近五年全国高中数学联赛选编——数论

合集下载

全国高中联赛--数论部分

全国高中联赛--数论部分

全国高中数学联赛赛前集训资料整理——数论部分1.求所有的质数对(,)p q ,使得|(55)p q pq +.解:若2|pq ,不妨设2p =,则2|(55)|(525)p q q q q +⇒+,由费马小定理知|(55)q q -,得|30q ,验证知(2,5)符合.若,p q 为奇数,且5|pq ,此时不妨设5p =,则有515|(55)|(6255)q q q q -+⇒+,当5q =时,(5,5)符合要求,当5q ≠时,由费马小定理有1|(51)q q --,故|626q ,由于q 为奇质数,但626的奇质因子只有313,故313q =.验证知符合要求,若,p q 都不等于2和5,则11|(55)p q pq --+,故11550(m od )p q p --+≡① 由费马小定理知151(m od )p p -≡② 由①②知151(m od )q p -≡-③设12(21)k p r -=-,12(21)l q s -=-,,,,k l r s 为正整数,若k l ≤,则由②③易知:2(21)12(21)2(21)(21)1212111(5)5(5)(1)1(m od )l kl kls p s r s q r r p ----------=≡==≡-≡-,这与2p ≠矛盾,因此k l >,由,p q 对称性有k l <,矛盾.此时无解.故(,)p q 为(2,3),(3,2),(2,5),(5,2),(5,5),(5,313),(313,5).2.设3k ≥,数列{}n a 满足2k a k =,且对n k >都有1 1 2 n n n n a a n a n a n -+⎧=⎨⎩与互质与不互质,证明:数列1{}n n a a --中有无穷多项是质数.证明:假设2()l a l l k =≥,p 为1l -的最小质因子,则 1 1(1,) i p l i p i p≤<⎧-=⎨=⎩.故有 1 1(22,1) i p l i l i p i p≤<⎧+-+-=⎨=⎩,由题设知12 1 1(22 l i l i i p a l p i p+-+-≤<⎧=⎨+-=⎩. 则12(222)(22)l p l p a a l p l p p +-+--=+--+-=(质数),故12(1)l p a l p +-=+-,由以上讨论,可知有无穷多个l k ≥使得2l a l =且12l p l p a a p +-+--=为1l -的最小质因子.3.已知1110()m m m m f x c x c xc x c --=++++ ,其中(0,1,,)i c i m = 是非零整数,数列{}n a 满足:10a =, 1()()n n a f a n N ++=∈,求证:(1)对于正整数,()i j i j <,1j j a a +-是1i i a a +-的倍数;(2)证明:20080a ≠. 证明:(1)当10i i a a +-=时,成立;当10i i a a +-≠时,211111()()()()m mi i i i m i i i i a a f a f a c a a c a a +++++-=-=-++- .故21i i a a ++-能被1i i a a +-整除,余下的可用数学归纳法证明.(2)假设20080a =,则1020092008(0)a a f a a -==-,由(1)可知,2007个差值213220082007,,,a a a a a a --- 都等于(0)f ±,且这些差值的和为200810a a -=,由于2007为奇数,且0(0)0f c =≠,矛盾! 故20080a ≠.第49届I MO预选题(四)第50届IMO预选题(四)费马小定理和欧拉定理的应用关于组合数的几个整除问题多项式一、带余除法与因式定理1、余数定理:多项式()f x 除以x a -的余数为()f a .2、因式定理:()()0x a p x p a -⇔=注:高次多项式因式分解常用因式定理例 1 设,,a b c 为互异的实数,()p x 为实系数多项式,如果()p x 除以x a -的余式为a ,()p x 除以x b -的余式为b ,()p x 除以x c -的余式为c .求()p x 除以()()()x a x b x c ---的余式.解:因为 (),(),()p a a p b b p c c ===所以设()()()()()()p x x a x b x c q x r x =---+,其中(())2r x ∂≤ 则 ()(),()(),()()r a p a a r b p b b r c p c c ======, 所以,,a b c 一定是()0r x x -=的根而 (())2r x x ∂-≤,所以 ()0r x x -≡即 ()r x x ≡所以()p x 除以()()()x a x b x c ---的余式为x .例2 已知()p x 是整系数多项式,1234,,,m m m m 是互不相同的整数,且1234()()()()7p m p m p m p m ====,试证:没有整数m 使得()14p m =.分析:即证()14p x =没有整数解证:因为1234,,,m m m m 是()70p x -=的根所以 1234()7()()()()()p x x m x m x m x m q x -=----,其中()q x 一定是整系数多项式 若存在整数m 使()14p m =,则有 12347147()()()()()m m m m m m m m q m =-=---- 而7为素数,矛盾.故没有整数m 使得()14p m =.注:可以根据例2中规律命制试题()i p m =素数即可.例3 设()p x 是非常数的整系数多项式,()n p 表示满足2(())10p x -=的所有不同整数x 的个数,则()deg(())2n p p x -≤,其中deg(())p x 表示()p x 的次数.分析:2(())1(()1)(()1)0()10p x p x p x p x =⇔-+=⇔-=或()10p x +=()n p 为()10p x -=与()10p x +=的整数解的个数设()10p x -=有k 个整数解12,,,k m m m ⋅⋅⋅,()10p x +=有s 个整数解12,,,s n n n ⋅⋅⋅, 则有 121()1()()()()k p x x m x m x m q x -=--⋅⋅⋅- ①122()1()()()()s p x x n x n x n q x +=--⋅⋅⋅- ②②-①得1221212()()()()()()()()s k x n x n x n q x x m x m x m q x =--⋅⋅⋅----⋅⋅⋅-证:我们证明方程 ()10p x -= ③与()10p x += ④中至少有一个方程的正根的个数不超过2.下用反证法证明.若结论不成立,设方程③与方程④均至少有3个正根.设123,,m m m 是③的3个不同正根,123,,n n n 是④的3个不同正根, 则 1231()1()()()()p x x m x m x m q x -=--- ⑤ 1232()1()()()()p x x n x n x n q x +=--- ⑥ ⑥-⑤,得123212312()()()()()()()()x n x n x n q x x m x m x m q x =------- ⑦ 不妨设 {}3123123max ,,,,,m m m m n n n =将3x m =代入⑦式得 313233232()()()()m n m n m n q m =---因为2是素数,而313233,,m n m n m n ---是互不相同的正整数,故矛盾. 所以结论得证.二、多项式恒等定理如果次数不超过n 的多项式()f x 有1n +个根,则()f x 必为零多项式,即()0f x ≡. 例4 已知自然数1m >,求出所有满足条件(())(())m p p x p x =的所有多项式()p x . 证明:当()p x c =(常数)时,由m c c =有0c =或22cossin,(0,1,,2)11k k c i k m m m ππ=+=⋅⋅⋅---当(())1p x ∂≥时,则对任意复数β,方程()p x β=一定有解,即0x ∃使0()p x β=,又00(())(())m p p x p x =,即()m p ββ=.故一切复数均为()0m p x x -=的解,即()0m p x x -=有无穷多个解,故由多项式恒等定理有()m p x x =.例5 求所有满足条件22(2)(2),f x x f x x R -=-∈的多项式()f x分析:因为222(1)1x x x -=--,2(1)1x x -=--,所以22(2)(2)f x x f x -=- 可化为2((1)1)((1)1)f x f x --=--. 解:令1y x =-,则有22(1)(1)f y f y -=- ① 令()(1)g y f y =-,则有22()(1)g y f y =-,故①式变为22()()g y g y = ② 设 1110(),n n n n g y a y a y a y a --=++⋅⋅⋅++其中0n a ≠ 则②式左边222(1)2110()n n n n g y a y a y a y a --==++⋅⋅⋅++ ②式右边212110()()n n n n g y a y a y a y a --==++⋅⋅⋅++所以有22(1)212110110()n n n n n n n n a y a y a y a a y a y a y a ----++⋅⋅⋅++=++⋅⋅⋅++ ③ 下证122100n n a a a a a --==⋅⋅⋅====,用反证法,设1221,,,,n n a a a a --⋅⋅⋅0,a 中有一个不为0,设k a 是使得0i a ≠的下标最大者, 即1210,0k k k n a a a a ++-≠==⋅⋅⋅==比较2()g y 与2()g y 中n k y +的系数,因为22k n k n <+<,所以③式等号左边n k y +的系数为0,而③式右边n k y +的系数为n k a a ,所以 0n k a a =.这与0,0n k a a ≠≠矛盾,所以 122100n n a a a a a --==⋅⋅⋅====,故()n n g y a y = 再由②式有 222n n n n a y a y =. 又因0n a ≠,所以 1n a =故 ()n g y y =即(1)n f y y -=,所以有()(1)n f x x =+. 例6 确定所有符合下列条件的多项式)(x P :0)0(1)()1(22=+=+P x P x P 且. 解:构造不动点,令.)(,0,1021n n n n x x P x x x ==+=+下证 用数学归纳法:当0000)0()(,00x P x P x n =====时,; 假设kk x x P k n ==)(时,结论成立,即.222111()(1)()111.()0()0().k k k k k n n k P x P x P x x x n k x P x x P x x P x x ++=+=+=+=+==+∴-=∴-≡≡当时,即当时,结论成立是的根,即例 7 试确定所有实系数多项式)(x P ,使得 )()2()1(t P t t tP -=- (1)对所有实系数t 均成立.(1995年 澳大利亚)解:取.0)0(10==P t ),得代入( 取.0)1(12==P t ),得代入(则设 )()1()(x q x x x P -=代入(1),有)()1()2()1()2)(1(t q t t t t q t t t --=---, 当时,2,1,0≠t )1()(-=t q t q 则 c t q ≡)(则R c x cx x P ∈-=),1()( 另一方面,若)1()(,-=∈x cx x p R c 满足条件中的等式, 因此所求的多项式为.),1()(R c x cx x P ∈-=三、根与系数的关系例8 (1996 澳大利亚)设)(x P 是三次多项式,321,,x x x 是)(x P 的三个根,已知323121111,1000)0()21()21(x x x x x x P P P ++=-+求的值.解:设d cx bx ax x P +++=23)(,又323121111x x x x x x ++=d b ad ab x x x x x x =--=++321321 且 ,212221)0()21()21(1000d b d db P P P ⋅+=+=-+= 则1996=a b ,于是.1996111323121=++x x x x x x 四、拉格朗日插值公式拉格朗日插值公式:设)(x P 为n 次多项式,则)()())(()())(()()())(()())(()()())(()())(()(1101101121012000201021n n n n n n n n n n x P x x x x x x x x x x x x x P x x x x x x x x x x x x x P x x x x x x x x x x x x x P --------++------+------=推论:若.)(,)()()(10c x P c x P x P x P n ≡====则 例9 设n P P P ,,,21 是半径为1的圆周上的n 个不同的点,.11,11121≥⋅⋅=∑=+-nk kn k k k k k k k k d P P P P P P P P P P d 求证:证明:以单位圆的圆心为原点,建立复平面,令k P 所对应的复数为k Z ,.,,2,1n k =则nk k k k k k k k Z Z Z Z Z Z Z Z Z Z d --⋅--⋅-=+- 1121,令)())(()())(()())(()())(()(1211211312132--------++------=n n n n n n n Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z f (1)则)(Z f 的次数不超过.1-n 1)()()(21====n Z f Z f Z f .1)(≡∴Z f 特别地,取0=Z 代入(1),有1)()()1()()()1()0(111211121321=--⋅-++---=----n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z f则 )()()1()()()1(1111211121321-------++---=n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z)()()1()()()1(111211121321-------++---≤n n n n n n nn Z Z Z Z Z Z Z Z Z Z Z Z Z Z nd d d 11121+++==∑=nk kd 11已知10n z -=,其单位根为22cossini w i n nππ=+,则解的集合为{}011,,,n w w w -….结论1:若{}12 n m m m ,,…,是模n 的完全剩余系,则{}{}1211,,,,,,nm m m n w w w ww w-=……结论2:设{}{}01112,,,,,,n n z z z w w w -=……,则 (1)120n z z z +++=…;(2)112(1)n n z z z +=-…;(3)12 0 (,)1m m mn n n m z z z n m ⎧+++=⎨=⎩,…,.例 10 设)(),(),(),(x S x R x Q x P 均为多项式,且满足)()1()())(()(2345255x S x x x x x R x x Q x x P ++++=++ (1),求证:1-x 是)(x P 的因式.(美国) 证明:令52sin52cosππωi +=,取),得代入(1k x ω=0)1()1()1(2=++R Q P k k ωω)4,3,2,1(=k ,)1()()1()()1(48642432=++++++++R Q P ωωωωωωωω则0)1()1()1(4=--R Q P (2) 由得,)1(k ω⨯.4,3,2,1,0)1()1()1(32==++k R Q P k k k ωωω 将4个等式相加,得0)1()()1()()1()(4333231342322212432=+++++++++++⋅⋅⋅⋅⋅⋅⋅⋅R Q P ωωωωωωωωωωωω故0)1()1()1(=---R Q P (3) 得),3()2(-0)1(5=P ,则0)1(=P ,由因式定理得).(1x P x -平方差型不定方程的解法数论中的不等式问题一道巴尔干地区竞赛题的思考一道印度竞赛题的简解一道预赛题的简证一道数论题的新证法一道重要的二元二次不定方程——佩尔方程。

高中数学竞赛资料-数论部分 (1)

高中数学竞赛资料-数论部分 (1)

初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。

1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。

(1894年首届匈牙利 数学竞赛第一题)(2) ①设n Z ∈,证明2131n-是168的倍数。

②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅?(1956年上海首届数学竞赛第一题) (3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。

(1956年北京、天津市首届数学竞赛第一题)(4) 证明:对任何自然数n ,分数214143n n ++不可约简。

(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。

2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。

(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。

这说明:数论题在命题者心目中总是占有一定的分量。

如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。

3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。

数论历年数学联赛真题WORD版分类汇编含详细答案

数论历年数学联赛真题WORD版分类汇编含详细答案

1,均有 an
M
,而 M

p p p 1 2 12
k 1 k 1

max
1n N /
an
,故
M
不在

an
中出
现,这与假设矛盾!因此,若 m 有 k 个不同的素因子,则 m 一定在数列 an 中出现.
由数学归纳法知,所以正整数均在数列 an 中出现。
2018B 四、(本题满分 50 分)给定整数 a 2 。证明:对任意正整数 n ,存在正整数 k ,使得连续 n 个数 a k 1 , a k 2,, a k n 均是合数。
综上可知,平稳数的个数为 2 6 63 4 75 。
2017B 8、若正整数 a,b, c 满足 2017 10a 100b 1000c ,则数组 (a,b, c) 的个数为
◆答案: 574 ★解析:由条件知 c [ 2017 ] 2 ,当 c 1时,有10 b 20 ,对于每个这样的正整数 b ,由
]

12

3

3

1

1

20

8 27 27 64 64
当 n m 时,由对称性可知,亦有 20 个满足条件的等比数列 a1, a2 , a3, a4 .
综上可知,共有 40 个满足条件的有序数组 (a1, a2 , a3 , a4 ) .
2016A 四、(本题满分 50 分)设 p 与 p 2 均是素数, p 3 ,数列 an 定义为 a1 2 ,
2016 年~2018 年全国高中数学联赛二试试题分类汇编 2、数论部分
2018A 四、(本题满分 50 分)数列 an 定义如下: a1 是任意正整数,对整数 n 1, an1 与

全国高中数学联赛分类汇编(初等数论)

全国高中数学联赛分类汇编(初等数论)

2000-2012全国高中数学联赛分类汇编(初等数论)1、(2005一试6)记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++B .43272767575+++C .43274707171+++D .43273707171+++【答案】C【解析】用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M '中的最大数为107]2400[]6666[=。

在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396。

而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C 。

2、(2006一试6)数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为( ) A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】B【解析】出现奇数个9的十进制数个数有12005320032005200620062006999A C C C =+++。

又由于2006200620062006(91)9kkk C-=+=∑以及20062006200620060(91)(1)9kk k k C -=-=-∑,从而得 12005320032005200620062006200620061999(108)2A C C C =+++=-。

高中数学竞赛——数论

高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。

K 0,K 1,…,K m-1为模m 的全部剩余类.(2)性质(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a ≡b(modm).2.剩余系的定义与性质(1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,21,,1,0,1,,121,21--+----m m m ;当m 为偶数时,12,,1,0,1,,12,2--+--m m m 或2,,1,0,1,,12m m -+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系⇔两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系.证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m1,m2是两个互质的正整数,而x,y分别遍历模m1,m2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.既约剩余系的定义与性质(1)定义3如果剩余类K r里的每一个数都与m互质,则K r叫与m互质的剩余类.在与模m互质的全部剩余类中,从每一类中任取一个数所做成的数组,叫做模m的一个既约(简化)剩余系.如:模5的简系1,2,3,4;模12的简系1,5,7,11.(2)性质(ⅰ)K r与模m互质⇔K r中有一个数与m互质;证明:设a∈K r,(m,a)=1,则对任意b∈K r,因a≡b≡r(modm),所以,(m,a)=(m,r)= (m,b)=1,即K r与模m互质.(ⅱ)与模m互质的剩余类的个数等于)m(ϕ,即模m的一个既约剩余系由)m(ϕ个整数组成()m(ϕ为欧拉函数);(ⅲ)若(a,m)=1,则x与ax同时遍历模m的既约剩余系.证明:因(a,m)=1,(x,m)=1,所以,(ax,m)=1.若ax1≡ax2(modm),则有x1≡x2(modm),矛盾!(ⅳ)若a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m 的一个既约剩余系.(ⅴ)设m 1,m 2是两个互质的正整数,而x,y 分别历遍模m 1,m 2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1, (m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,所以,(m 2x,m 1)=(m 1y,m 2)=1,因(m 1,m 2)=1,所以,(m 1,x )=(m 2,y )=1.证毕.推论1若m 1,m 2是两个互质的正整数,则)()()(2121m m m m ϕϕϕ=.证明:因当x,y 分别历遍模m 1,m 2的既约剩余系时,m 2x+m 1y 也历遍模m 1m 2的既约剩余系,即m 2x+m 1y 取遍)(21m m ϕ个整数,又x 取遍)(1m ϕ个整数,y 取遍 )(2m ϕ个整数,所以, m 2x+m 1y 取遍)()(21m m ϕϕ个整数,故)()()(2121m m m m ϕϕϕ=.推论2 设整数n 的标准分解式为k k p p p n ααα 2121=(k p p ,,1 为互异素数, *1,,N k ∈αα ),则有)11()11)(11()(21kp p p n n ---= ϕ. 证明:由推论1得)()()()(2121k k p p p n αααϕϕϕϕ =,而1)(--=αααϕp p p ,(即从1到αp 这αp 个数中,减去能被p 整除的数的个数),所以,)())(()(11221112211------=kk k k p p p p p p n ααααααϕ )11()11)(11(21kp p p n ---= . 4.欧拉(Euler)与费尔马(Fermat)定理欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ )(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例2证明从任意m 个整数a 1,a 2,…,a m 中,必可选出若干个数,它们的和(包括只一个加数)能被m 整除.证明:考虑m 个数a 1,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a m ,如果其中有一个数能被m 整除,则结论成立,否则,必有两个数属于modm 的同一剩余类,这两个数的差即满足要求.例3设f(x)=5x+2=f 1(x), f n+1(x)=f[f n (x)].求证:对任意正整数n,存在正整数m,使得2011|f n (m).证明:因f 2(x)=f[f(x)]=5(5x+2)+2=52x+5×2+2,f 3(x)=f[f 2(x)]=53x+52×2+5×2+2,..., f n (x)=5n x+5n-1×2+5n-2×2+ (2)因(5n ,2011)=1,所以,x 与f n (x)同时历遍mod2011的完系,1≤x ≤2011,所以,存在正整数m(1≤m ≤2011)使得f n (m)≡0(mod2011),即2011|f n (m).例4设123,,,a a a 是整数序列,其中有无穷多项为正整数,也有无穷多项为 负整数.假设对每个正整数n ,数123,,,,n a a a a 被n 除的余数都各不相同.证明:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但 ∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.最后由正负项均无穷多个(即数列含有任意大的正整数及任意小的负整数)就得到:每个整数在数列中出现且只出现一次.例5偶数个人围着一张圆桌讨论,休息后,他们依不同次序重新围着圆桌坐下,证明至少有两个人,他们中间的人数在休息前与休息后是相等的。

全国高中数学联赛试题分类汇编-数论(1981年-2019年)

全国高中数学联赛试题分类汇编-数论(1981年-2019年)

全国高中数学联赛试题分类汇编——数论(1981年~2019年)2019A 5、在1,2,3,,10?中随机选出一个数a ,在1,2,3,,10----?中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100解析:首先数组(),a b 有1010100⨯=?种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。

2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分 注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。

高中数学竞赛 数论部分

高中数学竞赛 数论部分

初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。

1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。

(1894年首届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。

②具有什么性质的自然数n ,能使123n ++++能整除123n ⋅⋅⋅(1956年上海首届数学竞赛第一题)(3) 证明:3231122n n n ++-对于任何正整数n 都是整数,且用3除时余2。

(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214143n n ++不可约简。

(1956年首届国际数学奥林匹克竞赛第一题)(5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证:[][][][]()()()()22,,,,,,,,,,a b c a b c a b b c c a a b b c c a =⋅⋅(1972年美国首届奥林匹克数学竞赛第一题)这些例子说明历来数论题在命题者心目中首当其冲。

2.再看以下统计数字:(1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。

(2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

这说明:数论题在命题者心目中总是占有一定的分量。

如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。

3.请看近年来国内外重大竞赛中出现的数论题:(1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( )A 、 0B 、1C 、3D 、无穷多(2007全国初中联赛5)(2)已知,a b 都是正整数,试问关于x 的方程()2102x abx a b -++=是否有两个整数解如果有,请把它们求出来;如果没有,请给出证明。

全国高中数学历届(2009-2019)联赛初等数论试题汇编

全国高中数学历届(2009-2019)联赛初等数论试题汇编

全国高中数学历届(2009-2019)联赛初等数论试题汇编1.【2017年全国联赛】若一个三位数中任意两个相邻数码之差均不超过1,则称其为“平稳数”.那么,平稳数的个数为____________。

【答案】75【解析】考虑平稳数,若,则,有2个平稳数。

若,则个平稳数。

若,则,有个平稳数。

若,则,有个平稳数。

综上,平稳数的个数为。

故答案为:752.【2015年全国联赛】对四位数,若,则称类数;若,则称类数.用分别表示类数与类数的个数.则的值为______.【答案】285【解析】记类数、类数的全体分别为,再记个位数为零的类数全体为,个位数不为零的类数全体为. 对任一四位数,将其对应到四位数.注意到,.则.反之,每个唯一对应于中的元素.因此,建立了之间的一一对应.故.下面计算.对任意四位数可取0,1,…,9,对其中每个,由,知分别有种取法.故.因此,.故答案为:2853.【2010年全国联赛】方程满足的正整数解()的个数是________.【答案】336675【解析】首先,易知方程的正整数解的个数为.其次,把方程满足的正整数解分为三类:(1)均相等的正整数解的个数显然为1;(2)中有且仅有两个相等的正整数解的个数,易知为1003;(3)设两两均不相等的正整数解的个数为.注意到.解得.故满足的正整数解的个数为.4.【2019年全国联赛】设m为整数,|m|≥2.整数数列满足:不全为零,且对任意正整数n,均有.证明:若存在整数r,s(r>s≥2)使得,则.【答案】【解析】若,记.则对任意正整数n,d|a n,考虑数列,可得同样结论。

故不妨设,由可知,即对任意大于2的正整数n,.若a 1,不满足,则不存在r>s≥2使得,故不妨设,由互质性.设,则b n为整数数列,.可知,若存在整数使得,则.而,故,由知,故r-s≥|m|.5.【2018年全国联赛】设n,k,m是正整数,满足k≥2,且.设A是的n元子集。

高中数学竞赛——数论

高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类((2)2.(1)a r ,得m 个数特别地,完全为偶数时,,2-m (2)证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系,因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m 1,m 2是两个互质的正整数,而x,y 分别遍历模m 1,m 2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.(1).在与模m的一个(2)(ϕm)x1≡x2,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m的一个既约剩余系.(ⅴ)设m1,m2是两个互质的正整数,而x,y分别历遍模m1,m2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1,(m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,1m 2的既)(2m ϕ)., 1,α(4.欧拉欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ)(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例(m 整除,.例m,使得2011|f n f 3因所以,例,是整数序列负整数假设对每个正整数:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.得到:例,(i,j)也历mod2n 的和≡例可被,且是周期数列,所以, 数列{a n }中存在无穷多项可被2011整除.例7证明:存在无穷多个正整数n,使得n 2+1∤n!.证明:引理1对素数p >2,⇔≡)4(mod 1p 存在x(1≤x ≤p -1)使)(m od 12p x -≡. 证:充分性:因对1≤x ≤p -1,( p ,x)=1,所以,)(mod 1)(2121p x x p p ≡=--,≡-212)(p x)(mod 1)1(21p p ≡--,所以,21-p 为偶数,即).4(mod 1≡p 必要性:因1≤x ≤p -1时,x,2x,…,(p -1)x 构成modp 的既约剩余系,所以,存在1≤a ≤p -1,使得a x ≡-1(mod p ),若不存在a (1≤a ≤p -1), a =x,使a x ≡-1(mod p ),则这样的a ,x 共配成21-p 对,则有)(mod 1)!1()1(21p p p -≡-≡--,即21-p 为奇数,与 p 2证a =4(p 1p 设2p 1 p 2…12x -≡,相应的x 例(1)(2)n n+1n (n=1,2, …),且每个a n 都是f(x)的周期.证明:(1)设T=nm (正整数m,n 互质,且n ≥2),因(m,n)=1,所以,m,2m,…,nm 构成 modn 的完系,故存在k ∈N *使得km ≡1(modn),即存在t ∈N *使得km=nt+1,因f(x)=f(x+kT)=f(x+n km )=f(x+t+n 1)=f(x+n 1),所以n1是周期. 设n=kp ,其中k ∈N *, p 为素数,则n k p 11⋅=是周期.故存在素数p,使p 1是周期. (2)当T 为无理数时,取a 1=T,则T 为无理数, 0<T<1.设k≤n 时存在无理数a k ,使得0<a k <a k-1<1,且a k 是周期.对k+1,总存在存在u,v ∈N *,使得0<u a k -v<a k <1,取例解:,对任意}包含了modn+1零剩余,≤k ≤n, a 1+a 2+取例. 例11求所有的奇质数p ,使得∑=-11|k p k p .例12求所有质数p ,使得2122213)()()(|-+++p p p p C C C p .例13设n 为大于1的奇数,k 1,k 2,…,k n 是n 个给定的整数,对1,2,…,n 的每一个排列a=(a 1,a 2,…,a n ),记S(a)=∑=ni i i a k 1.证明:存在两个1,2,…,n 的排列b 和c(b ≠c),使得n!|S(b)-S(c).证明:如果对1,2,…,n 的任意两个不同排列b 和c(b ≠c),都有n!∤S(b)-S(c),那么当a 取遍所有排列时(共n!个),S(a)遍历模n!的一个完系, 因此,有∑a a S )(≡1+2+…+n!≡2!2)1!(!n n n ≡+(modn!) ①, 另一方面,我们有 ∑a a S )(=)!(mod 0)1(!])!1[(n k n n j n k a k a k n i n n in i i n i i ≡+=-==∑∑∑∑∑∑∑ ②. 由①∑a .例modm 因(m,2n 例x 例在A同余方程与同余方程组1.同余方程(组)及其解的概念定义1 给定正整数m 及n 次整系数多项式0111)(a x a x a x a x f n n n n ++++=--,则同余式f(x)≡0(modm)①叫做模m 的同余方程,若a n 0(modm),则n 叫做方程①的次数.若x=a是使f(a)≡0(modm)成立的一个整数,则x≡a(modm)叫做方程①的一个解,即把剩余类a(modm)叫做①的一个解.若a1(modm),a2(modm)均为方程①的解,且a1,a2对模m不同余,就称它们是方程①的不同解.由此可见,只需在模m的任一组完系中解方程①即可.例12解:例2解:.2.设a x解,例3解:tx即)8-≡x.3,1-(mod≡t),1,08(mod1=4+例4解方程12x≡6(mod9).因(12,9)=3,且-1是一个特解,所以,方程12x≡6(mod9)的解为:(modx即)8t5,2,1,≡t≡-x.(mod),2,1,083+1=-3.同余方程组定义3给定正整数m 1,m 2,…,m k 和整系数多项式f 1(x),f 2(x),…,f k (x),则同余式组 ⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod 0)()(mod 0)()(mod 0)(2211k k m x f m x f m x f ②,叫做同余方程组.若x=a 是使f j (a )≡0(modm j )(1≤j ≤k)成立的一个整数,则x ≡a (modm)叫做方程组②的一个解,即把剩余类a (modm)叫做②的一个解.例5解:⎩⎨⎧-≡≡13x x .M=m 1m ⎪⎪⎩⎪⎪⎨⎧≡≡≡21k a x a x a x 其中M j ).(2)j j j j 则x ≡y (modm j ),即m j |x -y ,因m 1,m 2,…,m k 两两互质,所以M| x-y 即x ≡y (modM). 注:(1)存在无穷多个整数x 满足同余方程组③,这些x 属于同一模m 的剩余类;(2)同余方程组③仅有一个解x ≡a 1M 1M 1-1+a 2M 2M 2-1+…+a k M k M k -1(modM).(3)当(a ,m i )=1(=1,2,…,n)时,同余方程组⎪⎪⎩⎪⎪⎨⎧≡≡≡⇔⎪⎪⎩⎪⎪⎨⎧≡≡≡---)(mod )(mod )(mod )(mod )(mod )(mod 12211112211k k k k m a a x m a a x m a a x m a ax m a ax m a ax仍然具有定理结论. 这在数论解题中具有重要应用.例6“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何”.解,352115≡x 例.解:210×210-1≡210-1≡1(mod11)⇔210-1≡1(mod11),所以,同余方程组的解为: )2310(mod 2111637121010330438553462≡=⨯+⨯+⨯+⨯≡x ,即x=2310k+2111(k ∈N).例8证明:对任意n 个两两互质的正整数:m 1,m 2,…,m n ,总存在n 个连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).证明:由剩余定理知,总存在整数k 使得⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡)(mod )(mod 2)(mod 121n m n k m k m k,即存在连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).例9证明:对任意n ∈N *,存在n 个连续正整数它们中每一个数都不是素数的幂(当 数⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡21n m m m例,且A 例 {k +a n }⎩⎨⎧-≡≡)(mod 102p x x 123⎪⎩-≡)(mod 232p x 2的最小正整数a 2=38.假定a 1,a 2,…,a n 都已确定,则取a n+1适合⎪⎪⎩⎪⎪⎨⎧-≡-≡≡+)(mod )(mod 1)(mod 0121n p n x p x p x 且大于a n 的最小正整数,由剩余定理知满足条件的a n+1存在.则上述递推关系定义的数列{a n }满足题意:因对任意k ∈N *,当n ≥k+1时,都有k+a n ≡0(mod p k+1),由{a n }递增可知{k +a n }从第k+2项起每一项都是p k+1的倍数,且都大于p k+1,所以,数列{k +a n }中至多有k+1项为素数.例12是否存在一个由正整数组成的数列,使得每个正整数都恰在该数列中出现一次,且对任意正整数k ,该数列的前k 项之和是k 的倍数?解:,S=a 1+a 2⎩⎨⎧++≡+t r S r S {a n }例的质因数.例例。

近五年全国高中数学联赛选编数论

近五年全国高中数学联赛选编数论

近五年全国高中数学联赛选编——数论 2015.8.161.(2010年 加试 2) 设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l -≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法. 当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+L ,这里,0i α=或者1,1,2,i v v =++L . 于是 ()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭2122kk k =+++ 11211212(1)2()222v v v vv v v ααα-++++=+++⋅++⋅+++L L12k '=+, ①这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++L L .显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明.2. (2011年 加试 2) 证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--Λ具有如下性质:(1)110,,,-n a a a Λ均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21Λ,均有)()()()(21k r f r f r f m f Λ≠. 证明:令2)()2)(1()(++++=n x x x x f Λ, ①将①的右边展开即知)(x f 是一个首项系数为1的正整数系数的n 次多项式.下面证明)(x f 满足性质(2).对任意整数t ,由于4≥n ,故连续的n 个整数n t t t +++,,2,1Λ中必有一个为4的倍数,从而由①知)4(mod 2)(≡t f .因此,对任意)2(≥k k 个正整数k r r r ,,,21Λ,有)4(mod 02)()()(21≡≡k k r f r f r f Λ.但对任意正整数m ,有)4(mod 2)(≡m f ,故)4)(mod ()()()(21k r f r f r f m f Λ≡/,从而)()()()(21k r f r f r f m f Λ≠.所以)(x f 符合题设要求.3. (2012年 加试 2)4. (2013年加试2)5. (2014年加试4)。

高中数学联赛数论专题

高中数学联赛数论专题

高中数学联赛数论专题数论是数学中的一个重要分支,涉及整数的性质和关系。

在高中数学联赛中,数论作为一个专题常常被提及,并且在竞赛题目中占据一定比例。

本文将从数论的基本概念、典型问题和解题思路等方面进行探讨。

一、数论的基本概念数论是研究整数的性质和关系的数学领域,其中核心概念包括因数、倍数、质数、互质等。

因数指的是能够整除某个整数的所有正整数,而倍数则是某个整数所能够整除的所有整数。

质数是只能被1和自身整除的整数,而互质则是两个数的最大公因数为1。

二、典型问题在高中数学联赛的数论专题中,常常会出现以下典型问题:1. 质因数分解:给定一个整数,要求将其分解为质因数的乘积。

质因数分解不仅是数论中的重要知识点,还是其他数学学科的基础。

2. 同余定理:同余定理是数论中的重要理论,涉及到整数之间的模运算。

常见的同余定理包括欧拉定理、费马小定理等。

3. 素数判定:判断一个数是否为素数是数论中的常见问题。

除了常规的试除法,还可以运用费马检验、米勒-拉宾素性测试等方法进行判定。

4. 数列问题:数论与数列密切相关,常常会涉及到数列的性质和规律。

例如斐波那契数列、约瑟夫环等经典问题。

5. 不定方程:不定方程指的是关于整数解的方程,解决不定方程需要灵活运用数论知识和技巧。

典型的不定方程问题包括费马方程、佩尔方程等。

三、解题思路在高中数学联赛中,解决数论问题的关键在于运用合适的方法和技巧。

下面给出几点解题思路供参考:1. 寻找规律:数论问题常常有一定的规律性,通过观察和归纳找出规律是解题的关键。

可以通过列数表、找数列规律等方法进行推断。

2. 利用等式性质:利用等式的性质可以化简或者变形给定的数论问题,将其转化为更容易解决的形式。

例如利用同余关系化简方程、利用性质求解方程等。

3. 利用定理和公式:数论中有很多重要的定理和公式,熟练掌握并恰当运用可以大大提高解题效率。

例如欧拉定理、费马小定理等。

4. 分类讨论:针对不同情况进行分类讨论,找出不同情况下的共同性质和规律。

高中数学联赛真题分类汇编—初等数论

高中数学联赛真题分类汇编—初等数论

高中数学联赛真题汇编——初等数论(1978T7)证明:当n 、k 都是给定的正整数,且n >2,k >2时,n (n -1)k -1可以写成n 个连续偶数的和.解:设开始的一个偶数为2m ,则此n 个连续偶数的和为 (2m +…+2m +2n -2)×n ÷2=n (2m +n -1).令n (n -1)k -1= n (2m +n -1),则(n -1)k -1-(n -1)=2m .无论n 为偶数还是奇数,(n -1)k -1-(n -1)均为偶数,故m=12[(n -1)k -1-(n -1)]为整数.∴ 从(n -1)k -1-(n -1)开始的连续n 个偶数的和等于n (n -1)k -1.由于n 、k 给定,故(n -1)k -1-(n -1)确定.故证(1979二试5)在正整数上定义一个函数f (n )如下:当n 为偶数时,f (n )= n2,当n 为奇数时,f (n )=n +3,1° 证明:对任何一个正整数m ,数列a 0=m ,a 1=f (a 0),…,a n =f (a n -1),…中总有一项为1或3.2° 在全部正整数中,哪些m 使上述数列必然出现“3”?哪些m 使上述数列必然出现“1”?证明:1°,当a n >3时,若a n 为偶数,则a n +1=a n 2<a n ,若a n 为奇数,则a n +2=a n +32<a n ,即于是在{a n }中可以找出一个单调递减的子序列,由于该序列的每项都是正整数,故进行到某一项时序列的项≤10,此时当a n =3,6,9时,出现如下的项:9→12→6→3→6→3→…;当a n ≤10且3\|a n 时,出现如下的项:7→10→5→8→4→2→1;总之,该数列中必出现1或3.2° 当m 为3的倍数时,若m 为偶数,m2仍为3的倍数;若m 为奇时,m +3是3的倍数,总之a n 对于一切n ∈N *,都是3的倍数,于是,上述数列中必出现3,当m 不是3的倍数时,m2(若m 为偶数)与m +3(若m 为奇数)都不能是3的倍数,于是a n 不是3的倍数,故a n ≠3,此时数列中必出现1.(1979二试7)某区学生若干名参加数学竞赛,每个学生得分都是整数,总分为8250分,前三名的分数是88、85、80,最低分是30分,得同一分数的学生不超过3人,问至少有多少学生得分不低于60分(包括前三名)?解:8250-(88+85+80)=7997.(30+31+32+…+79)×3=50×109÷2×3=8175.即从30到79分每个分数都有3人得到时,共有8175分,此时及格学生数为20×3+3=63人.8175-7997=178.若减少3名及格的学生至少减去180分.故至多减去2名及格的学生.∴至少63-2=61人及格.(1982T12)已知圆x2+y2=r2(r为奇数),交x轴于点A(r,0)、B(-r,0),交y轴于C(0,-r)、D(0,r).P(u,v)是圆周上的点,u=p m,v=q n(p、q都是质数,m、n都是正整数),且u>v.点P在x轴和y轴上的射影分别为M、N.求证:|AM|、|BM|、|CN|、|DN|分别为1、9、8、2.证明:p2m+q2n=r2.若p=q,则由u>v,得m>n,于是p2n(p2(m-n)+1)=r2,这是不可能的.(因p2(m-n)与p2(m-n)+1都是完全平方数,它们相差1,故必有p2(m-n)=0,矛盾).故p≠q,于是(p,q)=1.若p、q均为奇数,则p2≡q2≡1(mod4),与r2≡0或1矛盾.故p、q必有一为偶数.即p、q必有一个=2.(或直接由r为奇数得p、q一奇一偶,其实r为奇数的条件多余)设p=2,则q2n=r2-22m=(r+2m)(r-2m).即r+2m与r-2m都是q2n的约数.设r+2m=q k,r-2m=q h,其中k>h≥1,k+h=2n.∴r= 12(qk+q h)=12qh(q k-h+1),2m=12(qk-q h)=12qh(q k-h-1),但q h是奇数,又是2m+1的约数,故h=0.r= 12(q2n+1),2m+1=q2n-1=(q n+1)(q n-1).∴q n+1=2α,q n-1=2β.(α+β=m+1,α>β),而2=2α-2β=2β(2α-β-1),从而β=1,α-β=1,α=2.∴m=2,u=4,q n=3,q=3,n=1,v=3.|OP|=5.∴|AM|=5-4=1,|BM|=5+4=9,|CN|=5+3=8,|DN|=5-3=2.若设q=2,则同法可得u=3,v=4,与u>v矛盾,舍去.又证:在得出p、q互质且其中必有一为偶数之后.由于(p m,q n)=1,故必存在互质的正整数a,b(a>b),使a2-b2= q n,2ab= p m,a2+b2=r.或a2-b2=p m,2ab=q n,a2+b2=r.若p m=2ab,得p=2,a|2m,b|2m,故a=2λ,b=2μ,由a,b互质,得μ=0,∴b=1,a=2m-1.q n=22m-2-1=(2m-1+1)(2m-1-1).故2m-1+1=qα,2m-1-1=qβ,(α+β=n,且α>β).∴2=qα-qβ=qβ(qα-β-1).由q为奇数,得β=0,2=q n-1,q n=3,从而q=3,n=1,a2=4.a=2,m=2.仍得上解.(1984二试4)设a n是12+22+32+…+n2的个位数字,n=1,2,3…,试证:0.a1a2…a n…是有理数.解由于12+22+…+n2的个位数字只与1到n的个位数字的平方和有关,故只要考虑这些数的个位数字的平方:但12≡1.22≡4,32≡9,42≡6,52≡5,62≡6,72≡9,82≡4,92≡1,02≡0(mod 10)∴a1=1,a2=5,a3=4,a4=0,a5=5,a6=1,a7=0,a8=4,a9=5,a10=5,a11=6,a12=0,a13=9,a14=5,a15=0,a16=6,a17=5,a18=9,a19=0,a20=0.由a20=0知,a20k+r=a r(k,r∈N,0≤r≤19,并记a0=0),即0.a1a2…a n…是一个循环节为20位数的循环小数,即为有理数.其一个循环节为“15405104556095065900”.(1985T9)在已知数列1,4,8,10,16,19,21,25,30,43中,相邻若干个数之和能被11整除的数组共有.解:把这些数mod 11得1,4,-3,-1,5,-3,-1,3,-3,-1.依次累加,得:1,5,2,1,6,3,2,5,2,1.其中相等的和有7对(3对1,3对2,1对5),这表示原数列中共有7组相邻数之和能被11整除.(1985二试1)在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐组成的四位数x1x2y2y1=x1∙103+x2∙102+y2∙10+y1.试求出所有这样的四位数,并写出求解过程.解:x2y2-x1y1=67.x1<y1,x2>y2.且x1,y1,x2,y2都是不超过10的正整数.∴x2y2>67,⇒x2y2=72或81.但x2>y2,故x2y2=91舍去.∴x2y2=72.x2=9,y2=8.∴x1y1=72-67=5.⇒x1=1,y1=5,∴x1x2y2y1=1985.(1987T1)对任意给定的自然数n,若n6+3a为正整数的立方,其中a为正整数,则( ) A.这样的a有无穷多个B.这样的a存在,但只有有限个C.这样的a不存在D.以上A、B、C的结论都不正确解:(n2+3k)3=n6+9n4k+27n2k2+27k3=n6+3(3n4+9n2k+9k2)k.取a=(3n4+9n2k+9k2)k,(k为任意正整数),则n6+3a为正整数的立方,由于k可任意取值,且当k增大时,a也随之增大.即a有无数个.选A.(1987T7)若k是大于1的整数,α是x2-kx+1=0的一个根,对于大于10的任意自然数n,α2n+α-2n的个位数字总是7,则k的个位数字是.(河北供题)解:另一根=α-1,α+α-1=k,记α2n+α-2n≡k n(mod 10),0≤k n<10.由α2n+α-2n=(α2n-1+α-2n-1)2-2得,k n≡k n-12+8(mod 10).若k为偶数,则k n为偶数,不等于7.若k n-1≡±1(mod 10),则k n≡9,⇒k n+1≡9(mod 10);若k n-1≡±3(mod 10),则k n≡7,⇒k n+1≡7(mod 10);若k n-1≡5(mod 10),则k n≡9,⇒k n+1≡9(mod 10);故k的个位数字为3,5,7.(1989T10)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 .解 设其小数部分为α(0<α<1),整数部分为n (n ∈N *),则得,α(n +α)=n 2, ∴ n 2<n +α<n +1.∴1-52 <n <1+52, 但n ∈N*,故n=1,得,α2+α-1=0, ∴ α=-1±52 ,由α>0,知,α=-1+52.∴ 原数为-1+52.(1989二试3)有n ×n (n ≥4)的一张空白方格表,在它的每一个方格内任意的填入+1与-1这两个数中的一个,现将表内n 个两两既不同行(横)又不同列(竖)的方格中的数的乘积称为一个基本项.试证明:按上述方式所填成的每一个方格表,它的全部基本项之和总能被4整除(即总能表示成4k 的形式,其中k ∈Z ).证明 基本项共有n !个,n >3,则基本项的个数为4的倍数,设共有4m 项. 其中每个数a ij (=±1)都要在(n -1)!个基本项中出现,故把所有基本项乘起来后,每个a ij 都乘了(n -1)!次,而n >3,故(n -1)!为偶数,于是该乘积等于1.这说明等于-1的基本项有偶数个,同样,等于+1的基本项也有偶数个.若等于-1的基本项有4l 个,则等于+1的基本项有4m -4l 个,其和为4m -4l -4l=4(m -2l )为4的倍数;若等于-1的基本项有4l -2个,则等于+1的基本项有4m -4l +2个,其和为4m -4l +2-4l +2=4(m -2l +1)为4的倍数.故证.(1991T3)设a 是正整数,a <100,并且a 3+23能被24整除,那么,这样的a 的个数为( )A .4B .5C .9D .10解:即24|a 3-1,而a ≡0,±1,±2,±3,4,则a 3≡0,±1,0,±3,0.故a -1≡0(mod 8).若a ≡0,1,2(mod 3),则a 3≡0,1,-1(mod 3),∴ a -1≡0(mod 3).即a -1≡0(mod 24).选B .(1991T10)19912000除以106,余数是 .解:19912000=(1990+1)2000=19902000+…+C 19972000×19903+C 19982000×19902+C 19992000×1990+1 ≡1000×1999×19902+2000×1990+1≡880001(mod 106).即余数为880001.(1993T10)整数⎣⎡⎦⎤10931031+3的末两位数是_______.解:令x=1031,则得x 3x +3=x 3+27-27x +3=x 2-3x +9-27x +3.由于0<27x +3<1,故所求末两位数字为09-1=08.(1994二试2)将与105互素的所有正整数从小到大排成数列,试求出这个数列的第1000项。

高中数学竞赛《数论基础》

高中数学竞赛《数论基础》
ax+by=gcd(a,b)。特别地,如果a、b互素,则有 ax+by=1 若gcd(a,b)=d, 则gcd (a|d, b|d)=1 若gcd(a,x)=gcd(b,x)=1,那么gcd(ab,x)=1 若c|(ab),gcd(b,c)=1,则c|a
3 最大公因数数, n≥2. 若ai|m, 1≤i≤n, 则称m是 a1,a2,…,an的公倍数.
(b±c) mod n
加法消去律: 如果a+b a+c(mod n), 则 b c(mod n)
乘法消去律:
如果ab ac(mod n)且gcd(a,n)=1,则 b c(mod n)
如果ab dc(mod n)且 a d(mod n)以 及 gcd(a,n)=1,则 b c(mod n)
在个数不少于3个的互素正整数中, 不一 定是每二个正整数都是互素的.
例: (6,10,15)= 1, 但(6,10)=2, (6,15)=3, (10,15)=5.
3 最大公因数和最小公倍数
最大公因子有下列性质: 任何不全为0的两个整数的最大公因子存在且
唯一 设整数a与b不全为0,则存在整数x和y,使得
887 mod 187=(132 X 77 X88) mod 187=11
例A.4 参见教材P146。
消去律的条件
逆元的概念
加法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 a+b≡0(modn),则称a、b为互为模n的加法逆元,也 称负元,记为b≡-a(modn)
乘法逆元:设a,n∈Z且n>1,如果存在b∈Z使得 ab≡1(modn),则称a、b为互为模n的乘法逆元,记为 b≡a-1(modn)
1 带余除法
若a,b是二个正整数,b≠0, 则唯一存在二 个整数k和r, 使得下式成立: a=bk+r, 0≤r<b.

全国高中数学联赛试题分类汇编: 14数论

全国高中数学联赛试题分类汇编: 14数论
所求概率为 37 。 100
2019A 三、(本题满分 50 分)设 m 为整数, m 2 .整数数列 a1, a2 , 满足: a1, a2 不
全为零,且对任意正整数 n ,均有 an2 an1 man .证明:若存在整数 r, s ,
(
r s 2 )使得 ar as a1 ,则 r s m .
an 各项互不相同,因此存在正整数 N ,当 n N 时,都有 an p .若对某个 n N ,
p | Sn ,那么 p 与 Sn 互素,又 a1, a2 ,,.an 中无一项是 p ,故有数列定义知 an1 p ,
但是 an1 p ,矛盾!
因此对每个 n N ,都有 p | Sn .又 p | Sn1 ,可得 p | an1 ,从而 an1 与 Sn 不互素,这与
i 1
★证明:显然 a1 1或者 a2 1.下面考虑整数 m 1,设 m 有 k 个不同的素因子,我们对
k 归纳证明 m 在 an 中出现.记 Sn a1 a2 an , n 1.
k 1 时, m 是素数方幂,记 m p ,其中 0 , p 是素数.假设 m 不在 an 中出现.由于
100
10
故 a 200, 201,此时共有 2 组 (a,b, c) . 综上所述,满足条件的正整数组的个数为 572 2 574 .
2016A
8、设 a1, a2 , a3 , a4 是1,2,3,,100 中的 4 个互不相同的数,满足
a12 a22 a32
an1 的定义矛盾!
假设 k

2 ,且结论对 k
1成立.设 m
的标准分解为 m

2000-2021全国高中数学联赛分类汇编 专题02 初等数论

2000-2021全国高中数学联赛分类汇编 专题02 初等数论

1、(2005一试6)记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++B .43272767575+++ C .43274707171+++ D .43273707171+++【答案】C2、(2006一试6)数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为( ) A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】B3、(2008一试5) 方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。

(A ) 1 (B ) 2 (C ) 3 (D ) 4 【答案】B4、(2004一试10).设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k=【答案】14(p +1)2【解析】设k 2-pk=n ,则(k -p2)2-n 2=p 24,⇒(2k -p +2n )(2k -p -2n )=p 2,⇒k=14(p +1)2.5、(2005一试12) 如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列,,,,321 a a a 若,2005=n a 则=n a 5 .∵2005是第1+7+28+28+1=65个“吉祥数”,即.200565=a 从而.3255,65==n n 又,210)5(,84)4(61069====CP C P 而∑==51.330)(k k P∴从大到小最后六个五位“吉祥数”依次是:70000,61000,60100,60010,60001,52000.∴第325个“吉祥数”是52000,即.520005=n a 6、(2006一试11)方程20062420042005(1)(1)2006x x x x x +++++=的实数解的个数为 . 【答案】17、(2010一试8)方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 .【答案】336675从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.8、(2011一试8)已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 . 【答案】15【解析】显然n ≥5. 记n 个人为A 1,A 2, A N ,设A 1通话的次数为m 1, A i 与 A j 之间通话的数为y ij , l ≤n j i ≤, .则m i +m j – y i . j =∑=ns s m 121-k 3= c . (*)其中c 是常数 ,l ≤n j i ≤, .根据(*)知,=-j i m m )()(s j s i m m m m +-+=s j s i y y ..-≤1 , l ≤n j i ≤, .⇒1≤-j i m m , l ≤n j i ≤,设 m i =max{m s ,1.n s ≤≤} ,m j = min{m s,1≤s ≤n.} , 则 m i +m j ≤1.若 m i +m j =1 ,则对于任意 s ,,j i ≠ 1≤s ≤n ,都有(m i +m s -y I ,s )- (m j +m s -y I ,s )=1-(y I ,s – y j ,s )=0 , 即 y I ,s – y j ,s = 1 故 y I ,s =1 , y j ,s = 0 . s ,,j i ≠ 1≤s ≤n ,因此 m i ≥ n -2 , m j ≥1 . 于是 ,m i +m j ≥n -3≥2 . 出现矛盾 ,故 m i +m j =0 ,即 m s (1≤s ≤n)恒为常数 。

高中数学联赛真题分类初等数论(原卷版)

高中数学联赛真题分类初等数论(原卷版)

段。某运动员将编号为 1,2,…,2008 的吉祥物按照以下方式依次放置于这些站点上:他先在��上放置第 1 号
吉祥物,然后顺时针跑过 29 个区段,将第 2 号吉祥物放置于所到达的站点���上;再顺时针跑过 29 个区段,将
第 3号吉祥物放置于所到达的站点���上,……如此进行下去。则站点�����上所放置的吉祥物的编号是()。
.
11.【1987 高中数学联赛(第 01 试)

若 k 是大于 1 的整数,a 是 x2-kx+1=0 的根,对于大于 10 的任意自然数 n,
��� + �−��的个位数字总是 7,则 k 的个位数字是
.
12.【1985 高中数学联赛(第 01 试)

方程���+ ��+ ��+ ��+ ��+ ��+ ��+ ��+ ��+ ���= �的
备战 2021 年高中数学联赛之历年真题汇编(1981-2020)
专题 24 初等数论
历年联赛真题汇编
1.【2008 高中数学联赛(第 01 试)

方程组
A.1
B.2
C.3
�+ �+ �= �
���+ �= �
的有理数解(x,y,z)的个数为(
��+ ��+ ��+ � =

D.4
2.

1996 高中数学联赛(第 01 试)
数为



]+[
�����

],则 A 除以 50 的余

.
13.设�(�)表示不超过 n 且与 n 互素的正整数的个数,g(n)满足对任意� ∈ � + ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里, i 0 或者 1, i v 1, v 2, 于是 .

1 1 1 f ( r ) k k k k 1 2 2 2

1 k k2 k 2 2 1 v 1 2 ( v 1 1) 2v ( v 1 v 2 ) 2v 1 2 1 k , 2
2. (2011 年 加试 2) 证明:对任意整数 n 4 ,存在一个 n 次多项式
f ( x) x n a n1 x n 1 a1 x a 0
第 1 页 总结 趋势 提高!
具有如下性质: (1) a 0 , a1 , , a n1 均为正整数; (2)对任意正整数 m ,及任意 k (k 2) 个互不相同的正整数 r1 , r2 , , rk ,均有 f (m) f (r1 ) f (r2 ) f (rk ) . 证明:令 f ( x) ( x 1)( x 2) ( x n) 2 , ①
将①的右边展开即知 f ( x) 是一个首项系数为 1 的正整数系数的 n 次多项式. 下面证明 f ( x) 满足性质(2) . 对任意整数 t ,由于 n 4 ,故连续的 n 个整数 t 1, t 2, , t n 中必有一个为 4 的倍数,从而由①知
f (t ) 2(mod 4) .
总结 趋势 提高!
(r ) 为整数.
1 1 1 f (r ) k k k k 1 2 2 2
为整数. 假设命题对 v 1(v 1) 成立. 对于 v 1 ,设 k 的二进制表示具有形式
k 2v v1 2v 1 v2 2v 2
因此,对任意 k (k 2) 个正整数 r1 , r2 , , rk ,有
f (r1 ) f (r2 ) f (rk ) 2 k 0(mod 4) .
但对任意正整数 m ,有 f (m) 2(mod 4) ,故
f (m) f (r1 ) f (r2 ) f (rk )(mod 4) ,
22 v v1 1) 2v (v1 v2 ) 2v1
显然 k 中所含的 2 的幂次为 v 1 .故由归纳假设知, r k
22 v
.
1 经过 f 的 v 次迭代得到整数,由①知, 2
f ( v 1) (r ) 是一个整数,这就完成了归纳证明.
整数,例如: 1 , 1 1. 2 证明:记 v2 (n) 表示正整数 n 所含的 2 的幂次.则当 m v2 (k ) 1 时, f 下面我们对 v2 (k ) v 用数学归纳法. 当 v 0 时,k 为奇数, k 1 为偶数,此时
( m)
1
从而 f (m) f (r1 ) f (r2 ) f (rk ) . 所以 f ( x) 符合题设要求.
3. (2012 年 加试 2)

2 页
总结 趋势 提高!
4. (2013 年 加试 2)

3 页
总结 趋势 提高!
5. (2014 年 加试 4)

4 页
总结 趋势 提高!

5 页
近五年全国高中数学联赛选编——数论
2015.8.16
1 (l ) 1.(2010 年 加试 2) 设 k 是给定的正整数, r k .记 f (1) (r ) f (r ) r r , f (r ) 2
f ( f (l 1) (r )), l 2 .证明:存在正整数 m,使得 f ( m) (r ) 为一个整数.这里, x 表示不小于实数 x 的最小
相关文档
最新文档