1、有理数
第一章 有理数(单元小结)-【大单元教学】2023-2024学年七年级数学上册同步备课系列(人教版)
【详解】(1)解:∵点B与点C所表示的数互为相反数,且B与C之 间有2个单位长度, ∴可得点B所表示的数为-1; 故答案为:-1 (2)∵点A与点D所表示的数互为相反数,且它们之间距离为5, ∴点D表示的数为+2.5; (3)∵点B与点F所表示的数互为相反数,且它们之间距离为6, ∴点F所表示的数为+3, ∵点E在点F左边1个单位,∴点E所表示的数是2, ∴点E所表示的数的相反数是-2.
14
3
非正整数:-10,0;
非负数:3
23,20%,2,3
2,0,3.14,
3
考点三 数轴的应用
【例3】有理数 a、b 在数轴上对应点如图所示,下列各式正确的是 ()
A.|a|>b B.a<-b C.a>b D.|a|<|b| 【详解】解:由数轴可知,|a|=a,|b|=b,0<a<b,故C错误; ∴|a|<|b|,故D正确; ∴|a|<b,故A错误; ∵b>0,∴-b<0,∴a>-b,B 错误; 故选:D.
四舍五入到某一位,就说这个数近似数精确到那一位. 2.由近似数判断精确度
考点一 正数与负数的意义
【例1】一袋面粉的包装袋上标有“净含量:25±0.2千克”字样, 下面不可能是这袋面粉的质量的是( ). A.24.8千克 B.24.9千克 C.25.2千克 D.25.5千克
【详解】解:∵面粉的包装袋上标有“净含量:25±0.2千克”字样, ∴一袋面粉的质量范围是24.8—25.2, ∵24.8千克、24.9千克、25.2千克在这个范围内,25.5千克不在此范 围内, ∴不可能是这袋面粉的质量的是25.5千克,故D符合题意. 故选:D.
有理数 .1 有理数
13.下列说法中正确的有( C ) ①0 是整数;②-121是分数;③3.2 不是正数;④自然数一定是正数; ⑤负分数一定是负有理数. A.1 个 B.2 个 C.3 个 D.4 个
14.在+3,-8,-117,272,0,-3.14,10,5%中,整数有 m 个,非负数有 n 个,则 m+n 的值为__9__.
•
1.本该过节的母亲却留在家里,要给 母亲过 节的家 人却外 出游玩 。这一 情节引 人入胜 ;令人 哑然失 笑;突 出了母 亲形象
•
2.通读全文,我们能感受到:菜农是 一位憨 厚朴实 、热爱 生活、 追求内 心的宁 静、做 事专注 认真、 不怕别 人嘲笑 奚落的 人。
•
3.读了本文,我明白了在当今世俗的 喧嚣中 应保持 自己内 心的宁 静,不 为世俗 所扰。 文中的 菜农能 够在喧 闹的菜 市场沉 浸于书 本的美 好中, 沉浸于 内心的 宁静中 。在生 活中, 我不会 因某次 月考的 成功而 骄傲。 而要保 持内心 的宁静 ,继续 努力前 行。
15.观察下列各组数的排列规律,接着写出后面的三个数. (1)-2,4,-6,8,-10,_1_2__,___-__1_4__,_1_6__,…; (2)-1,2,3,-4,5,6,-7,8,9,_-__1_0___,__1_1_,_1_2__,…; (3)1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,__-__1_____, _0___,_1___,….
整数 分数 正数 负数 自然数 有理数
1
5 7
0 -3.14 -12
19.如图,两个椭圆分别表示正数集合和整数集合.请在每个椭圆内填入6 个 数 , 其 中 有 3 个 数 既 是 正 数 又 是 整 数 , 这 3 个 数 应 填 在 __A__ 处 ( 填 “A”“B”“C”),你能说出两个椭圆重叠部分表示什么数的集合吗?
第一章有理数-有理数(教案)
-难点解释:分数乘除时,分子分母的交叉相乘相除,以及结果的符号判定。
-数轴上的有理数比较:特别是负数的大小比较。
-难点解释:在数轴上,负数的绝对值越大,其值越小,对于学生来说是思维上的一个转换点。
-应用题的建模:如何将实际问题抽象为有理数运算问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算总价。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,使用数轴来表示不同的有理数,并观察它们之间的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲授新课内容时,我尽量用简洁明了的语言解释有理数的性质和运算规则,并通过案例分析让学生们看到有理数在实际中的应用。然而,我也发现,仅仅依靠讲解和案例可能还不够,学生们需要更多的实践活动来加深理解。因此,在实践活动中,我安排了分组讨论和实验操作,让学生们亲自动手去解决问题,这样能够更好地帮助他们消化吸收所学知识。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)
知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.
第一章《有理数》
第一章有理数一、有理数的有关概念1、正数和负数大于0的数是正数(为了强调正数,前面加上“+”号,也可以省略不写。
),在正数前面加上“-”的数叫做负数(负数前面的“-”号不能省略)。
0既不是正数也不是负数,0是正数与负数的分界。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
【例1】(1)下降5.5 m记作+5.5 m,则上升10米记作_____m.(2)在食品的包装袋上,标明食品的净质量是80±5 g,这个“80±5”表示的最少是______________.(3)若将50计为0,则可以将49计为__________,+2为__________.【例2】如果向东为正,那么 -50m表示的意义是………………………()A.向东行进50m B.向南行进50m C.向北行进50m D.向西行进50m2、有理数的分类正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
注意:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。
如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。
【例3】把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-45,-15%,-112,227,2613.正数集合{ …},负数集合{ …},整数集合{ …},分数集合{ …},非负整数集合{ …}3、数轴1、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
1.2.1 有理数(教师版)
1.2 有理数1.2.1有理数知识点1:有理数的概念1.概念:有理数也叫可比数,是指能够写成两个整数比的比例数。
因而,整数和分数统称有理数.2.整数: 正整数、零和负整数统称为整数。
自然数:正整数和零。
3.分数:正分数和负分数统称为分数。
⎧⎪⎧⎨⎨⎪⎩⎩有限小数小数无限循环小数无限小数无限不循环小数 注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。
例:0.333……可以化为.知识点2:有理数的分类知识点3:四非数①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数考点梳理·新认知考点1 有理数的辨别例1在-,π,0,-0.74四个数中,有理数的个数是()A.1B.2C.3D.4【解析】-,0,-0.74是有理数,而π是无限不循环小数,不是有理数,故选C.总结:1.整数和分数统称为有理数.凡是能写成(p,q为整数,且q≠0)形式的数,都是有理数.2.有限小数与无限循环小数都能表示成分数形式,无限不循环小数不是有理数,如π不是有理数.考点2 有理数的分类例2把下列各数填在相应的集合中:-7,3.5,-3.14,0,1713,0.03%,-314,10.自然数集合:{ …};整数集合:{ …};负数集合:{ …};正分数集合:{ …};正有理数集合:{ …}.【解析】解:在所给的所有数中,①自然数集合为{0,10…};②整数集合为{-7,0,10…};③负数集合为{-7,-3.14,-314…};④正分数集合为{3.5,1713,0.03%…};⑤正有理数集合为{0.03%,1713,3.5,10…}.总结:对有理数进行分类,首先要理解以下数的概念:1.正数:像3,1.8%,3.5这样大于0的数叫做正数.正数的前面可以加上正号(即加号)“+”来表示2.负数:在正数前加上“-”的数叫做负数;3.整数:像-2,-1,0,1,2这样的数叫做整数;4.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.考点3 带非字的数例3﹣5,0,﹣3.14,,﹣12,0.1010010001…,+1.99,﹣(1)非负数集合:{ …}(2)非负整数数集合:{ …}(3)非正数集合:{ …}(4)非正整数数集合:{ …}【解析】解:在所给的所有数中,(1)非负数集合:{ 0,,0.1010010001…,+1.99,…}(2)非负整数数集合:{ 0 …}(3)非正数集合:{﹣5,﹣3.14,﹣12,﹣…}(4)非正整数数集合:{ ﹣5,﹣12,…}总结:1.有理数分为正数、0和负数三类,正数和0统称非负数;负数和0统称非正数.2.一个数不是0,则它可能是正数或负数;若一个数不是正数,则它可能是负数或者0;若一个数不是负数,则它可能是正数或者0.基础训练1.下列各数:-1,,4.112134,0,,3.14,其中有理数有( )A .6个B .5个C .4个D .3个 【解析】解:在-1,2π ,4.112134,0,227 ,3.14中不是有理数是2π:故选B .2. 在下列数, ,2.010010001…,25%,3.1415926,0, …中,属于分数的有( )A .2个B .3个C .4个D .5个【解析】解:属于分数的有25%,3.1415926,-0.222…, 故选B . 3. 下列表述中,正确的是( )A .有理数有最大的数,也有最小的数B .有理数有最大的数,但没有最小的数C .有理数有最小的数,但没有最大的数D .有理数既没有最大的数,也没有最小的数 【解析】解:有理数既没有最大的数,也没有最小的数. 故选D . 4. 下列说法正确的是( )A .一个有理数不是整数就是分数B .正整数和负整数统称为整数C .正整数、负整数、正分数、负分数统称为有理数D .0不是有理数【解析】解:A 、一个有理数不是整数就是分数,故本选项正确; B 、正整数和负整数和0统称为整数,故本选项错误; C 、正整数、负整数、正分数、负分数和0统称为有理数,故本选项错误; D 、0是有理数,故本选项错误;故选A .5.下列说法:①-2.5既是负数、分数,也是有理数;②-7既是负数也是整数,但不是自然数;③0既不是正数也不是负数;④0是非负数.其中正确的个数是( ) A .1 B .2 C .3 D .4【解析】解:①-2.5既是负数、分数,也是有理数,正确;②-7既是负数也是整数,但不是自然数,,正确;③0既不是正数也不是负数,正确;④0是非负数,正确, 则正确的个数是4,故选D .6. 把下列各数填在相应的大括号内:5,7-8,-10,0,2.4,+3,227,-3.01.正数集合{…};非负数集合{…};整数集合{…};负分数集合{…}.【解析】正数集合,.,,,…;非负数集合,,.,,,…; 整数集合{5,-10,0,+3,…};负分数集合-,-.,….能力晋升1.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、ba、b的形式,则b的值为()A.0 B.-1 C.1 D.2【解析】解:由题意可知:a+b,a中有一个为0,且ba,b中有一个为1,当a=0时,则ba没有意义,不成立;∴b=1.故选C.2.下列判断正确的个数是()①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正数就是负数④一个分数不是正数就是负数⑤一个偶数不是正偶数就是负偶数A.1 B.2 C.3 D.4【解析】解:①一个有理数不是整数就是分数,正确;②一个有理数不是正数就是负数,错误,也可能是0;③一个整数不是正数就是负数,错误,也可能是0;④一个分数不是正数就是负数,正确;⑤一个偶数不是正偶数就是负偶数,错误,也可能是0;故选B.3. 在有理数集合中,最小的正整数是,最大的负整数是.【解析】解:在有理数集合中,最小的正整数是1,最大的负整数是-1.故答案为1;-1.4. 在-2,1.5,+,0,27,100,-2.1,18,-,-30中,是非负整数的是.【解析】0,27,100,18.5. 在-2,5,-,0.63,0,7,-0.05,-6,9,,,1中,正分数有个,负分数有个,自然数有个,整数有个.【解析】正分数是0.63,,,有3个;负分数是-,-0.05,有2个;自然数是5,0,7,9,1,有5个;整数是-2,5,0,7,-6,9,1,有7个.6.把下列各数分别填入相应的集合内:-2,-3.14,0.3,0,,,-0.1212212221….(1)正数集合:{ };(2)负数集合:{ };(3)分数集合:{ };(4)有理数集合:{ }.【解析】解:(1)正数集合:{0.3,,};(2)负数集合:{ -2,-3.14,-0.1212212221…};(3)分数集合:{ -3.14,0.3,};(4)有理数集合:{ -2,-3.14,0.3,0,}.同步检测·新导向1.(2019•武汉模拟)下列各数中,属于正有理数的是()A.π B.0 C.-1 D.2【解析】解:由题意得:π是无理数,故选项A错误;0是有理数,但不是正数,故选项B错误;-1是负有理数,故选项C错误;2是正有理数,故选项D正确;故选D.2.(2019•沙坪坝区校级模拟)下列四个数中,是正整数的是()A.-2 B.-1 C.1 D.1 2【解析】解:A、-2是负整数,故选项错误;B、-1是负整数,故选项错误;C、1是正整数,故选项正确;D、12是非正整数,故选项错误.故选C.3.(2019•渝中区校级模拟)下列各数中是负整数的是()A.-2 B.5 C.12D.2-5【解析】解:A、-2为负整数,故选项正确;B、5为正整数,故选项错误;C、12为正分数,故选项错误;D、2-5为负分数,故选项错误.故选A.4.(2018秋•沈河区期末)在-4,227,0,2,3.14159,1.3,0.1010010001…有理数的个数有( )A .2个B .3个C .4个D .5个【解析】解:2,0.1010010001…不是有理数,故选D .5.(2018秋•卢龙县期末)下列说法正确的是( ) A .0是最小的有理数 B .一个有理数不是正数就是负数 C .分数不是有理数 D .没有最大的负数【解析】解:A 、没有最小的有理数,故本选项错误;B 、一个有理数不是正数就是负数或0,故本选项错误;C 、分数是有理数,故本选项错误;D 、没有最大的负数,故本选项正确; 故选D .6.(2018秋•门头沟区期末)在有理数-0.2,-3,0,132,-5,1中,非负整数有 . 【解析】解:非负整数有0,1, 故答案为:0,1.7.(2018秋•仪征市期中)有三个有理数,分别是-1、a 、a +b ,或者写成0、-b a、b ,那么数b 的值是 .【解析】解:由题意可知:a +b ,a 中有一个为0,且-b a ,b 中有一个为-1,当a =0时,则-b a没有意义,不成立;∴b =-1. 故答案为:-1. 8. (2018秋•武邑县校级月考)在数1-13,20%,227,0.3,0,-1.7,21,-2,1.0101001…,+6,π中,分数有 个. 【解析】解:分数有1-13,20%,227,0.3,-1.7, 故答案为:5。
人教版数学七年级上册(新) 单元复习课件:第一章《有理数》(共15张PPT)
2 7 5
㈠正数与负数 1、正数与负数的概念: ①正数:大于0的数。 ②负数:小于0的数。带“-”号的数并不都是负数 ③0既不是正数,也不是负数。 2、正数与负数的意义:在实际中表示意义相反的量。
知识要点
(1)相反意义的量包含两个要素:一是它们的意义要相反;二 是它们都具有数量。如前进8m与前进5m,上升与下降不是相反 意义的量;因为前者意义相同,后者缺少数量。 (2)与一个量成相反意义的量不止一个,如与上升2m成相反意 义的量就很多,如:下降1m,下降0.2m,…… (3)在同一问题中,用正、负数表示具有相反意义的量。对于 两个具有相反意义的量,把哪一种意义规定为正,带有任意性, 不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正, 把它们的相反量规定为负的。
负数的绝对值是它的相反数; 0的绝对值是0. ③互为相反数的两个数的绝对值相等。 即︱a︱=︱-a︱且︱a-b︱=︱b-a︱ ④利用绝对值比较大小:两个负数,绝对值大的反而小。其步骤 如下:第一步分别求出两个负数的绝对值,第二步比较这两个绝 对值的大小,第三步根据性质比较。
6、倒数: 1 ①乘积是1的两个数叫作互为倒数。a的倒数是 a (a≠0),0没 有倒数。 ②如果a与b互为倒数,那么ab=1. 例:求下列各数的倒数:2,-2.5,-5 7、实数比大小: ①利用数轴:数轴上两个点表示的数,右边的总比左边的大; 正数大于0,负数小于0,正数大于负数。 ②利用绝对值比较负数大小:两个负数大小,绝对值大的反而小.
-4 2 -2 -4 -3 –2 –1 0 1 2
4 3 4
5、绝对值: ①数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 叫做a的绝对值。 a的绝对值就是数a所表示点到原点的距离。表示成︱a︱。 (︱a︱≥0,一个数的绝对值是非负数) a a
七年级数学第一章有理数思维导图
1.1正数和负数概念正数:比0大的数,如3,4,5.......负数:比0小的数,如-3,-4,-5.......0:既不是正数也不是负数用字母表示数若a为正数,-a为负数若a为负数,-a为正数;如-2为负数,-(-2)=2为正数若a为0,-a也为0具有相反意义的量,如零上8℃:+8℃零下8℃:-8℃往东走20米:+20米往西走80米:-80米0表示的意义表示没有。
如教室里有0人,即教室里没有人是正数和负数的分界线1.2有理数1.2.1有理数按意义分整数正整数负整数分数正分数负分数按性质符号分正有理数正整数正分数负有理数负整数负分数1.2.2数轴有原点、正方向、单位长度的一条直线任何有理数都能找到一个点与之对应,右边的数大于左边的数两点间距离:右边点对应的数减左边点对应的数1.2.3相反数只有符号不相同的两个数字互为相反数,a的相反数记为-a0的相反数是0,正数的相反数为负,负数的相反数为正一个数和它的相反数关于原点对称互为相反数的两个数相加等于01.2.4绝对值数轴上表示数a的点与原点的距离叫做数a 的绝对值,写为|a|互为相反数的两个数:绝对值相等两个负数,绝对值大的反而小,绝对值小的反而大若a>0,则|a|=a;若a<0,则|a|=-a;|0|=01.3有理数的加减法1.3.1加法同号两数相加:取相同的符号,绝对值相加;如-3+(-4)=-7异号两数相加:谁绝对值大,就取谁的符号;再用大绝对值减小绝对值;如-5+3=-2互为相反数的两数相加得0,任何数加0等于它本身1.3.2减法减去一个数,等于加上这个数的相反数;即a-b=a+(-b)如:5-(-3)=5+3=8加减混合相反数结合法:互为相反数的两个数相加等于0同分母结合法:把含相同分母的数或可通分的数结合在一起有带分数时先拆分为整数和分数,再结合分数和小数混合时统一为分数或统一为小数同号结合法:把符号相同的加数相结合(-23)-(-18)+(-15)-(+1)+(+23)原式=-23+(+18)+(-15)+(-1)+(+23)=(-23-25-1)+(18+23)=-7凑整法:把和为整数的加数相结合(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)=(6.6-2.6)+(-5.2-4.8)+3.8=-2.2分组结合法2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0先拆项后结合(-2-4-6-8...-100)+(1+3+5+7 (99)原式=(-2+1)+(-4+3)+......+(-100+99)=-501.4有理数的乘除法1.4.1乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数乘0得0多个有理数相乘1.4.2除法除以一个数等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个非0数,等于0;0不能作除数只要一个因数为0则积为0如果因数都不是0,则结果符号根据负数的个数来定:奇负偶正1.5.1有理数的乘方求n个相同因数的积的运算,叫做乘方在aⁿ中,a 叫做底数,n 叫做指数。
1 有理数的基本概念
有理数的基本概念知识点睛1. 用正、负数表示相反意义的量:“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 2. 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 ✧ ⑴正数和零统称为非负数; ⑵负数和零统称为非正数;⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数. 3. 数轴:规定了原点、正方向和单位长度的直线.有理数与数轴的关系:错例原因无原点没有正方向单位长度不统一没有单位长度4. 相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0. (1)代数意义:只有符号不同的两个数.相反数必须成对出现,不能单独存在⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.两点是关于原点对称的 ⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.——奇负偶正⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,若0a b +=则a 与b 互为相反数. 5. 绝对值:几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .✧ 绝对值具有非负性,取绝对值的结果总是正数或0. 例如:若0a b c ++=,则0a =,0b =,0c = 代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ✧ 比较两个负有理数的大小:两个负数,绝对值大的反而小.2312234✧ 一切有理数都可以用数轴上的点表示出来. ✧ 数轴上的点不都代表有理数,如π.利用数轴比较有理数的大小:✧ 数轴上右边的数总大于左边的数.✧ 正数总大于零,负数总小于零,正数大于负数.例题精讲【例1】 ⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 . ⑷ 向南走200-米,表示 . 【解析】 ⑴5000-元;⑵低于海平面600米的高度;⑶22.7C ︒,20C ︒,21.4C ︒,17C ︒,15.3C ︒;⑷向北走200米.【例2】 珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为 【解析】 0米【例3】 耐克饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±”是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL , 627mL ,问抽查产品的容量是否合格? 【解析】 “60030±(mL )”表示:若每瓶饮料容量记为a ,则570630a ≤≤.抽查的5瓶容均是合格的. 【例4】 下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0, 2.4,π,12-,0.313-,3.14,11-【解析】 属于负数的有: 4.5-,12-,0.313-,11-;属于非正数的有:0, 4.5-,12-,0.313-,11-;属于正分数的有: 2.4,3.14;属于非负有理数的有:6,0, 2.4,3.14【例5】 把下列各数分别填在题后相应的集合中:05207385378131422,,,,,,,,--+--.. 正数集合:(07353782.,,,……+) 负数集合:(----52813142,,,…….)整数集合:(085312,,,,……-+-)分数集合:(--52073783142,,,……..)正整数集合:(+532,……) 负整数集合:(--81,……) 正分数集合:(07378.,……) 负分数集合:(--523142,…….)【例6】 ⑴在数轴上表示下列各数,再按大小顺序用“<”号连接起来. 4-,0, 4.5-,112-,2,3.5,1,122⑵(2006年乌鲁木齐中考题)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.(1-,0,1,2.)【解析】 ⑴先画出数轴,在数轴上方标注所求数(如图下所示),根据数轴上的大小顺序,按从左到右依次用“<”号连接起来.即:114.5410122 3.522-<-<-<<<<<-1.3 2.6-112-4.5102123.5【例7】 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________. 【解析】 5.5±.【例8】 在数轴上,下面说法中不正确的是( ).D A .两个正数,小的离原点B .两个有理数,大数对应的点在右边C .两个负数,较大的数对应的点离原点近D .两个有理数,大的离原点较远【例9】 m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 . 【解析】 m ,1m -,m n a b --+-.【例10】 如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦【解析】 ⑴()a a -+=-,是正数;⑵()a a --=,是负数;⑶[]()a a -+-=,是负数;(4)[]()a a ---=-,是正数;⑸(){}a a -+--=-⎡⎤⎣⎦,是正数.【例11】 下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数 【解析】 选择C .【例12】 绝对值等于5的整数有 个,绝对值小于5的整数有 个 (2;9个) 【例13】 已知x y -++=320,求下列代数式的值。
【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)
第一章有理数1.2有理数1.2.1有理数1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数说明:让学生感受分类的方法和原则,统一标准,不重不漏. 三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数⎩⎪⎨⎪⎧正数整数分数负数零四、练习与小结 练习:教材练习题. 小结:谈一谈今天你的收获. 五、作业 习题1.2第1题本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
七年级数学有理数知识点汇总
第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3) 0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
人教版七年级数学上册第一章 《有理数》总复习教案
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
人教版初中数学--第一章 有理数
(1) 6-9 ;
(2)4-(-7);
(3) (-5)-(-8); (4)0-(-5);
(5) (-2.5)-5.9 ; (6)1.9-(-0.6).
1.3.2 有理数的减法
• 探究:例题 计算(-20)+(+3)-(-5)-(+7) 解=(-20)+(+3)+(+5)+(-7) =[(-20)+(-7)]+(3+5) =-27+8 =-19
1.2.3 相反数
• 观察:数轴上的2与-2,3与-3到原点的距离有什么特征?
2
2
-3 -2 -1
0
12 3
3
3
• 我们看到2和-2,以及3和-3两组数中,虽然2与-2分别在原点的右边与左边,但它们与原点的距离都等于2;
虽然3与-3分别在原点的右边和左边,但它们与原点的距离都等于3.
• 一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们 说这两点关于原点对称。
另一方面,我们知道 3+(+12)=15 ②
• 由①② ,有
3-(-12)=3+(+12)③
• 规律:减去一个数等于加上这个数的相反数
•
a-b=a+(-b)
1.3.2 有理数的减法
• 练习 • 1计算 • • 2计算 • •
(1) (-3)-(-25); (2)0-7;
(3) 7.2-(-4.8); (4)(-7/2)-21/4
• 0是正数与负数的分界。0℃是一个确定的温度,海拔0表示海平面的平均高 度,0的意义不仅是表示“没有”。
正数与负数--巩固练习
浙教初一数学讲义:第一讲 有理数的分类、数轴、相反数
第一讲有理数的分类、数轴、相反数一、知识结构·有理数的分类1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数·数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
1.有理数概念
有理数相关概念知识点:1、由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.2、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
3、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 4、到现在为止,我们学过的数有:正整数,如1,2,3,…; 零,0;负整数,如-1,-2,-3,…; 正分数,如1/2,5.3,2/3,…;负分数,如-1/2,-3.6,-6/7,…。
正整数、0、负整数统称整数,正分数、负分数统称分数。
整数和分数统称有理数。
例题:1、下面两题是有关“正”和“负”的概念,怎样表示出来。
(1)在收入和支出两项目中,若把收入定为正的,那么元表示什么?(2)在前进和后退的军训操练中,若把后退定为负的,那么米表示什么?2、如果把向北的方向规定为正,那么走3.5千米,走-1.2千米,走0千米的意义各是什么?练习题:一、选择题1、下面说法中正确的是( )A 、在有理数中,0没有意义B 、正有理数和负有理数组成全体有理数C 、0.3既不是整数,也不是分数,因此它不是有理数D 、0既不是正数,也不是负数2、下列各数:9,05.0,101,324,650,76.8,1,54--+---,,中,( ) A 、只有1,–7,+101,–9是整数 B 、其中有三个数是正整数C 、非负数有1,8.6,+101,0,D 、有三个是负分数3、下列说法正确的是( )A 、3.14不是分数B 、正整数和负整数统称为整数C 、正数和负数统称为有理数D 、整数和分数统称为有理数4、下列四种说法,正确的是( )A 、所有的正数都是整数B 、不是正数的数一定是负数C 、正有理数包括整数和分数D 、0不是最小的有理数5、0是( )A. 正数B. 负数C. 整数D. 正有理数160-102+6、 下列说法中正确的是( )A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数二、填空题1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。
浙教版七年级上册数学 第1章 有理数
4 如果向东走2m记为+2m,那么向西走3m可记为 () C A.+3mB.+2mC.-3mD.-2m
一次社会调查中,某小组了解到某种品牌的薯片包装上 5
注明净含量为(60±5) g,则下列同类产品中净含量不符 合标准的是( ) A.56gB.60gDC.64gD.68g
【点拨】∵薯片包装上注明净含量为(60±5) g, ∴薯片的净含量范围为:55g≤净含量≤65g, 故D不符合标准,故选D.
【点拨】①0不是正数,故说法错误;②0是整数,故说 法正确;③0是自然数,故说法正确;④0是最小的自然 数,故说法正确;⑤0不是正数,故说法错误;⑥0是最 小的非负数,故说法正确;⑦0是偶数,故说法正确; ⑧在有理数中,0的意义不仅表示没有,在进行运算时, 0还有表示占位的意义,0还表示正整数与负整数的分界 等,故说法错误.
(3)在一次数学测验中,某班同学的平均分为85分,如果 明 明 得 94 分 , 记 做 + 9 分 , 那 么 婷 婷 得 80 分 , 记 做 ________分;
(4)已-知5一种零件的内径尺寸在图纸上是30±0.05(单位: 毫 米 ) , 那 么 内 径 尺 寸 为 29.89 毫 米 的 零 件 属 于 ________(填“合格”或“不合格”)产品;
13 将一串有理数按下列规律排列(如图),回答下列问题:
(1)在A位置的数是正数还是负数? 解:在A位置的数是正数.
(2)A,B,C,D,E中哪个位置的数是负数? 解:在B和D位置的数是负数.
(3)第2019个数是正数还是负数?排在对应于A,B, C,D,E中的哪个位置?
第2019个数是负数,排在对应于D的位置.
12 如图,欢欢、花花、芳芳三家在同一栋楼里,若 以花花家的位置为基准,记为0米,规定高出为正, 请问其他两家的位置分别应记为多少米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《有理数》复习
一、基本概念 1、正数、0、负数 ①表示大小
②在实际中常用正负数表示意义相反的量 ③带“-”号的数并不都是负数 ④0的意义已不仅表示“没有” 2、数轴
原点 ①三要素
正方向
单位长度 ②如何画数轴
③用数轴上的点表示出有理数,写出数轴上的点所表示的数。
3、相反数
①只有符号不同的两个数,叫做互为相反数,
0的相反数是0
②a 的相反数-a ③a 与b 互为相反数
4、绝对值
①一般地,数轴上表示数a 的点与原点距离叫做数a 的绝对值,记作|a |。
a (a ≥0) ②|a |=
-a (a ≤0)
③|a |≥0 5、倒数 ①乘积是1的两个数互为倒数。
②a 的倒数是
1
a
(a ≠0) ③a 与b 互为倒数6、乘方
①求n 个相同因数的积的运算叫做乘方 。
a ·a ·…·a=a n
②底数、指数、幂 7、科学记数法
①把一个绝对值大于10的数表示成a ×10n
(其中1≤|a |<10,即a 的整数位数只有一位,n 为正整数)
②指数n 与原数的整数位数之间的关系。
8、近似数与有效数字
①准确数、近似数、精确度
精确到万位
②精确度 精确到0.001
保留三个有效数字
③近似数的最后一位是什么位,这个数就精确到哪位。
④有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
⑤如何求较大数的近似数,有两种方法,一种用单位表示,一种用科学记数法 二、有理数的分类 *讨论一下各类小数属于有理数中的哪一类?
三、有理数的运算
1、运算种类有哪些?(5种运算)
2、各种运算法则记住了吗?(运算的根据)
3、运算定律有哪些?(简便运算的根据)
4、混合运算顺序
①先乘方,再乘除,最后加减; ②同级运算,从左到右进行;(三级:乘方,二级:乘除,一级:加减) ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
④能简便运算的应尽量简便 四、有理数的大小比较 1、两个正数;
2、两个负数,绝对值大的反而小;
3、负数<零<正数;
4、数轴上表示的数右边的总比左边的大。
1.下列各式-12
,32
3,0,(-4)2
,-|-5|,-(+3.2),422,π,0.815的计算结果,
是整数的有________________,是分数的有_________________.
2.a - b 的相反数是_________,如果 a ≤b ,那么 | a – b | =___________.
3.绝对值小于4的整数是_____________,其中________最小,___________是非负数,________的绝对值最小.
4.如果0<x ,0>y 且|x-1|=3,y 2
=9,则=+y x _______________. 5.有理数b a ,在数轴上对应点如图所示,则
ab
b
a -_____0. 6.若a a 22-=,则a 一定是 数. 7.若()0322
=-++b a ,则2
43b ab -=____________.
8.若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| =____________.
9.用科学记数法表示应记作__________________,若保留3个有效数字, 则近似值为__________________.
10.下列说法正确的是( )
A 、有最小的正数
B 、有最小的整数
C 、有最大的有理数
D 、有最大的负整数 11.若a+b <0, ab <0,则 ( )
A a >0,b >0
B a <0,b <0
C a 、b 两数一正一负,且正数的绝对值大于负数的绝对值.
D a 、b 两数一正一负,且负数的绝对值大于正数的绝对值.
12.下列运算正确的是( )
A.-22
÷(-2)2
=1; B. 3
1128327⎛⎫
-=- ⎪⎝⎭
;
C.1352535-÷⨯
=- D. 13
3( 3.25)6 3.2532.544
⨯--⨯=- 13.()5.5-+()2.3-()5.2---4.8 14.1+3+5+...+99-(2+4+6+ (98)
15.75.34313712|5|)3(-++---+-- 16.-54×241÷(-421
)×9
2 17.|97|-÷2)4(31)5132(-⨯-- 18.)1279543(+--÷36
1
19.()()5152153183
2
÷--⎪⎭
⎫ ⎝⎛-⨯+-÷-
20.(-8
5)×(-4)2-
0.25×(-5)×(-4)3。