06-13河南省中考数学试题分类汇编(古老师最新整理)

合集下载

河南省中考数学试卷含答案和解析

河南省中考数学试卷含答案和解析

最新年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(最新•河南)下列各数中,最小的数是()A.0B.C.﹣D.﹣32.(3分)(最新•河南)据统计,最新年河南省旅游业总收入达到约亿元.若将亿用科学记数法表示为×10n,则n等于()A.10B.11C.12D.133.(3分)(最新•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)(最新•河南)下列各式计算正确的是()A.a2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(ab)2=a2b25.(3分)(最新•河南)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)(最新•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)(最新•河南)如图,∠ABCD的对角线AC与BD相交于点O,AB∠AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.118.(3分)(最新•河南)如图,在Rt∠ABC中,∠C=90°,AC=1cm,BC=2cm,点/的速度沿折线AC→CB→BA运动,最终回到点A,设点),则能够反映与之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)(最新•河南)计算:﹣|﹣2|=_________.10.(3分)(最新•河南)不等式组的所有整数解的和为_________.11.(3分)(最新•河南)如图,在∠ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为_________.12.(3分)(最新•河南)已知抛物线=a2bc(a≠0)与轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线=2,则线段AB的长为_________.13.(3分)(最新•河南)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是_________.14.(3分)(最新•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为_________.15.(3分)(最新•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把∠ADE沿AE折叠,当16.(8分)(最新•河南)先化简,再求值:(2),其中=﹣1.17.(9分)(最新•河南)如图,CD是∠O的直径,且CD=2cm,点时,四边形AOBD是菱形;②当D时,四边形AOBD是正方形.18.(9分)(最新•河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_________;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)(最新•河南)在中俄“海上联合﹣最新”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A 正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:in68°≈,co68°≈,tan68°≈,)20.(9分)(最新•河南)如图,在直角梯形OABC中,BC∠AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线=(>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)(最新•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A 型电脑台,这100台电脑的销售总利润为元.①求关于的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(最新•河南)(1)问题发现如图1,∠ACB和∠DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为_________;②线段AD,BE之间的数量关系为_________.(2)拓展探究如图2,∠ACB和∠DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为∠DCE中DE 边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点.(1)求抛物线的解析式;(3)若点E′是点E关于直线,BC=2cm,点/的速度沿折线AC→CB→BA运动,最终回到点A,设点),则能够反映与之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点,点时,四边形AOBD是菱形;②当D时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC∠(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为元,每台B型电脑的销售利润为元;根据题意列出方程组求解,(2)①据题意得,=﹣5015000,②利用不等式求出的范围,又因为=﹣5015000是减函数,所以取34,取最大值,(3)据题意得,=(100m)﹣150(100﹣),即=(m﹣50)15000,分三种情况讨论,①当0<m<50时,随的增大而减小,②m=50时,m﹣50=0,=15000,③当50<m<100时,m﹣50>0,随的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为元,每台B型电脑的销售利润为元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,=100150(100﹣),即=﹣5015000,②据题意得,100﹣≤2,解得≥33,∠=﹣5015000,∠随的增大而减小,∠为正整数,∠当=34时,取最大值,则100﹣=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,=(100m)150(100﹣),即=(m﹣50)15000,33≤≤70①当0<m<50时,随的增大而减小,∠当=34时,取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,=15000,即商店购进A型电脑数量满足33≤≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,随的增大而增大,点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数值的增大而确定值的增减情况.22.(10分)(最新•河南)(1)问题发现如图1,∠ACB和∠DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,∠ACB和∠DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为∠DCE中DE 边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点.(1)求抛物线的解析式;(2)若的值;(3)若点E′是点E关于直线的代数式分别表示出,∠,﹣m24m5),E(m,﹣m3),F(m,0).∠24m5)﹣(﹣m3)|=|﹣m2m2|,EF=|E﹣F|=|(﹣m3)﹣0|=|﹣m3|.由题意,2m2|=5|﹣m3|=|m15|①若﹣m2m2=m15,整理得:2m2﹣17m26=0,解得:m=2或m=;①若﹣m2m2=﹣(m15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∠m=2或m=.(3)假设存在.作出示意图如下:∠点E、E′关于直线|,∠|,又由(2)可知:2m2|∠|﹣m2m2|=|m|.①若﹣m2m2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2m2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3或m=3﹣.点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。

【历年真题】河南省中考数学历年真题汇总 (A)卷(含答案详解)

【历年真题】河南省中考数学历年真题汇总 (A)卷(含答案详解)

河南省中考数学历年真题汇总 (A )卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D1 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )·线○封○密○外A .60︒B .75︒C .90︒D .105︒4、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .8B .10C .12D .145、如图,在ABC 中,AD BC ⊥,62B ∠=︒,AB BD CD +=,则BAC ∠的度数为( )A .87°B .88°C .89°D .90°6、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .367、下列运算正确的是( ) A .22352a b a b -=- B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 9、将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE =45°,那么∠BAF 的大小为( ) A .15° B .10° C .20° D .25° 10、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )·线○封○密·○外A .冬B .奥C .运D .会第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a ,()b a b <,则b a -的值为______.2、在平行四边形ABCD 中,对角线AC 长为8cm ,30BAC ∠=︒,5cm AB =,则它的面积为______cm 2.3、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.4、在平面直角坐标系中,点A (10,0)、B (0,3),以AB 为边在第一象限作等腰直角△ABC ,则点C 的坐标为_______.5、如图,90,ACB AC BC ∠=︒=,D 为ABC 外一点,且,AD BD DE AC =⊥交CA 的延长线于E 点,若1,3AE ED ==,则BC =_______.三、解答题(5小题,每小题10分,共计50分)1、已知,点A ,B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.点A ,B ,M 分别表示数a ,b ,x .请回答下列问题. (1)若a =-1,b =3,则点A ,B 之间的距离为 ; (2)如图,点A ,B 之间的距离用含a ,b 的代数式表示为x = ,利用数轴思考x 的值,x = (用含a ,b 的代数式表示,结果需合并同类项);(3)点C ,D 分别表示数c ,d .点C ,D 的中点也为点M ,找到a b c d ,,,之间的数量关系,并用这种关系解决问题(提示:思考x 的不同表示方法,找相等关系). ①若a =-2,b =6,c =73则d = ; ②若存在有理数t ,满足b =2t +1,d =3t -1,且a =3,c =-2,则t = ; ③若A ,B ,C ,D 四点表示的数分别为-8,10,-1,3.点A 以每秒4个单位长度的速度向右运动,点B 以每秒3个单位长度的速度向左运动,点C 以每秒2个单位长度的速度向右运动,点D 以每秒3个单位长度的速度向左运动,若t 秒后以这四个点为端点的两条线段中点相同,则t = . 2、如图,抛物线2410233y x x =-++与x 轴相交于点A ,与y 轴交于点B ,C 为线段OA 上的一个动点,过点C 作x 轴的垂线,交直线AB 于点D ,交该抛物线于点E .·线○封○密○外(1)求直线AB 的表达式,直接写出顶点M 的坐标;(2)当以B ,E ,D 为顶点的三角形与CDA 相似时,求点C 的坐标;(3)当2BDE OAB ∠=∠时,求BDE 与CDA 的面积之比.3、已知:如图,在四边形ABCD 中,AB CD ∥,过点D 作DF BC ∥,分别交AC 、AB 点E 、F ,且满足AB AF DF BC ⋅=⋅.(1)求证:AEF DAF ∠∠=(2)求证:22AF DE AB CD = 4、如图,点O 在直线AB 上,90BOC ∠=°,BOD ∠和COD ∠互补.(1)根据已知条件,可以判断AOD COD ∠=∠,将如下推理过程补充完整(括号内填推理依据).推理过程:因为BOD ∠和COD ∠互补,所以BOD COD ∠+∠= °.( ),因为点O 在直线AB 上,所以180AOB ∠=︒.所以180BOD AOD ∠+∠=︒,所以AOD COD ∠=∠.( ) (2)求AOD ∠的度数. 5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2. -参考答案- 一、单选题 1、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D , ∵点A (1,0),B (3,0),·线·○封○密○外∴OA=1,OB=3,∴OE=2,∴ED∵∠ACB=90°,∴点C在以AB为直径的圆上,∴线段CD−1.故选:C.【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 4、C 【解析】 【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论. 【详解】 解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC , ·线○封○密○外∴11•42022ABC S BC AD AD ==⨯⨯=,解得AD =10, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=CM +MD +CD =AD +110410222211BC =+⨯=+=.故选:C .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.5、A【解析】【分析】延长DB 至E ,使BE =AB ,连接AE ,则DE =CD ,从而可求得∠C =∠E =31°,再根据三角形内角和可求度数.【详解】解:延长DB 至E ,使BE =AB ,连接AE ,∴∠BAE =∠E ,∵62ABD ∠=︒,∴∠BAE =∠E =31°,∵AB +BD =CD∴BE +BD =CD即DE =CD ,∵AD ⊥BC ,∴AD 垂直平分CE ,∴AC =AE ,∴∠C =∠E =31°,∴18087BAC C ABC ∠=︒-∠-∠=︒;故选:A .【点睛】 此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键. 6、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密·○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确;C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OEFC CO OF==,故A正确,不符合题意;∵AD∥BC,∴△DOE∽△BOF,∴DE OE DO BF OF BO==,∴AE DE FC BF=,∴AE FCDE BF=,故B错误,符合题意;∵AD∥BC,∴△AOD∽△COB,∴AD AO DO BC CO BO==,·线○封○密·○外∴AD OEBC OF=,故C正确,不符合题意;∴DE ADBF BC=,∴AD BCDE BF=,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.9、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.10、D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面, “北”与“会”是相对面. 故选:D . 【点睛】 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 二、填空题 1、9 【解析】 【分析】 由重叠部分面积为c ,(b -a )可理解为(b +c )-(a +c ),即两个多边形面积的差. 【详解】 解:设重叠部分面积为c , b -a =(b +c )-(a +c )=22-13=9. 故答案为:9. 【点睛】 本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 2、20 【解析】·线○封○密·○外【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【详解】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5,∴BE=12AB=52,S△ABC=12AC•BE=10,∴S▱ABCD=2S△ABC=20(cm2).故答案为:20.【点睛】本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.3、18°##18度【解析】【分析】由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=12∠BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中, CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴∠CED =∠CEB =12∠BED =63°, ∵∠CED =∠CAD +∠ADE , ∴∠ADE =63°-45°=18°, 故答案为:18°. 【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE ≌△BCE 是本题的关键. 4、()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 【解析】 【分析】 根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点C 的坐标 【详解】 解:如图, ·线○封○密○外当B 为直角顶点时,则1BC BA =,作1C D y ⊥轴,190C DB ∴∠=︒1190C BD BC D ∴∠+∠=︒190C BA ∠=︒190DBC OBA ∴∠+∠=︒1OBA DC B ∴∠=∠又1,BC BA =1DC B OBA ∴≌∴13C D OB ==,10BD OA ==1(3,13)C ∴同理可得3(13,10)C 根据三线合一可得2C 是1,A C 的中点,则21313,22C ⎛⎫ ⎪⎝⎭ 综上所述,点C 的坐标为()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 故答案为:()()13133,13,13,10,,22⎛⎫ ⎪⎝⎭ 【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键. 5、2 【解析】 【分析】 过点D 作DM ⊥CB 于M ,证出∠DAE=∠DBM ,判定△ADE ≌△BDM ,得到DM=DE =3,证明四边形CEDM 是矩形,得到CE=DM =3,由A E =1,求出BC=AC =2. 【详解】 解:∵DE ⊥AC , ∴∠E=∠C=90°, ∴CB ED ∥, 过点D 作DM ⊥CB 于M ,则∠M =90°=∠E , ∵AD=BD , ∴∠BAD =∠ABD , ∵AC=BC , ·线○封○密○外∴∠CAB=∠CBA ,∴∠DAE=∠DBM ,∴△ADE ≌△BDM ,∴DM=DE =3,∵∠E=∠C=∠M =90°,∴四边形CEDM 是矩形,∴CE=DM =3,∵A E =1,∴BC=AC =2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE ≌△BDM 是解题的关键.三、解答题1、 (1)4(2)b −b ,b +b 2 (3)①53;②7;③0或116或7【解析】【分析】(1)由图易得A 、B 之间的距离;(2)A 、B 之间的距离为两点表示的数差的绝对值;由数轴得点M 表示的数x 为b +12bb ,从而可求得x ;(3)①由(2)得:12(b +b )=12(b +b ),其中a 、b 、c 的值已知,则可求得d 的值; ②由12(b +b )=12(b +b )可得关于t 的方程,解方程即可求得t ; ③分三种情况考虑:若线段AB 与线段CD 共中点;若线段AC 与线段BD 共中点;若线段AD 与线段BC 共中点;利用(2)的结论即可解决. (1) AB =3+1=4 故答案为:4 (2) b =b −b ; 由数轴知:b =b +12bb =b +12(b −b )=b −b 2 故答案为:b −b ,b +b 2 (3) ①由(2)可得:12(b +b )=12(b +b ) 即12(−2+6)=12(73+b ) 解得:b =53故答案为:53 ·线○封○密○外②由12(b+b)=12(b+b),得12(3+2b+1)=12(−2+3b−1)解得:b=7故答案为:7③由题意运动t秒后b=4b−8,b=−3b+10,b=2b−1,b=−3b+3.分三种情况:若线段AB与线段CD共中点,则12(4b−8−3b+10)=12(−3b+3+2b−1),解得b=0;若线段AC与线段BD共中点,则12(4b−8+2b−1)=12(−3b+3−3b+10),解得b=116;若线段AD与线段BC共中点,则12(4b−8−3b+3)=12(2b−1−3b+10),解得b=7.综上所述,b=0,116,7故答案为:0或116或7【点睛】本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合.2、 (1)223y x=-+,5(4M,49)12(2)11(8,0)或5(2,0)(3)1225 104【解析】【分析】(1)求出A、B点的坐标,用待定系数法求直线AB的解析式即可;(2)由题意可知BED ∆是直角三角形,设(,0)C t ,分两种情况讨论①当90BED ∠=︒,时,//BE AC ,此时(,2)E t ,由此可求52t =;②当90EBD ∠=︒时,过点E 作EQ y ⊥轴交于点Q ,可证明ABO BEQ ∆∆∽,则AO BO BQ EQ =,可求3(,2)2E t t +,再由E 点在抛物线上,则可求118t =,进而求C 点坐标; (3)作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,则有BQO BED ∠=∠,在Rt BOQ △中,224(3)BQ BQ =+-,求出136BQ =,56QO =,则12tan tan 5BQO BEG ∠=∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++,则有212410533t t t =-+,求出3516t =,即可求2212253104BDE CDA S t S t ∆∆==-. (1) 解:令0y =,则24102033x x -++=, 12x ∴=-或3x =, (3,0)A ∴, 令0x =,则2y =,(0,2)B ∴,设直线AB 的解析式为y kx b =+,∴230b k b =⎧⎨+=⎩, ∴232k b ⎧=-⎪⎨⎪=⎩, 223y x ∴=-+, 2241045492()333412y x x x =-++=--+, 5(4M ∴,49)12; ·线○封○密○外(2)解:ADC BDE ∠=∠,90ACD ∠=︒,BED ∴∆是直角三角形,设(,0)C t ,①如图1,当90BED ∠=︒,时,//BE AC ,(,2)E t ∴,24102233t t ∴-++=, 0t ∴=(舍)或52t =, 5(2C ∴,0); ②如图2,当90EBD ∠=︒时, 过点E 作EQ y ⊥轴交于点Q , 90BAO ABO ∠+∠=︒,90ABO QBE ∠+∠=︒, QBE BAO ∴∠=∠, ABO BEQ ∴∆∆∽, ∴AO BO BQ EQ =,即32BQ t =, 32BQ t ∴=, 3(,2)2E t t ∴+, 2341022233t t t ∴+=-++, 0t ∴=(舍)或118t =, 11(8C ∴,0); 综上所述:C 点的坐标为11(8,0)或5(2,0); ·线○封○密○外(3)解:如图3,作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,BQ AQ ∴=,BQA QAB ∴∠=∠,2BED OAB ∠=∠,BQO BED ∴∠=∠,在Rt BOQ △中,222BQ BO OQ =+,224(3)BQ BQ ∴=+-,136BQ ∴=, 56QO ∴=, 12tan 5BQO ∴∠=, 12tan 5BEG ∴∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++, BG t =,2443DE t t =-+,3AC t =-,223DC t =-+,241033EG t t =-+, ∴212410533t t t =-+, 3516t ∴=, 12BDE S ED BG ∆∴=⋅, 12CDA S AC CD ∆=⋅, ∴224(4)21225323104(3)(2)3BDE CDA t t t S t S t t t ∆∆-+===---+. 【点睛】 本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键. 3、 (1)答案见解析 (2)答案见解析 【解析】 【分析】 (1)根据DF ∥BC ,得bb bb=bb bb ,由AB ⋅AF =DF ⋅BC ,得bb bb =bb bb ,∠AFE =∠DFA ,可证△AEF ∽△DAF ,即可得答案;(2)根据AB ∥CD ,得bb bb =bb bb ,由bb bb =bb bb ,得bb 2bb 2=bb bb ,再证四边形DFBC 是平行四边形,得bb 2bb 2=bb bb ,最后根据DF ∥BC ,即可得答案.·线○封○密○外(1)解:∵DF∥BC,∴bbbb=bbbb,∴bbbb=bbbb,∵AB⋅AF=DF⋅BC,∴bbbb=bbbb,∴bbbb=bbbb,∵∠AFE=∠DFA,∴△AEF∽△DAF,∴∠AEF=∠DAF;(2)∵AB∥CD,∴bbbb=bbbb,∴bbbb=bbbb,∵bbbb=bbbb,∴bbbb=bbbb,∴bb2bb2=bbbb×bbbb=bbbb,∵DF∥BC,AB∥CD,∴四边形DFBC是平行四边形,∴DF =BC ,∴bb 2bb 2=bb bb =bb bb , ∵DF ∥BC , ∴bb bb =bb bb , ∴22AF DE AB CD =. 【点睛】 本题考查了平行线分线段成比例、相似三角形的判定与性质、平行四边形的判定与性质,做题的关键是相似三角形性质的灵活运用. 4、 (1)180,补角定义,同角的补角相等 (2)45° 【解析】 【分析】 (1)根据补角的定义及同角的补角相等即可得出答案; (2)根据角平分线的性质求证即可. (1) 解:因为BOD ∠和COD ∠互补, 所以∠bbb +∠bbb =180°.(补角定义) 因为点O 在直线AB 上,所以180AOB ∠=︒. 所以180BOD AOD ∠+∠=︒. 所以AOD COD ∠=∠.(同角的补角相等) . 故答案是:180,补角定义,同角的补角相等; ·线○封○密○外(2)因为180AOB ∠=︒,90BOC ∠=°,所以∠bbb =∠bbb −∠bbb =180°−90°=90°.由(1)知AOD COD ∠=∠,所以OD 是AOC ∠的平分线.所以∠bbb =12∠bbb =45°.【点睛】本题考查补角的定义,同角的补角相等,角平分线的定义等内容,关键是根据互补的关系及角平分线的定义解答.5、4bb【解析】【分析】根据整式的乘法公式及运算法则化简,合并即可求解.【详解】(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2=a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab .【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。

河南最近10年中考数学试题分类汇编

河南最近10年中考数学试题分类汇编

(2005)1、32的相反数是( ) A 、-9B 、9C 、6D 、-6(2006)1.12-的倒数是( ) A.2- B.12 C.12-D.2(2007)7.52的相反数是 .(2008)1.-7的相反数是( ) A. 7 B. -7 C.D. (2009)1.﹣5的相反数是 【 】 (A ) (B )﹣ (C) ﹣5 (D) 5(2005)2、2004年9月26日,中国西电东送北部通道骨干电源点之一的公伯峡水电站一号机组投产发电。

至此,中国水电装机容量突破100000000000瓦,用科学记数法表示是()瓦。

A 、1×109B 、1×1010C 、1×1011D 、1×1012(2006)9.蜜蜂建造的蜂房既坚固又省料.蜂房的巢壁厚约0.000073 米,用科学记数法表示为_______________米.(2005……依次观察左边的三个图形,并判断照此规律从左向右第四个图形是( )(2005)14、观察下列单项式:0、3x2、8x 3、15x 4、24x 5、……,按 此规律写出第13个单项式是_________。

(2005)23、已知:在Rt △ABC 中,∠C =900,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l 。

⑴、填表:7117-1515⑵、如果a +b -c =m ,观察上表猜想:Sl =__________(用含有m 的代数式表示)。

⑶、证明⑵中的结论。

(2007)13.将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样 的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中共有 个正六边形.(2009)9.下图是一个简单的运算程序.若输入X 的值为﹣2,则输出的数值为.(2005)7、函数y =x +7 中,自变量x 的取值范围是__________ (2005)8、对代数式4a作一个合理解释:____________________________________________________(2006)7.计算:)13+-=_______________.(2006)8.函数15y x =-中,自变量x 的取值范围是_______________. (2007)2.使分式2+x x有意义的x 的取值范围为 【 】 A .2≠x B .2-≠x C .2->x C .2<x (2006)14.(5分)先化简,再求值:()221193x x x x x x⎛⎫-+- ⎪+⎝⎭,其中1005x =. (第13题图)① ∙∙∙②③(2007)16.(8分)32223=-++x x x (2009)16.(8分)先化简中选取一个你认为合适..的数作为x 的值代入求值. (2007)8.计算:423)2(x x ⋅-= . (2005)16、已知x =2+1,求x +1-x 2x -1 的值。

2023年河南省中考数学真题(原卷与解析)

2023年河南省中考数学真题(原卷与解析)

2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯ B.845.910⨯ C.84.5910⨯ D.90.45910⨯4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒5.化简11a a a-+的结果是()A.0B.1C.aD.2a -6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBy PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.3D.23二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16.(1)计算:135--+;(2)化简:()()224x y x x y ---.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)3,1A和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG的高度(结果精确到0.1m ).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.2023年河南省普通高中招生考试试卷数学一、选择题1.【答案】A【解析】解:∵101-<<<,∴最小的数是-1.故选:A 2.【答案】A【解析】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .3.【答案】C【解析】解:4.59亿8459000000 4.9510==⨯.故选:C .4.【答案】B【解析】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B 5.【答案】B 【解析】解:11111a a aa a a a--++===,故选:B .6.【答案】D【解析】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .7.【答案】A【解析】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .8.【答案】B【解析】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .9.【答案】D【解析】解:由图象开口向下可知a<0,由对称轴bx 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .10.【答案】A【解析】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B时的路程为∴OB =,即AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .二、填空题11.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .12.【答案】12x y =⎧⎨=⎩【解析】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.13.【答案】280【解析】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.14.【答案】103【解析】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.15.【答案】21+【解析】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BMMD =,∴1AN BM ND MD==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.三、解答题16.【答案】(1)15;24y 【解析】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.17.【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)18.【答案】(1)见解析(2)见解析【解析】(1)解:如图所示,即为所求,(2)证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.19.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【解析】(1)解:将)3,1A 代入k y x=中,得13=,解得:3k =(2)解: 过点A 作OD 的垂线,垂足为G ,如下图:)3,1A ,1,3AG OG ∴==,22(3)12OA ∴=+=,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;(3)解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,322FBO S ∴=⨯= ,2233FBO AOCD AOC S S S S ππ∴=+-=+= 阴影部分面积菱形扇形.20.【答案】树EG 的高度为9.1m【解析】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .21.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【解析】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.22.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】(1)解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;(2)∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.23.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【解析】(1)(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.(2)①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m =∵sin DG DAG DA∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===(3)解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60α=︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则122PP x =,在1APP 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴1321222PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,2232AQ AP PQ x =-=,在1Rt PQP 中,1132PQ AP AQ x x =-=-,222211316223222PP PQ PQ x x x x ⎛⎫⎛⎫=+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴3113626322222PP PP PP x x x +=+=+=由(2)②可得32sin PP AD α=,∵23AD =∴332362PP =⨯=∴63262x +=,解得:326x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则13121222PP PP x ==,∵1622PP x =,36226222PP x x x =+=,∵36PP =,∴662x =,解得:x =,综上所述,AP 的长为或.。

中考45套汇编河南版数学试题及答案

中考45套汇编河南版数学试题及答案

中考45套汇编河南版数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一个选项符合题意要求.1.12-的绝对值是A. -2B.12- C. 2 D.122. 图1所示的几何体的右视图是3. 某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号4. 下列命题中,正确的是A. 同位角相等B. 平行四边形的对角线互相垂直平分C. 等腰梯形的对角线互相垂直D. 矩形的对角线互相平分且相等5. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100! 98!的值为A. 5049B. 99!C. 9900D. 2!6. 如图2,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁四点中的A. 甲B. 乙C. 丙D. 丁7. 已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)8. 若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是 A. 12k <B. 12k ≤C. 12k >D. k ≥129. 若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为 A.2a b+ B.2a b- C.2a b +或2a b- D. a +b 或a -b10. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 . 其中所有正确结论的序号是A. ③④B. ②③C. ①④D. ①②③第Ⅱ卷(非选择题 共80分)注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上.11. 若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______.12. 若实数m ,n 满足条件m +n =3,且m -n =1,则m =________,n =___________.13. 在△ABC 中,若D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,AD =1,DB =2,则△ADE 与△ABC 的面积比为____________.14. 函数121xy x-=+的自变量x 的取值范围是_______________. 15. 如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到 △A 'P 'B ,且BP =2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos15°)16. 已知n(n≥2)个点P1,P2,P3,…,P n在同一平面内,且其中没有任何三点在同一直线上. 设S n表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S5=10,…,由此推断,S n=______________.三. 解答题:本大题共8个小题,共62分. 解答应写出必要的文字说明,证明过程或演算步骤.17. (本小题满分7分)(1) 已知a =sin60°,b =cos45°,c =11()2-,d =112+,从a 、b 、c 、d 这4个数中任意选取3个数求和;(2) 计算:44()()xy xyx y x y x y x y-++--+ .18. (本小题满分7分)如图5,已知点M 、N 分别是△ABC 的边BC 、AC 的中点,点P 是点A 关于点M 的对称点,点Q 是点B 关于点N 的对称点,求证:P 、C 、Q 三点在同一条直线上.19. (本小题满分7分)甲、乙两同学开展“投球进筐”比赛,双方约定:① 比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;② 若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③ 计分规则如下:a . 得分为正数或0;b . 若8次都未投进,该局得分为0;c . 投球次数越多,得分越低;d . 6局比赛的总得分高者获胜 .(1) 设某局比赛第n (n =1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案;(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):第一局 第二局 第三局 第四局 第五局 第六局 甲 5 × 4 8 1 3 乙82426×根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.20. (本小题满分7分)如图6,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.(1) 求证:AH AB=AC2;(2) 若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE AF=AC2;(3) 若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP AQ=AC2是否成立(不必证明).图 621. (本小题满分8分)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1) 甲、乙两队单独完成这项工程分别需要多少天?(2) 若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.22. (本小题满分8分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.图723. (本小题满分9分)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图8②,若△ABC为直角三角形,且∠C=90°,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.24. (本小题满分9分)如图9,已知O 为坐标原点,∠AOB =30°,∠ABO =90°,且点A 的坐标为(2,0). (1) 求点B 的坐标;(2) 若二次函数y =ax 2+bx +c 的图象经过A 、B 、O 三点,求此二次函数的解析式;(3) 在(2)中的二次函数图象的OB 段(不包括点O 、B )上,是否存在一点C ,使得四边形ABCO 的面积最大?若存在,求出这个最大值及此时点C 的坐标;若不存在,请说明理由.数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步的累计分数;2. 给分和扣分都以1分为基本单位;3. 参考答案都只给出一种解法,若考生的解答与参考答案不同,请根据解答情况参考评分意见给分 .一、选择题:每小题4分,共10个小题,满分40分. 1-5. DABDC ;6-10. CABCB.二、填空题:每小题3分,共6个小题,满分18分.11. 51;12. m =2, n =1;13. 1:9;14. x ≤21,且x ≠-1;15. 6216. (1)2n n -.(13题填为19,16题填为2+3+…+n 或1+2+3+…+n -1均给分)三、解答题:共8个小题,满分62分 .17.(1) a +b +c 324++ a +b +d 3322+-, a +c +d 3222++,b +c +d 322+. ··············································································· 4分(按考生的选择,得出正确结果都给分.正确写出所选a ,b ,c ,d 的值各1分,得出最后结果1分)(2)原式=22()()x y x y x y x y +--+ ····························································· 6分=x 2-y 2 ········································································ 7分18.连结MN 、PC 、 CQ . ····························································· 1分 ∵点P 是A 点关于点M 的对称点,∴ M 是AP 的中点, ···················· 2分 又 M 是BC 的中点,∴ MN 是△APC 的中位线, ∴ CP ∥MN . ··············································································· 4分 同理可证,CQ ∥MN . ·································································· 5分 从而,CP 与CQ 都经过点C 且都平行于AB , ∴ P 、C 、Q 三点在同一直线上. ···················································· 7分(也可连结AQ 、CQ 、BP 、CP ,由ABCQ 、ABPC 为平行四边形证明,或根据全等三角形的性质证明) 19.(1)计分方案如下表:n (次)1 2 3 4 5 6 7 8 M (分)8 7 6 5 4 3 2 1 ····························································································· 4分 (用公式或语言表述正确,同样给分.)(2) 根据以上方案计算得6局比赛,甲共得24分,乙共得分23分, ······· 6分 所以甲在这次比赛中获胜 . ··························································· 7分 20.(1) 连结CB ,∵AB 是⊙O 的直径,∴∠ACB =90°. ····················· 1分 而∠CAH =∠BAC ,∴△CAH ∽△BAC . ·········································· 2分 ∴ACAH AB AC =, 即AH AB =AC 2 . ·················································· 3分 (2) 连结FB ,易证△AHE ∽△AFB , ··············································· 4分 ∴ AE AF =AH AB , ·································································· 5分 ∴ AE AF =AC 2 . ········································································· 6分 (也可连结CF ,证△AEC ∽△ACF ) (3) 结论AP AQ =AC 2成立 . ·························································· 7分 21.(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天. ············ 1分根据题意有 11210x x +-=112,························································· 3分解得x 1=3(舍去),x 2=20. ································································· 4分 ∴ 乙队单独完成需要 2x -10=30 (天).答:甲、乙两队单独完成这项工程分别需要20天、30天. ··················· 5分 (没有答的形式,但说明结论者,不扣分) (2) 设甲队每天的费用为y 元,则由题意有 12y +12(y -150)=138000,解得y =650 . ············································· 7分 ∴ 选甲队时需工程费用650×20=13000,选乙队时需工程费用500×30=15000. ∵ 13000 <15000,∴ 从节约资金的角度考虑,应该选择甲工程队. ·································· 8分 22.(1) 甲先出发;先出发10分钟;乙先到达终点;先到5分钟. ······· 2分 (2) 甲的速度为每分钟0.2公里, ··················································· 3分 乙的速度为每分钟0.4公里 . ························································· 4分 (3) 在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中. ······ 5分 设甲行驶的时间为x 分钟(10<x <25),则根据题意可得: 甲在乙的前面:0.2x >0.4(x -10) ; ··················································· 6分 甲与乙相遇:0.2x =0.4(x -10) ; ······················································· 7分 甲在乙后面:0.2x <0.4(x -10) . ·························································· 8分(设甲行驶的时间x 时,没有限定范围的,不扣分. 也可设乙行驶的时间列出相应的方程或不等式 .) 23. (1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”. ·············· 1分(2) 此时共有2个友好矩形,如图的BCAD 、ABEF . ································································ 3分 易知,矩形BCAD 、ABEF 的面积都等于△ABC 面积的2倍,∴ △ABC 的“友好矩形”的面积相等. ············ 4分(3) 此时共有3个友好矩形,如图的BCDE 、CAFG 及ABHK ,其中的矩形ABHK 的周长最小 . ················ 5分证明如下:易知,这三个矩形的面积相等,令其为S . 设矩形BCDE 、CAFG 及ABHK 的周长分别为L 1,L 2,L 3,△ABC 的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c . ··············· 6分 ∴ L 1- L 2=(2S a +2a )-(2S b +2b )=2(a -b )ab Sab-, ·· 7分而 ab >S ,a >b ,∴ L 1- L 2>0,即L 1> L 2 . ································· 8分 同理可得,L 2> L 3 .∴ L 3最小,即矩形ABHK 的周长最小. ·············································· 9分 24.(1) 在Rt △OAB 中,∵∠AOB =30°,∴ OB =3. 过点B 作BD 垂直于x 轴,垂足为D ,则 OD =23,BD =23,∴ 点B 的坐标为(23,23) . ···················································· 1分 (2) 将A (2,0)、B (23,23)、O (0,0)三点的坐标代入y =ax 2+bx +c ,得420,933,4220.a b c a b c c ++=⎧⎪⎪++=⎨⎪=⎪⎩····································································· 2分 解方程组,有 a =332-,b =334,c =0. ········································ 3分 ∴ 所求二次函数解析式是 y =332-x 2+334x . ································· 4分 (3) 设存在点C (x , 332-x 2+334x ) (其中0<x <32),使四边形ABCO 面积最大. ∵△OAB 面积为定值,∴只要△OBC 面积最大,四边形ABCO 面积就最大. ·························· 5分 过点C 作x 轴的垂线CE ,垂足为E ,交OB 于点F ,则S △OBC = S △OCF +S △BCF =11||||||||22CF OE CF ED ⋅+⋅=||43||||21CF OD CF =⋅,································································································ 6分而 |CF |=y C -y F =22234332333333x x x x x -+-=-+,∴ S △OBC =x x 433232+- . ························································· 7分 ∴ 当x =43时,△OBC 面积最大,最大面积为3239. ··························· 8分此时,点C 坐标为(835,43),四边形ABCO 的面积为32325. ··············· 9分。

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案河南省历年中考数学试题及答案是许多准备参加中考的学生和家长十分关心的话题。

在这篇文章中,我们将为大家整理和介绍一些河南省历年中考数学试题,并附上详细的答案解析,希望能够为大家的复习提供帮助。

一、选择题选择题是中考数学试卷中的重要组成部分。

以下是河南省历年中考数学试卷中的一道选择题:题目:已知正比例函数y = kx,当x = 4时,y = 10;当x = 6时,y = 15。

求k的值。

解析:根据题意可得到方程组:4k = 106k = 15通过解方程可得k = 2.5,因此,选项B为正确答案。

二、填空题填空题是中考数学试卷中锻炼计算能力和应用能力的重要题型。

以下是河南省历年中考数学试卷中的一道填空题:题目:Kate利用1组花环,每个花环用3朵玫瑰和5朵郁金香制作,共制作了8个花束,请问她用了多少朵玫瑰?解析:设用了x朵玫瑰,则用了24 - x朵郁金香,由题意可得方程:3x + 5(24 - x) = 8 × 8通过解方程可得x = 15,因此,她用了15朵玫瑰,答案为15。

三、解答题解答题是中考数学试卷中考察学生分析问题和解决问题能力的重要题型。

以下是河南省历年中考数学试卷中的一道解答题:题目:如图,直线l1与直线l2相交于点O,∠AOB = 85°,求∠COB的度数。

解析:由于l1与l2相交,根据错综相交线性质,可得∠AOB =∠COE。

又∠AOB = 85°,因此∠COE = 85°。

由于角的两边是射线,所以∠COB = ∠COE - ∠BOE = 85° - 70° = 15°。

四、解析题解析题是中考数学试卷中考察学生解决复杂问题和综合运用知识的重要题型。

以下是河南省历年中考数学试卷中的一道解析题:题目:汽车维修站每天收取基本工时费80元,每小时超时费30元。

某辆车维修时间3小时30分钟,应支付多少元?解析:首先需要计算维修时间的分钟数:3小时30分钟 = 3 × 60 +30 = 210分钟。

2023年河南省中考数学真题(解析版)

2023年河南省中考数学真题(解析版)

2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

河南省历年(03--10)中考数学试卷汇总(含答案)

河南省历年(03--10)中考数学试卷汇总(含答案)

河南省2003年高级中等学校招生统一考试试卷:数学题号 一二三四五六七总分分数一、填空题(每小题2分,共24分) 1.-5的相反数的倒数是_________.2.实数p 在数轴上的位置如图1所示,化简=-+-22)2()1(p p ______________.3.如图2,直线L1//L2,AB ⊥L1,垂足为O ,BC 与L2相交于点E ,若∠1=30°,则∠B=___.1ͼ2O E L1L2A BC4.函数3521----x xx 的自变量x 的取值范围是_____________________________. 5.根据有关媒体报道,今年5月27日至6月1日全国“SARS ”患者治愈出院人数依次是:115,85,92,129,69,62,这组数据的平均数是________________________. 6.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件__________________元.7.不等式组⎪⎪⎩⎪⎪⎨⎧+<->--21312,221x x x x 的整数解是______________________________________. 8.如图3,在等腰梯形ABCD 中AD//BC ,AB=DC ,CD=BC ,E 是BA 、CD 延长线的交点,∠E=40°, 则∠ACD=____________度.9.如果多项式b y axy x -+-22能用分组分解法分解因式,则符合条件的一组整数的值是a=_____,b=________.10.如图4,为了测量河对岸的旗杆AB 的高度,在点C 处测得旗杆顶端A 的仰角为30°,沿CB 方向前进5 米到达D 处,在D 处测得旗杆顶端A 的仰角为45°, 则旗杆AB 的高度是______________米.ͼ3E BCADC DABͼ112p11.点P (m ,n )既在反比例函数)0(2>-=x xy 的图象上,又在一次函数2--=x y 的图象上,则以m 、n 为根的一元一次方程为___________________. 12.如图5,某燃料公司的院内堆放着10个外 径为1米的空油桶,为了防雨需搭建简易防 雨蓬,这个防雨棚的高度最低应为___________ (3取1.73,结果精确到0.1米).二、选择题(每小题3分,只有一个正确答案,共15分) 13.若单项式752222b a b am n nm 与+-+是同类项,则m n 的值是( )(A )-3 (B )-1 (C )1/3 (D )314.某专卖店在统计2003年第一季度的销售额时发现,二月份比一月份增加10%,三月份比二月份减少10%,那么三月份比一月份 ( ) (A) 增加10% (B )减少10% (C )不增不减 (D )减少1% 15.用两块完全重合的等腰三角形纸片拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等边三角形;(5)等腰直角三角形,一定能拼成的图形是( ) (A )(1)(2)(3) (B )(1)(3)(5) (C )(2)(3)(5) (D )(1)(3)(4)(5) 16.在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36°C ,的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0,0.1,在这十天中该学生的体温波动数据中不正确的是( )(A )平均数为0.12 (B )众数为0.1 (C )中位数为0.1 (D )方差为0.02 17.已知如图6,ABCD 是⊙O 内接正方形,AB=4,F 是BC 的中点,AF 的延长线交⊙O 于点E ,则AE的长是( )(A )5512 (B )554 (C )55 (D )556 三、(第18、19小题各5分,第20、21小题各6分,共22分) 18.已知2231-=x ,2231+=y ,求4-+xyy x 的值.ͼ5ͼ6FOBD A CE19.已知,如图7是两个同心圆被两条半径截得的一个扇形图,请你画出一个以O 为对称中心的扇形的对称图(保留作图痕迹,写出画法)ͼ7CDOB A20.已知关于x 的方程012)14(2=-+++k x k x . (1)求证:该方程一定有两个不相等的实数根;(2)若x 1、x 2是两个实数根,且32)2)(2(21-=--k x x ,求k 的值.21.已知:如图8,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F. 求证:AB 垂直平分DF.ͼ8EDBCAF四、(每小题7分,共14分) 22.解方程31234222=----x x x x .23.已知:如图9,在直角梯形ABCD 中AB//CD ,AD ⊥AB ,以腰BC 为直径的半圆O 切AD 于点E ,连结点BE ,若BC=6,∠EBC=30°. 求梯形ABCD 的面积.ͼ9BOCE DA五、(8分)24.在防治“SARS ”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液.六、(8分)25.已知:如图10,⊙O 1与⊙O 2相交,⊙O 1的弦AB 交⊙O 2于点C 、D ,O 1O 2⊥AB 于点F ,过点B 作⊙O 2切线BE ,切点为E ,连结EC 、DE.若BE=DE ,∠BED=30°,AC 、CE 的长是方程016102=+-x x 的两个根,(AC<CE ). (1)求证:BC=EC ;(2)求⊙O 2的半径.(该题是一个错题)ͼ10FD CO1O2EA B七、(9分)26.已知:如图11,在平面直角坐标系中,以BC 为直径的圆M 交x 轴于正半轴于点A 、B ,交y 轴于点E 、F ,过点C 作CD 垂直y 轴于点D ,连结AM 并延长交⊙M 于点P ,连结PE.(1)求证:∠FAO=∠EAM ;(2)若二次函数q px x y ++-=2的图象经过B 、C 、E 三点,且以点C 为顶点,当点B 的横坐标等于2时,四边形OECB 的面积是411,求这个二次函数的解析式. xy BAE OMCD EP2005年河南省高级中等学校招生统一考试试卷数 学注意事项: 1.本试卷共8页,三大题,满分100分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上. 2.答题前将密封线内的项目填写清楚. 题号 一 二 三总分 14 15 16 17 18 19 20 21 22 分数一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的 代号字母填入题后括号内.1.如图,tan α等于 ( ) A.12 B.2C.55D.52.如图所示,两温度计读数分别为我国某地今年2月份某最低气温与最高气温,那么这天的最高气温比最低气温高( )A.5℃ B.7℃ C.12℃ D.12-℃ 3.在一次科学探测活动中,探测人员发现一目标在如图的 阴影区域内,则目标的坐标可能是( )A.(3300)-, B.(7500)-, C.(9600),D.(2800)--,4.如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少10,设12∠∠、的度数分别为x y ,,那么下列可以求出这两个角的度数的方程组是 ( )A.18010x y x y +=⎧⎨=-⎩,B.180310x y x y +=⎧⎨=-⎩,得分 评卷人yx(第3题)(第2题) CB A2α1(第1题)105 0 5 10 15 20 105 0 5 10 15 20C.180310x y x y +=⎧⎨=+⎩,D.3180310y x y =⎧⎨=-⎩,5.下列各数中,适合方程3233a a a +=+的一个近似值(精确到0.1)是( )A.1.5 B.1.6 C.1.7 D.1.86.如图,半径为4的两等圆相外切,它们的一条外公切线与两圆围成的阴影部分中,存在的最大圆的半径等于 ( ) A.12 B.23C.34D.1二、填空题(每小题3分,共21分)7.计算235()x x ÷= .8.函数23x y +=中,自变量x 的取值范围是 . 9.如图所示,12l l ∥,则1∠= 度.10.点(11)--, (填:“在”或“不在”)直线 23y x =--上.11.如图,已知PA 为O 的切线,PBC 为O 的割线,62PA =,PB BC =,O 的半径5OC =,那么弦BC 的弦心距OM = .12.从《中华人民共和国2004年国民经济和社会发展统计 公报》中获悉,2004年末国家全年各项税收收入25718亿 元,用科学记数法表示为 元(保留三个有效数字).13.如图,梯形ABCD 中,1AD BC AB CD AD ===∥,,60B ∠= ,直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC PD +的最小值为 .三、解答题(本大题9个小题,共61分) 14.(5分)化简:22x xy x y x xy y ⎛⎫+--⎪⎝⎭得分 评卷人得分 评卷人OCBA12(第4题)(第9题)406011l2lB (第11题) COPAM (第13题)CBA DMN 1O 2O(第6题)15.(5分)如图,ABC △中,45ABC AD BC ∠=,⊥于D ,点E 在AD 上,且DE CD =.求证:BE AC =.16.(6分)观察下表,填表后再解答问题:(1)完成下列表格: 序号 1 2 3图形的个数 8 24 的个数14(2) 试求第几个图形中“●”的个数和“ ”的个数相等? 17.(6分)已知12x x 、是一元二次方程222130x x m -+-=的两个实数根,且12x x 、满足不等式12122()0x x x x ++> ,求实数m 的取值范围.得分 评卷人得分 评卷人得分 评卷人得分 评卷人BCDAE18.(6分)小明在一份题目为“了解本校初三毕业生体能情况”的调查报告中,通过对部分学生一分钟跳绳次数测试成绩的整理与计算,得出89.5-99.5组的频率为0.04,且绘出如下频率分布直方图(规定一分钟110次或110次以上为达标成绩):(1)请你补上小明同学漏画的119.5-129.5组的频率分布直方图. (2)小明所调查学生的达标率为 . (3)请你根据以上信息,替小明写出一条调查结论.结论: .19.(6分)已知O 的内接四边形ABCD 中,AD BC ∥.试判断四边形ABCD 的形状,并加以证明.20.(7分)空投物资用的某种降落伞的轴截面如右图所示,ABG △是等边三角形,C D 、是以AB 为直径的半圆O 的两个三等分点.CG DG 、分别交AB 于点E F 、.试判断点E F 、分别位于所在线段的什么位置?并证明你的结论(证一种情况即可).得分 评卷人得分 评卷人89.5 99.5 109.5 119.5 129.5 139.5 149.5 次数 频率组距 O GA E FBC D21.(9分)已知一个二次函数的图象过如图所示三点.(1) 求抛物线的对称轴; (2) 平行于x 轴的直线l 的解析式为254y =,抛物线与x 轴交于A B 、两点,在抛物线的对称轴上找点P ,使BP 的长等于直线l 与x 轴间的距离.求点P 的坐标.22.(11分)如图1,ABC Rt △中,90125C AC BC ∠===,,,点M 在边AB 上,且6AM =.(1) 动点D 在边AC 上运动,且与点A C 、均不重合,设CD x =.①设ABC △与ADM △的面积之比为y ,求y 与x 之间的函数关系式(写出自变量的取值范围);②当x 取何值时,ADM △是等腰三角形?写出你的理由.(2)如图2,以图1中的BC CA 、为一组邻边的矩形ACBE 中,动点D 在矩形边上运动一周,能使ADM △是以AMD ∠为顶角的等腰三角形共有多少个(直接写出结果,不要求证明理由)?得分 评卷人得分 评卷人142 5254yOBA x3-DM E A C B 6 5 AM D C B 5 6图1 图22006年河南省高级中等学校招生统一考试试卷数学考生注意:1.本试卷共8页,三大题,满分100分,考试时间100分钟.用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚. 题号 一 二 三总分 14 15 16 17 18 19 20 21 22 分数一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.12-的倒数是( ) A.2-B.12C.12-D.22.下列图形中,是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个 3.两条直线相交所成的四个角中,下列说法正确的是( ) A.一定有一个锐角 B.一定有一个钝角 C.一定有一个直角 D.一定有一个不是钝角4.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )5.如图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为( ) A.5:1 B.4:1 C.3:1 D.2:1O ah A. O a h B. O a h C. O a h D. (第5题)6.某公园的两个花圃,面积相等,形状分别为正三角形和正六边形.已知正三角形花圃的周长为50米,则正六边形花圃的周长( ) A.大于50米 B.等于50米 C.小于50米 D.无法确定 二、填空题(每小题3分,共21分) 7.计算:()213-+-=_______________.8.函数15y x =-中,自变量x 的取值范围是_______________. 9.蜜蜂建造的蜂房既坚固又省料.蜂房的巢壁厚约0.000073 米,用科学记数法表示为_______________米.10.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是_______________.11.方程组2235y x x y =-+⎧⎨+=⎩的解是_______________. 12.如图,O 从直线AB 上的点A (圆心O 与点A 重合)出发,沿直线AB 以1厘米/秒的速度向右运动(圆心O 始终在直线AB 上).已知线段6AB =厘米,O ,B 的半径分别为1厘米和2厘米.当两圆相交时,O 的运动时间t (秒)的取值范围是____________ __________________.13.如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD .若4AE =,3CE BE =,那么这个四边形的面积是_______________. 三、解答题(本大题共9个小题,满分61分) 14.(5分)先化简,再求值:()221193x x x x x x⎛⎫-+- ⎪+⎝⎭ ,其中1005x =. 15.(5分)如图,在ABCD 中,E 为CD 的中点,连结AE 并延长交BC 的延长线于点F .求证:ABF ABCD S S = △.(第10题) O()A B B ECDA (第12题) 图(1)图(2)(第13题)16.(6分)在一次演讲比赛中,七位评委为其中一位选手打出的分数如下: 9.4 8.4 9.4 9.9 9.6 9.4 9.7(1)这组数据的中位数是___________,众数是___________,平均分x =___________,去掉一个最高分和一个最低分后的平均分1x =___________;(2)由(1)所得的数据x ,1x 和众数中,你认为哪个数据能反映演讲者的水平?为什么?17.(6分)同一种商品在甲、乙两个商场的标价都是每件10元,在销售时都有一定的优惠.甲的优惠条件是:购买不超过10件按原价销售,超过10件,超出部分按7折优惠;乙的优惠条件是:无论买多少件都按9折优惠.(1)分别写出顾客在甲、乙两个商场购买这种商品应付金额y 甲(元),y 乙(元)与购买件数x (件)之间的函数关系式;(2)某顾客想购买这种商品20件,他到哪个商场购买更实惠?18.(6分)关于x 的一元二次方程210x mx m ++-=的两个实数根为1x ,2x , 且22125x x +=,求实数m 的值.A D E FCB19.(7分)如图,山顶建有一座铁塔,塔高80BC =米,测量人员在一个小山坡的P 处测得塔的底部B 点的仰角为45,塔顶C 点的仰角为60.已测得小山坡的坡角为30,坡长40MP =米.求山的高度AB (精确到1米).(参考数据:2 1.414≈,3 1.732≈)20.(7分)如图,45AOB =∠,过OA 上到点O 的距离分别为1,2,3,4,5 的点作OA 的垂线与OB 相交,再按一定规律标出一组如图所示的黑色梯形.设前n 个黑色梯形的面积和为n S .(1)请完成下面的表格:n 1 2 3n S(2)已知n S 与n 之间满足一个二次函数关系,试求出这个二次函数的解析式.C PBAM21.(9分)如图,AB 为O 的直径,AC ,BD 分别和O 相切于点A ,B ,点E 为圆上不与A ,B 重合的点,过点E 作O 的切线分别交AC ,BD 于点C ,D ,连结OC ,OD 分别交AE ,BE 于点M ,N .(1)若4AC =,9BD =,求O 的半径及弦AE 的长;(2)当点E 在O 上运动时,试判定四边形OMEN 的形状,并给出证明.22.(10分)二次函数218y x =的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D .(1)当点A 的横坐标为2-时,求点B 的坐标;(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由; (3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC BD 的值.数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分)A CEMON BDy DBM A C Ox题号 1 2 3 4 5 6 答案 A CDB B C 二、填空题(每小题3分,共21分)题号 78910111213答案45x ≠ 57.310-⨯ 212+12121221x x y y ==⎧⎧⎨⎨==⎩⎩,,;. 35t <<或79t << 163三、解答题(本大题共9个小题,满分61分)14.解:原式1324x x x =-+-=-. ······································································ 4分 当1005x =时,原式2006=. ···················································································· 5分 15.证明: 四边形ABCD 为平行四边形,AD BC ∴∥. DAE F ∴=∠∠,D ECF =∠∠. E 是DC 的中点,DE CE ∴=. AED FEC ∴△≌△. ································································································· 3分AED FEC S S ∴=△△.ABF CEF ABCE AEDABCE S S S S S ∴=+=+△△四边形△四边形 ABCD S = ········································································································ 5分 16.(1)9.4分,9.4分,9.4分,9.5分. ································································ 4分 (2)答案不惟一,言之有理即可,如1x .理由:1x 既反映了多数评委所打分数的平均值,又避免了个别评委打分过高或过低对选手成绩的影响. ················································································································· 6分 17.解:(1)当购买件数x 不超过10件时,10y x =甲;当购买件数x 超过10件时,730y x =+甲. ······························································ 2分 9y x =乙. ····················································································································· 3分 (2)当20x =时,170y =甲,180y =乙.y y ∴<甲乙.∴若顾客想购买20件这种商品,到甲商场购买更实惠. ·········································· 6分 18.解:由题意,得12x x m +=-,121x x m =-. ··················································· 1分()22212121225x x x x x x +=+-= ,()()2215m m ∴---=.解得13m =,21m =-. ······························································································ 4分()()224120m m m ∆=--=- ≥,3m ∴=或1-. ············································································································· 6分 19.解:如图,过点P 作PE AM ⊥于E ,PF AB ⊥于F .在Rt PME △中,30PME =∠,40PM =,20PE ∴=.四边形AEPF 是矩形,20FA PE ∴==. ···························································· 2分 设BF x =米.45FPB = ∠, FP BF x ∴==.60FPC = ∠,tan603CF PF x ∴== .80CB = ,803x x ∴+=.解得()4031x =+. ·································································································· 6分()40312060403129AB ∴=++=+≈(米).答:山高AB 约为129米. ··························································································· 7分20.解:(1)n 1 2 3n S325212········································································································································ 3分 (2)设二次函数的解析式为2n S an bn c =++.则3254221932a b c a b c a b c ⎧=++⎪⎪=++⎨⎪⎪=++⎩,,,解得1120a b c =⎧⎪⎪=⎨⎪=⎪⎩,,. ·············································································· 6分∴所求二次函数的解析式为212n S n n =+. ······························································· 7分 21.解:(1)AC ,BD ,CD 分别切O 于A ,B ,E ,4AC =,9BD =, 4CE AC ∴==,9DE BD ==. 13CD ∴=.AB 为O 的直径,90BAC ABD ∴== ∠∠.BCPEM AF过点C 作CF BD ⊥于F ,则四边形ABFC 是矩形.5FD ∴=,2213512CF =-=.12AB ∴=,O ∴ 的半径为6. ··············································································· 3分 连结OE .CA CE = ,OA OE =, OC ∴垂直平分弦AE .2264213OC =+= ,121313AO AC AM OC ∴==. 2413213AE AM ∴==. ··························································································· 6分 (2)当点E 在O 上运动时,由(1)知OC 垂直平分AE .同理,OD 垂直平分BE .AB 为直径,90AEB ∴= ∠.∴四边形OMEN 为矩形. ··································· 8分当动点E 满足OE AB ⊥时,OA OE = ,45OEA ∴=∠.MO ME ∴=.∴矩形OMEN 为正方形. ··························································································· 9分 22.解:(1)根据题意,设点B 的坐标为218x x ⎛⎫ ⎪⎝⎭,,其中0x >.点A 的横坐标为2-,122A ⎛⎫∴- ⎪⎝⎭,. ······································································ 2分 AC y ⊥轴,BD y ⊥轴,()02M ,, AC BD ∴∥,32MC =,2128MD x =-. Rt Rt BDM ACM ∴△∽△. BD MD AC MC∴=. 即2128322x x -=.解得12x =-(舍去),28x =.()88B ∴,. ................................................................................................................... 5分 (2)存在. . (6)分连结AP ,BP .由(1),12AE =,8BF =,10EF =. 设EP a =,则10PF a =-.AE x ⊥轴,BF x ⊥轴,90APB = ∠, AEP PFB ∴△∽△. AE EP PF BF ∴=. 12108aa ∴=-. 解得521a =±.经检验521a =±均为原方程的解.∴点P 的坐标为()3210+,或()3210-,. ···························································· 8分 (3)根据题意,设218A m m ⎛⎫ ⎪⎝⎭,,218B n n ⎛⎫ ⎪⎝⎭,,不妨设0m <,0n >. 由(1)知BD MDAC MC=, 则22128128n n m m -=--或22128128n n m m -=--. 化简,得()()160mn m n +-=.0m n - ≠,16mn ∴=-.16AC BD ∴= . ········································································································· 10分2007年河南省实验区中考数学试题一、选择题 (每小题3分,共18分)下列各小题均不四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内。

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别价格A 款玩偶B 款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行,反比例函数y =的图象与大正方形的一边交于点A (1,2),且经过小正方形的顶点B .(1)求反比例函数的解析式;(2)求图中阴影部分的面积.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:∠BOC +∠BAD =90°.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得cos ∠BAD =.已知铁环⊙O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)50≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100频数7912166b .成绩在70≤x <80这一组的是(单位:分):70 71 72 7274 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为  .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 (填序号)组,达到9小时的学生人数占被调查人数的百分比为 ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m =  ;S 甲2 S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.完全平方公式(共1小题)1.(2023•河南)(1)计算:;(2)化简:(x﹣2y)2﹣x(x﹣4y).【答案】(1),(2)4y2.【解答】解:(1)=3﹣3+=,(2)(x﹣2y)2﹣x(x﹣4y)=x2﹣4xy+4y2﹣x2+4xy=4y2.二.分式的混合运算(共1小题)2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=﹣+1=1;(2)原式=•=.三.负整数指数幂(共1小题)3.(2022•河南)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【答案】(1);(2)x+1.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.四.分式方程的应用(共1小题)4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【答案】(1)菜苗基地每捆A种菜苗的价格是20元;(2)本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.五.一元一次不等式的应用(共1小题)5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)选择活动一更合算;(2)一件这种健身器材的原价是400元;(3)300≤a<400或600≤a<800.【解答】解:(1)∵450×=360(元),450﹣80=370(元),∴选择活动一更合算;(2)设一件这种健身器材的原价为x元,若x<300,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;∴300≤x<500,∴x=x﹣80,解得x=400,∴一件这种健身器材的原价是400元;(3)当300≤a<600时,a﹣80<0.8a,解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a,∴600≤a<800;综上所述,300≤a<400或600≤a<800.六.一次函数的应用(共1小题)6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?【答案】(1)A款玩偶购进20个,B款玩偶购进10个;(2)按照购进A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)从利润率的角度分析,对于小李来说第二次的进货方案更合算.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第二次的利润率=×100%=46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.七.待定系数法求反比例函数解析式(共1小题)7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【答案】(1)反比例函数的解析式为y=;(2)8.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.八.二次函数的应用(共2小题)8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x (m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.(1)求点P的坐标和a的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)点P的坐标为(0,2.8);a的值是﹣0.4;(2)选择吊球方式,球的落地点到C点的距离更近.【解答】解:(1)在y=﹣0.4x+2.8中,令x=0得y=2.8,∴点P的坐标为(0,2.8);把P(0,2.8)代入y=a(x﹣1)2+3.2得:a+3.2=2.8,解得:a=﹣0.4,∴a的值是﹣0.4;(2)∵OA=3m,CA=2m,∴OC=5m,∴C(5,0),在y=﹣0.4x+2.8中,令y=0得x=7,在y=﹣0.4(x﹣1)2+3.2中,令y=0得x=﹣2+1(舍去)或x=2+1≈3.82,∵|7﹣5|>|3.82﹣5|,∴选择吊球方式,球的落地点到C点的距离更近.9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【答案】(1)抛物线的表达式为y=﹣x2+x+;(2)当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.九.圆的综合题(共1小题)10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【答案】(1)证明见解答过程;(2)50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.一十.频数(率)分布表(共1小题)11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 78.5 分,成绩不低于80分的人数占测试人数的百分比为 44% .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【答案】见试题解答内容【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分),所以这组数据的中位数是78.(5分),成绩不低于8(0分)的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩7(7分)低于中位数78.(5分),所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于8(0分)的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).一十一.条形统计图(共1小题)12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.调查问卷1.近两周你平均每天睡眠时间大约是______小时.如果你平均每天睡眠时间不足9小时,请回答第2个问题2.影响你睡眠时间的主要原因是______(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第 ③ (填序号)组,达到9小时的学生人数占被调查人数的百分比为 17% ;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.【答案】见试题解答内容【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.一十二.折线统计图(共1小题)13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲7.8m 7乙887根据以上信息,回答下列问题:(1)表格中的m = 7.5 ;S 甲2 < S 乙2(填“>”“=”或“<”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5,<;(2)小丽应选择甲公司(答案不唯一),理由见解答;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解答】解:(1)甲公司配送速度得分从小到大排列为:6 6 7 7 7 8 9 9 9 10,一共10个数据,其中第5个与第6个数据分别为7、8,所以中位数m==7.5.=×[3×(7﹣7)2+4×(8﹣7)2+2×(6﹣7)2+(5﹣7)2]=1,=×[(4﹣7)2+(8﹣7)2+2×(10﹣7)2+2×(6﹣7)2+(9﹣7)2+2×(5﹣7)2+(7﹣7)2]=4.2,∴<,故答案为:7.5,<;(2)小丽应选择甲公司(答案不唯一),理由如下:∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)。

河南数学中招试题及答案

河南数学中招试题及答案

河南数学中招试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程\(2x - 5 = 11\)的解?A. \(x = 4\)B. \(x = 6\)C. \(x = 8\)D. \(x = 10\)2. 一个数的平方根是4,那么这个数是:A. 8B. 16C. -8D. -163. 圆的直径是14,那么它的半径是:A. 7B. 14C. 28D. 214. 一个三角形的三个内角分别是45°、45°和90°,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不存在5. 函数\(y = 3x + 2\)的图象与x轴的交点坐标是:A. (-2/3, 0)B. (2/3, 0)C. (-2, 0)D. (2, 0)6. 下列哪个选项是不等式\(2x - 3 > 5\)的解集?A. \(x > 4\)B. \(x < 4\)C. \(x > 1\)D. \(x < 1\)7. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 9D. -98. 一个等腰三角形的两边长分别是5和5,底边长是8,那么这个三角形的面积是:A. 12B. 20C. 24D. 309. 函数\(y = x^2 - 4x + 4\)的最小值是:A. 0B. 1C. 4D. 1610. 一个长方体的长、宽、高分别是2、3和4,那么它的体积是:A. 24B. 32C. 48D. 64二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是____。

2. 一个数的绝对值是7,那么这个数可以是____或____。

3. 一个三角形的周长是30,其中两边长分别是8和15,那么第三边长是____。

4. 一个圆的半径是5,那么它的面积是____。

5. 函数\(y = 2x - 3\)与y轴的交点坐标是____。

三、解答题(每题10分,共50分)1. 解方程:\(3x + 5 = 14\)。

最新河南省中招考试数学试卷含答案优秀名师资料

最新河南省中招考试数学试卷含答案优秀名师资料

2013年河南省中招考试数学试卷(含答案) 2013年河南省初中学业水平暨高级中等学校招生考试试卷数学注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.2bac,b42, 参考公式:二次函数y=ax+bx+c(a?0)图象的顶点坐标为.(,)aa24一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1. -2的相反数是【】11,,,2 A. 2 B. C. D. 222. 下列图形中,既是轴对称图形又是中心对称图形的是【】A B C DD 3.方程(x-2)(x+3)=0的解是【】,3,3,2 A. x=2 B. x= C. x=,x=3 D. x=2,x= 12124. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是【】 A. 47 B. 48 C. 48.5 D.495. 如图是正方体的一种展开图,其每个面上都标有一个数字.那么在原正方体中,与数字“2”相对的面上的数字是【】12 3 4 5 A. 1 B. 4 C. 5 D. 66第5题x,2,6. 不等式组的最小整数解为【】 ,x,2,1C ,A. B. 0 C. 1 D. 2 ,17. 如图,CD是?O的直径,弦AB?CD于点G,直线EF与 OA B G ?O相切于点D,则下列结论中不一定正确的是【】E DF A. AG=BG B. AB//EF 第7题 C. AD//BC D. ?ABC=?ADC28. 在二次函数y=-x+2x+1的图象中,若y随x的增大而增大,则x的取值范围是【】 A. x,1 B. x,1 C. x,-1 D. x,-1二、填空题 (每小题3分,共21分) AE D 9. 计算: ,3,4,_______.10. 将一副直角三角板ABC和EDF如图放置(其中?A=60?,?F=45?),使点E落在AC边上,且 C BED//BC,则?CEF的度数为_________.F 第10题 1111. 化简: ,,_________.xx(x,1)12. 已知扇形的半径为4 cm,圆心角为120?,则此扇形的弧长是_________cm.13. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是_________.y 14. 如图,抛物线的顶点为P(-2,2),与y轴A 交于点A(0,3). 若平移该抛物线使其顶点P P沿直线移动到点P′(2,-2),点A的对应O点为A′,则抛物线上PA段扫过的区域 xA′(阴影部分)的面积为_________. P′ 15. 如图,矩形ABCD中,AB=3,BC=4,点第14题 A DE是BC边上一点,连接AE,把?B沿AE折叠,使点B落在点B′处.当?CEB′为直B′角三角形时,BE的长为_________.B E C第15题三、解答题 (本大题共8个小题,满分75分)216.(8分)先化简,再求值:(x+2)+(2x+1)(2x-1)-4x(x+1),其中. x,,217.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数) 调查结果扇形统计图A 大气气压低,空气不流动 80 10%B C A B 地面灰尘大,空气湿度低 m20% C 汽车尾部排放 nE D 工厂造成污染 120 DE 其他 60请根据图表中提供的信息解答下列问题;(1)填空:m=________,n=_______,扇形统计图中E组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少,18.(9分)如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:?ADE??CDF;(2)填空:?当t为_________s时,四边形ACFE是菱形;?当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角?BAE=68?,新坝体的高为DE,背水坡坡角?DCE=60?. 求工程完工后背水坡底端水平方向增加的宽度AC(结果精D 3确到0.1米. 参考数据:sin68??0.93,cos68??0.37,tan68??2.50,?1.73).B60? 68?E C A 图20.(9分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).k双曲线的图象经过BC的中点D,且与AB交于点E,连接DE. y,(x,0)x(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且?FBC??DEB,求直线FB的解析式.yD B CE FO A x第20题21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y元,购买x个B品牌的计算器需要y元,分别求出y、121y关于x的函数关系式; 2(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算,请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中?C=90?,?B=?E=30?.(1)操作发现如图2,固定?ABC,使?DEC绕点C旋转,当点D恰好落在AB边上时,填空: ?线段DE与AC的位置关系是_________;?设?BDC的面积为S,?AEC的面积为S,则S与S的数量关系是1212B(E) B _________________.E DA C A(D) C图1 图2(2)猜想论证当?DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S与S的数量关系12B 仍然成立,并尝试分别作出了?BDC和?AEC中BC、CE边上的高,请你证明小明的猜想.D M NA C(3)拓展探究E 已知?ABC=60?,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图图3A 4).若在射线BA上存在点F,使S=S, ??DCFBDE请直接写出相应的BF的长. ((((DC B E图41223.(11分)如图,抛物线y=-x+bx+c与直线交于C、D两点,其中点C在yy,x,227轴上,点D的坐标为. 点P是y轴右侧的抛物线上一动点,过点P作PE?x轴于(3, )2点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形,请说明理由.(3)若存在点P,使?PCF=45?,请直接写出相应的点P的坐标. ((((y yPD DF C CA OB x A O E B x备用图2013年河南省初中学业水平暨高级中等学校招生考试试卷数学参考答案。

2006河南中考数学试题及答案

2006河南中考数学试题及答案

2006年河南省高级中等学校招生统一考试试卷数学考生注意:1.本试卷共8页,三大题,满分100分,考试时间100分钟.用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚. 题号 一 二 三总分 14 15 16 17 18 19 20 21 22 分数一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.12-的倒数是( ) A.2-B.12C.12-D.22.下列图形中,是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个 3.两条直线相交所成的四个角中,下列说法正确的是( ) A.一定有一个锐角 B.一定有一个钝角 C.一定有一个直角 D.一定有一个不是钝角4.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )5.如图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为( ) A.5:1 B.4:1 C.3:1 D.2:1O ah A. O a h B. O a h C. O a h D. (第5题)6.某公园的两个花圃,面积相等,形状分别为正三角形和正六边形.已知正三角形花圃的周长为50米,则正六边形花圃的周长( ) A.大于50米 B.等于50米 C.小于50米 D.无法确定 二、填空题(每小题3分,共21分) 7.计算:()213-+-=_______________.8.函数15y x =-中,自变量x 的取值范围是_______________. 9.蜜蜂建造的蜂房既坚固又省料.蜂房的巢壁厚约0.000073 米,用科学记数法表示为_______________米.10.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是_______________.11.方程组2235y x x y =-+⎧⎨+=⎩的解是_______________. 12.如图,O 从直线AB 上的点A (圆心O 与点A 重合)出发,沿直线AB 以1厘米/秒的速度向右运动(圆心O 始终在直线AB 上).已知线段6AB =厘米,O ,B 的半径分别为1厘米和2厘米.当两圆相交时,O 的运动时间t (秒)的取值范围是____________ __________________.13.如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD .若4AE =,3CE BE =,那么这个四边形的面积是_______________. 三、解答题(本大题共9个小题,满分61分) 14.(5分)先化简,再求值:()221193x x x x x x⎛⎫-+- ⎪+⎝⎭ ,其中1005x =.(第10题) O()A B BECDA (第12题) 图(1)图(2)(第13题)15.(5分)如图,在ABCD 中,E 为CD 的中点,连结AE 并延长交BC 的延长线于点F .求证:ABF ABCD S S = △.16.(6分)在一次演讲比赛中,七位评委为其中一位选手打出的分数如下: 9.4 8.4 9.4 9.9 9.6 9.4 9.7(1)这组数据的中位数是___________,众数是___________,平均分x =___________,去掉一个最高分和一个最低分后的平均分1x =___________;(2)由(1)所得的数据x ,1x 和众数中,你认为哪个数据能反映演讲者的水平?为什么?17.(6分)同一种商品在甲、乙两个商场的标价都是每件10元,在销售时都有一定的优惠.甲的优惠条件是:购买不超过10件按原价销售,超过10件,超出部分按7折优惠;乙的优惠条件是:无论买多少件都按9折优惠.(1)分别写出顾客在甲、乙两个商场购买这种商品应付金额y 甲(元),y 乙(元)与购买件数x (件)之间的函数关系式;(2)某顾客想购买这种商品20件,他到哪个商场购买更实惠?18.(6分)关于x 的一元二次方程210x mx m ++-=的两个实数根为1x ,2x ,且22125x x +=,求实数m 的值.A D E FC B19.(7分)如图,山顶建有一座铁塔,塔高80BC =米,测量人员在一个小山坡的P 处测得塔的底部B 点的仰角为45 ,塔顶C 点的仰角为60 .已测得小山坡的坡角为30 ,坡长40MP =米.求山的高度AB (精确到1米).(参考数据:2 1.414≈,3 1.732≈)20.(7分)如图,45AOB = ∠,过OA 上到点O 的距离分别为1,2,3,4,5 的点作OA 的垂线与OB 相交,再按一定规律标出一组如图所示的黑色梯形.设前n 个黑色梯形的面积和为n S .(1)请完成下面的表格:n 1 2 3n S(2)已知n S 与n 之间满足一个二次函数关系,试求出这个二次函数的解析式.C PBA M21.(9分)如图,AB 为O 的直径,AC ,BD 分别和O 相切于点A ,B ,点E 为圆上不与A ,B 重合的点,过点E 作O 的切线分别交AC ,BD 于点C ,D ,连结OC ,OD 分别交AE ,BE 于点M ,N .(1)若4AC =,9BD =,求O 的半径及弦AE 的长;(2)当点E 在O 上运动时,试判定四边形OMEN 的形状,并给出证明.22.(10分)二次函数218y x =的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D . (1)当点A 的横坐标为2-时,求点B 的坐标;(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由; (3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC BD 的值.A CEMONBDy D B MA CO x2006数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案 A CDB B C 二、填空题(每小题3分,共21分)题号 78910111213答案45x ≠57.310-⨯ 212+12121221x x y y ==⎧⎧⎨⎨==⎩⎩,,;. 35t <<或79t <<163三、解答题(本大题共9个小题,满分61分)14.解:原式1324x x x =-+-=-. ························································ 4分 当1005x =时,原式2006=. ·································································· 5分 15.证明: 四边形ABCD 为平行四边形,AD BC ∴∥. DAE F ∴=∠∠,D ECF =∠∠. E 是DC 的中点,DE CE ∴=. AED FEC ∴△≌△. ············································································· 3分AED FEC S S ∴=△△.ABF CEF ABCE AEDABCE S S S S S ∴=+=+△△四边形△四边形 ABCD S = ·················································································· 5分 16.(1)9.4分,9.4分,9.4分,9.5分. ··················································· 4分 (2)答案不惟一,言之有理即可,如1x .理由:1x 既反映了多数评委所打分数的平均值,又避免了个别评委打分过高或过低对选手成绩的影响. ·························································································· 6分 17.解:(1)当购买件数x 不超过10件时,10y x =甲;当购买件数x 超过10件时,730y x =+甲. ················································· 2分 9y x =乙.····························································································· 3分(2)当20x =时,170y =甲,180y =乙.y y ∴<甲乙.∴若顾客想购买20件这种商品,到甲商场购买更实惠. ································· 6分 18.解:由题意,得12x x m +=-,121x x m =-. ········································ 1分()22212121225x x x x x x +=+-= ,()()2215m m ∴---=.解得13m =,21m =-. ·········································································· 4分()()224120m m m ∆=--=- ≥,3m ∴=或1-. ······················································································ 6分 19.解:如图,过点P 作PE AM ⊥于E ,PF AB ⊥于F .在Rt PME △中,30PME = ∠,40PM =,20PE ∴=.四边形AEPF 是矩形,20FA PE ∴==. ··············································· 2分 设BF x =米.45FPB =∠,FP BF x ∴==. 60FPC = ∠,tan603CF PF x ∴== .80CB = ,803x x ∴+=.解得()4031x =+. ·············································································· 6分()40312060403129AB ∴=++=+≈(米).答:山高AB 约为129米. ········································································ 7分20.解:(1)n 1 2 3n S325212············································································································ 3分 (2)设二次函数的解析式为2n S an bn c =++.BCP EM AF则3254221932a b c a b c a b c ⎧=++⎪⎪=++⎨⎪⎪=++⎩,,,解得1120a b c =⎧⎪⎪=⎨⎪=⎪⎩,,. ······························································ 6分∴所求二次函数的解析式为212n S n n =+. ················································· 7分 21.解:(1)AC ,BD ,CD 分别切O 于A ,B ,E ,4AC =,9BD =, 4CE AC ∴==,9DE BD ==. 13CD ∴=.AB 为O 的直径,90BAC ABD ∴== ∠∠.过点C 作CF BD ⊥于F ,则四边形ABFC 是矩形.5FD ∴=,2213512CF =-=.12AB ∴=,O ∴ 的半径为6. ······························································· 3分连结OE .CA CE = ,OA OE =, OC ∴垂直平分弦AE .2264213OC =+= ,121313AO AC AM OC ∴==. 2413213AE AM ∴==. ········································································ 6分 (2)当点E 在O 上运动时,由(1)知OC 垂直平分AE .同理,OD 垂直平分BE .AB 为直径,90AEB ∴= ∠.∴四边形OMEN 为矩形. ···························· 8分当动点E 满足OE AB ⊥时,OA OE = ,45OEA ∴=∠.MO ME ∴=.∴矩形OMEN 为正方形. ········································································ 9分 22.解:(1)根据题意,设点B 的坐标为218x x ⎛⎫ ⎪⎝⎭,,其中0x >.点A 的横坐标为2-,122A ⎛⎫∴- ⎪⎝⎭,. ······················································· 2分 AC y ⊥轴,BD y ⊥轴,()02M ,,AC BD ∴∥,32MC =,2128MD x =-. Rt Rt BDM ACM ∴△∽△. BD MD AC MC∴=. 即2128322x x -=.解得12x =-(舍去),28x =.()88B ∴,. ··························································································· 5分 (2)存在. ··························································································· 6分 连结AP ,BP .由(1),12AE =,8BF =,10EF =. 设EP a =,则10PF a =-.AE x ⊥轴,BF x ⊥轴,90APB = ∠, AEP PFB ∴△∽△. AE EP PF BF ∴=. 12108aa ∴=-. 解得521a =±.经检验521a =±均为原方程的解.∴点P 的坐标为()3210+,或()3210-,. ··············································· 8分 (3)根据题意,设218A m m ⎛⎫⎪⎝⎭,,218B n n ⎛⎫ ⎪⎝⎭,,不妨设0m <,0n >.由(1)知BD MDAC MC =, 则22128128n n m m -=--或22128128n n m m -=--. 化简,得()()160mn m n +-=.0m n - ≠,16mn ∴=-.16AC BD ∴= . ··················································································· 10分。

河南数学中招考试试卷

河南数学中招考试试卷

河南数学中招考试试卷河南省数学中招考试试卷一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的,请将正确选项的字母填入题后的括号内。

)1. 下列哪个数是正数?A. -5B. 0C. 3D. -22. 计算下列哪个表达式的结果为负数?A. 2 + 3B. 4 - 7C. 5 × 2D. 8 ÷ 23. 以下哪个图形是轴对称图形?A. 平行四边形B. 圆C. 梯形D. 任意三角形4. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个5. 以下哪个选项表示的是锐角三角形?A. 三角形的三个内角都是锐角B. 三角形的三个内角中有两个是直角C. 三角形的三个内角中有一个是钝角D. 三角形的三个内角中有两个是钝角6. 以下哪个选项是二次函数的一般形式?A. y = ax + bB. y = ax^2 + bx + cC. y = ax^3 + bx^2 + cx + dD. y = ax^4 + bx^3 + cx^2 + dx + e7. 以下哪个选项是等腰三角形的性质?A. 两腰相等B. 两底角相等C. 两腰和底边都相等D. 两底边和腰都相等8. 计算下列哪个表达式的结果为0?A. 3 × 0B. 5 - 5C. 2 + 3D. 6 ÷ 29. 以下哪个选项是不等式的基本性质?A. 不等式的两边同时乘以一个正数,不等号的方向不变B. 不等式的两边同时乘以一个负数,不等号的方向不变C. 不等式的两边同时加上一个数,不等号的方向不变D. 不等式的两边同时除以一个数,不等号的方向不变10. 以下哪个选项是圆的周长公式?A. C = 2πrB. C = πrC. C = 4πrD. C = πr^2二、填空题(本题共5小题,每小题4分,共20分。

请将答案直接填入题后的横线内。

)11. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是_________。

河南省中考数学真题分类41页word文档

河南省中考数学真题分类41页word文档

TOC \o "1-3" \h \z \u 一、数与代数....... PAGEREF_Toc298873768 \h 21.数与式 (3)(1)有理数 (3)(2)实数 (4)(3)代数式 (4)(4)整式与分式 (5)2.方程与不等式 (7)(1)方程与方程组 (7)(2)不等式与不等式组 (8)3.函数 (10)(1)探索具体问题中的数量关系和变化规律 (10)(2)函数 (10)(3)一次函数 (10)(4)反比例函数 (12)(5)二次函数 (13)二、空间与图形 (15)1.图形的认识 (15)(1)点、线、面 (15)(2)角 (15)(3)相交线与平行线 (16)(1)求点D沿三条圆弧运动到G所经过的路线长; (17)(4)三角形 (17)(5)四边形 (20)(6)圆 (23)(7)尺规作图 (25)(8)视图与投影。

(25)2.图形与变换 (26)(1)图形的轴对称 (26)(2)图形的平移 (27)(3)图形的旋转 (28)(4)图形的相似 (29)3.图形与坐标 (31)4.图形与证明 (32)(1)了解证明的含义 (32)(2)掌握以下基本事实,作为证明的依据 (32)(3)利用(2)中的基本事实证明下列命题【1】 (32)(4)通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值 (33)三、统计与概率 (33)1.统计 (33)2.概率 (36)四、探索题 (39)一、数与代数1.数与式(1)有理数 ○1理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

7. (2008·河南)比 -3 小 2 的数是 。

○2借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

1. (2011·河南)-5的绝对值 【 】 (A )5 (B )-5 (C )15 (D )15-1、(2010•河南)-21的相反数是( )A 、21- B 、21C 、﹣2D 、21、(2009•河南)-5的相反数是 ()A 、51B 、51- C 、-5 D 、5 1. (2008•河南)71-的绝对值是 【 】A. 71 B. 71- C.7 D.-7 7.(2007•河南)52的相反数是 . 1、(2006•河南)﹣的倒数是( )A 、3B 、﹣C 、D 、﹣3○3理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。

2012-2018年河南省中考数学试题汇编(含参考答案与解析)

2012-2018年河南省中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2012—2018年河南省中考数学试题汇编(含参考答案与解析)1、2012年河南省中考数学试题及参考答案与解析 (2)2、2013年河南省中考数学试题及参考答案与解析 (22)3、2014年河南省中考数学试题及参考答案与解析 (45)4、2015年河南省中考数学试题及参考答案与解析 (69)5、2016年河南省中考数学试题及参考答案与解析 (91)6、2017年河南省中考数学试题及参考答案与解析 (112)7、2018年河南省中考数学试题及参考答案与解析 (134)2012年河南省中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168 C.极差为35 D.平均数为1705.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣26.如图所示的几何体的左视图是()A.B.C.D.7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>38.如图,已知AB是⊙O的直径,AD切⊙O于点A,EC CB.则下列结论中不一定正确的是()A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC二、填空题(本大题共7小题,每小题3分,共21分)9.计算:(0+(﹣3)2=.10.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.11.母线长为3,底面圆的直径为2的圆锥的侧面积为.12.一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是.13.如图,点A、B在反比例函数kyx=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简224442x x x x x x -+⎛⎫÷- ⎪-⎝⎭,然后从x x 的值代入求值.17.(7分)5月31日是世界无烟日.某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18﹣65岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:(1)这次接受随机抽样调查的市民总人数为 人; (2)图1中的m 的值是 ;(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;(4)若该市18﹣65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是“对吸烟危害健康认识不足”的人数.18.(9分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN . (1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为 时,四边形AMDN 是矩形; ②当AM 的值为 时,四边形AMDN 是菱形.19.(9分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半小时后返回A 地.如图是他们离A 地的距离y (千米)与时间x (时)之间的函数关系图象. (1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?20.(10分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).21.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?22.(11分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若AFEF=3,求CDCG的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是,CG和EH的数量关系是,CDCG的值是.(2)类比延伸如图2,在原题的条件下,若AFEF=m(m>0),则CDCG的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若ABCD=a,BC BE =b,(a>0,b>0),则AFEF的值是(用含a、b的代数式表示).23.(11分)如图,在平面直角坐标系中,直线y=12x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【知识考点】有理数大小比较.【思路分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答过程】解:因为正实数都大于0,所以|﹣1|>0,又因为正实数大于一切负实数,所以|﹣1|>﹣2,所以|﹣1|>﹣0.1所以|﹣1|最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.【总结归纳】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答过程】解:根据中心对称和轴对称的定义可得:A、既不是轴对称图形也不是中心对称图形,故A选项错误;B、既不是轴对称图形也不是中心对称图形,故B选项错误;C、是中心对称图形也是轴对称图形,故C选项正确;D、是中心对称图形而不是轴对称图形,故D选项错误.故选:C.【总结归纳】本题考查中心对称与轴对称的定义,属于基础题,注意区分中心对称与轴对称.3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.0000065=6.5×10﹣6;故选:B.【总结归纳】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168 C.极差为35 D.平均数为170【知识考点】极差;算术平均数;中位数;众数.【思路分析】根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.【解答过程】解:把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185﹣150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选D.【总结归纳】本题为统计题,考查极差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣2【知识考点】二次函数图象与几何变换.【思路分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【解答过程】解:函数y=x2﹣4向右平移2个单位,得:y=(x﹣2)2﹣4;再向上平移2个单位,得:y=(x﹣2)2﹣2;故选B.【总结归纳】本题主要考查了二次函数的图象与几何变换,熟练掌握平移的规律:左加右减,上加下减的规律是解答此题的关键.6.如图所示的几何体的左视图是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答过程】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选D.【总结归纳】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>3【知识考点】一次函数与一元一次不等式.【思路分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A 的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答过程】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=32,∴点A的坐标是(32,3),∴不等式2x<ax+4的解集为x<32,故选A.【总结归纳】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.8.如图,已知AB是⊙O的直径,AD切⊙O于点A,EC CB=.则下列结论中不一定正确的是()A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC【知识考点】切线的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】分别根据切线的性质、平行线的判定定理及圆周角定理对各选项进行逐一判断即可.【解答过程】解:∵AB是⊙O的直径,AD切⊙O于点A,∴BA⊥DA,故A正确;∵EC CB=,∴∠EAC=∠CAB,∵OA=OC,∴∠CAB=∠ACO,∴∠EAC=∠ACO,∴OC∥AE,故B正确;∵∠COE是CE所对的圆心角,∠CAE是CE所对的圆周角,∴∠COE=2∠CAE,故C正确;只有当AE CE=时OD⊥AC,故本选项错误.故选D.【总结归纳】本题考查的是切线的性质,圆周角定理及圆心角、弧、弦的关系,熟知圆的切线垂直于经过切点的半径是解答此题的关键.二、填空题(本大题共7小题,每小题3分,共21分)9.计算:(0+(﹣3)2=.【知识考点】实数的运算;零指数幂.【思路分析】本题涉及零指数幂、乘方等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答过程】解:原式=1+9=10.故答案为10.【总结归纳】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方等运算法则.10.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.【知识考点】全等三角形的判定与性质;直角三角形的性质;作图—复杂作图.【思路分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答过程】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.【总结归纳】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.11.母线长为3,底面圆的直径为2的圆锥的侧面积为.【知识考点】圆锥的计算.【思路分析】圆锥的侧面积=底面周长×母线长÷2.【解答过程】解答:解:底面圆的直径为2,则底面周长=2π,圆锥的侧面积=12×2π×3=3π.故答案为3π【总结归纳】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.【解答过程】解:画树状图得:。

2006-2013河南历届中考数学圆的有关试题

2006-2013河南历届中考数学圆的有关试题

E
O
C
D
B
A
第8题
2006-2013河南历届中考数学圆的有关试题8.如图,已知AB是⊙O的直径,且⊙O于点A,
=.则下列结论中不一定正确的是()
A. BA⊥DA
B. OC//AE
C. ∠COE=2∠ECA
D. OD⊥AC
10. 如图,CB切⊙O于点B,CA交⊙O于点D
且AB为⊙O的直径,点E是.弧ABD上
异于点A、D的一点.若∠C=40,则∠E的度数为 . 11.
如图,AB切⊙O于点A,BO交⊙O于点C,
(第11题)
点D是上异于点C、A的一点,若∠ABO=32°,
则∠ADC的度数是______________.
11.如图,AB为半圆O的直径,延长AB到点P,使BP=
AB,PC切半圆O于点C,点D是弧AC上和点C不重合的一点,则
的度数为.
(第12题)
12.如图所示,边长为1的小正方形构成的网格中,半径
为1的⊙O的圆心O在格点上,则∠AED的正切值等于.
10.如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB = 65o,则∠P = _____度.
12.如图,从直线上的点(圆心与点重合)出发,沿直线以厘米/秒的速度向右运动(圆心始终在直线上).已知线段厘米,,的半径分别为厘米和厘米.当两圆相交时,的运动时间(秒)的取值范围是。

A
B
P
C
O

第10题。

2024河南中考数学全国真题分类卷 第六讲 平面直角坐标系及函数(含答案)

2024河南中考数学全国真题分类卷 第六讲 平面直角坐标系及函数(含答案)

2024中考数学全国真题分类卷第六讲平面直角坐标系及函数命题点1平面直角坐标系中点的坐标特征1. (2023扬州)在平面直角坐标系中,点P(-3,a2+1)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. (2023新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B的坐标是()A. (2,-1)B. (-2,1)C. (-2,-1)D. (2,1)3. (2023广东省卷)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A. (3,1)B. (-1,1)C. (1,3)D. (1,-1)4. (2023金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2),下列各地点中,离原点最近的是()第4题图A. 超市B. 医院C. 体育场D. 学校5. (2023青海省卷)如图所示,A(22,0),AB=32,以点A为圆心,AB长为半径画弧交x轴负半轴于点C,则点C的坐标为()第5题图A. (32,0)B. (2,0)C. (-2,0)D. (-32,0)源自人教八下P27材料6. (2023河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( ) A. -12 <m <0 B. m >-12 C. m <0 D. m <-127. (2023怀化)已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b =________.命题点2 函数及其自变量的取值范围类型一 函数的概念8. (2023广东省卷)水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量类型二 函数关系式9. (2023益阳)已知一个函数的因变量y 与自变量x 的几组对应值如下表,则这个函数的表达式可以是( )A. y =2xB. y =x -1C. y =2xD. y =x 210. (新考法) ·结合实际问题考查对函数关系的理解 (2023北京)下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )第10题图A. ①②B. ①③C. ②③D. ①②③类型三 函数自变量的取值范围11. (2023连云港)函数y =x -1 中自变量x 的取值范围是( )A. x≥1B. x≥0C. x≤0D. x≤112. (2023恩施州)函数y=x+1x-3的自变量x的取值范围是()A. x≠3B. x≥3C. x≥-1且x≠3D. x≥-113. (2023娄底)函数y=1x-1的自变量x的取值范围是________.类型四函数值的运算14. (2023上海)已知f(x)=3x,则f(1)=________.15. (2023威海)按照如图所示的程序计算,若输出y的值是2,则输入x的值是________.第15题图命题点3分析、判断函数图象类型一实际问题考向1行程问题判断函数图象16. (2023温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是()第16题图17. (2023永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是()分析函数图象18. (新考法) ·结合实际问题考查k的实际意义,读图能力(2023安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()第18题图A. 甲B. 乙C. 丙D. 丁19. (2023课标样题改编) (2023随州)已知张强家、体育场、文具店在同一直线上. 如图所示的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确...的是()第19题图A. 张强从家到体育场用了15 minB. 体育场离文具店1.5 kmC. 张强在文具店停留了20 minD. 张强从文具店回家用了35 min20. (2023乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()第20题图A. 前10分钟,甲比乙的速度慢B. 经过20分钟,甲、乙都走了1.6千米C. 甲的平均速度为0.08千米/分钟D. 经过30分钟,甲比乙走的路程少21. (2023宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()第21题图A. 50 m/minB. 40 m/minC. 2007m/min D. 20 m/min考向2其他问题22. (2023重庆A卷)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()第22题图A. 5 mB. 7 mC. 10 mD. 13 m23. (新趋势)·跨学科背景(2023江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误..的是()第23题图A. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至t2℃时,甲的溶解度比乙的溶解度大C. 当温度为0 ℃时,甲、乙的溶解度都小于20 gD. 当温度为30 ℃时,甲、乙的溶解度相等24. (2023武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()第24题图源自人教八下P108第8题25. (新趋势)·跨学科背景(2023河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图①中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图②),血液酒精浓度M与呼气酒精浓度K的关系见图③.下列说法不正确...的是()信息窗M=2200×K×10-3mg/100mL(M为血液酒精浓度,K为呼气酒精浓度)非酒驾(M<20 mg/100 mL)酒驾(20mg/100mL≤M≤80mg/100mL)醉驾(M>80mg/100mL)图③第25题图A. 呼气酒精浓度K越大,R1的阻值越小B. 当K=0时,R1的阻值为100C. 当K=10时,该驾驶员为非酒驾状态D. 当R1=20时,该驾驶员为醉驾状态26. (2023苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为________.第26题图类型二几何图形中的动态问题考向1判断函数图象27. (2022新疆)如图,在矩形ABCD中,AB=8 cm,AD=6 cm.点P从点A出发,以2 cm/s 的速度在矩形的边上沿A→B→C→D运动,当点P与点D重合时停止运动.设运动的时间为t(单位:s),△APD的面积为S(单位:cm2),则S随t变化的函数图象大致为()第27题图28. (2023衡阳)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DA B.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()第28题图29. (2023铜仁)如图,等边△ABC、等边△DEF的边长分别为3和2,开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止,在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为()第29题图考向2分析函数图象30. (2023甘肃省卷)如图①,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图②所示,则AB的长为()第30题图A. 3B. 23C. 33D. 4331. (2023烟台)如图①,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图②所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为________.第31题图32. (2023黄冈)如图①,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1 cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图②所示.当AP恰好平分∠BAC时t的值为________.第32题图命题点4函数图象与性质探究题类型一新函数性质探究33. (新趋势)·真实问题情境(2023嘉兴)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象;②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?第33题图类型二与几何图形结合的函数性质探究34. (2023郴州)如图①,在△ABC中,AC=BC,∠ACB=90°,AB=4 cm.点D从A点出发,沿线段AB向终点B运动. 过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).第34题图①(1)为了探究变量 a 与 h 之间的关系,对点 D 在运动过程中不同时刻 AD ,DE 的长度进行测量,得出以下几组数据:在平面直角坐标系中,以变量a 的值为横坐标,变量h 的值为纵坐标,描点如图②;以变量h 的值为横坐标,变量a 的值为纵坐标,描点如图③. 根据探究的结果,解答下列问题:①当a =1.5时,h =________;当 h =1时,a =________; ②将图②,图③中描出的点顺次连接起来;第34题图③下列说法正确的是________.(填“A ”或 “B ”) A. 变量h 是以a 为自变量的函数 B. 变量a 是以h 为自变量的函数(2)如图④,记线段DE 与△ABC 的一直角边、斜边围成的三角形(即阴影部分)的面积(cm 2)为s .①分别求出当 0≤a ≤2和2<a ≤4时,s 关于 a 的函数表达式; ②当s =12时,求 a 的值.第34题图④参考答案与解析1. B2. A3. A4. A 【解析】根据学校和体育场的坐标分别是(3,1),(4,-2),可得出平面直角坐标系,如解图所示,超市到原点的距离为12+22 =5 ,学校到原点的距离为12+32 =10 ,医院到原点的距离为12+32 =10 ,体育场到原点的距离为22+42 =20 ,5 <10 <20 ,可知超市离原点的距离最近.第4题解图5. C6. D 【解析】∵点P (m ,1+2m )在第三象限内,∴⎩⎪⎨⎪⎧m <01+2m <0 ,解得m <-12 .7. 5 【解析】∵点A (-2,b )与点B (a ,3)关于原点对称,∴a =2,b =-3,∴a -b =5. 8. C9. A 【解析】观察得,y 是x 的2倍,即y =2x .10. A 【解析】选项①,剩余路程y 显然是行驶时间x 递减的一次函数;选项②,剩余水量是放水时间x 递减的一次函数;选项③,一边长为x ,则另一边长为x 的递减一次函数,面积y 是两边长的乘积,应为二次函数,∴不符合图象.11. A 【解析】根据题意,得x -1≥0,∴自变量x 的取值范围是x ≥1. 12. C13. x >1 【解析】由题意得x -1 >0,∴x >1. 14. 3 15. 116. A 【解析】根据图示从家到凉亭,步行用时10分钟,离家的路程逐渐增加到600米,图象为正比例增函数,在凉亭休息十分钟,离家的路程不变,图象为水平线段,从凉亭到公园步行10分钟,离家的路程在600米的基础上再增加600米,图象为一次增函数,则A 选项符合题意.17. A 【解析】图象分三个阶段:第一阶段,匀速行走30分钟到达烈士陵园,此阶段,离学校的距离随时间的增大而增大;第二阶段,用1小时在烈士陵园进行活动,此阶段离学校的距离不随时间的变化而变化;第三阶段,按原路步行45分钟返回学校,此阶段,离学校的距离随时间的增大而减小;∴能大致反映y 与x 关系的图象是A.18. A 【解析】如解图,甲、乙、丙、丁四个人步行的路程和时间满足正比例函数关系,即满足y =kx (k ≠0),∴k =y x =路程时间 =速度,∴k 越大,速度越大,走得最快,∴甲的速度最大,走得最快.第18题解图【一题多解】∵路程时间 =速度,∴由图象可知,V 甲=330 =110 km/min ;V 乙=230 =115 km/min ;V 丙=250 =125 km/min ;V 丁=350km/min ,∴V 甲>V 乙>V 丁>V 丙.19. B 【解析】由题图可知,从家到体育场的时间为15-0=15(min),A 正确;体育场离文具店的距离为2.5-1.5=1(km),B 错误;文具店停留时间为65-45=20(min),C 正确;从文具店回家时间为100-65=35(min),D 正确. 20. D 【解析】逐项分析如下:21. D 【解析】由图象可知从30~70 min 为小强匀速步行阶段,此阶段小强在70-30=40(min)内行驶2000-1200=800(m).∴v =s t =80040 =20(m/min).22. D 【解析】由题图可知,这只蝴蝶飞行的最高高度约为13 m.23. D 【解析】根据图象可知,随着温度t (℃)的增大,甲、乙两种物质的溶解度y (g)的值也随之增大,故A 选项正确;当温度为t 2 ℃时,根据图象可知甲的图象在乙的图象的上方,∴甲的溶解度比乙的溶解度大,故B 选项正确;当温度为0 ℃时,根据图象可知甲的溶解度小于10 g ,乙的溶解度小于20 g ,∴甲、乙的溶解度都小于20 g ,故C 选项正确;根据图象可知,当温度为t 1 ℃时,甲、乙两种物质的溶解度相同,为30 g ,根据图象无法得出t 1=30,故D 选项错误.24. A 【解析】由题图可知,OA 段水面高度增长速度缓慢、AB 段水面高度增长速度比OA 段增长快、BC 段水面高度增长速度最快,所以OA 段容器底面积>AB 段容器底面积>BC 段容器底面积.25. C 【解析】根据图象可知R 1的阻值随K 的增大而减小,故选项A 正确;根据图象当K =0时,R 1=100 Ω,故选项B 正确;当K =10时,M =2200×10×10-3=22,故该驾驶员属于酒驾状态,故选项C 错误,符合题目要求;当R 1=20时,K =40,∴M =2200×40×10-3=88>80,故该驾驶员属于醉驾状态,故选项D 正确.26.293【解析】根据图象可知,只打开进水管时,进水速率为30÷3=10(升/分钟),再打开出水管时,容器水量下降,则出水速率为(30-20)÷(8-3)=2(升/分钟),∴只打开出水管时出水速率为12(升/分钟),则在关闭进水管后,容器排完水需20÷12=53 (分钟),∴a =8+53 =293. 27. D 【解析】①当0≤t ≤4时,点P 在边AB 上,S △APD =12 AP ·AD =12 ×2t ×6=6t ,故选项B 不正确;②当4<t ≤7时,点P 在边BC 上,S △APD =12 AD ·AB =12 ×6×8=24;③当7<t ≤11时,点P 在边CD 上,S △APD =12 AD ·DP =12 ×6×(8+6+8-2t )=-6t +66,故选项A ,C 错误,故选D.28. D 【解析】∵AB ∥CD ,∴∠ACD =∠BAC ,∵AC 平分∠DAB ,∴∠BAC =∠CAD ,∴∠ACD =∠CAD ,则CD =AD =y ,即△ACD 为等腰三角形,如解图,过点D 作DE ⊥AC 于点E ,则DE 垂直平分AC ,AE =CE =12AC =3,∠AED =90°,∵∠BAC =∠CAD ,∠B=∠AED =90°,∴△ABC ∽△AED ,∴AC AD =AB AE ,∴6y =x 3 ,∴y =18x ,∵在△ABC 中,AB <AC ,∴x <6,故D 选项符合题意.第28题解图29. C 【解析】如解图①,当E 和B 重合时,AD =AB -DB =3-2=1,∴ 当△DEF 移动的距离为0≤x ≤1时,△DEF 在△ABC 内,y =S △DEF =34DE 2=3 ;当E 在B 的右边时,如解图②,设移动过程中DF 与CB 交于点N ,过点N 作NM 垂直于AE ,垂足为点M ,根据题意得AD =x ,AB =3,∴DB =AB -AD =3-x ,∵∠NDB =60°,∠NBD =60°,∴△NDB 是等边三角形,∴DN =DB =NB =3-x ,∵NM ⊥DB ,∴DM =MB =12 (3-x ),∵NM 2+DM 2=DN 2,∴NM =32 (3-x ),∴S △DBN =12 DB ·NM =12 (3-x )×32 (3-x )=34(3-x )2,∴y =34(3-x )2,∴当1≤x ≤3时,y 是关于x 的二次函数,且开口向上,∵当x =3时,y =0.∴选项C 符合题意.第29题解图30. B 【解析】当点P 运动到D 点时,由题图②知,△APB 的面积是33 .如解图,在△ADB 中,过点D 作DE ⊥AB 交AB 于点E ,∵四边形ABCD 是菱形,∠A =60°,∴△ADB 为等边三角形,∴S △ADB =12 AB ×32AB =33 ,即AB =23 .第30题解图31. 23 【解析】根据抛物线的对称性可知,当D 为BC 的中点,即BD =2时,S 四边形BDEF 取最大值3,如解图,过点F 作FH ⊥BC 与点H ,∴BD ·FH =3,解得FH =32,∵∠ABC=60°,∴sin ∠ABC =FHBF =32BF ,解得BF =3 ,∵DE ∥AB ,EF ∥BC ,∴E ,F 分别是AC ,AB 的中点.∴AB =2BF =23 .第31题解图32. 25 +2 【解析】如解图,连接AP ,由题图②可得AB =BC =4,∵∠B =36°,AB =BC ,∴∠BAC =∠C =72°,∵AP 平分∠BAC ,∴∠BAP =∠P AC =∠B =36°,∴AP =BP ,∠APC =72°=∠C ,∴AP =AC =BP ,∵∠P AC =∠B ,∠C =∠C ,∴△APC ∽△BAC ,∴APBA=PCAC ,∴AP 2=AB ·PC =4(4-AP ),∴AP =25 -2=BP (负值舍去),∴t =4+25-21 =25 +2.第32题解图33. 解:(1)①补全函数图象如解图所示;第33题解图②当x =4时,y =200;当y 的值最大时,x =21. (2)答案不唯一.例如:①当2≤x ≤7时,y 随x 的增大而增大; ②当x =14时,y 有最小值80.(3)在5 h ~10 h 和18 h ~23 h 这两个时间段适合货轮进出此港口.34. 解:(1)①1.5;1或3; ②如解图所示;第34题解图③A ;(2)①当0≤a ≤2时,s =12 ×a ×a =12 a 2;当2<a ≤4时,s =12 ×(4-a )×(4-a )=12(4-a )2;②将s =12 代入s =12 a 2,得12 =12a 2,解得a =1(负值已舍去),将s =12 代入s =12 (4-a )2,得12 =12 (4-a )2,解得a 1=3,a 2=5(不合题意,舍去),综上所述,当s =12 时,a 的值为1或3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档