分。 中心对称的两个图形是全等图形。
图案设计 利用平移、轴对称、旋转进行图案设计
格点.已知△AOB的顶点均在格点上,建立如图所示的平面直角坐标
系,点A、B的坐标分别是A(3,2) 、B(1,3).
最新人教版九年级数学上册第二十三章《旋转》本章总结
知识建构体验中考 1.(2007湖北武汉)图23-1①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步 骤可画出这个风车图案:在图②中,先画线段OA,将线段OA 平移至CB 处,得到风车的第一个 叶片Fi,然后将第一个叶片 OABC 绕点O 逆时针旋转180。
得到第二个叶片F 2,再将F i 、F ?同 时绕点O 逆时针旋转90°得到第三、第四个叶片 F 3、F 4.根据以上过程,解答下列问题:图 23-1(1) 若点A 的坐标为(4,0),点C 的坐标为(2,1),写出此时点B 的坐标; (2) 请你在图23-1②中画出第二个叶片 F 2;⑶在(1)的条件下,连接OB,由第一个叶片逆时针旋转 扫过的图形面积是多少? 解:(1)B(6,1). (2)画图如下.⑶连接OB 后,OB= 62 12 二..37.由第一个叶片逆时针旋转180°得到第二个叶片的过程中线段OB 扫过的图形是一个以 OB为半径的半圆,其面积为1 M'37)2二37 n.2 22.(2007辽宁大连)在如图23-2所示的方格纸中,每个小正方形的边长都为1厶ABC 与本章总结180。
得到第二个叶片的过程中,线段OB① ②解:⑴我连接的两条相交且互相垂直的线段是 AO 和DE,它们相交于点 H.△ A i B i C i 构成的图形是中心对称图形图 23-2(1)画出此中心对称图形的对称中心0;⑵画出将厶A i B i C i 沿直线DE 方向向上平移5格得到的△ A 2B 2C 2;⑶要使△ A 2B 2C 2与厶CC i C 2重合,则△ A 2B 2C 2需绕点C 2顺时针方向至少旋转多少度? (直接写出答案) 解:⑴(2)如下图.(3) 90 ° 3. (2007江苏扬州)如图23-3,正方形ABCD 绕点A 逆时针旋转后得到正方形 AEFG,边EF 与CD 交于点O.D \0 C图 23-3(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;⑵若正方形的边长为2 cm,重叠部分(四边形AEOD)的面积为cm 2,求旋转的角度3理由如下:在 Rt △ ADO 和 Rt △ AEO 中,AD=AE,AO=AO, ••• Rt △ ADO 也 Rt △ AEO.•••/ DAO= / EAO.又•••/ ADH= / AEH,•••在厶 ADH 和厶 AEH 中,/ AHD= / AHE=90 • AO 丄 DE..c 1 1 1 4J3…ADO =-X2 DO= _ ----------- .2 2 2 32.3--DO= -------3 •• AO= AD 2 DO^-22在 Rt △ ADO 中,AO=2DO, DAO=30 . •旋转的角度为30°,即n=30. 数学趣闻巴西建有能旋转的大楼许多豪华酒店都在顶层建有旋转餐厅,人们可以一边享用美味一边尽情观赏城市风 景.如果我们住的房子可以旋转,人们不就可以随意欣赏窗外的美景了吗?这一奇想现在已 变成了现实,巴西库里蒂巴市新近落成了一座旋转大楼,每一层都可以独立地围绕轴心进行水平360°的旋转•在这样的房间居住,您可以依照心情和季节的变化,随心所欲地自选窗外的风景•这种旋转大楼目前在全世界是独一无二的⑵•••重叠部分(四边形AEOD )的面积为 4: 3 3cm 2,Rt A ADO 也 Rt △ AEO, A B图 23-411 层的白旋转大楼建在库里蒂巴全市地势最高的巴罗埃维拉区的山坡上,远远望去,色圆柱形建筑十分引人注目.其实大楼只是前半部分是圆柱形,后半部分是普通的方形建筑.为了避免居住同一楼层的住户因希望楼层旋转方向的不同而发生矛盾,旋转大楼的每个楼层只供一户居住,面积300 平方米.圆柱形的部分是客厅、餐厅和卧室,可以旋转,相连的后半部分是厨房、厕所和洗衣房等附属设施,不能旋转.旋转大楼已成为库里蒂巴市的旅游景点之一,参观者络绎不绝. “这是一座公平的大厦,任何人在任何时间段内的视野范围都一样,没有哪个房间视野最好. ”在寸土寸金的今天,一名工程师的话道出了旋转大楼成为建筑界新宠的原因.。
九年级数学上册第二十三章旋转知识点归纳总结(精华版)(带答案)
九年级数学上册第二十三章旋转知识点归纳总结(精华版)单选题1、如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE答案:C分析:利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD =180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.小提示:本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.当GC=GB时,下列针对α值的说法正确的是()A.60°或300°B.60°或330°C.30°D.60°答案:A分析:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=1AD,2∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG =60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=360°-60°=300°,故选:A .小提示:本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.3、已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =96cm ,则AC 的长为( )A .36cm 或64cmB .60cm 或80cmC .80cmD .60cm答案:B分析:分两种情况讨论,根据题意画出图形,根据垂径定理求出AM 的长,连接OA ,由勾股定理求出OM 的长,进而可得出结论.解:连接AC ,AO ,∵⊙O 的直径CD =100cm ,AB ⊥CD ,AB =96cm ,∴AM =12AB =12×96=48(cm ),OD =OC =50(cm ),如图1,∵OA =50cm ,AM =48cm ,CD ⊥AB ,∴OM =√OA 2−AM 2=√502−482=14(cm ),∴CM =OC +OM =50+14=64(cm ),∴AC=√AM2+CM2=√642+482=80(cm);如图2,同理可得,OM=14cm,∵OC=50cm,∴MC=50−14=36(cm),在Rt△AMC中,AC=√AM2+CM2=60(cm);综上所述,AC的长为80cm或60cm,故选:B.小提示:本题考查的是垂径定理、勾股定理的应用,根据题意画出图形、利用垂径定理和勾股定理求解是解答此题的关键.4、已知点A(−2,3)与点B关于原点对称,则点B的坐标()A.(−3,2)B.(2,−3)C.(3,2)D.(−2,−3)答案:B分析:根据关于原点对称点的坐标变化特征直接判断即可.解:点A(−2,3)与点B关于原点对称,则点B的坐标为(2,−3),故选:B.小提示:本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数.5、已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.√14B.4C.√23D.5答案:DAB=5,然后在分析:连接OA,过点O作OC⊥AB于点C,如图所示,先利用垂径定理求得AC=BC=12RtΔAOC中求得OC=2√6,再在RtΔPOC中,利用勾股定理即可求解.解:连接OA,过点O作OC⊥AB于点C,如图所示,则AC=BC=1AB,OA=7,2∵PA=4,PB=6,∴AB=PA+PB=4+6=10,∴AC=BC=1AB=5,2∴PC=AC−PA=5−4=1,在RtΔAOC中,OC=√OA2−AC2=√72−52=2√6,在RtΔPOC中,OP=√OC2+PC2=√(2√6)2+12=5,故选:D小提示:本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键.6、如图,在△ABC中,∠ACB=90∘,点D是AB的中点,将△ACD沿CD对折得△A′CD.连接BA′,连接AA′交CD于点E,若AB=14cm,BA′=4cm,则CE的长为()A.4cmB.5cmC.6cmD.7cm答案:B分析:由折叠性质得AA′⊥CD,AD=A′D,根据直角三角形斜边上的中线性质可证得CD=AD=BD=A′D,可证得A、C、A′、B共圆且AB为直径,利用垂径定理的推论和三角形的中位线性质证得DE=1A′B,进而可求解CE的长.2解:由折叠性质得AA′⊥CD,AD=A′D,∵∠ACB=90∘,点D是AB的中点,∴CD=AD=BD=A′D=1AB,2∴A、C、A′、B共圆且AB为直径,又A A′⊥CD,∴AE=A′E,又AD=BD,∴DE是△AB A′的中位线,∴DE=1A′B,2∵AB=14cm,BA′=4cm,∴CD=7cm,DE=2cm,∴CE=CD-DE=7-2=5cm,故选B.小提示:本题考查直角三角形斜边上的中线性质、三角形的中位线性质、折叠性质、垂径定理的推论,熟练掌握相关知识的联系与运用是解答的关键.7、围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGoi进行围棋人机大战截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.答案:A分析:根据中心对称图形的定义:一个平面图形,绕一点旋转180°,与自身重合,这样的图形叫做中心对称图形.逐一进行判断即可.解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选A.小提示:本题考查中心对称.熟练掌握中心对称的定义是解题的关键.8、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.答案:C分析:根据旋转的定义进行分析即可解答解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是C.故选:C.小提示:本题考查了图纸旋转的性质,熟练掌握是解题的关键.9、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.10、下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形答案:B分析:根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B.小提示:本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.填空题11、如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °答案:55分析:根据旋转的性质可得∠ACA ′=35°,∠A =∠A ′,再由直角三角形两锐角互余,即可求解. 解:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A ′B ′C∴∠ACA ′=35°,∠A =∠A ′,∵∠A ′DC =90°,∴∠A ′=55°∴∠A =55°.所以答案是:55小提示:本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键.12、在平面直角坐标系xOy 中,直线y =−√33x +2分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部.(1)△BCD 周长的最小值是____________________;(2)当△BCD 的周长取得最小值,且BD =53√2时,△BCD 的面积为__________.答案: 4√2 43分析:(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 2=(5√23)2,因为CB +CD =4√2﹣5√23,可推出CB •CD 的值,进而求出三角形的面积.(1)∵直线y =−√33x +2与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x =2√3,把x =0代入,解得y =2,∴点C 的坐标为(2√3,0),点A 的坐标为(0,2).∴AC =√22+(2√3)2=4.作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.由轴对称的性质,可知CD =C 1D ,CB =C 2B . ∴CB +BD +CD =C 2B +BD +C 1D =C 1C 2连接AC 1、AC 2,可得∠C 1AD =∠CAD ,∠C 2AB =∠CAB ,AC 1=AC 2=AC =4.∵∠DAB =45°,∴∠C 1AC 2=90°.连接C 1C 2.C 1C 2=√42+42=4√2,∵两点之间线段最短,∴当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长. ∴△BCD 的周长的最小值为4√2.所以答案是:4√2.(2)根据(1)的作图可知四边形AECF 的对角互补,其中∠DAB =45°,因此,∠C 2CC 1=135°. 即∠BCC 2+∠DCC 1+∠BCD =135°,∴2∠BCC 2+2∠DCC 1+2∠BCD =270°①,∵∠BC 2C =∠BCC 2,∠DCC 1=∠DC 1C ,∠BC 2C +∠DC 1C +∠BCC 2+∠DCC 1+∠BCD =180°, ∴2∠BCC 2+2∠DCC 1+∠BCD =180°②,①-②得,∠BCD =90°.∴CB 2+CD 2=BD 2=(5√23)2=509,∵CB +CD =4√2﹣5√23=7√23,(CB +CD )2=CB 2+CD 2+2CB •CD ,∴2CB •CD =(CB +CD )2-(CB 2+CD 2)= (7√23)2−509=163∴S=12⋅CB⋅CD=43.所以答案是:43小提示:本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.13、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.14、如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.答案:7√2;分析:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四边形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,{∠AOC=∠FOBAO=FO∠ACO=∠FBO,∴△AOC≌△FOB(ASA),∴AO=FO,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×√22=7√2.故答案为7√2.小提示:本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.15、如图,在正方形网格中,格点ΔABC绕某点顺时针旋转角α(0<α<180°)得到格点ΔA1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=_____度.答案:90°分析:先连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,再由题意得到旋转中心,由旋转的性质即可得到答案.如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,∵CC1,AA1的垂直平分线交于点E,∴点E是旋转中心,∵∠AEA1=90°,∴旋转角α=90°.故答案为90°.小提示:本题考查旋转,解题的关键是掌握旋转的性质.解答题16、如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;(2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2、B2的坐标.答案:(1)图见解析,A1(0,﹣4),B1(2,﹣4)(2)图见解析,A2(﹣4,0),B2(﹣4,﹣2)分析:(1)根据旋转先找到找到A1,B1点,再进行连线即可;(2)根据关于原点对称的点特征,找到A2,B2点,再进行连线即可;(1)如图所示,△OA1B1即为所求,由图知,A1(0,﹣4),B1(2,﹣4);(2)如图所示,△OA2B2即为所求,A2(﹣4,0),B2(﹣4,﹣2).小提示:本题考查坐标系下图形的旋转,对称作图,根据找点,描点,连线的方法进行作图即可.17、已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若△ABC为等边三角形,在不添加辅助线的情况下,请你直接写出所有是轴对称但不是中心对称的图形.答案:(1)证明见解析(2)等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF分析:(1)由角平分线可知∠ABD=∠CBD,由平行可知∠BDE=∠ABD,可得∠CBD=∠BDE,DE=BE= AF,进而结论得证;(2)由题意可得四边形ADEF是菱形,D,E,F是等边三角形的中点,然后根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对图中的三角形与四边形的对称性进行判断即可.(1)证明:∵BD是△ABC的角平分线∴∠ABD=∠CBD∵DE∥AB∴∠BDE=∠ABD∴∠CBD=∠BDE∴DE=BE=AF∵DE∥AF,DE=AF∴四边形ADEF是平行四边形.(2)解:由(1)知四边形ADEF是平行四边形∴EF∥AC∵△ABC是等边三角形∴∠EFB=∠C=∠B=60°∴BE=EF=DE∴四边形ADEF是菱形∴AF=BF,BE=CE,CD=AD∴D,E,F是等边三角形的中点∴BG⊥EF,BD⊥EF∴由轴对称图形与中心对称图形的定义可知,是轴对称图形但不是中心对称图形的有:等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF.小提示:本题考查了角平分线,等腰三角形的判定与性质,等边三角形的判定性质,平行四边形的判定与性质,菱形的判定与性质,轴对称图形,中心对称图形等知识.解题的关键在于对知识的熟练掌握与灵活运用.18、如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.答案:(1)16°(2)DL=EN+GM,见解析分析:(1)根据题意易求出∠BDC=53°.在图②中连接BD.根据旋转结合正方形性质即得出BD=DE= DG,∠DCB=90°.根据等腰三角形三线合一的性质即可得出∠BDC=∠CDG=53°,从而可求出∠CDE的大小,进而即可求出∠BDE的大小,即旋转角.(2)在图③中,过点G作GK//BM,交DE于K,由正方形的性质可得出∠DEF=∠GDE,DE=DG.又易证GK⊥DN,即得出∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,从而得出∠EDN=∠DGK,由此可证明△DKG≌△END(ASA),得出EN=DK.由GK//ML,KL//GM,可判定四边形KLMG是平行四边形,得出结论GM=KL,从而即可证明DL=EN+GM.(1)由图①知,∠BDC=90°−∠CDG=90°−37°=53°,如图②,连接BD,根据旋转和正方形性质可知BD=DE=DG,∠DCB=90°.∴∠BDC=∠CDG=53°,∴∠CDE=90°−∠CDG=90°−53°=37°,∴∠BDE=∠BDC−∠CDE=53°−37°=16°,∴旋转角为16°;(2)DL=EN+GM,理由如下:如图③,过点G作GK//BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG.∵GK//BM,DN⊥BM,∴GK⊥DN,∴∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK//ML,KL//GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=DK+KL=EN+GM.小提示:本题考查正方形的性质,旋转的性质,平行线的判定和性质,三角形全等的判定和性质以及平行四边形的判定和性质,综合性较强.正确的做出辅助线以及利用数形结合的思想是解题关键.。
九年级数学上册第二十三章旋转总结(重点)超详细(带答案)
九年级数学上册第二十三章旋转总结(重点)超详细单选题1、在平面直角坐标系中,点A(a,1)与点B(−2,b)关于原点成中心对称,则a+b的值为()A.−3B.−1C.1D.3答案:C分析:根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得a,b的值即可求解.解:∵点A(a,1)与点B(−2,b)关于原点成中心对称,∴a=2,b=−1,∴a+b=2−1=1,故选C.小提示:本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.2、将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.答案:D分析:根据中心对称的定义,结合所给图形即可作出判断.A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.小提示:此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.3、下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.答案:B分析:根据中心对称图形和轴对称图形的定义判断即可.解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.小提示:本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.4、有一个正n边形旋转90∘后与自身重合,则n为()A.6B.9C.12D.15答案:C分析:根据选项求出每个选项对应的正多边形的中心角度数,与90∘一致或有倍数关系的则符合题意.如图所示,计算出每个正多边形的中心角,90∘是30∘的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.小提示:本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.5、在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5)B.(−3,5)C.(3,5)D.(−3,−5)答案:C分析:根据关于原点对称的点的坐标特点解答.解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C.小提示:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.6、以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限答案:B分析:根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.小提示:本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.7、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.8、如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.答案:B分析:根据绕点B按顺时针方向旋转90°逐项分析即可.A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故选:B.小提示:本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.9、如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是()A.B.C.D.答案:A分析:将图沿着它自己的右边缘翻折,则圆在正方形图形的右上角,然后绕着右下角的一个端点按顺时针方向旋转180°,则圆在正方形的左下角,利用此特征可对四个选项进行判断.先将图沿着它自己的右边缘翻折,得到,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形为.故选:A小提示:本题考查了利用旋转设计图案:由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换一些复合图案.10、如图,将△AOB绕着点O顺时针旋转,得到△COD(点C落在△AOB外),若∠AOB=30°,∠BOC=10°,则最小旋转角度是()A.20°B.30°C.40°D.50°答案:C分析:直接利用已知得出∠AOC的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.∵∠AOB= 30°,∠BOC = 10°,∴∠AOC=∠AOB+∠COB = 30°+ 10°= 40°∵将△AOB绕着点O顺时针旋转,得到△COD,∴最小旋转角为∠AOC = 40°.故选: C.小提示:此题主要考查了旋转的性质,正确得出∠AOC的度数是解题关键.填空题11、如图,在△ABC中,∠C=90°,点D、E分别在AC、BC上,∠CDE=45°,△ECD绕点D顺时针旋转x度(45<x<180)到△E1C1D,则∠BEE1等于______度.(用含x的代数式表示)答案:(45+x)2分析:根据旋转的性质可得DE=DE1,∠EDE1=x,利用等腰三角形的性质和三角形内角和定理求出∠E1ED 和∠CED即可解决问题.解:如图,由旋转的性质可得:DE=DE1,∠EDE1=x,∴∠E1ED=180°−x2=90°−x2,∵∠C=90°,∠CDE=45°,∴∠CED=45°,∴∠BEE1=180°−∠E1ED−∠CED=180°−(90°−x2)−45°=(45+x2)°,所以答案是:(45+x2).小提示:本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,灵活运用各性质进行推理计算是解题的关键.12、如图,△ABC绕点A按逆时针方向旋转50°后的图形为△AB1C1,则∠ABB1=_______.答案:65°分析:根据旋转的性质知AB=AB1,∠BAB1=50°,然后利用三角形内角和定理进行求解.解:∵△ABC绕点A按逆时针方向旋转50°后的图形为△AB1C1,,∴AB=AB1,∠BAB1=50°,∴∠ABB1=12(180°−50°)=65°.所以答案是:65°.小提示:本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.13、在平面直角坐标系内,点P(−3,2)关于原点的对称点Q的坐标为______.答案:(3,−2)分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即可直接作答.根据中心对称性质可知:点P(−3,2)关于原点的对称点Q的坐标为(3,−2),故答案为(3,−2).小提示:本题考查了关于原点对称点的坐标,属于基础问题,熟记知识点是解题关键.14、已知点A(1,m)与A′(n,−3)关于原点对称,则mn=___________.答案:-3分析:直接利用关于原点对称点的性质得出m,n的值,即可求解.解:∵点A(1,m)与点A′(n,−3)关于坐标原点对称,∴n=−1,m=3,∴mn=−3所以答案是:-3.小提示:此题主要考查了关于原点对称点的特征,关于原点对称的点横纵坐标都变为原来的相反数.15、如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=_______.答案:√22分析:根据题意构造并证明ΔDAH≅ΔKEH(ASA),通过全等得到KE=AD,DH=HK,再结合矩形的性质、旋转的性质,及可求解;如图,延长DH交EF于点k,∵H是AE的中点∴AH=HE又∵AD//FE∴∠DAH=∠KEH∴ΔDAH≅ΔKEH(ASA)∴KE=AD,DH=HK∵EF=AB=CD=2,AD=FC=1∴DF=FK=KE=AD=1则DK=√DF2+FK2=√2∴DH=12DK=√22所以答案是:√22小提示:本题主要考查了矩形的性质、三角形的全等证明,掌握相关知识并结合旋转的性质正确构造全等三角形是解题的关键.解答题16、如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.答案:(1)见解析(2)78°分析:(1)只需要证明△ABC≌△AEF即可得到答案;(2)先求出∠FAG=∠BAE=50°,然后根据全等三角形的性质得到∠F=∠C=28°,再利用三角形外角的性质求解即可.(1)解:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,{AB=AE∠BAC=∠EAF AC=AF∴△ABC≌△AEF(SAS),∴EF=BC;(2)∵AB=AE,∠ABC=65°,∴∠ABC=∠AEB=65°∴∠BAE=180°−65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.小提示:本题主要考查了旋转的性质,全等三角形的性质与判定,三角形内角和定理,等腰三角形的性质,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解.17、如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求该二次函数的解析式;(2)过点P作PQ⊥x轴,分别交线段AB、抛物线于点Q,C,连接AC.若OP=1,求△ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.答案:(1)y=16x2−16x−2;(2)SΔACQ=34;(3)D(3,−1)或D(−8,10)分析:(1)将B(0,−2)代入y=a(x+3)(x−4),即可求解;(2)先求直线AB的解析式为y=12x−2,则Q(1,−32),C(1,−2),可求SΔACQ=SΔACP−SΔAPQ=34;(3)设P(t,0),过点D作x轴垂线交于点N,可证明ΔPND≅ΔBOP(AAS),则D(t+2,−t),将D点代入抛物线解析式得−t=16(t+2+3)(t+2−4),求得D(3,−1)或D(−8,10).解:(1)将B(0,−2)代入y=a(x+3)(x−4),∴a=16,∴y=16(x+3)(x−4)=16x2−16x−2;(2)令y=0,则16(x+3)(x−4)=0,∴x=−3或x=4,∴A(4,0),设直线AB的解析式为y=kx+b,∴{b=−24k+b=0,∴{k=1 2b=−2,∴y=12x−2,∵OP=1,∴P(1,0),∵PQ⊥x轴,∴Q(1,−32),C(1,−2),∴AP=3,∴SΔACQ=SΔACP−SΔAPQ=12×3×2−12×3×32=34;(3)设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,∵BP=PD,∴ΔPND≅ΔBOP(AAS),∴OP=ND,BO=PN,∴D(t+2,−t),∴−t=16(t+2+3)(t+2−4),解得t=1或t=−10,∴D(3,−1)或D(−8,10).小提示:本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合.18、如图1,正方形ABCD的边长为4,点P在边AD上(P不与A,D重合),连接PB,PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF.连接EF,EA,FD.(1)求证:PD2;①ΔPDF的面积S=12②EA=FD;(2)如图2,EA.FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案:(1)①见详解;②见详解;(2)4≤MN<2√5分析:(1)①过点F作FG⊥AD交AD的延长线于点G,证明△PFG≌△CPD,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明△PEH≌△BPA,结合△PFG≌△CPD,可得GD=EH,同理:FG=AH,从而得△AHE≌△FGD,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,EF,HG= 2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=4√5,当点P与AD的中点重合MN=12时,EF最小值= HG=8,进而即可得到答案.(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴△PFG≌△CPD(AAS),∴FG=PD,∴ΔPDF的面积S=12PD⋅FG=12PD2;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH +∠BPA=90°,∴∠PEH =∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴△PEH≌△BPA(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:△PFG≌△CPD,∴PG=CD,∴PD+GD= CD= EH+FG,∴FG+GD= EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴△AHE≌△FGD,∴EA=FD;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:△AHE≌△FGD,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=1EF,2∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=√42+82=4√5,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,∴MN的取值范围是:4≤MN<2√5.小提示:本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.。
九年级数学上册第二十三章旋转本章整合
àn)
第十七页,共二十八页。
中考聚焦体验
1
2
3
4
5
6
8
7
9
10
11
12
13
14
15
10.(2017·河北中考)图1和图2中所有的小正方形都全等,将图1的正方形放在图2
中①②③④的某一位置,使它与原来7个小正方形组成(zǔ chénɡ)的图形是中
心对称图形,这个位置是(
)
图1
A.①
B.②
C.③
D.④
(2)作出点
∵点 AA'坐标为(-2,2),
△
∴A若要使向右平移后的
A'落在△Aa的取值范围.
1B1C1的内部(不包括顶点和边界),求
1B1C1 的内部,4<a<6.
答案(dá
答案
àn)
12/11/2021
第二十一页,共二十八页。
中考聚焦体验
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14.(2017·吉林长春中考)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内
第十二页,共二十八页。
中考聚焦体验
2
1
3
4
5
6
7
8
10
9
11
12
13
14
15
5.(2017·广东(guǎng dōng)广州中考)如图,将正方形ABCD中的阴影三角形绕点A
顺时针旋转90°后,得到的图形为(
)
关闭
A
答案(dá
答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
单元总结
【思维导图】
【知识要点】
知识点一旋转的基础
旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.
如图所示,A OB
''
∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB
线段OB'叫作对应线段,OAB
∠与OA B'
∠)的度数叫
∠叫作对应角,点O叫作旋转中心,AOA'
∠(或BOB'
作旋转的角度.
【注意】图形的旋转
由旋转中心、旋转方向与旋转的角度所决定.
A
【图形旋转的三要素】旋转中心、旋转方向和旋转角.
旋转的特征:
➢对应点到旋转中心的距离相等;
➢对应点与旋转中心所连线段的夹角等于旋转角;
➢旋转前、后的图形全等.
旋转作图的步骤方法:
➢确定旋转中心、旋转方向、旋转角;
➢找出图形上的关键点;
➢连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点;➢按原图的顺序连接这些对应点,即得旋转后的图形.
【典例分析】
1.(2019春东享区期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()
A.12 B.6 C.D.
2.(2018春桥西区期末)如图,在△ABC中,∠CAB=65∘,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′//AB,则旋转角的度数为()
A.35∘ B.40∘ C.50∘ D.65∘
3.(2017春赣州市期末)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()
A.60° B.90° C.120° D.150°
4.(2017春 甘井子区期中)如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C ,连接AA′若∠1=20°,则∠B 的度数是( )
A .70°
B .65°
C .60°
D .55°
知识点二 中心对称与中心对称图形
中心对称概念:把一个图形绕着某一点旋转180︒,如图它能够与另一个图形重合,那么就说这两个U 形关于这个点对称或中心对称,这个点叫作对称中心(简称中心).这两个图形再旋转后能重合的对应点叫作关于对称中心的对称点.
如图,ABO ∆绕着点O 旋转180︒后,与CDO ∆完全重合,则称CDO ∆和ABO ∆关于点O 对称,点C 是点A 关于点O 的对称点.
中心对称图形概念:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心.
中心对称与中心对称图形的区别与联系:
O
D
A
B C
中心对称的性质:
➢ 中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
➢ 中心对称的两个图形是全等图形.
作中心对称图形的一般步骤(重点):
➢ 作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长
一倍确定关键的对称点.
➢ 把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的
图形.
找对称中心的方法和步骤:
对于中心对称图形和关于某一点对称的两个图形,它们的对称中心非常重要,找不对称中心是解决先关问题的关键.由中心对称的特征可知,对称中心为对应点连线的中点或两组相对应点连线的交点,因此找对称中心的步骤如下:
方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.
方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.
关于原点对称的点的坐标规律
两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点P ’(-x ,-y)
【典例分析】
5.(2019春 驻马店市期中)下列图案中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
6.(2019春 天津市期末)下列图形中,可以看作是中心对称图形的是( )
A .
B .
C .
D .
7.(2019春 青岛市期末)如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为( )
A .(4,5)--
B .(5,4)--
C .(3,4)--
D .(4,3)--
8.(2019春 黄石市期中)正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )
A .(2,0)
B .(3,0)
C .(2,-1)
D .(2,1)。