第二节线性空间的定义与简单性质

合集下载

线性空间的定义与性质

线性空间的定义与性质

s1(x) = A1sin(x+B1)= (A1)sin(x+B1) S[x],
所以, S[x]是一个线性空间.
例5: 在区间[a, b]上全体实连续函数构成的集合 记为C[a, b], 对函数的加法和数与函数的数量乘法, 构 成实数域上的线性空间. (2) 一个集合, 如果定义的加法和乘数运算不是通 常的实数间的加, 乘运算, 则必需检验是否满足八条线 性运算规律. 例6: 正实数的全体记作R+, 在其中定义加法及乘 数运算为: ab = ab, a = a, (R, a, bR+) 验证R+对上述加法与乘数运算构成(实数域R上的)线 性空间. 证明: 对任意a, bR+, R, ab = abR+, a = aR+, 所以对R+上定义的加法与乘数运算封闭.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组. 说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间. 线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性. 例1: 实数域上的全体mn矩阵, 对矩阵的加法和 数乘运算构成实数域R上的线性空间, 记作Rmn. Rmn 中的向量(元素)是mn矩阵. 例2: 次数不超过n的多项式的全体记作P[x]n, 即 P[x]n ={ p(x)=a0+a1x+· · · +anxn | a0, a1, · · · , a n R } 对通常多项式加法, 数乘构成向量空间.
二、线性空间的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, + 01 =, + 02 = , 由于01, 02V, 则有 02+01=02, 01+02=01. 所以 01=01+02 =02+01 =02.

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。

本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。

一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。

2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。

3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。

4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。

5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。

6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。

7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。

8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。

9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。

线性空间的例子包括n维向量空间和函数空间等。

它们满足上述定义中的所有条件。

二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。

2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。

3. 线性变换T将零向量映射为目标线性空间的零向量。

线性变换的例子包括平移、旋转和缩放等。

它们保持向量空间的线性结构和线性关系。

三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。

给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。

线性空间的基本内容

线性空间的基本内容
(2)线性变换保持线性组合与线性关系式不变
(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系

§6-2线性空间的定义和性质(精)

§6-2线性空间的定义和性质(精)

§6-2线性空间的定义和性质一、定义:设V 是一个非空集合,P 是一个数域1、 在V 中定义一种加法运算,使对于V 中任意两个元βα,都有V 中唯一的元γ与之对应,称为α与β的和,记作βαγ+=,加法满足:① α+β=β+α;② α+(β+γ)=(α+β)+γ;③ V 中有一个元素θ,使对V 中任一元α,都有α+θ=α(θ叫做零元); ④ 对于V 中每一个元α,都有V 中元β存在,使α+β=θ(β叫做α的负元);2、 在P 中的数与V 中的元之间定义一种数量乘法运算,使P k ∈∀及V ∈∀α都有V 中唯一的元δ 与之对应,记作αδk =,且满足:⑤αα=∙1;⑥()()ααkl l k =;⑦()αααl k l k +=+;⑧()βαβαk k k +=+;满足以上运算的V ,称为数域P 上的线性空间。

例1 :数域P 上的一元多项式环[]x P ,按通常的多项式加法和数与多项式的乘法,构成一个数域P 上的线性空间。

如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域P 上的一个线性空间,用[]n x P 表示。

例2:元素属于数域P 的n m ⨯矩阵,按矩阵的加法和矩阵与数的乘法,构成数域P 上的一个线性空间,用n m P ⨯表示。

例3: C[a,b]关于函数的加法和数与函数的乘法来说作成实数域R 上的向量空间。

)()()(x af x g x f +例4: R 为实数域,V 为全体正实数组成的集合,定义V 中两个元素的加法运算⊕为:V b a ab b a ∈=⊕,,定义V 中元素与R 中元素的数乘运算“ ”为p R v a a a k k ∈∈=,,下面验证V 对于这两种运算满足定义中的八条规则:1 a b ba ab b a ⊕===⊕;2 )()()()(c b a c ab c ab c b a ⊕⊕==⊕=⊕⊕;3 a a a =⋅=⊕11;4 a 的负元素是a -1, 111==⊕--aa a a ;5 a lk a a k a l k lk l ===)(;6 )()()(a l a k a a a a l k l k l k ⊕=⊕==++;7 k k k k k k b a b a ab b a b a k ⊕===⊕=⊕)()()(=)()(b k a k ⊕;8 a a a ='= 1;所以V 是实数域上的向量空间。

线性空间的基与维数

线性空间的基与维数

线性空间的基与维数线性空间是线性代数中的重要概念,它是指具有加法和数乘运算的集合,并满足线性空间的定义和性质。

在线性空间中,基和维数是两个核心概念,它们对于理解线性空间的结构和性质具有重要意义。

一、线性空间的定义和性质线性空间是指满足以下定义和性质的集合:1. 集合中存在加法运算,即对于任意两个元素x和y,存在相应的元素x+y;2. 集合中存在数乘运算,即对于任意元素x和数k,存在相应的元素kx;3. 加法和数乘运算满足封闭性,即对于任意元素x和y,x+y和kx 仍然属于该集合;4. 加法满足结合律和交换律,即对于任意元素x、y和z,(x+y)+z=x+(y+z)和x+y=y+x;5. 加法满足单位元存在性,即存在一个元素0,对于任意元素x,有x+0=x;6. 加法满足逆元存在性,即对于任意元素x,存在相应的元素-y,使得x+(-y)=0;7. 数乘运算满足结合律和分配律,即对于任意元素x和k、l,有k(lx)=(kl)x和(k+l)x=kx+lx;8. 数乘运算满足单位元存在性,即对于任意元素x,有1x=x。

二、在线性空间中,基是指一个线性无关且能生成整个空间的向量组。

即对于线性空间V,存在向量组{v1, v2, ..., vn},满足以下条件:1. 线性无关性:向量组中的任意有限个向量线性无关,即不存在非零标量c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0;2. 生成性:向量组的线性组合能够生成整个线性空间V,即对于任意向量v∈V,存在标量c1, c2, ..., cn,使得v = c1v1 + c2v2 + ... + cnvn。

线性空间的维数是指基中向量的个数,用n表示。

记作dim(V) = n。

三、线性空间的基与维数的性质线性空间的基与维数具有以下性质:1. 基的个数是唯一的:线性空间V的任意两个基所含向量个数相同;2. 维数的唯一性:线性空间V的维数唯一,与基的选择无关;3. 向量组的性质:线性空间V中的任意向量组若线性无关,则含有的向量个数不超过维数;4. 维数与子空间:线性空间V的任意非零子空间的维数小于等于V的维数;5. 维数与线性变换:线性空间V到线性空间W的线性映射T是满射时,有dim(W) ≤ dim(V);当T是一一映射时,有dim(W) ≥ dim(V)。

线性空间的定义与性质

线性空间的定义与性质
对s1(x)=A1sin(x+B1), s2(x)=A2sin(x+B2)S[x], R,
由于, s1(x)+s2(x) = A1sin(x+B1)+A2sin(x+B2) = (a1cosx+b1sinx)+(a2cosx+b2sinx) = (a1+a2)cosx+(b1+b2)sinx
= Asin(x+B)S[x],
说明1. 凡满足以上八条运算规律的加法及乘数运 算统称为线性运算.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组.
说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间.
线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性.
任意两个元素, V, 总有唯一的一个元素 V与之 对应, 称 为与 的和(简称加法运算), 记作 = +.
若对于任一数R与任一元素V, 总有唯一的 元素 V与之对应, 称为数与的积(简称数乘运算), 记作 = .
如果上述的两种运算满足以下八条运算规律, 那 么, 就称V为数域R上的线性空间(或向量空间):
通常的多项式加法, 数乘多项式的乘法两种运算 满足线性运算规律. 实际上
对p(x)=a0+a1x+···+anxn, q(x)=b0n, R,
p(x)+q(x) = (a0+a1x+···+anxn)+(b0+b1x+···+bnxn ) = (a0+b0)+(a1+b1)x+···+(an+bn)xnP[x]n,

高等代数 讲义 第六章

高等代数 讲义 第六章
2)若M中不同元素的象也不同,即 ∀a1,a2 ∈ M ,若a1 ≠ a2 , 则σ (a1 ) ≠ σ (a2 ) (或 ∀a1,a2 ∈ M ,若σ (a1 ) = σ (a2 ), a1 = a2 ),
则称σ是M到M´的一个单射(或称σ为1—1的);
3)若σ既是单射,又是满射,则称σ为双射, (或称σ为 1—1对应)
§6.1 集合 映射
☆集合的表示方法一般有两种:描述法、列举法 描述法:给出这个集合的元素所具有的特征性质.
M={x | x具有性质P} 列举法:把构成集合的全部元素一一列举出来.
M={a1,a2,…,an}
例1 M = {( x, y) x2 + y2 = 4, x, y ∈ R} 例2 N= {0,1, 2, 3,LL}, 2Z= {0, ±2,±4,±6,LL} 例3 M = { x x2 − 1 = 0, x ∈ R} = {−1,1}
A U B ⊆ B. 又因 B ⊆ A U B,∴ A U B = B.
§6.1 集合 映射
二、映射
1、定义
设M、M´是给定的两个非空集合,如果有 一个对 应法则σ,通过这个法则σ对于M中的每一个元素a, 都有M´中一个唯一确定的元素a´与它对应, 则称 σ为
M到M´的一个映射,记作 :σ : M → M'或 M ⎯σ⎯→M' 称 a´为 a 在映射σ下的象,而 a´ 称为a在映射σ下的 原象,记作σ(a)=a´ 或 σ : a a a′.
又对∀a ∈ R+,存在
x
=
log
a 2

R
,使
σ
(log
a 2
)
=
2log
a 2
=a

线性空间的定义与简单性质

线性空间的定义与简单性质
© 2009, Henan Polytechnic University §2 线性空间的定义与简单性质
5 5
a 1 a1 a, a ③ 1 R+, R+,即1是零元;
④ a
1 + R , a R+,且 a
第六章 线性空间
⑤ 1 a a a ; a R+;
与 的和,记为 ;在P与V的元素之间还
定义了一种运算,叫做数量乘法:即 V , k P , 在V中都存在唯一的一个元素δ与它们对应,称δ为
k与 的数量乘积,记为
法还满足下述规则,则称V为数域P上的线性空间:
© 2009, Henan Polytechnic University §2 线性空间的定义与简单性质

⑦k ( l ) ( kl )
, , P n , k , l P
© 2009, Henan Polytechnic University §2 线性空间的定义与简单性质
3 3
第六章 线性空间
例2
数域P上的一元多项式环P[x]中,定义了
两个多项式的加法和数与多项式的乘法,而且 这两种运算同样满足上述这些重要的规律,即 ①f ( x ) g( x ) g( x ) f ( x ) ②( f ( x ) g( x )) h( x ) f ( x ) ( g( x ) h( x )) ③f ( x) 0 f ( x) ⑤ 1 f ( x) f ( x) ④ f ( x ) ( f ( x )) 0 ⑥ k (lf ( x )) (kl ) f ( x ) ⑧k( f ( x) g( x)) kf ( x) kg( x)
⑦ (k l ) f ( x ) kf ( x ) lf ( x )

6.2 线性空间的定义及性质

6.2 线性空间的定义及性质
由特殊到一般,由具体到抽象,把具体的代数对象用公理化方法
统一在一个数学模型下,是数学研究的一种基本思想方法.
二. 基本性质
8条算律 ― 基本法律依据(公理),以2个运算、8 条算律为基础推导其它基本性质.
以下6条基本性质:
1. V 中零向量唯一.
证明: 设 01,02 是 V 中零向量 算律3) 02=02+01=01+02=01 . □

依据该性质可用符号 表示向量 的负向量,即 ( ) 0 ,并
引入减法运算: ( ) → 减法不是一种独立运算.
3. .
证明: 0 ( ( )) ( ) ( ) ( ) .
(统称为运算封闭性),且满足算律:
① + + ;
⑤ (ab)α a(bα) ;
② (+ )+ +(+ ) ;
⑥ 1 ;
③ 0V , V ,0 ;
⑦ a( ) a a ;
④ V , / V , / 0 ; ⑧ (a b) a b .
向量).
5. k 0 k 0 或 0 .
证明: 若 k 0 ,命题已经成立;


1 (
k)
6)

1
(k )

1
0
=
0
.

k
k
k
n
5. i 1 2 n 有确定意义.
i=1
证明: 略.
n
6. i 1 2 n 可交换其中项的位置. i=1
M1×n = {(a1, a 2 , , a n ) a i P,i 1, 2, , n} 为 P 上 n 元行空 间,Mn×1 = {(a1, a 2 , , a n )/ ai P,i 1, 2, , n} 为 P 上 n 元列空 间,统一记为 Pn .

线性空间中的基本定义及性质

线性空间中的基本定义及性质

线性空间中的基本定义及性质线性空间是现今数学中的一个基础概念。

它在向量、矩阵、微积分、拓扑等多个数学分支中都有广泛的应用。

本文将简单介绍线性空间的基本定义及其性质。

一、线性空间的基本定义线性空间是一种包含数个元素的空间,其内部具有向量加法运算和数乘运算。

具体来说,设V为一个非空集合,其中的元素称为向量。

若V上有两种运算,一种为向量加法运算,用+表示,另一种为数乘运算,用·表示,则称(V, +, ·)为一个线性空间,满足以下条件:1.加法交换律:对任意u,v∈V,有u+v=v+u;2.加法结合律:对任意u,v,w∈V,有(u+v)+w=u+(v+w);3.存在零向量:存在一个元素0∈V,使得对任意u∈V,有u+0=u;4.对任意向量u∈V,存在相反元素:对任意u∈V,存在一个元素-v∈V,使得u+(-v)=0;5.数乘结合律:对任意α,α∈R,u∈V,有(αα)u=α(αu);6.分配律:对任意α∈R,u,v∈V,有α(u+v)=αu+αv,(α+α)u=αu+αu;7.标量乘法:对任意u∈V,有1u=u。

在以上定义中,R表示实数集合上的乘法运算。

二、线性空间的性质线性空间的定义虽然简单,但它带来了许多重要的性质。

以下是几个典型的例子:1. 零向量唯一性:线性空间中仅存在一个零向量,任何向量加上该零向量等于其本身。

2. 相反元素唯一性:线性空间中任一向量的相反元素是唯一的。

3. 线性组合性质:设{u1,u2,...,un}为V中的向量。

{a1,a2,...,an}为任意实数,则线性组合a1u1+a2u2+...+anun∈V。

其中,每个ai乘以ui叫做向量ui 的系数。

4. 子空间的定义:设V为一个线性空间,如果它的子集W满足:(1)对于任意向量u,v∈W,u+v∈W;(2)对于任意α∈R,u∈W,有αu∈W;则称W是V的一个子空间。

5. 线性无关性:设V为一个线性空间,{u1,u2,...,un}为其中的向量。

线性空间

线性空间

2. 负元素也是唯一的。 证明:设α有两个负元素β与γ,则: α β 0, α γ 0 γ γ 0 γ α β (γ α ) β 0 β β
3. 0 α 0 ;1)α α; 0 0. ( 证明:Q α 0α (1 0)α 1α α 0α 0 Q α ( 1)α (1 1)α 0α 0 ( 1) α α
例1.实数域上的全体m n矩阵,对于 矩阵的加法和数乘运算构成实数域上 的线性空间,记作R mn . Q A mn B mn C mn , R mn是一个线性空间
A mn D mn
例2.次数不超过n的多项式的全体记作 P [ x]n,即: P [ x]n p an x n an1 x n1 ... a1 x a0 | an , an1 ,..., a1 , a0 R 对于通常的多项式加法、数乘多项式 的乘法构成实数域上的线性空间。 通常的多项式加法、数乘多项式的乘 法满足线性运算规律。
例7. 正实数的全体,记作R , 在其中定 义加法及数乘运算为 a b ab a a (a, b R , R )



验证,R 对上述加法及数乘运算构成线 性空间。 证明:a、b R a b ab R


a R , R a a R 对定义的加法与数乘运算封闭。
(2) 构成子空间 0 0 0 Q B W2, W2非空,对于A, W2, 0 0 0 a 1 b1 0 a 2 b2 0 设A B 0 0 c 2 0 0 c1 且有 a 1 b1 c 1 0, a 2 b 2 c 2 0 a1 a 2 于是 A B 0 b1 b 2 0 c1 c 2 0

第六章第二节线性空间的简单性质及定义

第六章第二节线性空间的简单性质及定义

例3,按通常多 项按通常多 数乘运乘运算, 1)数域 P上的一元多 项的一 P[x ] 即数域 P上一元多 项一元多项式 2)数域 P上次数等于定数 n( n ≥ 1)的 多项式 全体所成的集合; 的集合是否 购集合是 P上的线的线性空
3)数域 P上次数低于定数n的多项多项式全体, 上0所成的集合P 上0所成的集合 解: 1) 构成线线性空间,可以验这两种运算满足线性空间 的8条运运算律 2)不是 线不是线性空间,因为它不含零多项不含零多零元素 (即使添上零也 构即使线性空间,因为两个n次多项多项式的 一定是n次多项多项。
由于该于该空间只有一 素, 而该 空间间中有必须 零元素 素 ,所以 a就是 V的零元素 。 这种由一个零元素组成 的 线性空间 称为 零 空间 。
5*线性空间的元素也称为向量(未必是 有序数组)。
线性空间有时也称为向量空间空间, 这里所谓的向量,笔记和中的向量涵义中的向的多。 以后用小写希腊后用αβγ ... ...代..代表线 V中的元素; 用小写拉丁字母kl数域P中的数。 V的零元素也称零向量,
2) 因为两个n阶可逆方阵的和未必是可逆的, 10 - 10 00 A = , B = 01 0 - 1 ∈ G L2 (P), 但A + B = 00 ∉ G L2 (P); 所以n阶方阵的加法不是G L2 (P)的一个代数运一个 G L2 (P)关于所给的运算不构成P上线线性空间
[x]
n
4)数域 P上次数不低于定数n的多项多项式全体
(3)P
[x] 构成线性空间。因为任给两个次数低于n的
n
多项式f ( x) g ( x)的和f ( x) + g ( x)及kf ( x)的次数 低于n多项式0。且多项式的运算显然符合线性空间的规律。 (4)不构成线性空间。因为两个次数不低于n的 多项式的和可能低于n.

线性空间和其基础性质的定义及应用

线性空间和其基础性质的定义及应用

线性空间和其基础性质的定义及应用线性代数是一门数学分支学科,主要研究向量空间及其上的运算。

线性空间的概念是线性代数的基础,而许多重要的数学分支学科,如微积分、偏微分方程和量子力学都是基于线性空间理论的。

本文将对线性空间及其基础性质的定义进行阐释,并探讨线性空间在不同领域中的应用。

一、线性空间的定义线性空间是一个向量空间,其基本性质是空间中的所有元素均具有标量乘法(scalar multiplication)和向量加法(vector addition)两种基本运算:1. 标量乘法:对于任何标量(即实数或复数)α和向量v,有唯一一个向量αv,2. 向量加法:对于任何两个向量u和v,有唯一一个向量u+v,3. 满足以下八条性质:(1)线性空间中的任意向量u和v都有一个和,称为它们的和u + v。

(2)+ 运算满足交换律,即 u + v = v + u(3)+ 运算满足结合律,即 (u + v) + w = u + (v + w)(4)存在零向量,即 u + 0 = u,对于所有的向量u;(5)对于每个向量u,存在一个与u相反的向量—u,使得 u + (-u)=0;(6)标量乘法满足结合律, 即α(βv) = (αβ)v。

(7)标量乘法对向量加法的分配律,即α(u+v)= αu + αv。

(8)标量乘法对标量加法的分配律,即(α + β)v= αv+ βv。

(其他一些基本术语)向量的线性组合 ( linear combination) 是指对向量进行加权求和v = c1 v1 + c2 v2 + ... + cn vn ,其中 ci 是标量。

向量空间的维数是指向量集合中,所需最小基的数量,记作dim(V)。

二、线性空间的应用线性空间是许多数学分支学科的基础,在多个应用场景中都有广泛的应用。

以下是一些典型的应用案例。

1. 物理学中的线性空间:量子力学中有一个重要的概念是哈密顿算符(Hartniltonian Operator),它是线性空间中的一个算子,用于对系统的总能量进行量化。

线性空间的定义和性质

线性空间的定义和性质
01 02 02
又由于02也是零元素,由定义又应有
从而
01 02 01
01 01 02 02
这证明了零元素的唯一性;
(2) 设αV,β与γ都是 α的负元素,则
0 , 0 这样有
0 ( ) ( ) 0
从而α的负元素是唯一的;
(3) 因为
0 1 0 (1 0) 1
(1) ;
(2) ( ) ( ) ;
(3) V中存在元素0,使对任意αβ有
0 ;
(4) 对于V中任意α,存在V中元素β使

0;
(5) 1α=α ;
(6) k(l) (kl) ;
(7) (k l)α kα lα ;
(8) k( ) k k .
§7.1 线性空间的定义和性质 7.1.1 线性空间的定义 7.1.2 线性空间的初步性质
7.1.1 线性空间的定义 线性空间是本章遇到的第一个抽象概
念.前面遇到过的n维向量、n阶矩阵等都是 一些具体的对象. 为了引出线性空间的一 般概念,我们先仔细观察一下这两个具体
对象. 例7.1.1 实数域上n维向量全体作成
2 2 Q,从而在Q中用实数去进行的
数乘运算不是封闭的.
从这些例子可以知道,线性空间可以 在各种不同的集合上对于各种不同的
加法、数乘运算来定义,只要这个集合上 定义的加法、数乘运算满足封闭性及八条 算律,就可成P上的线性空间V,一般用
例7.1.5 全体有理数所成集合Q,按通 常有理数的加法和有理数对有理数的乘法, 构成一个有理数域上的线性空间. 注意
这个线性空间V及它所属的数域P是同一个 集合. 一般地,任何一个数域P都是P自身 上的线性空间. 但Q不构成实数域R上的线 性空间,因为用一个实数与Q中元素进行 数乘的结果未必是Q中的元素,如

线性空间定义及简单性质

线性空间定义及简单性质

线性空间注意要点:
1. 凡满足以上八条规则的加法及数量乘法也 统称为线性运算.
2.线性空间的元素也称为向量,线性空间也称 向量空间.但这里的向量不一定是有序数组.
向 量
线性空间注意要点:
线性空间的定义是公理化的定义。
引例 2
数域P上的一元多顶式环P[x]中,对于通常的多项式
的加法和数与多项式的乘法两种运算作成数域P上的 线性空间。
◇利用负元素,我们定义减法: ( )
3、0 0, k0 0, (1) , k( ) k k
证明:∵ 0 (0 1) ,
∴两边加上 即得 0 =0;
∵ k k( 0) k k0
证明:假设线性空间V有两个零元素01、02,则有 01=01+02=02.
2、 V,的负元素是唯一的,记为- .
证明:假设 有两个负元素 β、γ ,则有
0, 0 0 ( ) ( ) ( ) 0
加法满足下列四条规则: , , V
① (交换律) ② ( ) ( ) (结合律)
③ 在V中有一个元素0,对 V , 有 0
(具有这个性质的元素0称为V的零元素)
④ 对 V , 都有V中的一个元素β,使得
0 ;(β称为 的负元素)
数量乘法满足下列两条规则 :
⑤ 1
⑥ k(l ) (kl)
数量乘法与加法满足下列两条规则:(分配律)
⑦ (k l) k l ⑧ k( ) k k
v
P





八 大 定 律

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质线性空间是线性代数中的基本概念之一,它是由一组元素及其对应的运算所构成的数学结构。

本文将介绍线性空间的定义和性质,并讨论其子空间的特点。

一、线性空间的定义线性空间也称为向量空间,它由定义在一个域上的元素所组成,这些元素称为向量。

一个线性空间必须满足以下条件:1. 封闭性:对于任意向量a和b,其线性组合a+b也是线性空间中的向量。

2. 可加性:对于任意向量a、b和c,满足(a+b)+c = a+(b+c)的结合律。

3. 零向量:存在一个零向量0,使得对于任意向量a,有a+0=a。

4. 负向量:对于每个向量a,存在一个负向量-b,使得a+b=0。

5. 数乘性:对于任意向量a和标量k,其标量倍数ka也是线性空间中的向量。

6. 数乘分法:对于任意标量k和l,以及向量a,满足(kl)a=k(la)的结合律。

7. 数乘加法混合性:对于任意向量a和标量k、l,满足(k+l)a=ka+la 的分配律。

8. 数加分法混合性:对于任意向量a、b和标量k,满足k(a+b)=ka+kb的分配律。

二、线性子空间的定义线性子空间是指线性空间中的一个子集,它也是一个线性空间。

对于给定的线性空间V,如果集合W是V的子集,并且满足以下条件:1. 零向量:零向量0属于W。

2. 封闭性:对于任意向量a和b,若a和b都属于W,则其线性组合a+b也属于W。

3. 数乘性:对于任意向量a和标量k,若a属于W,则其标量倍数ka也属于W。

三、子空间的性质线性子空间具有如下性质:1. 非空性:线性子空间不能是空集。

2. 零向量唯一性:线性子空间中的零向量是唯一的。

3. 维数性质:设V是一个线性空间,W是V的一个有限维子空间,如果W的一组基包含n个向量,则W的任意一组线性无关的向量组也包含不超过n个向量。

4. 直和性质:设V是一个线性空间,W是V的一个子空间。

如果存在一个子空间U,使得V是U和W的直和,即任意向量v∈V都可以唯一地表示成v=u+w,其中u∈U,w∈W,则称V是子空间U和W 的直和。

线性空间线性空间的定义及性质知识预备集合笼统的说

线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。

集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。

如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。

则有O x x =-+)(。

(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。

注意以下几点:1)线性空间是基于一定数域来的。

同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。

2)两种运算、八条性质。

数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。

3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。

线性空间的定义与性质

线性空间的定义与性质

(2)因 0 0
0 0
0
0
W2
,
即W2非空.
对任意
A a1 0
b1 0
0 , B a2
c1
0
b2 0
0 c2
W2
有 a1 b1 c1 0, a2 b2 c2 0,
于是
A B a1 a2 b1 b2
0
0
0 c1 c2
满足
a1 a2 b1 b2 c1 c2 0,
那么
1
1
0
0.
又 1 1 .
0.
同理可证:若 0 则有 0.
三、线性空间的子空间
定义2 设 V 是一个线性空间,L是 V的一个非空子 集,如果 L 对于V中所定义的加法和乘数两种运算 也构成一个线性空间,则称 L为 V的子空间.
定理 线性空间 V 的非空子集 L构成子空间的充分 必要条件是:L对于 V 中的线性运算封闭.
对于通常的有序数组的加法及如下定义的乘法
( x1,, xn )T 0,,0
不构成线性空间. S n 对运算封闭.
但1 x o, 不满足第五条运算规律.
由于所定义的运算不是线性运算,所以S n不是 线性空间.
二、线性空间的性质
1.零元素是唯一的.
证明 假设 01,02 是线性空间V中的两个零元
(1) a b ab ba b a; (2)(a b) c (ab) c (ab)c a (b c); (3) R中存在零元素1,对任何a R ,有
a 1 a 1 a; (4) a R ,有负元素a1 R ,使
a a1 a a1 1;
(5) 1 a a1 a;
例8 R23的下列子集是否构成子空间?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
, , , … 表示线性空间 V 中的元素,用小写的
拉丁字母 a, b, c, … 表示数域 P 中的数.
注 ◆ 向量空间的定义可简单记为 “1128 ” ,
即一个数域 P,这是基础域; 一个集合V; 两个
运算,又叫做线性运算;八条规则,其中前四条是
加法的运算律,这时称V对加法做成一个加群,第
例 3 全体定义在区间 [a,b]上的连续函数组成 的集合V, 对于函数的加法及实数与连续函数的乘 法, 构成实数域上的一个线性空间. 用 C [a,b] 表示.
例 4 数域 P 上一元多项式环 P[ x ], 按通常 的多项式加法和数与多项式的乘法,构成数域 P 上 的一个线性空间. 如果只考虑其中次数小于 n 的多 项式,再添上零多项式也构成数域 P 上的一个线性 空间,用 P[ x ]n 表示. 但是,数域 P 上的 n 次多 项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.
证明 + 0 = 1 + 0 = (1 + 0) = 1 = .
所以
0 = 0 .
k0 + k = k (0 +) = k
所以
k0 = 0 .
(-1) + = (-1) + 1 =[(-1) + 1] = 0 =0 ,
所以
(-1) = - .
证毕
4. 如果 k =0,那么 k = 0 或者 = 0 .
2( + ) = (1+1)( + ) =( + )+( + )= +( + )+ ,
∴ = .
证毕
二、线性空间的简单性质
1. 零向量是唯一的.
证明 假设 01,02 是线性空间 V 中的两个零 向量. 于是
01 = 01 + 02 = 02 . 故零向量是唯一的.
证毕
2. 任意向量的负向量是唯一的.
5) 1 = ; 6) k( l ) = ( kl ) .
数量乘法与加法满足下面两条规则:
7) ( k + l ) = k + l ; 8) k( + ) = k + k .
在以上规则中,k , l 表示数域 P 中的任意数 ;
, , 等表示集合 V 中任意元素.
线性空间的元素也称为向量. 当然,这里所谓 向量比几何中所谓向量的涵义要广泛得多. 线性空 间有时也称为向量空间. 一般用小写的希腊字母
例 8 全体数域 P 上的 2 维向量组成的集合V , 定义数与向量的数量乘法如下:
k ⊙ (a, b) = ( ka,0) , 对于通常的向量加法及以上定义的数与向量的数量 乘法不构成数域 P 上的线性空间.
事实上 , 当 b≠0 时 1 ⊙ (a, b) = ( 1a,0) = ( a,0) ≠ (a, b) .
例 5 全体数域 P 上的 m n 矩阵组成的集合 V,按矩阵的加法和数与矩阵的数量乘法,构成数 域 P 上的一个线性空间,用 P m n 表示.
例 6 全体实函数,按函数的加法和数与函数 的数量乘法,构成实数域上的一个线性空间.
例 7 数域 P 按照本身的加法与乘法,即构成 自身上的一个线性空间.
证明 假设 k 0,于是
从而
k -1( k ) = k -10 = 0 .
(k -1k) = 0,
1 = 0 ,

= 0 .
证毕 ▲
高等代数
第六章 线性空间 Linear Space
第二节 线性空间的定义与简单性质
一、线性空间的概念
定义 1 设 V 是一个非空集合 , P 是一个数域 . 在集合 V 的元素之间定义了一种代数运算,叫做 加法; 这就是说,给出了一个法则,对于 V 中任
意两个元素 与 ,在 V 中都有唯一的一个元素 与它们对应,称为 与 的和,记为 = + .
在数域 P 与集合 V 的元素之间还定义了一种运算 , 叫做数量乘法; 这就是说,对于数域 P 中任一
数 k 与 V 中任一元素 ,在 V 中都有唯一的一个
元素 与它们对应,称为 k 与 的数量乘积,记
= k . 如果加法与数量乘法满足下述规则,那
么 V 称为数域 P 上的线性空间.
加法满足下面四条规则:
1) ; 2) ( ) ( );
3) 在 V 中有一个元素 0,对于 V 中任一元素
都有
+ 0 =
(具有这个性质的元素 0 称为 V 的零元素) ;
4) 对于 V 中每一个元素 ,都有 V 中的元素 ,使得
+ = 0 ( 称为 的负元素) .
数量乘法满足下面两条规则:
证明 假设 有两个负向量 与 , 则 + = 0, + = 0 .
那么
= + 0 = + ( + ) =( + )+ = 0 + = .
向量 的负向量记为 - .
证毕
利用负向量,定义减法如下:
- =+(- ).
3. 0 = 0 ; k0 = 0 ; (-1) = - .
五、六条是数量乘法ຫໍສະໝຸດ 律, 最后两条是分配律,表 示两种运算之间的联系.
例 1 在解析几何中, 平面或空间中一切向量 组成的集合 V, 对于向量的加法及实数与向量的乘 法, 构成实数域上的一个线性空间.
例 2 全体 n 维实向量组成的集合 V, 对于向 量的加法及实数与向量的乘法, 构成实数域上的 一个线性空间.
相关文档
最新文档